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ABSTRACT

We generalize work of Bourgain-Kontorovich [6] and Zhang [37], proving an almost
local-to-global property for the curvatures of certain circle packings, to a large class of
Kleinian groups. Specifically, we associate in a natural way an infinite family of integral
packings of circles to any Kleinian group A < PSLy(K) satisfying certain conditions,
where K is an imaginary quadratic field, and show that the curvatures of the circles
in any such packing satisfy an almost local-to-global principle. A key ingredient in the
proof of this is that A possesses a spectral gap property, which we prove for any infinite-
covolume, geometrically finite, Zariski dense Kleinian group in PSLy (O ) containing a
Zariski dense subgroup of PSLa(Z).

1. Introduction

Local-to-global questions have been studied throughout the history of number theory. Here, we
consider the set of curvatures appearing in circle packings which are orbits of thin Kleinian
groups: when is the set of curvatures essentially characterised by congruence conditions alone?
In this context, a thin Kleinian group is one commensurable to an infinite index subgroup of a
Bianchi group PSL2(Ok), but simultaneously Zariski dense in PGLs.

This question was first considered in 2003 in a groundwork paper by Graham, Lagarias, Mal-
lows, Wilks and Yan [I4]. They observed that for several primitive integral Apollonian packings
there appears to be a set of congruence classed modulo 24 or 48 such that any large enough
integer having such a residue is indeed a curvature in that packing. They conjectured that this
is the case for all packings. In 2011, the first-named author of the present paper made a detailed
study of congruence conditions for Apollonian packings [12]. Together with Sanden, this author
performed extensive numerical experiments and conjectured that in fact all primitive integral
Apollonian packings can be described in terms of conditions modulo 24 [13].

The first step towards trying to prove this conjecture is in [I4], where it is shown that at least
cx'/? integers less than x appear as curvatures in a given integral Apollonian packing, where ¢
is a constant depending on the packing. Sarnak then made an observation in [27] which became
the basis for all future developments on this question. In that letter, Sarnak showed that in any
primitive Apollonian packing there are, up to a constant, at least \/hf@ integers less than z which
appear as curvatures in the packing. His approach was to observe that if one fixes a circle in
the packing and considers only those circles tangent to it, their curvatures, without multiplicity,
are exactly the set of numbers that are primitively represented by a shifted binary quadratic

form f(z,y) — a whose coefficients depend on the circle that is fixed. Sarnak’s idea was then
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FIGURE 1. The limit set of an example packing to which Theorem applies (approximation
to portion with 0 < z < 3), with curvatures shown (scaled by 3/v/6 to give a primitive integral

packing). See Section

expanded by Bourgain and Fuchs to prove that in fact a positive fraction of all integers appear
in any primitive integral Apollonian packing [3]. The methods of [3] were then taken several steps
further by Bourgain and Kontorovich in [6] to prove an asymptotic local-to-global principal for
Apollonian packings: they showed that, if A is the set of positive integers that are admissible as
curvatures in a given primitive integral Apollonian packing according to their residue modulo
24, the subset of A of integers which do not appear as curvatures in the packing make up a zero
density subset of all integers.

How far can one take the method in [6] to prove asymptotic local-to-global principles in the
thin setting? For example, the third-named author of this paper successfully used the tools of
[6] to prove an asymptotic local-to-global principle in so-called integral Apollonian 3-packings
[37]. In this paper, we identify the key necessary conditions for these methods to work, which,
when satisfied, guarantee an asymptotic local-to-global principle for an integral circle packing or,
viewed differently, an orbit of a thin subgroup of PSLy(C). As a consequence, we immediately have
that an asymptotic local-to-global principle holds for the K -Apollonian packings described by the
second-named author [32] and for superintegral polyhedral packings described by Kontorovich-
Nakamura [I8]. We provide a concrete example of such a packing and give more details on the
packings of Stange and Kontorovich-Nakamura in Section [9} See Figures [I] and

