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ABSTRACT

Modern systems operate in spaiotemporally evolving environments,
and similar spatiotemporal scenarios are likely to be tied with
similar decision solutions. This paper develops a spatiotemporal
scenario data-driven decision solution for the path planning of mul-
tiple unmanned aircraft systems (UASs) in wind fields. The solution
utilities offline operations, online operations and sptaiotemporal
scenario data queries to provide an efficient path planning decision
for multiple UASs. The solution features the use of similarity be-
tween spatiotemporal scenarios to retrieve offline decisions as the
initial solution for online fine tuning, which significantly shortens
the online decision time. A fast query algorithm that exploits the
correlation of spatiotemporal scenarios is utilized in the decision
framework to quickly retrieve the best offline decisions. The solu-
tion is demonstrated using simulation studies, and can be utilized
in other decision applications where spaiotemporal environments
play a crucial role in the decision process and the allowed decision
time window is short.
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1 INTRODUCTION

Unmanned aircraft system (UAS) technologies and their applica-
tions in a wide range of civilian domains have been rapidly devel-
oped in recent years. With the urgent need of safely integrating
UASs into the National Airspace System (NAS) [6], the Federal Avi-
ation Administration (FAA) started to investigate the development
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of unmanned aircraft system traffic management (UTM) for the safe
and efficient low-altitude airspace operations. UTM aims to provide
services for airspace design, path planning, dynamic configuration,
dynamic geo-fencing, severe weather and wind avoidance, conges-
tion management, terrain avoidance, and separation management
[8, 10]. In this paper, we develop a spatiotemporal scenario data-
driven decision solution for the path planning of multiple UASs, as
a data-driven solution that addresses the UTM challenges such as
scalability, environmental uncertainties, and real-time decisions.

The problem of multi-UAS path planning has been investigated
in the literature. Based on different classification criteria, the prob-
lem can be classified into geometric and kinodynamic planning,
offline and online planning, 2D and 3D planning, and deterministic
and probabilistic planning [13]. The solutions to this problem in-
clude optimal control approaches such as dynamic programming,
operation research approaches such as mixed integer linear pro-
gramming, and various numerical optimization techniques such as
genetic algorithm, A* algorithm, and particle swarm optimization
(PSO). Widely used algorithms also include rapidly-exploring ran-
dom trees, probabilistic roadmaps (PRM), and artificial potential
field-based approaches [18]. Of interest, FasTrack [3] employs a
planning model and a tracking model to perform safety control
within a guaranteed tracking error bound. We note that uncertain
spatiotemporal weather plays a crucial role for UAS path planning,
which is not considered in many studies. In addition, to deal with
the growing number of UASs, scalabiliy becomes an issue. In [11],
the impacts of on- and off- board wireless communication sens-
ing to UAS path planning in an uncertain wind field are analyzed.
Paper [12] solves a multi-objective shortest path problem under
spatiotemporal weather uncertainties, by decomposing the problem
into spatial and temporal segments, and uncertain weather impact
is captured as a scaling cost in each segment. In this paper, we
provide a solution for multiple-UAS path planning that addresses
the weather uncertainty and scalability issues, based on a new
spatiotemporal scenario data-driven framework.

Broadly, modern systems operate in spaitotemporally evolving
environments, and their dynamics are modulated by the environ-
ments in a complicated fashion. Such uncertain spatiotemproal
environment, if exploited, can improve the efficiency of end-to-
end decision-making. To enact the environmental data-driven big
data analytics, we define a new data type as the spatiotemporal
scenario data. A data point of the spatiotemproal scenario data is
composed of a sequence of snapshots, each of which is a spatial
map. Different from spatial graphical data [4], temporal data [7, 9],
and spatiotemporal data [14] that have been widely studied in the
literature, the spatiotemporal scenario data, unique for physical
networked dynamic system, feature significant correlations across
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the spatial, temporal, and also spatiotemporal dimensions. In our
previous studies, we developed algorithms to analyze and process
spatiotemporal scenario data [15-17]. In particular, paper [17] used
a multi-resolution moving-window to capture spatiotemporal cor-
relations and developed a distance measure to find the similarity
among spatiotemporal scenarios for clustering. In [15], an effective
similarity search algorithm was developed to quickly retrieve simi-
lar spatiotemporal scenarios from stored databases that explores the
correlations among the spatiotemproal dimensions. Based on the
idea that similar spatiotemporal scenarios generate similar decision
solutions, the spaiotemporal scenario data query can be used to
quickly generate optimal decisions [16].

