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SEQUENTIAL MULTIPLE TESTING WITH GENERALIZED ERROR
CONTROL: AN ASYMPTOTIC OPTIMALITY THEORY1

BY YANGLEI SONG AND GEORGIOS FELLOURIS

University of Illinois, Urbana–Champaign

The sequential multiple testing problem is considered under two gener-
alized error metrics. Under the first one, the probability of at least k mistakes,
of any kind, is controlled. Under the second, the probabilities of at least k1
false positives and at least k2 false negatives are simultaneously controlled.
For each formulation, the optimal expected sample size is characterized, to a
first-order asymptotic approximation as the error probabilities go to 0, and a
novel multiple testing procedure is proposed and shown to be asymptotically
efficient under every signal configuration. These results are established when
the data streams for the various hypotheses are independent and each local
log-likelihood ratio statistic satisfies a certain strong law of large numbers. In
the special case of i.i.d. observations in each stream, the gains of the proposed
sequential procedures over fixed-sample size schemes are quantified.

1. Introduction. In the early development of multiple testing, the focus was
on procedures that control the probability of at least one false positive, that is,
falsely rejected null [13, 14, 22]. As this requirement can be prohibitive when the
number of hypotheses is large, the emphasis gradually shifted to the control of
less stringent error metrics, such as (i) the expectation [4] or the quantiles [18] of
the false discovery proportion, that is, the proportion of false positives among the
rejected nulls, and (ii) the generalized familywise error rate, that is, the probabil-
ity of at least k ≥ 1 false positives [15, 18]. During the last two decades, various
procedures have been proposed to control the above error metrics [5, 12, 25, 26].
Further, the problem of maximizing the number of true positives subject to a gen-
eralized control on false positives has been studied in [19, 23, 30, 31], whereas in
[6] the false negatives are incorporated into the risk function in a Bayesian decision
theoretic framework.

In all previous references, it is assumed that the sample size is deterministic.
However, in many applications data are collected in real time and a reliable de-
cision needs to be made as quickly as possible. Such applications fall into the
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framework of sequential hypothesis testing, which was introduced in the ground-
breaking work of Wald [35] and has been studied extensively since then (see, e.g.,
[32]).

When testing simultaneously multiple hypotheses with data collected from a dif-
ferent stream for each hypothesis, there are two natural generalizations of Wald’s
sequential framework. In the first one, sampling can be terminated earlier in some
data streams [1, 3, 21]. In the second, which is the focus of this paper, sampling is
terminated at the same time in all streams [7, 8]. The latter setup is motivated by
applications such as multichannel signal detection [34], multiple access wireless
network [24] and multisensor surveillance systems [11], where a centralized deci-
sion maker needs to make a decision regarding the presence or absence of signal,
for example, an intruder, in multiple channels/areas monitored by a number of sen-
sors. This framework is also motivated by online surveys and crowdsourcing tasks
[17], where the goal is to find “correct” answers to a fixed number of questions,
for example, regarding some product or service, by asking the smallest necessary
number of people.

In this paper, we focus on two related, yet distinct, generalized error metrics.
The first one is a generalization of the usual misclassification rate [20, 21], where
the probability of at least k ≥ 1 mistakes, of any kind, is controlled. The second
one controls generalized familywise error rates of both types [1, 9], that is, the
probabilities of at least k1 ≥ 1 false positives and at least k2 ≥ 1 false negatives.

Various sequential procedures have been proposed recently to control such gen-
eralized familywise error rates [1–3, 7–9]. To the best of our knowledge, the ef-
ficiency of these procedures is understood only in the case of classical family-
wise error rates, that is, when k1 = k2 = 1. Specifically, in the case of independent
streams with i.i.d. observations, an asymptotic lower bound was obtained in [28]
for the optimal expected sample size (ESS) as the error probabilities go to 0, and
was shown to be attained, under any signal configuration, by several existing pro-
cedures. However, the results in [28] do not extend to generalized error metrics,
since the technique for the proof of the asymptotic lower bound requires that the
probability of not identifying the correct subset of signals goes to 0. Further, as we
shall see, existing procedures fail to be asymptotically optimal, in general, under
generalized error metrics.

The lack of an optimality theory under such generalized error control also im-
plies that it is not well understood how the best possible ESS depends on the user-
specified parameters. This limits the applicability of generalized error metrics, as
it is not clear for the practitioner how to select the number of hypotheses to be
“sacrificed” for the sake of a faster decision.

In this paper, we address this research gap by developing an asymptotic opti-
mality theory for the sequential multiple testing problem under the two general-
ized error metrics mentioned above. Specifically, for each formulation we char-
acterize the optimal ESS as the error probabilities go to 0, and propose a novel,
feasible sequential multiple testing procedure that achieves the optimal ESS under
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TABLE 1
Procedures marked with † are new. Procedures in bold font are asymptotically optimal (AO) without

requiring a special testing structure. GMIS is short for generalized misclassification rate,
and GFWER for generalized familywise error rates

Procedure Metric Section Main results Conditions for AO

Sum-Intersection† GMIS 3.1 Theorem 3.3 (8)
Leap† GFWER 4.2 Theorem 4.3 (8)
Asym. Sum-Intersection† GFWER 4.1 Corollary 4.4 (8) + (11) + (12)
Intersection Both 2.2 Corollary 3.4/4.4 (8) + (11)/(12)
MNP (fixed-sample) Both 2.3 Theorem 3.5/4.5 Not optimal

every signal configuration. These results are established under the assumption of
independent data streams, and require that the log-likelihood ratio statistic in each
stream satisfies a certain strong law of large numbers. Thus, even in the case of
classical familywise error rates, we extend the corresponding results in [28] by
relaxing the i.i.d. assumption in each stream.

Finally, whenever sequential testing procedures are utilized, it is of interest to
quantify the savings in the ESS over fixed-sample size schemes with the same error
control guarantees. In the case of i.i.d. data streams, we obtain an asymptotic lower
bound for the gains of sequential sampling over any fixed-sample size scheme, and
also characterize the asymptotic gains over a specific fixed-sample size procedure.

In order to convey the main ideas and results with the maximum clarity, we first
consider the case that the local hypotheses are simple, and then extend our results
to the case of composite hypotheses. Thus, the remainder of the paper is organized
as follows: in Section 2, we formulate the two problems of interest in the case
of simple hypotheses. The case of generalized misclassification rate is presented
in Section 3, and the case of generalized familywise error rates in Section 4. In
Section 5, we present two simulation studies under the second error metric. In
Section 6, we extend our results to the case of composite hypotheses. We conclude
and discuss potential extensions of this work in Section 7. Proofs are presented
in the Appendix (Supplementary Material [29]), where we also present more sim-
ulation studies and a detailed analysis of the case of composite hypotheses. For
convenience, we list in Table 1 the procedures that are considered in this work.

2. Problem formulation. Consider independent streams of observations,
Xj := {Xj(n) : n ∈ N}, where j ∈ [J ] := {1, . . . , J } and N := {1,2, . . .}. For each
j ∈ [J ], we denote by Pj the distribution of Xj and consider two simple hypothe-
ses for it,

H
j
0 : Pj = P

j
0 versus H

j
1 : Pj = P

j
1.(1)

We denote by PA the distribution of (X1, . . . ,XJ ) when A ⊂ [J ] is the subset of
data streams with signal, that is, in which the alternative hypothesis is correct. Due
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to the assumption of independence among streams, PA is the following product
measure:

(2) PA :=
J⊗

j=1

Pj ; Pj =
{
P

j
0 if j /∈ A,

P
j
1 if j ∈ A.