In the work on Apollonian packings by Bourgain, Fuchs, Kontorovich, and Zhang, the curva-
tures in the packings were represented as coordinates of points in an orbit of a thin subgroup of
Oq(Z), where @ is a signature (3,1) quadratic form which is simply the Descartes form in the
Apollonian case, and an analogue thereof in the 3-packing case. In both of these cases, one can
view the curvatures as curvatures of circles obtained by considering the orbit via Mobius trans-
formations of a fixed circle (or line) in the complex plane under the action of a thin (Kleinian)
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FIGURE 2. The limit set of an example packing to which Theorem [I.6] applies, with curvatures
shown (scaled by 1/+/2 to give a primitive integral packing). This is an example of a K-Apollonian

packing for K = Q(1/—2). See Section
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subgroup A of PSLy(Of) where K is an imaginary quadratic field. In the original Apollonian
case, K = Q(i), and in the 3-packing case K = Q(v/—2). One can pass between these two in-
terpretations of the set of curvatures via the spin homomorphism p : PSLs(C) — Og(3,1), but
the PSLs setup is more convenient for several reasons: for example, there are numerous choices
for the analogue of the Descartes form if one chooses to work in Og(3,1); also, SLy is simply
connected, while the orthogonal group is not.

DEFINITION 1.1. Let A be a Kleinian group, and let C, .. ., C,, be circles in the extended complex
plane. Write AC; for the orbit of C; under A, as a subset of the plane (a union of circles). Then
n
U Ac
i=1

is called a Kleinian circle packing. Such a packing is called integral if, after a universal scaling
factor is applied, the set of curvatures can be taken to be a subset of 7Z.

We define the curvature of a circle N(R), where N = (g IB;>’ to be 23(C'D); then the

radius is 1/|23(CD)|, but the curvature contains some further information in the form of the
sign, which can be interpreted as orientation. In general, the circles in a Kleinian circle packing
may overlap, although they do not in the most famous cases, such as the Apollonian circle
packing.

Although one might conjecture a local-global principle for a larger class of integral Kleinian
circle packings, our methods require that the packing contain ‘congruence families’ of circles,
which give rise to integral binary quadratic forms as in the Apollonian case. Therefore we define
a restricted class of groups.

DEeFINITION 1.2. A Kleinian group A is called familial if:

(i) PSLa(Z) N A contains a principal congruence subgroup, and

(ii) the entries of A are contained in some fractional ideal a of an imaginary quadratic field

K =Q(V—d),d>0.

Furthermore, the methods require that the group A has a spectral gap property: i.e. that
the family of graphs {Cay(A/A(q), S)}, is an expander family. Here A/.A(g) denotes A reduced
modulo ¢, the set S is a finite generating set of A, S denotes its image under reduction, and ¢
ranges over all positive integers. In Section [§] we show that this is the case for a class of groups
including those we intend to consider, i.e., we show the following.

THEOREM 1.3. Any infinite-covolume, geometrically finite, Zariski dense Kleinian group con-
tained in PSLy(Of ), containing a Zariski dense subgroup of PSLy(7Z) has a combinatorial spectral

gap-

In our setting, the group A has critical exponent greater than 1. It then follows from the
arguments in [I7, Theorem 11.2, Step II], which is an immediate generalization of |4, Theorem
1.2], that A also enjoys a geometric spectral gap (see [4, p. 39] for a definition).

Previously, Sarnak established the spectral gap property for finite-index subgroups of PSLo(Ok)
[25], and Magee established this property for geometrically finite subgroups of PSLy(Ok) with
critical exponents greater than % [21]. Salehi-Golsefidy and Zhang, the third named author,

generalize Theorem even further in an upcoming preprint [24]. The existence of a geometric
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spectral gap is a crucial ingredient both in [6] and in [37], and indeed in almost all works that
have investigated arithmetic aspects of thin groups. We indicate exactly how this spectral gap
is relevant in Section [5l Note that, as explained below, every familial group A does satisfy the
Hausdorff dimension hypothesis in Theorem [1.3

We now state the general setup of the paper. Let K be an imaginary quadratic field. Hence-
forth, we will assume that 4 denotes an infinite-covolume, geometrically finite, Zariski-dense,
familial Kleinian group in PSLg(K). We will consider an associated packing P := M .AC, where

~

C' is any circle tangent to the real line and having the form C' = N(R), where N, M € PSLay(K).

This last condition, on the tangency of C to the real line, is crucial to the methods of the
paper, as it guarantees, together with the congruence subgroup condition of Definition that
a collection of integral binary quadratic forms govern the curvatures of the packing.

Under these conditions, the packing P is necessarily integral as in Definition (see Section
3). We let I C Z be the set of curvatures, after some universal scaling factor is applied as in the
definition of integrality.

Let ICy be the set of integers passing all the local obstructions by K. In other words,
Koe={n€Z | VqeZ,3k € K,such that n = k(mod ¢q)} (1.1)
We call the integers in I, admissible.