This paper develops the spatiotemporal scenario data-driven
decision solution in detail, using UTM (and in particular multiple
UASs path planning) as the case study. We construct a database
for spatiotemporal wind scenarios, tagged with their optimal path
planning decisions. The database is constructed offline using the
optimal control method. Based on current wind information, a fast
query of similar spaitotemporal wind scenario in the database is
conducted to retrieve the best offline path planning decision. The
decision is then fine tuned online to obtain the optimal path plan-
ning decision for the current weather scenario with significantly
shortened online computing time. To model uncertain spatiotempo-
ral wind disturbance, we adopt a reduced-order stochastic influence
model which captures the wind dynamics at two levels: the network
level and the local level [1, 5].

The rest of this paper is organized as follows. Section 2 overviews
the spatiotemporal scenario data-driven decision framework for
multi-UAS path planning. Section 3 introduces the offline path plan-
ning operations, including the spatiotemporal influence model, the
optimal control-based path planning solution, and the database
construction. Section 4 introduces the online path planning opera-
tions, including spatiotemporal scenario data distance measure, fast
spatiotemporal scenario data query, online tuning of the queried
solution, and database expansion. Section 5 shows the simulation
studies. Section 6 concludes the paper.

2 OVERVIEW OF THE SPATIOTEMPORAL
SCENARIO DATA-DRIVEN DECISION
SOLUTION

This section describes the spatiotemporal scenario data-driven de-
cision solution for multi-UAS path planning subject to collision
avoidance and uncertain wind impact. The framework is developed
based on the assumption that similar spatiotemproal wind scenarios
share similar path planning solutions, and hence stored solutions
can be leveraged to accelerate the online decision-making process.

The structure of the solution framework is shown in Figure 1.
The framework is composed of three main blocks: the offline block,
the online block, and the database block. The offline block contains
three operations. First, spatiotemporal scenario data are obtained
from historical environmental data or environmental models. The
second operation is to find an optimal planning solution for each
scenario. The third operation is to construct a database with the
spatiotemporal scenarios and their corresponding optimal solutions.
The online block also contains three operations. The first operation
is spaiotemporal senario data query, searching for a scenario from
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Figure 1: Spatiotemporal Scenario Data-driven Decision So-
lution.

the database that is similar to the current scenario provided by
environmental forecasting tools. The corresponding optimal solu-
tion is retrieved. Since the current scenario may not be exactly the
same as the retrieved scenario, the retrieved solution needs to be
tuned online in the second operation. Once the optimal solution to
the current scenario is obtained, it is implemented and meanwhile
pushed to the database to expand the solution sets.

We apply the aforementioned spatiotemporal scenario data-
driven decision solution to the multi-UAS path planning problem
under wind disturbance as a case study. For the offline operations,
we use a stochastic influence model to generate spatiotemporal
wind scenario data. We then formulate the path planning problem
using optimal control. Each UAS has its own dynamics and desti-
nation. The objective is to minimize the total trajectory duration
subject to wind disturbances and collision avoidance constraints.
For the online operations, directly performing exhaustive similarity
search is computationally complex and inefficient for spatiotem-
poral scenario data. We adopt a fast query algorithm which takes
advantage of the upper bound and lower bound of the distance
measure to accelerate the query process. The optimal path plan-
ning solution is obtained through combining the retrieved offline
solution with online tuning.

3 OFFLINE OPERATIONS

3.1 Spatiotemporal Wind Scenario Data
Generation Using the Influence Model

We use the influence model, a reduced-order stochastic spatiotempo-
ral network model, to generate the uncertain spatiotemporal wind
data [1, 5]. The model has the following features. First, it simultane-
ously captures both network- and local- spatiotemporal spreading
properties. Spatiotemporal correlations are naturally reflected. In
[5], we verified that the model can capture well the spread dynam-
ics. Second, it provides a tractable reduced-order representation of
a stochastic network and is computationally efficient.

