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Abstract

Using self-consistent field theory (SCFT), we explore the phase behavior of a diblock

copolymer melt in an applied electric field, with different dielectric constants assigned

to each monomer type. The electric field penalizes the interfaces between species do-

mains that are not parallel to the field. Under the present mean-field approximation,

lamellar and cylindrical structures reorient to align their interfaces with the electric

field, such that these mesophases will have the same electrostatic free energy contribu-

tion as the mixed (disordered) state, and their relative stability will remain unchanged.

In contrast, sphere and network phases do not have an axis of dielectric uniformity;

consequently, the preferred orientation and morphological response of these phases

must be determined numerically. We compute the phase diagram for a BCP melt in

the presence of an applied electric field by comparing the free energy of each phase

at its thermodynamically-preferred orientation relative to the electric field vector. We

find that the stability regions of the sphere and network phases shrink with increasing
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field strength, in favor of the disordered, cylindrical, and lamellar phases. Moreover,

the double gyroid network phase is more strongly disfavored than the orthorhombic

Fddd network phase, such that the predicted region of stability for the Fddd phase is

shifted to larger segregation strength (lower temperature).

Introduction

The self-assembly of block copolymers (BCPs) has been a long-standing subject of interest

due to the emergence of periodically repeating ordered microphases with features on the

nanometer length scale.1 This behavior has made BCPs an attractive platform for indus-

trial production of materials and devices requiring placement of small repeating structures, 2

including semiconductor devices,3,4 nanoporous membranes,5,6 and other tunable functional

nanomaterials.2,7

The BCP phase behavior can be faithfully captured by a coarse-grained molecular model

of continuous Gaussian chains combined with self-consistent field theory (SCFT). SCFT is

a mean-field approach8,9 that is particularly efficient for dense, high-molar-mass polymer

melts. Although it fails to reproduce certain features near the order-disorder transition, 10

SCFT is highly reliable for assessing the stability of copolymer microphases at intermediate

to strong segregation strengths.9,11

The expected (lowest free energy) structure of the simplest AB diblock copolymer system

can be determined within the SCFT framework by specifying two system parameters: volume

fraction of A monomers (f) and an effective segregation strength parameter (χN). The

latter is the product of a Flory parameter (χ) and the diblock degree of polymerization

(N), and is sensitive to the chemistry of the two constituent monomers, the temperature,

and the molar mass of the BCP.1,8 It is currently predicted by SCFT and experimentally

confirmed that seven phases compete for relative stability in this two-dimensional parameter

space: disordered (DIS), lamellar (LAM), hexagonal-packed cylinders (HEX), BCC spheres,

FCC/HCP spheres, the gyroid Ia3̄d cubic network phase (GYR), and the orthorhombic Fddd

2



network phase (O70).8,12–18 Knowledge of SCFT phase diagrams for both simple and complex

BCPs has provided powerful guidance for materials design, interrogation, and application.

Of continuing interest is the effect of an applied electric field (E0) on the ordered struc-

ture in a BCP system. The tendency for BCP microphase structures to elongate or align

along the direction of an applied electric field19,20 has attracted attention as a potential

experimental or industrial technique for enhancing or controlling the self-assembly process.

For example, leveraging this alignment effect has been identified as a strategy for overcom-

ing surface-air and surface-surface interactions to produce novel, perforated nanomaterials

in directed self-assembly (DSA) applications.21 Electric fields have also been identified as

a means of enhancing the kinetics of the BCP self-assembly process,22 greatly increasing

the throughput potential of an industrial DSA workflow. Some other methods for aligning

microstructures during the self-assembly process include application of magnetic fields,23–25

localized annealing using high-performance photonic devices,26,27 and epitaxial prepattern-

ing.2

The driving force for alignment of BCP microphases in an electric field is posited to be

the dielectric inhomogeneity in phase-separated BCP systems; the introduction of an applied

electric field breaks the rotational invariance of bulk ordered structures, preferentially acting

upon interfaces for which E0 has a component out-of-plane.28,29 This broken-symmetry effect

permits BCP nanostructures to exhibit anisotropic dielectric properties, even when purely

isotropic behavior is prescribed at the monomer length scale.30 Within the SCFT frame-

work, a simple extension can be made to include the effect of an applied electric field. The

electrostatic property of the system is specified by an inhomogeneous macroscopic dielectric

constant, obtained from a linear constitutive relation between prescribed monomer dielectric

constants and local volume fractions.