Moreover, we denote by F j
n the σ -field generated by the first n observations in the

j th stream, that is, σ(Xj (1), . . . ,Xj (n)), and by Fn the σ -field generated by the
first n observations in all streams, that is, σ(F j

n , j ∈ [J ]), where n ∈ N.
Assuming that the data in all streams become available sequentially, the goal is

to stop sampling as soon as possible, and upon stopping to solve the J hypothesis
testing problems subject to certain error control guarantees. Formally, a sequen-
tial multiple testing procedure is a pair δ = (T ,D) where T is an {Fn}-stopping
time at which sampling is terminated in all streams, and D an FT -measurable, J -
dimensional vector of Bernoullis, (D1, . . . ,DJ ), so that the alternative hypothesis
is selected in the j th stream if and only if Dj = 1. With an abuse of notation, we
also identify D with the subset of streams in which the alternative hypothesis is
selected upon stopping, that is, {j ∈ [J ] : Dj = 1}.

We consider two kinds of error control, which lead to two different problems.
Their main difference is that the first one does not differentiate between false posi-
tives, that is, rejecting the null when it is correct, and false negatives, that is, accept-
ing the null when it is false. Specifically, in the first one we control the generalized
misclassification rate, that is, the probability of committing at least k mistakes, of
any kind, where k is a user-specified integer such that 1 ≤ k < J . When A is the
true subset of signals, a decision rule D makes at least k mistakes, of any kind, if D

and A differ in at least k components, that is, |A�D| ≥ k, where for any two sets
A and D, A�D is their symmetric difference, that is, (A \ D) ∪ (D \ A), and | · |
denotes set-cardinality. Thus, given tolerance level α ∈ (0,1), the class of multiple
testing procedures of interest in this case is

�k(α) :=
{
(T ,D) : max

A⊂[J ]PA

(|A�D| ≥ k
) ≤ α

}
.

Then the first problem is formulated as follows.

PROBLEM 2.1. Given a user-specified integer k in [1, J ), find a sequential
multiple testing procedure that (i) controls the generalized misclassification rate,
that is, it can be designed to belong to �k(α) for any given α, and (ii) achieves the
smallest possible expected sample size,

N∗
A(k,α) := inf

(T ,D)∈�k(α)
EA[T ]

for every A ⊂ [J ], to a first-order asymptotic approximation as α → 0.
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In the second problem of interest in this work, we control generalized family-
wise error rates of both types, that is, the probabilities of at least k1 false positives
and at least k2 false negatives, where k1, k2 ≥ 1 are integers such that k1 + k2 ≤ J .
When the true subset of signals is A, a decision rule D makes at least k1 false pos-
itives when |D \ A| ≥ k1 and at least k2 false negatives when |A \ D| ≥ k2. Thus,
given tolerance levels α,β ∈ (0,1), the class of procedures of interest in this case
is

�k1,k2(α,β) :=
{
(T ,D) : max

A⊂[J ]PA

(|D \ A| ≥ k1
) ≤ α and

max
A⊂[J ]PA

(|A \ D| ≥ k2
) ≤ β

}
.

(3)

Then the second problem is formulated as follows.

PROBLEM 2.2. Given user-specified integers k1, k2 ≥ 1 such that k1 +k2 ≤ J ,
find a sequential multiple testing procedure that (i) controls generalized familywise
error rates of both types, that is, it can be designed to belong to �k1,k2(α,β) for
any given α,β ∈ (0,1), and (ii) achieves the smallest possible expected sample
size,

N∗
A(k1, k2, α,β) := inf

(T ,D)∈�k1,k2 (α,β)
EA[T ]

for every A ⊂ [J ], to a first-order asymptotic approximation as α and β go to 0, at
arbitrary rates.

2.1. Assumptions. We now state the assumptions that we will make in the next
two sections in order to solve these two problems. First of all, for each j ∈ [J ] we
assume that the probability measures P

j
0 and P

j
1 in (1) are mutually absolutely

continuous when restricted to F j
n , and we denote the corresponding log-likelihood

ratio (LLR) statistic as follows:

λj (n) := log
dP

j
1

dP
j
0

(
F j

n

)
for n ∈ N.

For A,C ⊂ [J ] and n ∈ N, we denote by λA,C(n) the LLR of PA versus PC when
both measures are restricted to Fn, and from (2) it follows that

λA,C(n) := log
dPA

dPC

(Fn) = ∑
j∈A\C

λj (n) − ∑
j∈C\A

λj (n).(4)

In order to guarantee that the proposed multiple testing procedures terminate al-
most surely and satisfy the desired error control, it will suffice to assume that

P
j
1

(
lim

n→∞λj (n) = ∞
)

= P
j
0

(
lim

n→∞λj (n) = −∞
)

= 1 ∀j ∈ [J ].(5)
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In order to establish an asymptotic lower bound on the optimal ESS for each prob-
lem, we will need the stronger assumption that for each j ∈ [J ] there are positive
numbers, Ij

1 ,Ij
0 , such that the following Strong Laws of Large Numbers (SLLN)

hold:

P
j
1

(
lim

n→∞
λj (n)

n
= Ij

1

)
= P

j
0

(
lim

n→∞
λj (n)

n
= −Ij

0

)
= 1.(6)

When the LLR statistic in each stream has independent and identically distributed
(i.i.d.) increments, the SLLN (6) will also be sufficient for establishing the asymp-
totic optimality of the proposed procedures. When this is not the case, we will need
an assumption on the rate of convergence in (6). Specifically, we will assume that
for every ε > 0 and j ∈ [J ],

∞∑
n=1

P
j
1

(∣∣∣∣λj (n)

n
− Ij

1

∣∣∣∣ > ε

)
< ∞,

∞∑
n=1

P
j
0

(∣∣∣∣λj (n)

n
+ Ij

0

∣∣∣∣ > ε

)
< ∞.

(7)

Condition (7) is known as complete convergence [16], and is a stronger assumption
than (6), due to the Borel–Cantelli lemma. This condition is satisfied in various
testing problems where the observations in each data stream are dependent, such
as autoregressive time-series models and state-space models. For more details, we
refer to [32], Chapter 3.4.

To sum up, the only distributional assumption for our asymptotic optimality
theory is that the LLR statistic in each stream:

either has i.i.d. increments and satisfies the SLLN (6),

or satisfies the SLLN with complete convergence (7).
(8)

REMARK 2.1. If (6) (resp., (7)) holds, the normalized LLR, λA,C(n)/n, de-
fined in (4), converges almost surely (resp. completely) under PA to

IA,C := ∑
i∈A\C

I i
1 + ∑

j∈C\A
Ij

0 .(9)

The numbers IA,C and IC,A will turn out to determine the inherent difficulty in
distinguishing between PA and PC and will play an important role in characteriz-
ing the optimal performance under PA and PC , respectively.

2.2. The Intersection rule. To the best of our knowledge, Problem 2.2 has
been solved only under the assumption of i.i.d. data streams and only in the case
of classical error control, that is, when k1 = k2 = 1 [28]. An asymptotically op-
timal procedure in this setup is the so-called “Intersection” rule, δI := (TI ,DI ),
proposed in [7, 8], where

TI := inf
{
n ≥ 1 : λj (n) /∈ (−a, b) for every j ∈ [J ]},

DI := {
j ∈ [J ] : λj (TI ) > 0

}
,

(10)
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and a, b are positive thresholds. This procedure requires the local test statistic in
every stream to provide sufficiently strong evidence for the sampling to be termi-
nated. The Intersection rule was also shown in [9] to control generalized family-
wise error rates, however its efficiency in this setup remains an open problem, even
in the case of i.i.d. data streams. Our asymptotic optimality theory in the next sec-
tions will reveal that the Intersection rule is asymptotically optimal with respect
to Problems 2.1 and 2.2 only when the multiple testing problem satisfies a very
special structure.

DEFINITION 2.1. We say that the multiple testing problem (1) is:

(i) symmetric, if for every j ∈ [J ] the distribution of λj under P
j
0 is the same

as the distribution of −λj under Pj
1,

(ii) homogeneous, if for every j ∈ [J ] the distribution of λj under Pj
i does not

depend on j , where i ∈ {0,1}.