Consider a wind field of N regions. Each region has its own
wind status, which interacts with other regions stochastically. The
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Figure 2: An simple example of a homogeneous influence
model of four regions and two wind statuses. “‘West’ and
‘East’ are the two statuses of each region.

spatiotemporal spread dynamics in the regions can be fully captured
by two types of matrices. A network influence matrix D € RV
describes the spreading pattern at the network level. The entry d;;
is the probability that the wind status in region i will be influenced
by region j at the next time step. A local Markov chain A;; €
RMixM; describes the local influence that region j exerts on region
i, where M; and M; are the number of wind statuses of region i
and j respectively. The entry a;,, of A;; is the probability that
region i to be in wind status m when region j is in wind status n
at the current time step. D and A;; are right stochastic matrices.
Here we consider the homogeneous influence model where all the
regions share the same number of wind statuses M, and the local
Markov chains between any two regions are the same, denoted as
A € RM We refer the homogeneous influence model as influence
model when there is no confusion. Figure 2 shows an example.

We use a length-M row vector S, [k] to denote the wind status
of region n at time k, where n € {1,2,---,N}. Sp[k] is filled with
zeros except a ’1” at the position corresponding to the wind status of
region n at k. The whole network’s wind state S[k] can be denoted
by cascading all the S,[k], i.e, S[k] = [ST[K], ST[K],--- ,ST[K]]",
where the superscript T is the transpose operator.

Similarly, another length-M row vector pp[k] is used to repre-
sent the probability mass function (PMF) for the wind status of
region n at time k. The network’s PMF matrix can be represented
by cascading pu[k] in order, p[k] = [pT[k],pL[K],--- ,pL[K]]" .
For region n, the evolution of its wind status is based on a quasi-
linear combination of the wind statuses of its neighbors and itself,
ie, pplk + 1] = Zfil dp1S1|k]A. Therefore, the evolution of the
network can be represented in a matrix multiplication form, i.e.,
plk + 1] = DS[k]A. The network’s wind state at time k + 1 is ran-
domly realized according to p[k +1],i.e., S[k+1] = Realize(p[k+1]).

In this paper, the wind disturbance at each time point and spatial
region is described by two elements: velocity and direction. We map
the two elements into one status, and generate the wind spreading
scenario on a grid. Let Wy, qx and Wy, denote the upper and lower
bound of the wind velocity. 8,, and A,, are the resolution of wind
velocity and angle respectively. We construct a look-up table for
this mapping (see Figure 3).

Wind Velocity Wind Direction Status

Winin + 6w /2 A, /2 1

Winin + 6w /2 3A,/2 2

Winin + 6w /2 2m — Ay /2 1+ @2r—Aw)/Ay

Winin + 36,/2 Ay /2 2+ @2r—Ay)/Ay

Winin + 36,/2 3A,/2 3+ (@2 —Ay)/Ay

Winin + 36,/2 2w — Ay /2 2+2@2m —Ay)/A,,

Wnax — 6w/2 Aw/2 @nr /Ay Winax — Winin — 6w)/6w) +1
Wnax — 6w/2 34,/2 @1/Bw Winax — Winin — 6w)/6w) + 2
Wnax — 8w/2 2m —Ay/2 21/Byw (1 + Wmax — Winin — 6w)/8w)

Figure 3: The construction of the look-up table that maps
velocity and direction into status.

3.2 Optimal Multi-UAS Path Planning

We formulate the multi-UAS path planning problem using optimal
control [2]. Consider K UASs in a wind field, each of which has its
own starting point and destination. Let X; = [x;,y;], V; and 0; de-
note the position, velocity and heading angle of UAS i, respectively.
The UAS dynamics X;(r) = f(Xi(r),0;(r), r) modulated by wind
disturbances can be modeled as:

{ xi(t) = Vi(r) cos 0;(r) + W(xj,yi, 7) cos p(xi, yi, T)

§i(r) = Vi(r) sin 0:(0) + Wixs. g, D) sin iy 0), O

where W(x;,y;, 7) and ¢(x;, y;, 7) denote the corresponding veloc-
ity and direction of wind for the position of UAS i at time 7. We
aim to find the optimal solution 6;(r) for all i € {1,2,--- ,K} to
minimize the total trajectory duration for all UASs subject to wind
disturbances and collision avoidance constraints. Mathematically,
the optimal control problem is formulated as:

K oo
min J= Z/ 1dr
0:;,i€{1,2,---,K} —Jo

Xi(r) = f(Xi(1), (1), 7)

xi(0) = Ix;(0)

4:(0) = ly;(0) @
xi(ty,) = Ixi(zp)

yi(ts,) = lyi(zy)

|xi (1) = x;j(7)| > R

lyi() — yj(r)| > R

Subject to :

where J denotes the cost function, [Ix;(0), ly;(0)] and [lx,-(rfi ), lyi(rfi )]
are the starting point and destination for UAS i respectively, R is
the bound of collision distance. We apply time-scaling transforma-
tion to the model. Let t = % and d% is replaced by % % Then
we use MATLAB function "fmincon" and Simulink to numerically
solve the problem. The Simulink model is shown in Figure 4. The
spatiotemporal wind scenario generated by the influence model is
stored in MATLAB workspace. We use "WindFunc" to acquire these
scenario data and input them to the Simulink model. The optimal
control input sequence 6; for each UAS i is then obtained.
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Figure 4: Simulink model for the vehicle dynamics.
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Figure 5: Database structure for the offline solutions.

3.3 Database Construction

We construct a database to store the offline spatiotemporal wind
scenarios and their corresponding optimal path planning solutions.
The structure of the database is shown in Figure 5. The first column
stores the tags of scenarios. The second to the (T + 1)th columns are
spatiotemporal scenario data, each cell of which is a spatial map.
The last column stores the corresponding optimal path planning
solution for each scenario.

4 ONLINE OPERATIONS

4.1 Distance Measure For Spatiotemporal
Scenario Data

The distance measure we developed in [17] quantifies the similarity
between spatiotemopral scenarios generated from physical pro-
cesses. The distance measure has the following features. First, it
captures the spaiotemporal correlation of scenarios using a mov-
ing window of multiple resolutions, retaining the spatiotemporal
spread patterns of varying shape, size, location and intensity. Sec-
ond, the distance measure is applicable for not only regular-shaped
but also irregular-shaped spatial cells, in the sense that the spaital
scanning order of spaiotemporal windows does not matter. Third,
the distance measure automatically corrects boundary effects and
balances the contributions of all spatial cells and time points. The
procedure to calculate the distance matrix among pairs of multiple
spatiotemporal scenarios is summarized in Algorithm 1.

Consider two spatiotemporal wind scenarios s; and s; generated
according to Section 3.1, each of which is composed of the same
number of regions and temporal lengths. Let B denote the set of
regions and b, € B denote a specific region. Likewise, T is the set
of time points and ;. € T represents a specific time point. Each
region has an intensity at a specific time point, for example, in our
case the intensity is the wind status mapped from wind velocity
and direction. We denote the wind status of s; at a region b, and
time point fg as I; , p > 0.
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We use moving windows at spatial and temporal dimensions to
simultaneously scan a pair of scenarios and compute their similarity.
Let ¢, and ¢ j, denote the spatial window and temporal window
respectively. ¢y 4y is a size-w window centered at the region by,
and contains all the regions within w — 1 hops to by. ¢ p, is a
size-h window starting from the time point #; and contains itself
and the subsequent h — 1 time points. The size ranges of spatial
and temporal windows are defined according to the prior-known
knowledge of spatiotemporal scenario properties. In general, we
choose "1’ to be the minimum window size. Smaller window size
indicates finer resolution. The distance between the two scenarios
D, j w,n With fixed spatial window size w and temporal window
size h is calculated by comparing the aggregated region statuses,

1
Diiwh= - -
b 2 L |, 011Dk, 1P

¢n, w E(I>w ¢k, h eth

3
LTI R
Ar wll h Ar,w'[l h '
br E¢n,w ty €¢k,h ’ ’ br €¢n, w il E‘isk,h ’
where
1
A = frov]
Prow€{browlbnehrw} TV
o _n
’ [B1,111Pn]

dr.helPrnlt€Prn}

| - | denotes the cardinality, ®,, is the full set of spatial windows of
size w, and @y, is the full set of temporal windows of size h. A, 4y, a
spatial contribution factor, is used to correct the boundary effect
of the spatial cells, so that each spatial cell contributes equally
to the distance calculation. The temporal contribution factor 7; 5
functions in a similar way.