This modified SCFT formalism is inspired by an earlier model, wherein nonelectrostatic

contributions to the behavior of the BCP melt are represented by a Ginzburg-Landau (GL)

free energy functional that depends on an inhomogeneous composition field; the composition-
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dependence of the dielectric constant then biases this free energy when electrostatics are

introduced. Using this formalism, Andelman and collaborators identified an electric field-

induced phase transition in lamella-forming BCP thin films31 and later reported the role of

ionic impurities in altering the magnitude of field necessary to induce such a transition.32

The latter has also more recently been studied using a full SCFT representation.33

This linear mixing rule for describing dielectric behavior of a BCP melt was later imple-

mented within a full SCFT formalism, including several papers by Matsen34–36 that address

the self-assembly of BCPs confined to a thin gap between two charged plates. Among other

novel results, Matsen’s work identifies electric fields as a promising methodology for man-

ufacture of perforated thin films by reorienting ordered cylindrical or lamellar structures

perpendicular to the confinement. Matsen’s work further demonstrates the efficacy and ex-

tensibility of the present SCFT model as a procedure for identifying stability limits, kinetic

pathways,34 and other properties and phenomena of interest. The full SCFT formalism has

been shown to agree with the simpler GL model in the weak segregation regime.37

In another set of studies,38,39 Schick and collaborators performed similar investigations,

considering in detail the thermodynamic character of electric field-induced phase transitions

in dielectric BCP systems. They identified several stable phases that exist for a cylinder-

forming thin-film system, arising from competition between surface-wetting energy and di-

electric response.39

More recently, Zvelindovsky and collaborators combined the electrostatic formalism with

a dynamical SCFT framework to investigate the kinetic pathways of electric field-induced

phase transitions and structure reorientations.40–44 In one study,43 this group used a dy-

namical extension of the GL model employed by Andelman to simulate the large-scale

time-dependent rearrangement of defective lamellar structures subjected to an electric field.

In striking agreement with experimental observations,45 their results identified two healing

mechanisms, one arising from the reorientation of locally ordered grains and one a “nucle-

ation and growth” pathway – corresponding to the growth of perfectly aligned regions, with
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associated migrating boundaries that overrun the misaligned grains – and illuminated the

role of segregation strength in selecting between them. In a later study,46 they also identified

a third mechanism in their simulations, “selective disordering” – wherein misaligned grains

will melt into a disordered state, before recrystallizing as the aligned microstructure – which

has been observed in experiments.47,48

In the present study, we use the full SCFT model to compute the complete diblock

phase diagram for a bulk melt subjected to an external electric field, including all seven

phases found in the field free state.17 The field and temperature are treated as constant,

with the implied assumption that any heating due to the conductivity of the melt will be

mitigated by thermostatting. We assume purely dielectric constituent segments, a uniform

applied electric field, and equal statistical segment lengths. We extend a previously-derived

variable-cell updating method,49 which permits the simulation cell shape and size to evolve

to a stress-free configuration in tandem with solving the mean-field equations. In doing

so, this approach automatically computes the commensurate unit-cell configuration for each

morphology considered, permitting the free energy comparisons necessary for constructing

the phase diagram of equilibrium morphologies. We show that the systems considered pos-

sess an orientation-sensitive free energy penalty arising from dielectric contrast, as described

by Schick,29 which selectively disfavors mesostructures that do not have an interface-free

axis to align along the electric field vector. We show that this phenomenon has the effect of

deforming phase boundaries of the diblock copolymer phase diagram, and in particular, pref-

erentially stabilizing the O70 network phase relative to the GYR network phase, permitting

access to the former structure at larger values of χN for intermediate field strengths.

Methods

We employ a field theory model based on a coarse-grained description of an incompressible,

monodisperse melt of n diblock copolymer chains, with a contact Flory-Huggins repulsion,
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χ, between dissimilar chain segments.9 We invoke the continuous Gaussian chain model and

assume a locally isotropic dielectric response of the constituent segments. In the SCFT

framework, this leads to an electric field-induced shift of the effective potential felt by a

segment of species j (A or B):

weffj (r) = wj(r)− βεjε0

2N
|∇ψ(r)|2, (1)

where wj(r) is the auxiliary chemical potential field experienced by segments of type j due

to non-electrostatic effects (immiscibility and incompressibility); its form is specified by

the exchange field-theoretic formalism of Model E, described in Ref. 9. ε0 is the vacuum

permittivity, εj is the dielectric constant of type j segments, and ψ(r) is the local electrostatic

potential, such that −∇ψ represents the local electric field experienced by a segment at

position r; the factor of N−1 ensures that the dielectric response of the melt is invariant to

the length of the chains.