It is clear that when the multiple testing problem is both symmetric and homo-
geneous, we have

Ij
0 = Ij

1 = I for every j ∈ [J ].(11)

In the next sections, we will show that the Intersection rule is asymptotically op-
timal for Problem 2.1 when (11) holds, whereas its asymptotic optimality with
respect to Problem 2.2 will additionally require that the user-specified parameters
satisfy the following conditions:

k1 = k2 and α = β.(12)

2.3. Fixed-sample size schemes. Let �fix(n) denote the class of procedures
for which the decision rule depends on the data collected up to a deterministic
time n, that is,

�fix(n) := {
(n,D) : D ⊂ [J ] is Fn-measurable

}
.

For any given integers k, k1, k2 ≥ 1 with k, k1 + k2 < J and α,β ∈ (0,1), let

n∗(k,α) := inf
{
n ∈ N : �fix(n) ∩ �k(α) 
= ∅

}
,

n∗(k1, k2, α,β) := inf
{
n ∈ N : �fix(n) ∩ �k1,k2(α,β) 
= ∅

}
,

(13)

denote the minimum sample sizes required by any fixed-sample size scheme un-
der the two error metrics of interest. In the case of i.i.d. observations in the data
streams, we establish asymptotic lower bounds for the above two quantities as the
error probabilities go to 0. To the best of our knowledge, there is no fixed-sample
size procedure that attains these bounds. For this reason, we also study a specific
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procedure that runs a Neyman–Pearson test at each stream. Formally, this proce-
dure is defined as follows:

(14) δNP(n,h) := (
n,DNP(n,h)

)
, DNP(n,h) := {

j ∈ [J ] : λj (n) > nhj

}
,

where h = (h1, . . . , hJ ) ∈ R
J , n ∈ N, and we refer to it as multiple Neyman–

Pearson (MNP) rule. In the case of Problem 2.1, we characterize the minimum
sample size required by this procedure,

nNP(k,α) := inf
{
n ∈N : ∃h ∈ R

J , δNP(n,h) ∈ �k(α)
}
,

to a first-order approximation as α → 0. In the case of Problem 2.2, for simplicity
of presentation we further restrict ourselves to homogeneous, but not necessarily
symmetric, multiple testing problems, and characterize the asymptotic minimum
sample size required by the MNP rule that utilizes the same threshold in each
stream, that is,

n̂NP(k1, k2, α,β) := inf
{
n ∈N : ∃h ∈ R, δNP(n,h1J ) ∈ �k1,k2(α,β)

}
,

where 1J ∈ R
J is a J -dimensional vector of ones.

2.4. The i.i.d. case. As mentioned earlier, our asymptotic optimality theory
will apply whenever condition (8) holds, thus, beyond the case of i.i.d. data
streams. However, our analysis of fixed-sample size schemes will rely on large
deviation theory [10] and will be focused on the i.i.d. case. Thus, it is useful to
introduce some relevant notation for this setup.

Specifically, when for each j ∈ [J ] the observations in the j th stream are inde-
pendent with common density f j relative to a σ -finite measure νj , the hypothesis
testing problem (1) takes the form

(15) H
j
0 : f j = f

j
0 versus H

j
1 : f j = f

j
1 ,

and Ij
1 ,Ij

0 correspond to the Kullback–Leibler divergences between f
j
1 and f

j
0 ,

that is,

(16) Ij
1 =

∫
log

(
f

j
1 /f

j
0

)
f

j
1 dνj , Ij

0 =
∫

log
(
f

j
0 /f

j
1

)
f

j
0 dνj .

In this case, each LLR statistic λj has i.i.d. increments, and (8) is satisfied as long
as Ij

1 and Ij
0 are both positive and finite. For each j ∈ [J ], we further introduce

the convex conjugate of the cumulant generating function of λj (1)

(17) z ∈ R �→ 
j(z) := sup
θ∈R

{
zθ − �j(θ)

}
where �j(θ) := logE

j
0

[
eθλj (1)].

The value of 
j at zero is the Chernoff information [10] for the testing problem
(15), and we will denote it as Cj , that is, Cj := 
j(0).

Finally, we will illustrate our general results in the case of testing normal means.
Hereafter, N denotes the density of the normal distribution.
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EXAMPLE 2.1. If f
j
0 = N (0, σ 2

j ) and f
j
1 = N (μj , σ

2
j ) for all j ∈ [J ], then

λj (1) = θ2
j

(
Xj(1)/μj − 1/2

)
where θj := μj/σj .

Consequently, the multiple testing problem is symmetric and

(18) Ij := Ij
0 = Ij

1 = θ2
j /2, 
j (z) = (

z + Ij )2
/
(
4Ij )

for any z ∈ R.

2.5. Notation. We collect here some notation that will be used extensively
throughout the rest of the paper: CJ

k denotes the binomial coefficient
(J
k

)
, that is,

the number of subsets of size k from a set of size J ; a ∨ b represents max{a, b};
x ∼ y means that limy x/y = 1 and x(b) = o(1) that limb x(b) = 0, with y, b → 0
or ∞. Moreover, we recall that | · | denotes set-cardinality, N := {1,2, . . .},
[J ] := {1, . . . , J }, and that A�B is the symmetric difference, (A \ B) ∪ (B \ A),
of two sets A and B .

3. Generalized misclassification rate. In this section, we consider Prob-
lem 2.1 and carry out the following program: first, we propose a novel procedure
that controls the generalized misclassification rate. Then we establish an asymp-
totic lower bound on the optimal ESS and show that it is attained by the proposed
scheme. As a corollary, we show that the Intersection rule is asymptotically opti-
mal when condition (11) holds. Finally, we make a comparison with fixed-sample
size procedures in the i.i.d. case (15).

3.1. Sum-Intersection rule. In order to implement the proposed procedure,
which we will denote δS(b) := (TS(b),DS(b)), we need at each time n ∈ N prior
to stopping to order the absolute values of the local test statistics, |λj (n)|, j ∈ [J ].
If we denote the corresponding ordered values by

λ̃1(n) ≤ · · · ≤ λ̃J (n),

we can think of λ̃1(n) (resp., λ̃J (n)) as the least (resp., most) “significant” local
test statistic at time n, in the sense that it provides the weakest (resp., strongest)
evidence in favor of either the null or the alternative. Then sampling is terminated
at the first time the sum of the k least significant local LLRs exceeds some positive
threshold b, and the null hypothesis is rejected in every stream that has a positive
LLR upon stopping, that is,

TS(b) := inf

{
n ≥ 1 :

k∑
j=1

λ̃j (n) ≥ b

}
, DS(b) := {

j ∈ [J ] : λj (
TS(b)

)
> 0

}
.

The threshold b is selected to guarantee the desired error control. When k = 1,
δS(b) coincides with the Intersection rule, δI (b, b), defined in (10). When k > 1,
the two rules are different but share a similar flavor, since δS(b) stops the first
time n that all sums

∑
j∈B |λj (n)| with B ⊂ [J ] and |B| = k are simultaneously

above b. For this reason, we refer to δS(b) as Sum-Intersection rule. Hereafter, we
typically suppress the dependence of δS(b) on threshold b in order to lighten the
notation.
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3.2. Error control of the Sum-Intersection rule. For any choice of threshold
b, the Sum-Intersection rule clearly terminates almost surely, under every signal
configuration, as long as condition (5) holds. In the next theorem, we show how to
select b to guarantee the desired error control. We stress that no additional distri-
butional assumptions are needed for this purpose.

THEOREM 3.1. Assume (5) holds. For any α ∈ (0,1), we have δS(bα) ∈
�k(α) when

(19) bα = ∣∣log(α)
∣∣ + log

(
CJ

k

)
.

PROOF. The proof can be found in Appendix B.1. �

The choice of b suggested by the previous theorem will be sufficient for estab-
lishing the asymptotic optimality of the Sum-Intersection rule, but may be conser-
vative for practical purposes. In the absence of more accurate approximations for
the error probabilities, we recommend finding the value of b for which the target
level is attained using Monte Carlo simulation. This means simulating off-line,
that is, before the sampling process begins, for every A ⊂ [J ] the error probability
PA(|A�DS(b)| ≥ k) for various values of b, and then selecting the value for which
the maximum of these probabilities over A ⊂ [J ] matches the nominal level α.

