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ABSTRACT
Modern systems operate in spaiotemporally evolving environments,
and similar spatiotemporal scenarios are likely to be tied with
similar decision solutions. This paper develops a spatiotemporal
scenario data-driven decision solution for the path planning of mul-
tiple unmanned aircraft systems (UASs) in wind fields. The solution
utilities offline operations, online operations and sptaiotemporal
scenario data queries to provide an efficient path planning decision
for multiple UASs. The solution features the use of similarity be-
tween spatiotemporal scenarios to retrieve offline decisions as the
initial solution for online fine tuning, which significantly shortens
the online decision time. A fast query algorithm that exploits the
correlation of spatiotemporal scenarios is utilized in the decision
framework to quickly retrieve the best offline decisions. The solu-
tion is demonstrated using simulation studies, and can be utilized
in other decision applications where spaiotemporal environments
play a crucial role in the decision process and the allowed decision
time window is short.
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1 INTRODUCTION
Unmanned aircraft system (UAS) technologies and their applica-
tions in a wide range of civilian domains have been rapidly devel-
oped in recent years. With the urgent need of safely integrating
UASs into the National Airspace System (NAS) [6], the Federal Avi-
ation Administration (FAA) started to investigate the development
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of unmanned aircraft system traffic management (UTM) for the safe
and efficient low-altitude airspace operations. UTM aims to provide
services for airspace design, path planning, dynamic configuration,
dynamic geo-fencing, severe weather and wind avoidance, conges-
tion management, terrain avoidance, and separation management
[8, 10]. In this paper, we develop a spatiotemporal scenario data-
driven decision solution for the path planning of multiple UASs, as
a data-driven solution that addresses the UTM challenges such as
scalability, environmental uncertainties, and real-time decisions.

The problem of multi-UAS path planning has been investigated
in the literature. Based on different classification criteria, the prob-
lem can be classified into geometric and kinodynamic planning,
offline and online planning, 2D and 3D planning, and deterministic
and probabilistic planning [13]. The solutions to this problem in-
clude optimal control approaches such as dynamic programming,
operation research approaches such as mixed integer linear pro-
gramming, and various numerical optimization techniques such as
genetic algorithm, A∗ algorithm, and particle swarm optimization
(PSO). Widely used algorithms also include rapidly-exploring ran-
dom trees, probabilistic roadmaps (PRM), and artificial potential
field-based approaches [18]. Of interest, FasTrack [3] employs a
planning model and a tracking model to perform safety control
within a guaranteed tracking error bound. We note that uncertain
spatiotemporal weather plays a crucial role for UAS path planning,
which is not considered in many studies. In addition, to deal with
the growing number of UASs, scalabiliy becomes an issue. In [11],
the impacts of on- and off- board wireless communication sens-
ing to UAS path planning in an uncertain wind field are analyzed.
Paper [12] solves a multi-objective shortest path problem under
spatiotemporal weather uncertainties, by decomposing the problem
into spatial and temporal segments, and uncertain weather impact
is captured as a scaling cost in each segment. In this paper, we
provide a solution for multiple-UAS path planning that addresses
the weather uncertainty and scalability issues, based on a new
spatiotemporal scenario data-driven framework.

Broadly, modern systems operate in spaitotemporally evolving
environments, and their dynamics are modulated by the environ-
ments in a complicated fashion. Such uncertain spatiotemproal
environment, if exploited, can improve the efficiency of end-to-
end decision-making. To enact the environmental data-driven big
data analytics, we define a new data type as the spatiotemporal
scenario data. A data point of the spatiotemproal scenario data is
composed of a sequence of snapshots, each of which is a spatial
map. Different from spatial graphical data [4], temporal data [7, 9],
and spatiotemporal data [14] that have been widely studied in the
literature, the spatiotemporal scenario data, unique for physical
networked dynamic system, feature significant correlations across
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the spatial, temporal, and also spatiotemporal dimensions. In our

previous studies, we developed algorithms to analyze and process

spatiotemporal scenario data [15–17]. In particular, paper [17] used

a multi-resolution moving-window to capture spatiotemporal cor-

relations and developed a distance measure to find the similarity

among spatiotemporal scenarios for clustering. In [15], an effective

similarity search algorithm was developed to quickly retrieve simi-

lar spatiotemporal scenarios from stored databases that explores the

correlations among the spatiotemproal dimensions. Based on the

idea that similar spatiotemporal scenarios generate similar decision

solutions, the spaiotemporal scenario data query can be used to

quickly generate optimal decisions [16].