To determine the electric potential, we account for the heterogeneous dielectric response

resulting from inhomogeneities in species densities and solve the differential form of Gauss’

law in the absence of unbound charge:

∇ · [ε(r)∇ψ(r)] = 0 (2)

where ε(r) is a dielectric profile, defined by a simple linear constitutive coupling to species

densities:

ε(r) =
1

ρ0

∑
j=A,B

εj ρ̃j

(
r;
[
weffA , weffB

])
. (3)

Here ρ̃j is the segment density operator for the jth segment species, presented in Eq. 16 in

the Appendix. The imposed incompressibility condition requires a uniform total segment

number density, ρ0, at each position, r, such that ρ̃A (r) + ρ̃B (r) = ρ0. It was recently
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shown that this ad hoc model can be derived from a consistent microscopic origin by taking

the incompressible, unsmeared (point dipole) limit of a general model of polarizable chain

segments with self-consistently treated induced-dipoles on each segment.50

In addition to a shift in the effective potential field that alters the microphase free energies,

the introduction of an applied electric field also induces morphological distortions of the phase

structures. Consequently, some symmetries associated with the unperturbed candidate phase

are broken, and equilibrium domain spacing becomes orientation-dependent. The unit cell

shape and size must therefore be self-consistently optimized in the presence of the field to

eliminate internal elastic stresses:

σ̃[weffA , weffB ,h] = 0, (4)

where σ̃, defined in Eq. 18 in the Appendix, is the internal stress for a BCP melt subject to

the effective chemical potential fields weffA and weffB within a periodically repeated arbitrary

parallelepiped cell defined by the shape tensor h.49 For ease of notation, we retain the

designations associated with the classical unperturbed morphologies, in contrast to other

works, such as Ref. 51, wherein the authors define a distinct “ellipsoid” phase, corresponding

to the reduced symmetry microstructure associated with a distorted BCC morphology.

Our SCFT procedure thus requires simultaneously relaxing the field configurations of

the polymer melt (wA, wB) to the saddle-points specified in the exchange-mapped auxiliary

field theory,9,52 optimizing the shape and size of the periodic cell (h) to a zero-stress con-

figuration (Eq. 4) via the variable-cell method,49 and determining the electric potential (ψ)

self-consistently by solving Eq. 2 with appropriate boundary conditions. We solve the lat-

ter by enforcing periodic boundary conditions in the local, internally-generated electric field,

Eint ≡ −∇ψ−E0, and requiring
∫
dr Eint = 0, which is appropriate for a dielectric material.

We note that although this condition is not sufficient to specify
∫
dr ψ, it is sufficient to

specify the local electric field, −∇ψ, which enters Eq. 1.
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As discussed by Schick,29 the introduction of an applied electric field to an inhomoge-

neous dielectric medium imparts an orientation sensitivity: configurations that violate the

condition E0 · ∇ε = 0 (i.e. that E0 is in the plane of any and all dielectric interfaces) will

reduce the local electric field magnitude, resulting in a free energy penalty. It can be shown

that this free energy penalty, which we define to be the difference in the electrostatic free en-

ergy for the inhomogeneous polymer melt and the corresponding term for the homogeneous

(disordered) state with the same composition, is given by

∆Fel =
ε0

2

∫
dr ε(r)

[
|E0|2 − |∇ψ(r)|2

]
=

ε0

2

∫
dr ε(r)|Eint(r)|2

= −ε0

2

∫
dr ψint(r) [∇ε(r) · E0] , (5)

where ψint is the internally-generated contribution to the electric potential, defined by

−∇ψint = Eint. The form of the latter term of Eq. 5 emphasizes that ∆Fel vanishes when

∇ε · E0 = 0. Consequently, we will find that the introduction of an applied electric field

to a BCP melt induces elongation of ordered structures – and in some cases drives phase

transitions to aligned structures – to reduce this free energy penalty.

In the weak segregation regime, the density profile for each monomer, ρ̃j, is weakly

inhomogeneous. Making the substitution −∇ψ = −∇ψint + E0 into Eq. 2, and solving the

resulting PDE for ψint to leading order in the perturbation, ∆ρ = ρ̃A − ρ0f , the following

asymptotic expression is obtained for the electrostatic free energy penalty,

∆Fel ∼
κ

2

∫
dr

∫
dr′

(∇ρ̃A(r) · E0) (∇′ρ̃A(r′) · E0)

ρ2
0|r− r′|

+O

([
∆ρ
ρ0

]3
)

(6)

κ ≡ ε0(εA − εB)2

4πε̄
, (7)

where we have used the property, ∇ρ̃A = −∇ρ̃B, which is required by incompressibility, and
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ε̄ is the average macroscopic dielectric constant, defined as

ε̄ ≡ 1

V

∫
dr ε(r) = εAf + εB(1− f). (8)

We note that Eq. 6 appears in numerous previous studies that employ this electrostatic

formalism (e.g. Refs. 20,31), and is proportional to the square of the dielectric contrast

between monomer species. Evidently, the dielectric response of a BCP melt in the weak

segregation regime is specified by the single parameter, κ, such that the responses of systems

with differing dielectric constant pairs may be collapsed to a common curve by a simple

rescaling of E0. We therefore limit our calculations to a single pair of dielectric constants,

with the understanding that the simulations must be repeated for other dielectric constant

pairs when quantitative accuracy is required beyond the weak segregation regime.