This simulation task is significantly facilitated when the multiple testing prob-
lem has a special structure. If the problem is symmetric, for any given threshold b

the error probabilities of the Sum-Intersection rule coincide for all A ⊂ [J ]; thus,
it suffices to simulate the error probability under a single measure, for example,
P∅. If the problem is homogeneous, the error probabilities depend only on the size
of A, not the actual subset; thus, it suffices to simulate the above probabilities for
at most J + 1 configurations. Similar ideas apply in the presence of blockwise
homogeneity.

Moreover, it is worth pointing out that when b is large, importance sampling
techniques can be applied to simulate the corresponding “small” error probabili-
ties, similar to [27].

3.3. Asymptotic lower bound on the optimal performance. We now obtain an
asymptotic (as α → 0) lower bound on N∗

A(k,α), the optimal ESS for Problem 2.1
when the true subset of signals is A, for any given k ≥ 1. When k = 1, from
[33], Theorem 2.2, it follows that when (6) holds, such a lower bound is given by
| log(α)|/minC 
=A IA,C , where IA,C is defined in (9). Thus, the asymptotic lower
bound when k = 1 is determined by the “wrong” subset that is the most difficult to
be distinguished from A, where the difficulty level is quantified by the information
numbers defined in (9).

The techniques in [33] require that the probability of selecting the wrong subset
goes to 0; thus, they do not apply to the case of generalized error control (k > 1).
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Nevertheless, it is reasonable to conjecture that the corresponding asymptotic
lower bound when k > 1 will still be determined by the wrong subset that is the
most difficult to be distinguished from A, with the difference that a subset will now
be “wrong” under PA if it differs from A in at least k components, that is, if it does
not belong to

Uk(A) := {
C ⊂ [J ] : |A�C| < k

}
.

This conjecture is verified by the following theorem.

THEOREM 3.2. Fix k ≥ 1. If (6) holds, then for any A ⊂ [J ], as α → 0,

(20) N∗
A(k,α) ≥ | log(α)|

DA(k)

(
1 − o(1)

)
where DA(k) := min

C /∈Uk(A)
IA,C.

The proof in the case of the classical misclassification rate (k = 1) is based on
a change of measure from PA to PA∗ , where A∗ is chosen such that (i) A is a
“wrong” subset under PA∗ , that is, A 
= A∗ and (ii) A∗ is “close” to A, in the sense
that IA,A∗ ≤ IA,C for every C 
= A (see, e.g., [33], Theorem 2.2).

When k ≥ 2, there are more than one “correct” subsets under PA. The key idea
in our proof is that for each “correct” subset B ∈ Uk(A) we apply a different
change of measure PA → PB∗ , where B∗ is chosen such that (i) B is a “wrong”
subset under PB∗ , that is, B /∈ Uk(B

∗), and (ii) B∗ is “close” to A, in the sense
that IA,B∗ ≤ IA,C for every C /∈ Uk(A). The existence of such B∗ is established
in Appendix B.2, and the proof of Theorem 3.2 is carried out in Appendix B.3.

3.4. Asymptotic optimality. We are now ready to establish the asymptotic opti-
mality of the Sum-Intersection rule by showing that it attains the asymptotic lower
bound of Theorem 3.2 under every signal configuration.

THEOREM 3.3. Assume (8) holds. Then, for any A ⊂ [J ] we have as b → ∞
that

(21) EA

[
TS(b)

] ≤ b

DA(k)

(
1 + o(1)

)
.

When in particular b is selected such that δS ∈ �k(α) and b ∼ | log(α)|, for exam-
ple, as in (19), then for every A ⊂ [J ] we have as α → 0,

EA[TS] ∼ | logα|
DA(k)

∼ N∗
A(k,α).

PROOF. If (21) holds and b is such that δS ∈ �k(α) and b ∼ | log(α)|, then δS

attains the asymptotic lower bound in Theorem 3.2. Thus, it suffices to prove (21),
which is done in the Appendix B.4. �
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The asymptotic characterization of the optimal ESS, N∗
A(k,α), illustrates the

trade-off among the ESS, the number of mistakes to be tolerated, and the error
tolerance level α. Specifically, it suggests that, for “small” values of α, tolerating
k − 1 mistakes reduces the ESS by a factor of DA(k)/DA(1), which is at least k

for every A ⊂ [J ]. To justify the latter claim, note that if we denote the ordered
information numbers {Ij

1 , j ∈ A} ∪ {Ij
0 , j /∈ A} by Ĩ(1)(A) ≤ · · · ≤ Ĩ(J )(A), then

DA(k) =
k∑

j=1

Ĩ(j)(A).

In the following corollary, we show that the Intersection rule is asymptotically
optimal when (11) holds, which is the case for example when the multiple testing
problem is both symmetric and homogeneous.

COROLLARY 3.4. (i) Assume (5) holds. For any α ∈ (0,1), we have δI (b, b) ∈
�k(α) when b is equal to bα/k, where bα is defined in (19).

(ii) Suppose b is selected such that δI (b, b) ∈ �k(α) and b ∼ | logα|/k, for
example, as in (i). If (8) holds, then

EA[TI ] ≤ | logα|
kDA(1)

(
1 + o(1)

)
.

If also (11) holds, then for any A ⊂ [J ] we have as α → 0 that

EA[TI ] ∼ | logα|
kI ∼ N∗

A(k,α).

PROOF. The proof can be found in Appendix B.5. �

REMARK 3.1. When (11) is violated, the Intersection rule fails to be asymp-
totically optimal. This will be illustrated with a simulation study in Appendix A.2.

3.5. Fixed-sample size rules. Finally, we focus on the i.i.d. case (15) and con-
sider procedures that stop at a deterministic time, selected to control the general-
ized misclassification rate. We recall that Cj is the Chernoff information in the j th
testing problem, and we denote by B(k) the sum of the smallest k local Chernoff
informations, that is,

B(k) :=
k∑

j=1

C(j),

where C(1) ≤ C(2) ≤ · · · ≤ C(J ) are the ordered values of the local Chernoff infor-
mation numbers Cj , j ∈ [J ].
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THEOREM 3.5. Consider the multiple testing problem with i.i.d. streams de-
fined in (15) and suppose that the Kullback–Leibler numbers in (16) are positive
and finite. For any user-specified integer 1 ≤ k ≤ (J + 1)/2 and A ⊂ [J ], we have
as α → 0

DA(k)

B(2k − 1)

(
1 − o(1)

) ≤ n∗(k,α)

N∗
A(k,α)

≤ nNP(k,α)

N∗
A(k,α)

∼ DA(k)

B(k)
.

PROOF. The proof can be found in Appendix B.6. �

REMARK 3.2. Since any fixed time is also a stopping time, the lower bound
is relevant only when DA(k) > B(2k − 1) for some A ⊂ [J ].

We now specialize the results of the previous theorem to the testing of nor-
mal means, introduced in Example 2.1 (a Bernoulli example is presented in Ap-
pendix B.7). In this case, Cj = Ij /4 for every j ∈ [J ], which implies DA(k) =
4B(k) for every A ⊂ [J ], and by Theorem 3.5 it follows that

nNP(k,α) ∼ 4N∗
A(k,α) ∀A ⊂ [J ].

That is, for any k ∈ [1, (J + 1)/2], when utilizing the MNP rule instead of the pro-
posed asymptotically optimal Sum-Intersection rule, the ESS increases by roughly
a factor of 4, for small values of α, under every configuration. From Theorem 3.5,
it also follows that for any A ⊂ [J ] we have

lim inf
α→0

n∗(k,α)

N∗
A(k,α)

≥ 4B(k)

B(2k − 1)
.

If in addition, the hypotheses have identical information numbers, that is, (11)
holds, this lower bound is always larger than 2, which means that any fixed-
sample size scheme will require at least twice as many observations as the Sum-
Intersection rule, for small error probabilities.