This paper develops the spatiotemporal scenario data-driven

decision solution in detail, using UTM (and in particular multiple

UASs path planning) as the case study. We construct a database

for spatiotemporal wind scenarios, tagged with their optimal path

planning decisions. The database is constructed offline using the

optimal control method. Based on current wind information, a fast

query of similar spaitotemporal wind scenario in the database is

conducted to retrieve the best offline path planning decision. The

decision is then fine tuned online to obtain the optimal path plan-

ning decision for the current weather scenario with significantly

shortened online computing time. To model uncertain spatiotempo-

ral wind disturbance, we adopt a reduced-order stochastic influence

model which captures the wind dynamics at two levels: the network

level and the local level [1, 5].

The rest of this paper is organized as follows. Section 2 overviews

the spatiotemporal scenario data-driven decision framework for

multi-UAS path planning. Section 3 introduces the offline path plan-

ning operations, including the spatiotemporal influence model, the

optimal control-based path planning solution, and the database

construction. Section 4 introduces the online path planning opera-

tions, including spatiotemporal scenario data distance measure, fast

spatiotemporal scenario data query, online tuning of the queried

solution, and database expansion. Section 5 shows the simulation

studies. Section 6 concludes the paper.

2 OVERVIEW OF THE SPATIOTEMPORAL
SCENARIO DATA-DRIVEN DECISION
SOLUTION

This section describes the spatiotemporal scenario data-driven de-

cision solution for multi-UAS path planning subject to collision

avoidance and uncertain wind impact. The framework is developed

based on the assumption that similar spatiotemproal wind scenarios

share similar path planning solutions, and hence stored solutions

can be leveraged to accelerate the online decision-making process.

The structure of the solution framework is shown in Figure 1.

The framework is composed of three main blocks: the offline block,

the online block, and the database block. The offline block contains

three operations. First, spatiotemporal scenario data are obtained

from historical environmental data or environmental models. The

second operation is to find an optimal planning solution for each

scenario. The third operation is to construct a database with the

spatiotemporal scenarios and their corresponding optimal solutions.

The online block also contains three operations. The first operation

is spaiotemporal senario data query, searching for a scenario from

Figure 1: Spatiotemporal Scenario Data-driven Decision So-

lution.

the database that is similar to the current scenario provided by

environmental forecasting tools. The corresponding optimal solu-

tion is retrieved. Since the current scenario may not be exactly the

same as the retrieved scenario, the retrieved solution needs to be

tuned online in the second operation. Once the optimal solution to

the current scenario is obtained, it is implemented and meanwhile

pushed to the database to expand the solution sets.

We apply the aforementioned spatiotemporal scenario data-

driven decision solution to the multi-UAS path planning problem

under wind disturbance as a case study. For the offline operations,

we use a stochastic influence model to generate spatiotemporal

wind scenario data. We then formulate the path planning problem

using optimal control. Each UAS has its own dynamics and desti-

nation. The objective is to minimize the total trajectory duration

subject to wind disturbances and collision avoidance constraints.

For the online operations, directly performing exhaustive similarity

search is computationally complex and inefficient for spatiotem-

poral scenario data. We adopt a fast query algorithm which takes

advantage of the upper bound and lower bound of the distance

measure to accelerate the query process. The optimal path plan-

ning solution is obtained through combining the retrieved offline

solution with online tuning.

3 OFFLINE OPERATIONS

3.1 Spatiotemporal Wind Scenario Data
Generation Using the Influence Model

Weuse the influencemodel, a reduced-order stochastic spatiotempo-

ral network model, to generate the uncertain spatiotemporal wind

data [1, 5]. The model has the following features. First, it simultane-

ously captures both network- and local- spatiotemporal spreading

properties. Spatiotemporal correlations are naturally reflected. In

[5], we verified that the model can capture well the spread dynam-

ics. Second, it provides a tractable reduced-order representation of

a stochastic network and is computationally efficient.