Algorithm 1 Multi-Resolution Distance Calculation Algorithm
Input:  Multiple
[31,32,»-- LS|
Output: Distance matrix D.
1: for each pair of scenarios s; and s; do
2. for each pair of spatial resolution w = 1 : wy,4x and tempo-
ral resolution h = 1 : hypgx do
3 Calculate the distance D, ; ,, , with a fixed spatial win-
dow size w and a temporal window size h according to
(3).
4  end for
Calculate the distance D;, j between scenarios s; and sj using
Equation (4).
5: end for

spatiotemporal wind scenarios s =

The total distance between s; and s; can be obtained by iterating
all the spatial and temporal window sizes in the predefined ranges,

hmax Wmax

Ow(,
Di’j = Z Di’j’ W’h hmax 1/:Y"m}fzx ’ (4)
h=1 w=1 Zh:l w=1 owlh

where Wy, qx and hy,qx represent the sizes of the maximum spatial
window and temporal window respectively, and oy, > 0 and a, > 0
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are weighting factors for the spatial and temporal windows, respec-
tively. In general, a larger window size indicates less contribution
to the calculation of distance due to its coarse resolution. We select
ow and ay, to be negative exponential functions as oy, = e—€(w-1)
and aj, = e P(h=1) where e, p=0.

4.2 Fast Query for Spatiotemporal Scenario
Data

Similar scenarios can be obtained quickly using the distance matrix
D. However, computing D is time-consuming with the increase of
scenario number and spatiotemporal window size. The fast query
algorithm [15] is used to reduce the computational complexity and
accelerate the query process. The basic idea is to trim the searching
space after each resolution run by exploiting the bounds of the
distance measure. The algorithm is summarized as Algorithm 2.

Algorithm 2 Fast Query Algorithm

Input: Query sq, database s, threshold I;,4, and coefficient c.
Output: A set of scenarios s¢ C s of size c that are most similar

to sq.
. Construct table I for s.
: Calculate Ig.
sc < {si}, wheres; € sand |[; — Iy| < Iiprq-
: for each s; € s. do
Calculate Ei,q[l] and Qi’q[l].
end for
: Determine the value of M. = max Ei,q[l].
8: while Qi’q[l] < Mc, Vs; € s¢c do
9:  Increase the value of I}, 4 and perform step 2-6.
10: end while
11: s¢ < s¢ \ {si}, where Qi’q[l] > Mc and s; € sc.
12: forl = 2 to wmaxhmax do
13:  for eachs; € s, do
14: Calculate D; g[!] and D -
15:  end for
16:  if |s¢| > c then

N U s Wy =

17: Determine the value of M. = max Ei,q[l].

18: Remove all scenarios s; that satlisf; Qi,q[l] > M from s..
19:  else

20: Exit from the for loop.

21:  end if

22: end for

23: if |s¢| > c then

24:  s¢ « c scenarios selected from s, that have the smallest
upper bound values 5i,q[l].

25: end if

According to (3) and (4), D; j v+ p+ < Dij < D j 1,1, where
w* and h* are the largest spatial and temporal windows that cover
the whole spatial and temporal spaces. Let [; = Y., B 2t €T i,n,k
denote the total intensity of scenario s;, and D; j ..~ can be
computed as D; j - p+ = lIi‘;Ijl. Let D; j[I] and D, ;[1] denote
the upper bound and the lower bound of the distance between

s; and s; of spatiotemporal resolution I respectively, where [ €
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Figure 6: An example of spatiotemporal wind scenario. The
arrow at each region denotes the wind velocity and direc-
tion. (a) The snapshot at t=1. (b) The snapshot at t=8. (c) The
snapshot at t=27.

{1,2,- - , Wmaxhmax}- 5”[1] and Qi,j[l] can be calculated itera-
tively using the bounds of finer resolution [ — 1 [15].