4. Generalized familywise error rates of both kinds. In this section, we
study Problem 2.2. While we follow similar ideas and the results are of simi-
lar nature as in the previous section, the proposed procedure and the proof of its
asymptotic optimality turn out to be much more complicated.

To describe the proposed multiple testing procedure, we first need to introduce
some additional notation. Specifically, we denote by

0 < λ̂1(n) ≤ · · · ≤ λ̂p(n)(n)

the order statistics of the positive LLRs at time n, {λj (n) : λj (n) > 0, j ∈ [J ]},
where p(n) is the number of the strictly positive LLRs at time n. Similarly, we
denote by

0 ≤ λ̌1(n) ≤ · · · ≤ λ̌q(n)(n)
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the order statistics of the absolute values of the nonpositive LLRs at time n, that
is, {−λj (n) : λj (n) ≤ 0, j ∈ [J ]}, where q(n) := J − p(n). We also adopt the
following convention:

λ̂j (n) = ∞ if j > p(n) and λ̌j (n) = ∞ if j > q(n).(22)

Moreover, we use the following notation:

λ̂ij (n)(n) := λ̂j (n) ∀j ∈ {
1, . . . , p(n)

}
,

λǐj (n)(n) := −λ̌j (n) ∀j ∈ {
1, . . . , q(n)

}
for the indices of streams with positive and nonpositive LLRs at time n, respec-
tively. Thus, stream î1(n) (resp., ǐ1(n)) has the least significant positive (resp.,
negative) LLR at time n.

4.1. Asymmetric Sum-Intersection rule. We start with a procedure that has the
same decision rule as the Sum-Intersection procedure (Section 3.1), but a different
stopping rule that accounts for the asymmetry in the error metric that we consider
in this section. Specifically, we consider a procedure δ0(a, b) ≡ (τ0,D0) that stops
as soon as the following two conditions are satisfied simultaneously: (i) the sum of
the k1 least significant positive LLRs is larger than b > 0, and (ii) the sum of the
k2 least significant negative LLRs is smaller than −a < 0. Formally,

τ0 := inf

{
n ≥ 1 :

k1∑
j=1

λ̂j (n) ≥ b and
k2∑

j=1

λ̌j (n) ≥ a

}
,

D0 := {
j ∈ [J ] : λj (τ0) > 0

} = {̂
i1(τ0), . . . , îp(τ0)(τ0)

}
.

(23)

We refer to this procedure as asymmetric Sum-Intersection rule. Note that simi-
larly to the Sum-Intersection rule, this procedure does not require strong evidence
from every individual stream in order to terminate sampling. Indeed, upon stop-
ping there may be insufficient evidence for the hypotheses that correspond to the
k1 − 1 least significant positive statistics and the k2 − 1 least significant negative
statistics, turning them into the anticipated false positives and false negatives, re-
spectively, which we are allowed to make.

We will see that while the asymmetric Sum-Intersection rule can control gen-
eralized familywise error rates of both types, it is not in general asymptotically
optimal. To understand why this is the case, let A denote true subset of streams
with signals and suppose that there is a subset B of � streams with noise, that is,
B ⊂ Ac with |B| = �, such that � < k1 and

Ij
1 � I i1

0 � I i2
0 ∀j ∈ A, i1 ∈ Ac \ B, i2 ∈ B,

that is, the hypotheses in streams with signal are much easier than in streams with
noise, and the hypotheses in B are much harder than in the other streams with
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noise. In this case, the first stopping requirement in τ0 will be easily satisfied, but
not the second one, since the streams in B will slow down the growth of the sum
of the k2 least significant negative LLRs.

These observations suggest that the performance of δ0 can be improved in the
above scenario if we essentially “give up” the testing problems in B , presuming
that we will make � of the k1 − 1 false positives in these streams. This can be
achieved by (i) ignoring the � least significant negative statistics in the second
stopping requirement of τ0, and asking the sum of the next k2 least significant
negative statistics to be small upon stopping, and (ii) modifying the decision rule
to reject the nulls not only in streams with positive LLR, but also in the � streams
with the least significant negative LLRs upon stopping. However, if we modify the
decision rule in this way, we have spent from the beginning � of the k1 − 1 false
positives we are allowed to make. This implies that we need to also modify the first
stopping requirement in τ0 and ask the sum of the k1 − � least significant positive
LLRs to be large upon stopping. If we denote by δ̂� := (τ̂�, D̂�), the procedure that
incorporates the above modifications, then

τ̂� := inf

{
n ≥ 1 :

k1−�∑
j=1

λ̂j (n) ≥ b and
�+k2∑

j=�+1

λ̌j (n) ≥ a

}
,

D̂� := {̂
i1(τ̂�), . . . , îp(τ̂�)(τ̂�)

} ∪ {
ǐ1(τ̂�), . . . , ǐ�(τ̂�)

}
,

where we omit the dependence on a, b in order to lighten the notation.
By the same token, if there are � < k2 streams with signal in which the testing

problems are much harder than in other streams, it is reasonable to expect that δ0

may be outperformed by a procedure δ̌� := (τ̌�, Ď�), where

τ̌� := inf

{
n ≥ 1 :

�+k1∑
i=�+1

λ̂i(n) ≥ b and
k2−�∑
j=1

λ̌j (n) ≥ a

}
,

Ď� := {̂
i�+1(τ̌�), . . . , îp(τ̌�)(τ̌�)

}
.

Figure 1 provides a visualization of these stopping rules.

4.2. The Leap rule. The previous discussion suggests that the asymmetric
Sum-Intersection rule, defined in (23), may be significantly outperformed by some
of the procedures, {̂δ�,0 ≤ � < k1} and {δ̌�,1 ≤ � < k2}, under some signal config-
urations, when the multiple testing problem is asymmetric and/or inhomogeneous.
In this case, we propose combining the above procedures, that is, stop as soon as
any of them does so, and use the corresponding decision rule upon stopping. If
multiple stopping criteria are satisfied at the same time, we then use the decision
rule that rejects the most null hypotheses.
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FIG. 1. Set J = 7, k1 = 3, k2 = 2. Suppose at time n, p(n) = 4, q(n) = 3. Each rule stops when
the sum of the terms with solid underline exceeds b, and at the same time the sum of the terms with
dashed underline is below −a. Upon stopping, the null hypothesis for the streams in the bracket are
rejected. Note that by convention (22), λ̌4(n) = ∞, which makes the stopping rule τ̂2 have only one
condition to satisfy.

Formally, the proposed procedure δL := (TL,DL) is defined as follows:

TL := min
{

min
0≤�<k1

τ̂�, min
1≤�<k2

τ̌�

}
,

DL :=
( ⋃

0≤�<k1,τ̂�=TL

D̂�

)
∪

( ⋃
1≤�<k2,τ̌�=TL

Ď�

)
,

(24)

and we refer to it as “Leap rule,” because δ̂� (resp., δ̌�) “leaps” across the � least
significant negative (resp., positive) LLRs.

4.3. Error control of the Leap rule. We now show that the Leap rule can con-
trol generalized familywise error rates of both types.

THEOREM 4.1. Assume (5) holds. For any α,β ∈ (0,1) we have that δL ∈
�k1,k2(α,β) when the thresholds are selected as follows:

(25) a = ∣∣log(β)
∣∣ + log

(
2k2CJ

k2

)
, b = ∣∣log(α)

∣∣ + log
(
2k1CJ

k1

)
.

PROOF. The proof can be found in Appendix C.1. �

The above threshold values are sufficient for establishing the asymptotic opti-
mality of the Leap rule, but may be conservative in practice. Thus, as in the previ-
ous section, we recommend using simulation to find the thresholds that attain the
target error probabilities. This means simulating for every A ⊂ [J ] the error proba-
bilities of the Leap rule, PA(|DL(a, b)\A| ≥ k1) and PA(|A\DL(a, b)| ≥ k2), for
various pairs of thresholds, a and b, and selecting the values for which the maxima
(with respect to A) of the above error probabilities match the nominal levels, α and
β , respectively.
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As in the previous section, this task is facilitated when the multiple testing
problem has a special structure. Specifically, when it is symmetric and the user-
specified parameters are selected so that α = β and k1 = k2, that is, when condition
(12) holds, we can select without any loss of generality the thresholds to be equal
(a = b). Moreover, if the multiple testing problem is homogeneous, the discussion
following Theorem 3.1 also applies here.