Consider a wind field of N regions. Each region has its own

wind status, which interacts with other regions stochastically. The
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Figure 2: An simple example of a homogeneous influence

model of four regions and two wind statuses. ‘West’ and

‘East’ are the two statuses of each region.

spatiotemporal spread dynamics in the regions can be fully captured

by two types of matrices. A network influence matrix D ∈ RN

describes the spreading pattern at the network level. The entry di j
is the probability that the wind status in region i will be influenced
by region j at the next time step. A local Markov chain Ai j ∈

RMi×Mj describes the local influence that region j exerts on region
i , where Mi and Mj are the number of wind statuses of region i
and j respectively. The entry amn of Ai j is the probability that

region i to be in wind statusm when region j is in wind status n
at the current time step. D and Ai j are right stochastic matrices.
Here we consider the homogeneous influence model where all the

regions share the same number of wind statuses M , and the local

Markov chains between any two regions are the same, denoted as

A ∈ RM . We refer the homogeneous influence model as influence

model when there is no confusion. Figure 2 shows an example.

We use a length-M row vector Sn [k] to denote the wind status
of region n at time k , where n ∈ {1, 2, · · · ,N }. Sn [k] is filled with
zeros except a ’1’ at the position corresponding to the wind status of

region n at k . The whole network’s wind state S[k] can be denoted

by cascading all the Sn [k], i.e., S[k] =
[
ST1 [k], S

T
2 [k], · · · , S

T
N
[k]

]T
,

where the superscript T is the transpose operator.

Similarly, another length-M row vector pn [k] is used to repre-
sent the probability mass function (PMF) for the wind status of

region n at time k . The network’s PMF matrix can be represented

by cascading pn [k] in order, p[k] =
[
pT1 [k],p

T
2 [k], · · · ,p

T
N
[k]

]T
.

For region n, the evolution of its wind status is based on a quasi-
linear combination of the wind statuses of its neighbors and itself,

i.e., pn [k + 1] =
∑N
l=1

dnlSl [k]A. Therefore, the evolution of the

network can be represented in a matrix multiplication form, i.e.,

p[k + 1] = DS[k]A. The network’s wind state at time k + 1 is ran-
domly realized according top[k+1], i.e., S[k+1] = Realize(p[k+1]).

In this paper, the wind disturbance at each time point and spatial

region is described by two elements: velocity and direction. We map

the two elements into one status, and generate the wind spreading

scenario on a grid. LetWmax andWmin denote the upper and lower

bound of the wind velocity. δw and Δw are the resolution of wind

velocity and angle respectively. We construct a look-up table for

this mapping (see Figure 3).

Figure 3: The construction of the look-up table that maps

velocity and direction into status.

3.2 Optimal Multi-UAS Path Planning

We formulate the multi-UAS path planning problem using optimal

control [2]. Consider K UASs in a wind field, each of which has its

own starting point and destination. Let Xi = [xi ,yi ], Vi and θi de-
note the position, velocity and heading angle of UAS i , respectively.
The UAS dynamics �Xi (τ ) = f (Xi (τ ),θi (τ ),τ ) modulated by wind
disturbances can be modeled as:{

�xi (τ ) = Vi (τ ) cosθi (τ ) +W (xi ,yi ,τ ) cosϕ(xi ,yi ,τ )
�yi (τ ) = Vi (τ ) sinθi (τ ) +W (xi ,yi ,τ ) sinϕ(xi ,yi ,τ ),

(1)

whereW (xi ,yi ,τ ) and ϕ(xi ,yi ,τ ) denote the corresponding veloc-
ity and direction of wind for the position of UAS i at time τ . We

aim to find the optimal solution θi (τ ) for all i ∈ {1, 2, · · · ,K} to

minimize the total trajectory duration for all UASs subject to wind

disturbances and collision avoidance constraints. Mathematically,

the optimal control problem is formulated as:

min
θi ,i ∈{1,2, · · · ,K }

J =
K∑
i=1

∫ τfi

0
1dτ

Subject to :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Xi (τ ) = f (Xi (τ ),θi (τ ),τ )
xi (0) = lxi (0)
yi (0) = lyi (0)
xi (τfi ) = lxi (τfi )