Results and Discussion

Orientation Sensitivity in Dielectric Response

The orientation sensitivity imparted by an applied electric field has a symmetry-breaking

property: for a fixed applied electric field, the free energy of a polymer mesostructure becomes

sensitive to its orientation relative to the electric field vector, E0. In comparing free energies

of competing phases, we choose the relative lattice orientation of a given mesostructure that

minimizes its overall free energy response, as a bulk polymer melt can be expected to freely

self-assemble in such a manner to attain this minimum in an applied electric field.

For the case of lamellae (LAM) and hexagonally packed cylinders (HEX), this optimal

orientation is trivial to deduce:29,53 each phase has at least one axis of dielectric uniformity,

and can align such that the condition E0 · ∇ε = 0 is everywhere satisfied – with the result

that the free energy response, defined in Eq. 9 below, is 0. For structures without a uniform

axis, this condition is not satisfied for any orientation of the microphase. The determination
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of the optimal orientation of the structure is thus made numerically while accounting for

the self-consistent morphological response. Although this orientation sensitivity has been

considered for the BCC phase,53 it has yet to be explored in other 3D morphologies. The

network phases shown to be stable by SCFT for a field-free diblock system, O70 14 and GYR,17

consist of complicated arrangements of species interfaces, and the preferred orientation of

each mesostructure in a uniform applied electric field is not immediately obvious.

To interrogate the orientation-dependence of each network phase, a simple sweep was

performed: the electric field magnitude was held constant, and the free energy response

(Eq. 9) of the phase was calculated as a function of the relative orientation of the uniform

applied electric field. The free energy response is defined to be

∆F (θ, φ) = F (θ, φ)− F0 +
ε0ε̄V

2
|E0|2 (9)

where θ and φ specify the polar and azimuthal angles, respectively, of the orientation of the

electric field vector on the unit sphere. F (θ, φ) is the mean-field (SCFT) free energy of a

given phase, subject to the applied electric field E0, F0 is the free energy of each phase in

the absence of an applied electric field, and the final term in Eq. 9 removes the dielectric

response contribution to the free energy for a homogeneous mixed state.

In Fig. 1, we plot the intensive free energy response of the GYR and O70 phases in an

electric field as a function of θ and φ. These results indicate that the GYR phase has a

preferred (lowest free energy) electric field orientation of θ = tan−1
√

2 ≈ 0.955, φ = π/4,

corresponding to the [111] direction, and the O70 phase has a preferred orientation of θ = 0,

which corresponds to the [001] direction.

The values on the scale bars for the contour plots in Fig. 1 show another important

difference between the two structures: the free energy response varies little (∼0.5%) as a

function of electric field orientation for the GYR phase, whereas it changes by a factor

of 5 for the O70 phase. Since the GYR phase belongs to a cubic crystal system, group-
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GYR

O70

a. b. c.

Figure 1: Intensive free energy response [β∆F (θ, φ)/n] of GYR (top) and O70 (middle)
phases at electric field strength E0[nkT/(ε0V )]−1/2 = 0.25 for the diblock system of f = 0.4,
χN = 14.0 and εA = 1.0, εB = 4.0. The images on the bottom row are 3D renders of the
GYR (a.) and O70 (b.) unit cells and their corresponding lattice directions, along with a
schematic (c.) depicting the correspondence between the angles (θ and φ) and the orientation
of the field as applied to the two structures.
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theoretic arguments demand that its linear response (i.e., E0 → 0) be precisely isotropic,54

and we can understand the weak anisotropy displayed in Fig. 1 as arising from the nonlinear

response resulting from a self-consistent morphological distortion. On the other hand, the

O70 phase is orthorhombic and admits a much stronger anisotropy in dielectric response that

is finite in the linear response regime. One consequence of this anisotropy is that the free

energy response of the O70 phase at its preferred orientation is smaller than that of GYR by

∼ 10−3kT/n, indicating a relative destabilization of the GYR phase.