4.4. Asymptotic optimality. For any B ⊂ [J ] and 1 ≤ � ≤ u ≤ J , we denote
by

I(1)
1 (B) ≤ · · · ≤ I(|B|)

1 (B)

the increasingly ordered sequence of Ij
1 , j ∈ B , and by

I(1)
0 (B) ≤ · · · ≤ I(|B|)

0 (B)

the increasingly ordered sequence of Ij
0 , j ∈ B , and we set

D1(B;�,u) :=
u∑

j=�

I(j)
1 (B) where I(j)

1 (B) = ∞ for j > |B|,

D0(B;�,u) :=
u∑

j=�

I(j)
0 (B) where I(j)

0 (B) = ∞ for j > |B|.

The following lemma provides an asymptotic upper bound on the expected sam-
ple size of the stopping times that compose the stopping time of the Leap rule.

LEMMA 4.2. Assume (8) holds. For any A ⊂ [J ], we have as a, b → ∞

EA[τ̂�] ≤ max
{

b(1 + o(1))

D1(A;1, k1 − �)
,

a(1 + o(1))

D0(Ac;� + 1, � + k2)

}
, 0 ≤ � < k1,

EA[τ̌�] ≤ max
{

b(1 + o(1))

D1(A;� + 1, � + k1)
,

a(1 + o(1))

D0(Ac;1, k2 − �)

}
, 0 ≤ � < k2.

PROOF. The proof can be found in Appendix C.2. �

If thresholds are selected according to (25), then the upper bounds in the previ-
ous lemma are equal (to a first-order asymptotic approximation) to

L̂A(�;α,β) := max
{ | logα|
D1(A;1, k1 − �)

,
| logβ|

D0(Ac;� + 1, � + k2)

}
for � < k1,

ĽA(�;α,β) := max
{ | logα|
D1(A;� + 1, � + k1)

,
| logβ|

D0(Ac;1, k2 − �)

}
for � < k2,
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and from the definition of Leap rule in (24) it follows that as α,β → 0 we have
EA[TL] ≤ LA(k1, k2, α,β)(1 + o(1)), where

LA(k1, k2, α,β) := min
{

min
0≤�<k1

L̂A(�;α,β), min
0≤�<k2

ĽA(�;α,β)
}
.(26)

In the next theorem, we show that it is not possible to achieve a smaller ESS,
to a first-order asymptotic approximation as α,β → 0, proving in this way the
asymptotic optimality of the Leap rule.

THEOREM 4.3. Assume (8) holds and that the thresholds in the Leap rule are
selected such that δL ∈ �k1,k2(α,β) and a ∼ | log(β)|, b ∼ | log(α)|, for example,
according to (25). Then, for any A ⊂ [J ] we have as α,β → 0,

EA[TL] ∼ LA(k1, k2, α,β) ∼ N∗
A(k1, k2, α,β).

PROOF. In view of the discussion prior to the theorem, it suffices to show that
for any A ⊂ [J ] we have as α,β → 0 that

N∗
A(k1, k2, α,β) ≥ LA(k1, k2, α,β)

(
1 − o(1)

)
.

For the proof of this asymptotic lower bound, we employ similar ideas as in the
proof of Theorem 3.2 in the previous section. The change-of-measure argument is
more complicated now, due to the interplay of the two kinds of error. We carry out
the proof in Appendix C.4. �

REMARK 4.1. When k1 = k2 = 1, the asymptotic optimality of the Intersec-
tion rule was established in [28] only in the i.i.d. case. Since the Leap rule coincides
with the Intersection rule when k1 = k2 = 1, Theorem 4.3 generalizes this result in
[28] beyond the i.i.d. case.

We motivated the Leap rule by the inadequacy of the asymmetric Sum-
Intersection rule, δ0, in the case of asymmetric and/or inhomogeneous testing
problems. In the following corollary, we show that δ0 is asymptotically optimal
when (i) condition (11) holds, which is the case when the multiple testing problem
is symmetric and homogeneous, and also (ii) the user-specified parameters are se-
lected in a symmetric way, that is, when (12) holds. In the same setup, we establish
the asymptotic optimality of the Intersection rule, δI , defined in (10).

COROLLARY 4.4. Suppose (8) and (11)–(12) hold and consider the asymmet-
ric Sum-Intersection rule δ0(b, b) with b = bα and the Intersection rule δI (b, b)

with b = bα/k1, where ba is defined in (19) with k = k1. Then δ0, δI ∈ �k1,k1(α,α),
and for any A ⊂ [J ] we have as α → 0 that

EA[τ0] ∼ EA[TI ] ∼ | log(α)|
k1I

∼ N∗
A(k1, k1, α,α).
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PROOF. The proof can be found in Appendix C.5. �

REMARK 4.2. In Section 5.2, we will illustrate numerically that when condi-
tion (11) is violated, both δ0 and δI fail to be asymptotically optimal.

4.5. Fixed-sample size rules. We now focus on the i.i.d. case (15) and con-
sider procedures that stop at a deterministic time, which is selected to control the
generalized familywise error rates.

For simplicity of presentation, we restrict ourselves to homogeneous testing
problems, that is, there are densities f0 and f1 such that

(27) f
j
0 = f0, f

j
1 = f1 for every j ∈ [J ].

This assumption allows us to omit the dependence on the stream index j and write
I0 := Ij

0 , I1 := Ij
1 and 
 := 
j , where 
j is defined in (17). Moreover, without

loss of generality, we apply the MNP rule (14) with the same threshold for each
stream.

We further assume that user-specified parameters are selected as follows:

(28) k1 = k2, α = βd for some d > 0,

and that for each d > 0 there exists some hd ∈ (−I0,I1) such that

(29) 
(hd)/d = 
(hd) − hd.

When d = 1, condition (28) reduces to (12) and hd is equal to 0. However, when
d 
= 1, we allow for an asymmetric treatment of the two kinds of error.

THEOREM 4.5. Consider the multiple testing problem (27) and assume that
the Kullback–Leibler numbers in (16) are positive and finite. Further, assume that
(28) and (29) hold. Then as β → 0,

d(1 − o(1))

(2k1 − 1)
(hd)
≤ n∗(k1, k1, β

d,β)

| log(β)| ≤ n̂NP(k1, k1, β
d,β)

| log(β)| ∼ d

k1
(hd)
.

PROOF. The proof is similar to that of Theorem 3.5, but requires a general-
ization of Chernoff’s lemma ([10], Corollary 3.4.6) to account for the asymmetry
of the two kinds of error. This generalization is presented in Lemma G.1 and more
details can be found in Appendix C.6. �

Theorem 4.5, in conjunction with Theorem 4.3, allows us to quantify the per-
formance loss that is induced by stopping at a deterministic time. Specifically, in
the case of testing normal means (Example 2.1), by (18) we have I = I1 = I0 and
for any d ≥ 1,

hd =
√

d − 1√
d + 1

I, 
(hd) = d

(1 + √
d)2

I.



SEQUENTIAL MULTIPLE TESTING 1795

Thus, by Theorem 4.3 it follows that as β → 0,

N∗
A

(
k1, k1, β

d,β
) ≤ L̂A

(
0;βd,β

) =

⎧⎪⎪⎨⎪⎪⎩
| log(β)|

k1I
if |A| < k1,

d| log(β)|
k1I

if |A| ≥ k1.

When in particular d = 1, that is, α = β , for any A ⊂ [J ] we have

2N∗
A(k1, k1, β,β)

(
1 − o(1)

) ≤ n∗(k1, k1, β,β)

≤ n̂NP(k1, k1, β,β) ∼ 4N∗
A(k1, k1, β,β),

which agrees with the corresponding findings in Section 3.5.