yi (τfi ) = lyi (τfi )

|xi (τ ) − x j (τ )| > R
|yi (τ ) − yj (τ )| > R

(2)

where J denotes the cost function, [lxi (0), lyi (0)] and [lxi (τfi ), lyi (τfi )]
are the starting point and destination for UAS i respectively, R is

the bound of collision distance. We apply time-scaling transforma-

tion to the model. Let t = τ
τf

and d
dτ

is replaced by 1
τf

d
dt
. Then

we use MATLAB function "fmincon" and Simulink to numerically

solve the problem. The Simulink model is shown in Figure 4. The

spatiotemporal wind scenario generated by the influence model is

stored in MATLAB workspace. We use "WindFunc" to acquire these

scenario data and input them to the Simulink model. The optimal

control input sequence θi for each UAS i is then obtained.
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Figure 4: Simulink model for the vehicle dynamics.

Figure 5: Database structure for the offline solutions.

3.3 Database Construction

We construct a database to store the offline spatiotemporal wind

scenarios and their corresponding optimal path planning solutions.

The structure of the database is shown in Figure 5. The first column

stores the tags of scenarios. The second to the (T +1)th columns are
spatiotemporal scenario data, each cell of which is a spatial map.

The last column stores the corresponding optimal path planning

solution for each scenario.

4 ONLINE OPERATIONS

4.1 Distance Measure For Spatiotemporal
Scenario Data

The distance measure we developed in [17] quantifies the similarity

between spatiotemopral scenarios generated from physical pro-

cesses. The distance measure has the following features. First, it

captures the spaiotemporal correlation of scenarios using a mov-

ing window of multiple resolutions, retaining the spatiotemporal

spread patterns of varying shape, size, location and intensity. Sec-

ond, the distance measure is applicable for not only regular-shaped

but also irregular-shaped spatial cells, in the sense that the spaital

scanning order of spaiotemporal windows does not matter. Third,

the distance measure automatically corrects boundary effects and

balances the contributions of all spatial cells and time points. The

procedure to calculate the distance matrix among pairs of multiple

spatiotemporal scenarios is summarized in Algorithm 1.

Consider two spatiotemporal wind scenarios si and sj generated
according to Section 3.1, each of which is composed of the same

number of regions and temporal lengths. Let B denote the set of

regions and bn ∈ B denote a specific region. Likewise, T is the set

of time points and tk ∈ T represents a specific time point. Each

region has an intensity at a specific time point, for example, in our

case the intensity is the wind status mapped from wind velocity

and direction. We denote the wind status of si at a region bn and
time point tk as Ii,n,k ≥ 0.

We use moving windows at spatial and temporal dimensions to

simultaneously scan a pair of scenarios and compute their similarity.

Let ϕn,w and ϕk,h denote the spatial window and temporal window

respectively. ϕn,w is a size-w window centered at the region bn
and contains all the regions within w − 1 hops to bn . ϕk,h is a

size-h window starting from the time point tk and contains itself
and the subsequent h − 1 time points. The size ranges of spatial

and temporal windows are defined according to the prior-known

knowledge of spatiotemporal scenario properties. In general, we

choose ’1’ to be the minimum window size. Smaller window size

indicates finer resolution. The distance between the two scenarios

Di, j,w,h with fixed spatial window size w and temporal window

size h is calculated by comparing the aggregated region statuses,

Di, j,w,h =
∑

ϕn,w ∈Φw

∑
ϕk,h ∈Φh

1

|ϕn,w | |ϕk,h | |Φh |������
∑

br ∈ϕn,w

∑
tl ∈ϕk,h

Ii,r,l
λr,wτl,h

−
∑

br ∈ϕn,w

∑
tl ∈ϕk,h

Ij,r,l

λr,wτl,h

������ ,
(3)

where

λn,w =
∑

ϕr ,w ∈{ϕr ,w |bn ∈ϕr ,w }

1

|ϕr,w |

τk,h =
∑

ϕl,h ∈{ϕl,h |tk ∈ϕl,h }

|T |

|ϕl,h | |Φh |
.

| · | denotes the cardinality, Φw is the full set of spatial windows of

sizew , and Φh is the full set of temporal windows of size h. λr,w , a
spatial contribution factor, is used to correct the boundary effect

of the spatial cells, so that each spatial cell contributes equally

to the distance calculation. The temporal contribution factor τl,h
functions in a similar way.