To illuminate the scaling of this anisotropy effect, we compute the free energy for each

network phase at two different electric field orientations, as a function of electric field mag-

nitude, E0, and plot the difference. We choose the [100] direction as an arbitrary direction

that is disfavored for both phases and compare to the preferred orientation of each respec-

tive phase. The scaling identified in Fig. 2 indicates that the leading order term of this free

energy difference varies as E4
0 for the GYR phase and E2

0 for the O70 phase. This indicates

that the leading-order contribution to anisotropic dielectric response in the GYR phase must

arise from nonlinear response, whereas the anisotropy of the O70 phase has a non-vanishing

linear response contribution.

Diblock Phase Stability in an Applied Electric Field

We proceed by investigating the effect of the orientation-dependent dielectric response on the

free energy competition that determines phase stability and order-order-transition bound-

aries. Fig. 3 shows the intensive SCFT free energy of GYR and each neighboring phase as

a function of electric field magnitude, for values of f , χN at which GYR is most stable in

the absence of a field. Since the free energy response is zero for both HEX and LAM in

this SCFT framework, both network phases are eventually disfavored with sufficiently large

electric fields. However, due to the stronger dielectric response of GYR over O70, we also

find a large window of electric field strengths within which the O70 phase is predicted to

have the lowest free energy.
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Figure 2: Difference in intensive free energy between two E0 orientations as a function of
dimensionless field strength for the diblock system of f = 0.4, χN = 14.0 and εA = 1.0,
εB = 4.0. The [100] direction is chosen for each phase as a disfavored orientation of E0, and
the other is chosen to minimize the intensive free energy (Fm) for each corresponding phase
structure. The dashed line has a slope of 4 and the dotted line has a slope of 2.

In Fig. 4, we plot the phase diagrams for diblock copolymer systems in the absence of

an electric field (top) and in the presence of an electric field with dimensionless magnitude

(E0 [nkT/(ε0V )]−1/2) of (middle) 0.25 and (bottom) 0.4. When an external electric field is

introduced, the axially uniform LAM and HEX phases and the disordered phase are favored,

such that the phase boundaries for both the order-disorder transitions (ODTs) and the

order-order transitions (OOTs) shift to enlarge the stability regions corresponding to these

structures.

The O70-GYR phase boundary, which divides the network region of stability, is shifted

by the electric field in favor of the O70 phase, a signature of the preferential destabilization

of the GYR phase that was demonstrated in Fig. 3. To emphasize this shift, we also show an

inset for the weak-segregation regime in the phase diagram with E0 [nkT/(ε0V )]−1/2 = 0.25

in Fig. 4, third panel. This result may be of particular interest, since the O70 phase is

predicted by SCFT to be thermodynamically stable only at weak segregation strength, and

has only been obtained experimentally within a narrow temperature range.16 Near the ODT,

thermal fluctuations are expected to strongly perturb the phase diagram, and if sufficiently
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Figure 3: Free energy per molecule, βF/n, for the GYR and O70 phases, along with the HEX
and LAM phases for reference, at their preferred orientations, as a function of dimensionless
electric field strength, E0[nkT/(ε0V )]−1/2. The BCP parameters are f = 0.4 (top) and
f = 0.6 (bottom), at χN = 14.0 and εA = 1.0, εB = 4.0. FGY R is the free energy of the GYR
phase in the absence of an applied electric field and Fself = −(ε̄ε0V/2)E2

0 removes the bulk
dielectric response of the mixed phase. The GYR phase is most stable at E0 = 0, but there
is an intermediate range of E0 values for which O70 is favored.
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Ẽ0 = 0.0

Ẽ0 = 0.25

Ẽ0 = 0.4

Figure 4: Diblock phase diagrams for Ẽ0 ≡ E0[nkT/(ε0V )]−1/2 = 0 (top), 0.25 (middle two
panels), and 0.4 (bottom), with εA = 1.0, εB = 4.0. The critical point (dot) is unaffected by
the introduction of an applied electric field. However, the triple points (diamonds) shift to
larger χN values and additional triple points emerge. The phase labels are: FCC spheres
(Scp), BCC spheres (S), hexagonal-packed cylinders (C), lamellar (L), Ia3̄d double gyroid
cubic network (G), and orthorhombic Fddd network (O70).
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strong, perhaps eliminate55 the O70 region of thermodynamic stability when no electric

field is present. The use of an electric field to shift the O70-GYR phase boundary to larger

segregation strengths may therefore prove to be a viable protocol for realizing the equilibrium

stabilization of O70 at lower temperatures, where thermal fluctuations are weaker.