5. Simulations for generalized familywise error rates. In this section, we
present two simulation studies that complement our asymptotic optimality the-
ory in Section 4 for procedures that control generalized familywise error rates. In
the first study, we compare the Leap rule (24), the Intersection rule (10) and the
asymmetric Sum-Intersection rule (23), in a symmetric and homogeneous setup
where conditions (11) and (12) hold and all three procedures are asymptotically
optimal. In the second study, we compare the same procedures when condition
(11) is slightly violated, and only the Leap rule enjoys the asymptotic optimality
property.

In both studies, we consider the testing of normal means (Example 2.1), with
σj = 1 for every j ∈ [J ]. This is a symmetric multiple testing problem, where the
Kullback–Leibler information in the j th testing problem is Ij = μ2

j /2. Moreover,
we assume that condition (12) holds, that is, α = β and k1 = k2. This implies
that we can set the thresholds in each sequential procedure to be equal, that is,
a = b, and as a result the two types of generalized familywise error rates will be
the same. Finally, in both studies we include the performance of the fixed-sample
size multiple Neyman–Pearson (MNP) rule (14), for which the choice of thresholds
depends crucially on whether the problem is homogeneous or not.

In what follows, the “error probability (Err)” is the generalized familywise error
rate of false positives (3), that is, the maximum probability of k1 false positives,
with the maximum taken over all signal configurations. Thus, Err does not depend
on the true subset of signals A ⊂ [J ].

5.1. Homogeneous case. In the first simulation study, we set μj = 0.25 for
each j ∈ [J ]. In this homogeneous setup, the expected sample size (ESS) of all
procedures under consideration depend only on the number of signals, and we can
set the thresholds in the MNP rule, defined in (14), to be equal to 0. Moreover, it
suffices to study the performance when the number of signals is no more than J/2.
We consider J = 100 in Figure 2 and J = 20 in Figure 3.
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FIG. 2. Homogeneous case: J = 100, k1 = k2. In (a)–(d), the x-axis is | log10(Err)| and the y-axis
is the ESS under PA. In (e) and (f) are the histogram of the stopping time of the Leap rule with
Err = 5%.

In Figure 2(a), we fix k1 = 4 and evaluate the ESS of the Leap rule for four
different cases regarding the number of signals. We see that, for any given Err, the
smallest possible ESS is achieved in the boundary case of no signals (|A| = 0).
This is because some components in the Leap rule only have one condition to be
satisfied in the boundary cases (e.g., τ̂2 in Figure 1).

In Figure 2(b), we fix the number of signals to be |A| = 50 and evaluate the
Leap rule for different values of k1. We observe that there are significant savings
in the ESS as k1 increases and more mistakes are tolerated.

In Figures 2(c) and 2(d), we fix k1 = 4 and compare the four rules for |A| = 0
and 50, respectively. In this symmetric and homogeneous setup, where (11) and
(12) both hold, we have shown that all three sequential procedures are asymptoti-
cally optimal. Our simulations suggest that in practice the Leap rule works better
when the number of signals, |A|, is close to 0 or J , but may perform slightly worse
than the asymmetric Sum-Intersection rule, δ0, when |A| is close to J/2.

In Figures 2(c), 2(d) and 3(a), we also compare the performance of the Leap
rule with the MNP rule. Further, in Figures 2(e), 2(f), 3(b) and 3(c), we show the
histogram of the stopping time of the Leap rule at particular error levels. From
these figures, we can see that the best-case scenario for the MNP is when both the
number of hypotheses, J , and the error probabilities, Err, are large. Note that this
does not contradict our asymptotic analysis, where J is fixed and we let Err go
to 0.
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FIG. 3. Homogeneous case: J = 20, k1 = 2. In (a), the x-axis is | log10(Err)| and the y-axis is the
ESS under PA. In (b) and (c) are the histogram of the stopping time of the Leap rule with Err = 5%
and 1%.

5.2. Nonhomogenous case. In the second simulation study, we set J = 10,
μj = 1/6, j = 1,2, μj = 1/2, j ≥ 3, so that the first two hypotheses are much
harder than others. Specifically, Ij = 1/72 for j = 1,2 and Ij = 1/8 for j ≥ 3.

When the true subset of signals is A∗ = {6, . . . ,10}, the optimal asymptotic
performance, (26), is equal to 8| log(Err)|. In Figure 4(a), we plot the ESS against
| log10(Err)|, and the ratio of ESS over 8| log(Err)| in Figure 4(b). For the (asymp-
totically optimal) Leap rule, this ratio tends to 1 as α → 0. In contrast, the other
rules have a different “slope” from the Leap rule in Figure 4(a), which indicates
that they fail to be asymptotically optimal in this context.

Finally, we note that in such a nonhomogeneous setup, the choice of thresholds
for the MNP rule (14) is not obvious. We found that instead of setting hj = 0
for every j ∈ [J ], it is much more efficient to take advantage of the flexibility
of generalized familywise error rates, as we did in the construction of the Leap
rule in Section 4.2, and set h1 = −∞, h2 = ∞ and hj = 0 for j ≥ 3. This choice

FIG. 4. Nonhomogeneous case: J = 10, k1 = k2 = 2,A∗ = {6, . . . ,10}. The x-axis in both graphs
is | log10(Err)|. The y-axis in (a) is the ESS under PA∗ , and in (b) is the ratio of the ESS over
8| log(Err)|.
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“gives up” the first two “difficult” streams by always rejecting the null in the first
one and accepting it in the second. The error constraints can then still be met as
long as we do not make any mistakes in the remaining “easy” streams. In fact, we
see that while the MNP rule behaves significantly worse than the asymptotically
optimal Leap rule, it performs better than the Intersection rule, which requires
strong evidence from each individual stream in order to stop.

6. Extension to composite hypotheses. We now extend the setup introduced
in Section 2, allowing both the null and the alternative hypothesis in each local
testing problem to be composite. Thus, for each j ∈ [J ], the distribution of Xj ,
the sequence of observations in the j th stream, is now parametrized by θj ∈ �j ,
where �j is a subset of some Euclidean space, and the hypothesis testing problem
in the j th stream becomes

H
j
0 : θj ∈ �

j
0 versus H

j
1 : θj ∈ �

j
1,

where �
j
0 and �

j
1 are two disjoint subsets of �j . When A ⊂ [J ] is the subset

of streams in which the alternative is correct, we denote by �A the subset of the
parameter space � := �1 × · · · × �J that is compatible with A, that is,

�A := {(
θ1, . . . , θJ ) ∈ � : θi ∈ �i

0, θ
j ∈ �

j
1 ∀i /∈ A,j ∈ A

}
.

We denote by P
j

θj the distribution of the j th stream when the value of its local
parameter is θj . Moreover, we denote by PA,θ the underlying probability measure
when the subset of signals is A and the parameter is θ = (θ1, . . . , θJ ) ∈ �A, and
by EA,θ the corresponding expectation. Due to the independence across streams,
we have PA,θ = P1

θ1 ⊗ · · · ⊗ PJ
θJ .