Given a query scenario s4 and a database s, the fast query algo-
rithm includes two main procedures. Procedure 1: Construct a total
intensity table I. Then an initial candidate set s, can be obtained by
applying |I; — Iq| < I;p,q, where I;4,4 is the threshold that limits
the number of retrieved scenarios and is determined by statistical
analysis of the database. s. is then expanded by comparing the
upper and lower bounds of D; 4[1]. Procedure 2: Trim s based on

Ei,q[l] and D; q[l] at each resolution /.

4.3 Online Tuning and Database Expansion

We adopt the automatic algorithm configuration method for the
online tuning operation. The optimal control solution for the most
similar scenario retrieved from database is used as the initial solu-
tion for the current scenario. The online tuning follows the same
optimization procedure that we adopted for the offline solution,
with the only change on using the retrieved solution as the initial
solution. The database then be expanded by adding the current
scenario and its corresponding optimal control solution.

5 SIMULATION STUDIES

We demonstrate the spatiotemporal scenario data-driven decision
framework for multi-UAS path planning using simulation studies.

We use the influence model to generate 100 spatiotemporal wind
disturbance scenarios in a wind field of 55 grids. For each grid, the
wind speed ranges from 1 to 10 m/s with resolution 1, and the wind
direction ranges from 0 to 27 with interval 3—1671 Mathematically,
Wiin = 1 and Wy,q = 10, 6,, = 1 and A,, = %7{. According to
Figure 3, the total number of statuses is 648. The temporal length
of each scenario is T = 38. See Figure 6 for an example.

Consider four UASs operating in the wind field, each of which
has its own starting point and destination. The velocity of each UAS
is 15 m/s. We follow the offline operations to obtain the optimal
path planning solutions and construct the database for the 100
spatiotemporal wind scenarios. For each new spatiotemporal wind
scenario, we apply the online operations and obtain its optimal
control solution tuned from the retrieved similar scenario.

Figure 7 shows the retrieved and the online turned UAS tra-
jectories for a current wind scenario, together with their optimal
control solutions. When there is no wind disturbance and collision
avoidance constraints, the four UASs take straight paths from their
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Figure 7: (a) The retrieved 3D UAS trajectories. (b) The re-
trieved optimal control solution. (c) The 3D UAS trajectories
under current wind scenario. (d) The tuned optimal control
solution for current scenario. Note that in (a) and (c), to bet-
ter illustrate the non-collision trajectory, the z-axis denotes
time.

starting points to the destinations and the optimal heading angles
are constants. To avoid collision under wind, UASs 3 and 4 change
their directions during flight, while UASs 1 and 2 remain their head-
ing angle for this spatiotemporal wind scenario. Figures 7 (b) and (d)
share similar optimal strategies as we expected, since the two wind
scenarios are similar. The difference between the total durations
of the two scenarios is also small. The time duration for each UAS
under the retrieved scenario is 27, 28.7, 30 and 34.3 and the total
duration is 120. The time duration for each UAS under the current
scenario is 27.4, 31.5, 34.6 and 30 and the total duration is 123.5.
To compare the online querying and tuning solutions, the direct
application of the offline method to the current scenario leads to a
total duration of 123.9, with the four UASs’ time durations being
28.4,31.6, 33.6, 30.3, respectively. However, the computational cost
is significantly reduced by using the offline, online, and database
integrated decision framework.

6 CONCLUSIONS

In this paper, a spatiotemporal scenario data-driven decision for
multi-UAS path planning is developed. The solution contains offline
operations, online operations and a database. The offline operations
feature an influence model and an optimal control path planner to
generate spatiotemporal scenario data, obtain optimal strategies,
and construct the database. The online operations feature a fast
query algorithm for spatiotemporal scenario data, online tuning
and database expansion. The offline and online operations are in-
tegrated to provide computationally efficient decisions based on
the similarities of spatiotemporal scenarios. The decision frame-
work can also be utilized in other spatiotemporal environmental
applications to meet stringent decision time requirement. In our
future work, we will study machine learning-based online tuning
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algorithm and also consider multi-UAV path planning under sto-
chastic weather scenarios. We will also conduct more numerical
experiments with increased database size and the number of UAVs
to better evaluate the computational cost benefit.
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