We note that in the present mean-field scheme, order-disorder transitions are also mod-

ified by the applied electric field if f 6= 0.5. However, the mean-field critical point lying

at f = 0.5 is unaffected by the electric field due to the lack of dielectric response of both

the LAM and DIS phases, in contrast with experimental predictions.56 Evidently, a full

treatment of composition fluctuations in tandem with an applied electric field is required to

properly describe sensitivity of the ODT to applied fields.

At asymmetric (f 6= 0.5) compositions and in the absence of an electric field, SCFT

predicts a narrow window of sphere-phase stability at the ODT. Under an applied electric

field, DIS-HEX-BCC triple-points are predicted to appear; the electric field selectively desta-

bilizes the BCC phase, so that there exists a segregation strength χTPN > χcN , where χTP

is the triple point and χc is the critical point, below which the BCC phase is not thermo-

dynamically stable. Below χTPN , the ODT is predicted to be a first-order direct HEX-DIS

transition. For the same reason, one can identify triple points (not marked on the phase

diagram), delineating a χN window away from which direct LAM-HEX transitions emerge

without intervening O70 or GYR phases.

Another important feature of the phase diagrams shown in Fig. 4 is the emergence of

asymmetry about the vertical line passing through f = 0.5 (i.e. asymmetry in transposition

of A and B monomer species) when an electric field is introduced. It can be seen that

the previously discussed changes in the features of the phase diagram that emerge as a

consequence of dielectric response (e.g. a narrower network phase window of stability) are

more exaggerated on the large f side of the plot. For this side of the phase diagram, the

B monomer (which we have selected to possess the larger dielectric constant of the two

species) is the minority species, such that the average dielectric constant of a melt of this
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composition, ε̄, is smaller than for the composition corresponding to the opposing side of

the phase diagram. As a consequence, the dielectric response of the melt, Eint, is larger in

magnitude, and the corresponding electrostatic free energy penalty, given by Eq. 5, is larger,

consistent with the scaling predicted by the asymptotic form for ∆Fel derived in Eq. 6. This

effect is also evident in Fig. 3, wherein the plot of free energy response at f = 0.6 indicates a

stronger destabilization of the network phases, and the phase transitions from GYR to O70,

then from O70 to HEX, occur at smaller electric field magnitudes.

In designing an experiment that leverages the phase behavior of a BCP melt in an electric

field, one would ideally want to choose an architecture for which the monomer species with

the larger dielectric constant is the less abundant of the two. Doing so permits access to the

desired effects with an electric field that is smaller in magnitude, reducing the demands of

the experimental setup (e.g. a wider gap in a parallel-plate capacitor setup may be used)

and reducing the risk that the strength of the field exceeds the dielectric breakdown limit of

the monomer species.

Finally, we provide a rough estimate about the physical electric field strength by trans-

lating the dimensionless electric field strength E0[nkT/(ε0V )]−1/2 = 0.25 into a value in real

units. We consider a BCP melt of intermediate chain concentration (nR3
gV
−1 = 1.0) and the

radius of gyration Rg = 10.0 nm, operating in a parallel plate capacitor set-up at temper-

ature T = 200 ◦C. For such a system, the dimensionless electric field strength (specified in

the middle phase diagram of Fig. 4) corresponds to a field strength of E0 = 6.79 kV/mm,

which is an order of magnitude below the dielectric breakdown strength of many common

monomer chemistries and is well within physically realizable experimental values. This sim-

ple calculation supports the feasibility of applied electric fields as a modality for shifting

phase boundaries and obtaining morphologies such as the O70 phase that might be otherwise

difficult to access in bulk BCP systems.
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Conclusion

We have presented a study of the equilibrium self-assembly of microphases of a BCP melt

in the presence of a uniform applied electric field, E0. We assumed linear dielectric response

in individual polymer chain segments and constructed a heterogeneous dielectric profile, ε,

from a linear constitutive relation. The electrostatic potential is coupled to the melt con-

figuration by self-consistently enforcing Gauss’ law for an inhomogeneous dielectric (Eq. 2).

Combining this constitutive model with existing field-theoretic methodology for simulating

incompressible diblock copolymer melts, as well as a variable-cell relaxation method for au-

tomatically optimizing unit cell shape and size, we constructed the full mean-field diblock

copolymer phase diagram, with prescribed species-dependent dielectric constants (εA, εB)

and fixed electric field magnitude, E0.

Our results show agreement with the qualitative predictions made by Schick,29 as well

as the results of other previous studies that employed the same linear constitutive model

of inhomogeneous dielectric response. The free energy of an ordered phase structure in the

presence of an electric field depends on its orientation relative to the electric field vector.