Our presentation in the case of composite hypotheses will focus on the control of
generalized familywise error rates; the corresponding treatment of the generalized
misclassification rate will be similar. Thus, given k1, k2 ≥ 1 and α,β ∈ (0,1), the
class of procedures of interest now is

�
comp
k1,k2

(α,β) :=
{
(T ,D) : max

A,θ
PA,θ

(|D \ A| ≥ k1
) ≤ α and

max
A,θ

PA,θ
(|A \ D| ≥ k2

) ≤ β
}
,

and the goal is the same as the one in Problem 2.2 with N∗
A(k1, k2, α,β) being

replaced by

N∗
A,θ(k1, k2, α,β) := inf

(T ,D)∈�
comp
k1,k2

(α,β)
EA,θ[T ],

and the asymptotic optimality being achieved for every A ⊂ [J ] and θ ∈ �A.
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6.1. Leap rule with adaptive log-likelihood ratios. The proposed procedure
in this setup is the Leap rule (24), with the only difference that the local LLR
statistics are replaced by statistics that account for the composite nature of the
two hypotheses. To be more specific, for every j ∈ [J ] and n ∈ N we denote by
�j (n, θj ) the log-likelihood function (with respect to some σ -finite measure ν

j
n ) in

the j th stream based on the first n observations, that is,

�j (
n, θj ) := �j (

n − 1, θj ) + log
(
p

j

θj

(
Xj(n)|F j

n−1

)); �j (
0, θj ) := 0,

where p
j

θj (X
j (n)|F j

n−1) is the conditional density of Xj(n) given the previous
n − 1 observations in the j th stream. Moreover, for every stream j ∈ [J ] and time
n ∈N we denote by �

j
i (n) the corresponding generalized log-likelihood under Hj

i ,
that is,

�
j
i (n) := sup

{
�j (

n, θj ) : θj ∈ �
j
i

}
, i = 0,1.

Further, at each n ∈ N, we select an Fn-measurable estimator of θ, θ̂n =
(θ̂1

n, . . . , θ̂ J
n ) ∈ �, and define the adaptive log-likelihood statistic for the j th stream

as follows:

(30) �j∗(n) := �j∗(n − 1) + log
(
p

j

θ̂
j
n−1

(
Xj(n)|F j

n−1

)); �j∗(0) = 0,

where θ̂0 := (θ̂1
0 , . . . , θ̂ J

0 ) ∈ � is some deterministic initialization. The proposed
procedure in this context is the Leap rule (24), where each LLR statistic λj (n) is
replaced by the following adaptive log-likelihood ratio:

(31) λj∗(n) :=

⎧⎪⎪⎨⎪⎪⎩
�j∗(n) − �

j
0(n) if �

j
0(n) < �

j
1(n) and �

j
0(n) < �j∗(n),

−(
�j∗(n) − �

j
1(n)

)
if �

j
1(n) < �

j
0(n) and �

j
1(n) < �j∗(n),

undefined otherwise,

with the understanding that there is no stopping at time n if λ
j∗(n) is undefined

for some j . Clearly, large positive values of λ
j∗ support Hj

1, whereas large negative

values of λ
j∗ support H

j
0. We denote this modified version of the Leap rule by

δ∗
L(a, b) = (T ∗

L,D∗
L).

In the next subsection, we establish the asymptotic optimality of δ∗
L under gen-

eral conditions. In Appendix D.5, we discuss in more detail the above adaptive
statistics, as well as other choices for the local statistics. In Appendix D.4 we
demonstrate with a simulation study that if we replace the LLR λj by the adaptive
statistic λ

j∗ (31) in the Intersection rule (10) and the asymmetric Sum-Intersection
rule (23), then these procedures fail to be asymptotically optimal even in the pres-
ence of special structures. Finally, we should point out that the gains over fixed-
sample size procedures are also larger compared to the case of simple hypotheses,
as sequential methods are more adaptive to the unknown parameter.
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6.2. Asymptotic optimality. First of all, for each j ∈ [J ] we generalize condi-
tion (7) and assume that for any distinct θj , θ̃ j ∈ �j there exists a positive number
I j (θj , θ̃ j ) such that

1

n

(
�j (

n, θj ) − �j (
n, θ̃ j )) P

j

θj completely
−−−−−−−−→

n→∞ I j (
θj , θ̃ j )

.(32)

Second, we require that the null and alternative hypotheses in each stream are
separated, in the sense that if for each j ∈ [J ] and θj ∈ �j we define

Ij
0

(
θj ) := inf

θ̃ j∈�
j
1

I j (
θj , θ̃ j )

and Ij
1

(
θj ) := inf

θ̃ j∈�
j
0

I j (
θj , θ̃ j )

,(33)

then

Ij
0

(
θj )

> 0 ∀θj ∈ �
j
0 and Ij

1

(
θj )

> 0 ∀θj ∈ �
j
1.(34)

Finally, we assume that for each j ∈ [J ] and ε > 0,

∞∑
n=1

P
j

θj

(
�
j∗(n) − �

j
1(n)

n
− Ij

0

(
θj )

< −ε

)
< ∞ for every θj ∈ �

j
0,

∞∑
n=1

P
j

θj

(
�
j∗(n) − �

j
0(n)

n
− Ij

1

(
θj )

< −ε

)
< ∞ for every θj ∈ �

j
1.

(35)

We now state the main result of this section, the asymptotic optimality of δ∗
L

under the above conditions. The proof is presented in Appendix D.

THEOREM 6.1. Assume (32), (34) and (35) hold. Further, assume the thresh-
olds in the Leap rule are selected such that δ∗

L(a, b) ∈ �
comp
k1,k2

(α,β) and a ∼
| log(β)|, b ∼ | log(α)|, for example, according to (25). Then, for any A ⊂ [J ] and
θ ∈ �A, we have as α,β → 0,

EA,θ[TL] ∼ LA,θ(k1, k2, α,β) ∼ N∗
A,θ(k1, k2, α,β),

where LA,θ(k1, k2, α,β) is a quantity defined in Appendix D.1 that characterizes
the asymptotic optimal performance.

While conditions (32) and (34) are easily satisfied and simple to check, the one-
sided complete convergence condition (35) is not as apparent. It is known [32],
pages 278–280, that when θ̂

j
n is selected to be the maximum likelihood estimator

(MLE) of θj , condition (35) is satisfied when testing a normal mean with un-
known variance, as well as when testing the coefficient of a first-order autoregres-
sive model. In Appendix E, we further show that condition (35) is satisfied when
(i) the data in each stream are i.i.d. with some multiparameter exponential family
distribution, and (ii) the null and the alternative parameter spaces are compact.
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7. Conclusion. In this paper, we have considered the sequential multiple test-
ing problem under two error metrics. In the first one, the goal is to control the
probability of at least k mistakes, of any kind. In the second one, the goal is to
control simultaneously the probabilities of at least k1 false positives and at least
k2 false negatives. Assuming that the data for the various hypotheses are obtained
sequentially in independent streams, we characterized the optimal performance to
a first-order asymptotic approximation as the error probabilities vanish, and pro-
posed the first asymptotically optimal procedure for each of the two problems.
Procedures that are asymptotically optimal under classical error control (k = 1,
k1 = k2 = 1) were found to be suboptimal under generalized error metrics. More-
over, in the case of i.i.d. data streams we quantified the asymptotic savings in the
expected sample size relative to fixed-sample size procedures.

There are certain questions that remain open. First, we conducted a first-order
asymptotic analysis, ignoring higher-order terms in the approximation to the opti-
mal performance. The latter however appears to be nonnegligible in practice [see
Figure 4(b)]. Thus, it is an open problem to obtain a more precise characteriza-
tion of the optimal performance, as well as to examine whether the proposed rules
enjoy a stronger optimality property. Second, the number of streams is treated as
constant in our asymptotic analysis, but can be very large in practice. It is inter-
esting to consider an enhanced asymptotic regime, where the number of streams
also goes to infinity as the error probabilities vanish. Third, although simulation
techniques can be used to determine threshold values that guarantee the error con-
trol, it is desirable to have closed-form expressions for less conservative threshold
values.

Finally, there are several interesting generalizations in various directions. One
direction is to relax the assumption that the streams corresponding to the different
testing problems are independent. Another direction is to allow for early stopping
in some streams, in which case the goal may be to minimize the total number
of observations in all streams. Finally, it is interesting to study the corresponding
problems with FDR-type error control.

SUPPLEMENTARY MATERIAL

Supplement to “Sequential multiple testing with generalized error control:
An asymptotic optimality theory” (DOI: 10.1214/18-AOS1737SUPP; .pdf). In
the supplementary file, we present (i) more simulation studies, (ii) proofs of all
results in this paper and (iii) additional technical lemmas.
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