Algorithm 1Multi-Resolution Distance Calculation Algorithm

Input: Multiple spatiotemporal wind scenarios s =[
s1, s2, · · · , sL

]
.

Output: Distance matrix D.

1: for each pair of scenarios si and sj do
2: for each pair of spatial resolutionw = 1 : wmax and tempo-

ral resolution h = 1 : hmax do

3: Calculate the distance Di, j,w,h with a fixed spatial win-

dow size w and a temporal window size h according to

(3).

4: end for

Calculate the distanceDi, j between scenarios si and sj using
Equation (4).

5: end for

The total distance between si and sj can be obtained by iterating
all the spatial and temporal window sizes in the predefined ranges,

Di, j =

hmax∑
h=1

wmax∑
w=1

Di, j,w,h
σwαh∑hmax

h=1

∑wmax

w=1 σwαh
, (4)

wherewmax and hmax represent the sizes of the maximum spatial

window and temporal window respectively, and σw > 0 and αh > 0
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are weighting factors for the spatial and temporal windows, respec-

tively. In general, a larger window size indicates less contribution

to the calculation of distance due to its coarse resolution. We select

σw and αh to be negative exponential functions as σw = e−ϵ (w−1)

and αh = e−ρ(h−1), where ϵ , ρ ≥ 0.

4.2 Fast Query for Spatiotemporal Scenario
Data

Similar scenarios can be obtained quickly using the distance matrix

D. However, computing D is time-consuming with the increase of

scenario number and spatiotemporal window size. The fast query

algorithm [15] is used to reduce the computational complexity and

accelerate the query process. The basic idea is to trim the searching

space after each resolution run by exploiting the bounds of the

distance measure. The algorithm is summarized as Algorithm 2.

Algorithm 2 Fast Query Algorithm

Input: Query sq , database s , threshold Ithrd , and coefficient c.
Output: A set of scenarios sc ⊆ s of size c that are most similar

to sq .
1: Construct table I for s .
2: Calculate Iq .
3: sc ← {si }, where si ∈ s and |Ii − Iq | ≤ Ithrd .
4: for each si ∈ sc do
5: Calculate Di,q [1] and Di,q [1].

6: end for

7: Determine the value ofMc = max
si ∈sc

Di,q [1].

8: while Di,q [1] ≤ Mc, ∀si ∈ sc do

9: Increase the value of Ithrd and perform step 2-6.

10: end while

11: sc ← sc \ {si }, where Di,q [1] > Mc and si ∈ sc .

12: for l = 2 towmaxhmax do

13: for each si ∈ sc do
14: Calculate Di,q [l] and Di,q [l].

15: end for

16: if |sc | > c then

17: Determine the value ofMc = max
si ∈sc

Di,q [l].

18: Remove all scenarios si that satisfy Di,q [l] > Mc from sc .

19: else

20: Exit from the for loop.

21: end if

22: end for

23: if |sc | > c then
24: sc ← c scenarios selected from sc that have the smallest

upper bound values Di,q [l].
25: end if

According to (3) and (4), Di, j,w∗,h∗ ≤ Di, j ≤ Di, j,1,1, where

w∗ and h∗ are the largest spatial and temporal windows that cover
the whole spatial and temporal spaces. Let Ii =

∑
bn ∈B

∑
tk ∈T i,n,k

denote the total intensity of scenario si , and Di, j,w∗,h∗ can be

computed as Di, j,w∗,h∗ =
|Ii−Ij |

|T |
. Let Di, j [l] and Di, j [l] denote

the upper bound and the lower bound of the distance between

si and sj of spatiotemporal resolution l respectively, where l ∈

Figure 6: An example of spatiotemporal wind scenario. The

arrow at each region denotes the wind velocity and direc-

tion. (a) The snapshot at t=1. (b) The snapshot at t=8. (c) The

snapshot at t=27.

{1, 2, · · · ,wmaxhmax }. Di, j [l] and Di, j [l] can be calculated itera-

tively using the bounds of finer resolution l − 1 [15].