This anisotropic dielectric response is present even for cubic phases (such as BCC and GYR

phases) beyond the linear-response regime. The contrast in anisotropy between phases is

subsequently responsible for the shift in phase transitions. One observation of particular

interest is that the O70 network phase becomes relatively more thermodynamically stable

than GYR as E0 is increased, which shifts the GYR-O70 order-order transition to larger

segregation strengths. As the O70 phase has been obtained experimentally16 and predicted

by simulation to exhibit marginal stability in the presence of sufficiently weak fluctuations, 55

we expect a window of stability to widen when a field of sufficient intensity is introduced,

granting access to the O70 phase over a broader range of temperatures, chemistries, and

molecular weights, and thus enhancing the materials design process when O70 is the desired

microstructure.

The present results provide a prediction of the phase behavior of monocrystalline (i.e.
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consisting of perfectly repeating unit cells) BCP melts. However, experimental and industrial

setups are much larger than a single unit cell of a microphase, and imperfect long-range

structures containing locally ordered grains of the appropriate microstructure (as in Ref. 43),

or other defective states, exist as metastable melt configurations. In particular, the presence

of a defect would have an orientation-sensitive – and highly case-dependent – effect on both

the apparent OOT temperature associated with some desirable, field-induced transition (e.g.

from GYR to O70) and on the kinetics of this transition. However, we can make the assertion

that there will be two general cases: 1) the defective structure remains metastable to the

perfect crystal of the initial morphology upon introduction of an applied field, and 2) the

defective structure becomes stable relative to the initial perfect structure in the presence

of an applied field. In the former case, we predict little change to the OOT temperature

or its kinetics, as we would expect the melt to recover the perfect initial morphology as an

intermediate step, before a subsequent transition to the target structure, with the former

transition having a much smaller free energy barrier, as it is simply a defect removal pathway.

In the latter case, the OOT can be expected to shift in favor of the initial structure, as we are

considering a defect that has a stabilizing effect in the presence of an electric field, delaying

the onset of the OOT. The pathway for the eventual transition to the target structure would

be distinct from that of the transition between two perfect morphologies; their relative

free energy barriers would therefore need to be determined by experiment or simulation.

Subsequent work in identifying these defective structures, their prevalence when a melt is

quenched from the disordered state in the presence of an electric field, and the kinetic barriers

associated with realignment of grains into a perfect microstructure – as well as other healing

mechanisms – will therefore be of use to the experimentalist interested in using an applied

electric field to obtain novel, defect-free morphologies. Additionally, the combination of

applied electric fields with other techniques for enhancing the annealing process, such as the

use of non-selective solvent,57 requires further consideration; for example, one would expect

to need a larger electric field to obtain a desired shift in phase behavior when a solvent is
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present, as the solvent’s contribution to the dielectric character of the solution reduces the

dielectric contrast between domains.

As described in Results, the LAM and HEX microphases possess an axis of dielectric

uniformity, such that they may align their interfaces parallel to the electric field vector, their

thermodynamic stability – relative to each other and to the DIS phase – is unchanged, and

the sphere and network phases become selectively disfavored. Indeed, for sufficiently large

electric fields, one could expect the sphere and network phases to be disfavored at all values

of f and χN , such that the resulting diblock phase diagram consists of only DIS, HEX, and

LAM regions of stability, with corresponding phase boundaries that are insensitive to further

increases in electric field strength. As a consequence, our results predict no shift in the BCP

critical point lying at f = 0.5. However, experiment confirms that the critical point for a

BCP shifts to larger χN values (lower temperature) in response to an applied electric field.56

In an early study,58 Debye and Kleboth measured a field-induced depression of the crit-

ical temperature of a binary small-molecule mixture. They also measured the composition

dependence of the dielectric constant of the mixture, and observed a depression, relative to

a linear mixing rule; inserting this composition dependence into the electrostatic free energy

contribution, they obtained predictions for a field-induced shift that agreed quantitatively

with their critical point measurements. Wirtz and Fuller later observed similar behavior in

polymer solutions,59 and we thus expect that a similar effect is also present in BCP sys-

tems. Evidently, the present non-fluctuating SCFT model, which assumes a linear mixing

rule for the dielectric behavior of the melt, is insufficient to describe this qualitative behav-

ior – we thus posit that this shift arises from fluctuation effects – in particular, that the

composition fluctuations that give rise to microphase separation are selectively suppressed.

We propose extension to a fully-fluctuating model for dielectric BCPs and other dielectric

binary mixtures – as described in Ref. 50 – as a well-suited modality for investigating this

phenomenon.

Beyond the simple isotropic polarizability prescribed in the present dielectric model,
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one may also introduce an anisotropic polarizability, which couples chain conformation to

the local electric field, altering phase boundaries and domain spacing.60,61 This effect is

primarily only significant for systems containing stiff polymers in a magnetic field,62 wherein

an equation analogous to Gauss’ law (Eq. 2) governs the diamagnetic response of the melt.

For block copolymer systems composed of chemistries that are more strongly polarizable

parallel to the chain backbone, and for which there is diamagnetic contrast between A and B

monomer species, magnetostatic free energy contributions due to alignment of chains and to

alignment of microstructure domains, respectively, compete; these types of physical systems

thus exhibit a rich, orientation-sensitive phase behavior.63
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Appendix:

Single-chain statistics and stress operator

We seek to evaluate the internal stress operator, given by:

σ̃[weffA , weffB ,h] = −2nkT

V
h
∂ lnQ[weffA , weffB ,g]

∂g
hT

−ε0ε̄E0E
T
0 , (10)

where AT denotes the transpose of a tensor A and g = hTh is the metric tensor associated

with the cell. The latter term in the above expression arises when we require that the mixed

state admit no electrostatic stress response. The volume of the simulation cell is given by

V = det h, and Q is the single-chain partition function, defined as

Q[weffA , weffB ,g] =

∫
dx q(x, 1) (11)

with x ∈ [0, 1]3 a cell-scaled coordinate, related to the dimensional position in space by

r = hx, and q a chain propagator object that solves the modified anisotropic diffusion

equation

∂

∂s
q(x, s) =

[
R2
g∇T

xg−1∇x −W (x, s)
]
q(x, s)

q(x, 0) = 1 s ∈ [0, 1]. (12)

The length-scale Rg = b
√
N/6 is the bare radius of gyration of a conformationally sym-

metric BCP with statistical segment length b = bA = bB, and N is the degree of polymer-

ization. W gives the local field experienced by the segment at contour position s,

W (x, s) =


W eff
A (x) s < f

W eff
B (x) s ≥ f

, (13)
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where the cell-scaled species fields are related to their dimensional counterparts by W eff
j (x) =

Nweffj (r).

Using a technique detailed by Villet et al.,64 one may apply the derivative ∂
∂g

to Eq. 12

and arrive at a PDE that results in the following expression for the internal stress operator:

σ̃
[
weffA , weffB ,h

]
=
nkT

V

∫
dx

[
hΣ̃(x)hT

+
∑
j=A,B

∂W eff
j (x)

∂h
hT φ̃j(x)

]
− ε0ε̄E0E

T
0 . (14)

Σ̃ can be interpreted as a local, cell-scaled, single-chain contribution to the internal stress

and is given by

Σ̃(x) =
2

Q

∫ 1

0

ds q(x, s)
(
R2
gg
−1∇x∇T

xg−1
)

×q†(x, 1− s), (15)

where q† is a complementary propagator, which solves Eq. 12, with W (x, s) replaced by

W †(x, s) ≡ W (x, 1− s). Similarly, φ̃j is a cell-scaled volume fraction operator, defined as

φ̃j (x) =
1

Q

∫ 1

0

ds uj(s)q(x, s)q
†(x, 1− s)

=
1

ρ0

ρ̃j

(
r;
[
weffA , weffB

])
(16)

with uj a function that selects the limits of integration according to the identity of the desired

species, j:

uj(s) =


Θ(f − s) j = A

Θ(s− f) j = B

, (17)

where Θ is the Heaviside function. The latter expression of Eq. 16 identifies the connection

to the segment density operator described in Methods.
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Substituting Eq. 1 into the expression for W eff
j and noting that only the electrostatic

term contributes a non-vanishing response to changes in the cell shape tensor, h, we arrive

at a final expression for the stress operator:

σ̃
[
weffA , weffB ,h

]
=
nkT

V

∫
dx hΣ̃(x)hT + σ̃el[ψ], (18)

where σ̃el is an electrostatic internal stress contribution, given by:

σ̃el[ψ] =
ε0

V

∫
dr ε(r)∇ψ(r)∇Tψ(r)− ε0ε̄E0E

T
0 . (19)
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(52) Düchs, D.; Delaney, K. T.; Fredrickson, G. H. Journal of Chemical Physics 2014, 141,

174103.

(53) Li, S.; Jiang, Y.; Ji, Y.; Wang, X. Polymer 2013, 54, 6636–6643.

(54) Nye, J. F. Physical Properties of Crystals ; Clarendon Press, 1985.

(55) Delaney, K. T.; Fredrickson, G. H. The Journal of Physical Chemistry B 2016, 120,

7615–7634.

(56) Schoberth, H. G.; Pester, C. W.; Ruppel, M.; Urban, V. S.; Böker, A. ACS Macro
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