Given a query scenario sq and a database s , the fast query algo-
rithm includes two main procedures. Procedure 1: Construct a total

intensity table I . Then an initial candidate set sc can be obtained by
applying |Ii − Iq | ≤ Ithrd , where Ithrd is the threshold that limits

the number of retrieved scenarios and is determined by statistical

analysis of the database. sc is then expanded by comparing the

upper and lower bounds of Di,q [1]. Procedure 2: Trim sc based on

Di,q [l] and Di,q [l] at each resolution l .

4.3 Online Tuning and Database Expansion

We adopt the automatic algorithm configuration method for the

online tuning operation. The optimal control solution for the most

similar scenario retrieved from database is used as the initial solu-

tion for the current scenario. The online tuning follows the same

optimization procedure that we adopted for the offline solution,

with the only change on using the retrieved solution as the initial

solution. The database then be expanded by adding the current

scenario and its corresponding optimal control solution.

5 SIMULATION STUDIES

We demonstrate the spatiotemporal scenario data-driven decision

framework for multi-UAS path planning using simulation studies.

We use the influence model to generate 100 spatiotemporal wind

disturbance scenarios in a wind field of 5×5 grids. For each grid, the

wind speed ranges from 1 to 10m/s with resolution 1, and the wind
direction ranges from 0 to 2π with interval 1

36π . Mathematically,

Wmin = 1 andWmax = 10, δw = 1 and Δw =
1
36π . According to

Figure 3, the total number of statuses is 648. The temporal length

of each scenario is T = 38. See Figure 6 for an example.
Consider four UASs operating in the wind field, each of which

has its own starting point and destination. The velocity of each UAS

is 15m/s . We follow the offline operations to obtain the optimal

path planning solutions and construct the database for the 100

spatiotemporal wind scenarios. For each new spatiotemporal wind

scenario, we apply the online operations and obtain its optimal

control solution tuned from the retrieved similar scenario.

Figure 7 shows the retrieved and the online turned UAS tra-

jectories for a current wind scenario, together with their optimal

control solutions. When there is no wind disturbance and collision

avoidance constraints, the four UASs take straight paths from their

11
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Figure 7: (a) The retrieved 3D UAS trajectories. (b) The re-

trieved optimal control solution. (c) The 3D UAS trajectories

under current wind scenario. (d) The tuned optimal control

solution for current scenario. Note that in (a) and (c), to bet-

ter illustrate the non-collision trajectory, the z-axis denotes

time.

starting points to the destinations and the optimal heading angles

are constants. To avoid collision under wind, UASs 3 and 4 change

their directions during flight, while UASs 1 and 2 remain their head-

ing angle for this spatiotemporal wind scenario. Figures 7 (b) and (d)

share similar optimal strategies as we expected, since the two wind

scenarios are similar. The difference between the total durations

of the two scenarios is also small. The time duration for each UAS

under the retrieved scenario is 27, 28.7, 30 and 34.3 and the total

duration is 120. The time duration for each UAS under the current

scenario is 27.4, 31.5, 34.6 and 30 and the total duration is 123.5.

To compare the online querying and tuning solutions, the direct

application of the offline method to the current scenario leads to a

total duration of 123.9, with the four UASs’ time durations being

28.4, 31.6, 33.6, 30.3, respectively. However, the computational cost

is significantly reduced by using the offline, online, and database

integrated decision framework.

6 CONCLUSIONS

In this paper, a spatiotemporal scenario data-driven decision for

multi-UAS path planning is developed. The solution contains offline

operations, online operations and a database. The offline operations

feature an influence model and an optimal control path planner to

generate spatiotemporal scenario data, obtain optimal strategies,

and construct the database. The online operations feature a fast

query algorithm for spatiotemporal scenario data, online tuning

and database expansion. The offline and online operations are in-

tegrated to provide computationally efficient decisions based on

the similarities of spatiotemporal scenarios. The decision frame-

work can also be utilized in other spatiotemporal environmental

applications to meet stringent decision time requirement. In our

future work, we will study machine learning-based online tuning

algorithm and also consider multi-UAV path planning under sto-

chastic weather scenarios. We will also conduct more numerical

experiments with increased database size and the number of UAVs

to better evaluate the computational cost benefit.
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