An immediate corollary of the spectral gap statement in Theorem is the following.

COROLLARY 1.4. There exists a positive integer Ly such that K, is the union of some congruence
classes mod Ly.

Of course, this also follows by strong approximation (see [23]) for SLo. However, the proof
of our Theorem not only gives the existence of Ly but also gives an algorithm to quickly
determine its exact value: in particular, the prime factors of Ly will come from the level of the
congruence subgroup contained in A, any failure of primitivity of the packing P, and the primes
2 and 3, as well as the matrix M if M is fractional. See Theorem and , for details.

Now let [0 (V) = KCq N[0, N be the set of admissible integers up to N, and similarly denote
K(N) =K n]0,N]. Then Corollary directly implies that

#Ka(N) = caracN + O(1), (1.2)

where cpr, 4, ¢ is the proportion of admissible congruence classes. We predict that all sufficiently
large admissible integers are actually curvatures, or in other words,

CONJECTURE 1.5.
#K(N) = expacN +O(1). (1.3)
In place of the full conjecture, we prove the following theorem:

THEOREM 1.6. Let A and P = MAC be as above. There exists a positive number 1, depending
only on M, A and C, such that

#K(N) = earacN + O(N') (1.4)

We feel that it is unlikely that our method can prove Conjecture [1.5| without significant new
ideas.
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We mention a remark of Chris Leininger: in fact our geometric finiteness assumption can be
relaxed to be finitely generated. It is a corollary of the Tameness Theorem [I] that any finitely-
generated Zariski dense subgroup of the Bianchi group containing a congruence subgroup of
PSLy(Z) must be geometrically finite.

Kontorovich and Nakamura define a family of dense circle packings of the plane defined by
hyperbolic reflection groups built from uniform polyhedra and their growths [18]. For infinitely
many of their examples, Kontorovich and Nakamura verify in their paper that such packings
satisfy the hypotheses of Theorem [I.6] and hence have a local-to-global principle.

Of course, it is possible to construct examples of integral Kleinian packings which fail to
satisfy the hypotheses of Theorem For example, one may take a non-congruence subgroup of
PSLy(Z), and adjoin another element to obtain a non-Fuchsian group; then consider the orbit of
a K-rational circle tangent to R. In such a case, one cannot guarantee the existence of a suitable
family of binary quadratic forms: one only obtains quadratic forms in four related variables. It
is therefore an interesting open question to develop methods which will prove an analogue to
Theorem for such packings.

In Section [9] in order the demonstrate the variety of examples to which our work applies,
we verify that the hypotheses of Theorem hold for the K-Apollonian packings of the second-
named author [32], and also for an explicit example of a cuboctahedral packing (which also arises
in the work of Kontorovich and Nakamura; Figure [1)).

The main method in the proof of this theorem is the Hardy-Littlewood circle method. In the
major arc analysis of the circle method, the main ingredient is an effective counting of group
elements for A and its congruence subgroups originally achieved by Vinogradov [34]. In doing
this, we require a geometric spectral gap for A in order to have a uniform control over the error
terms. In Section [8] we establish a combinatorial spectral gap for A, In Section [§] we establish a
combinatorial spectral gap for A, which in turn implies a geometric spectral gap for A by the
methods in [4], proving Theorem Moreover, we require that 0 = §(.A), the critical exponent
of A, which is also the Hausdorff dimension of the limit set of A, is strictly greater than 1,
which is guaranteed by our assumption that A is familial, and a limit set classification theorem
of Bishop-Jones [2], Corollary 1.8].

Besides the existence of the spectral gap, which is crucial for minor arcs as well as major arcs,
the main ingredient in the minor arc analysis is the quadratic form structure, which allows us
to do abelian harmonic analysis of two free variables. Certain Kloosterman-type sums naturally
appear here, where we apply standard methods to gain power savings. In fact the power saving
here, as well as in [6] and [37], is so significant that one does not need further restriction on the
critical exponent § (besides § > 1), in contrast to the works [5], [7], and [35], which require the
critical exponent to be very big in order to get enough cancellation in the minor arc analysis.

Note that our methods, while similar to that in [6] and [37], require several new ingredients and
careful generalizations to work. One crucial such ingredient is the spectral gap of Theorem
This theorem applies to a much wider class of groups than our local-to-global analysis, and
generalizes the case of the Apollonian group, proven by P. Varji in the appendix of [6]. In proving
this theorem, we do not, for instance, have any concrete information about the generators of the
group we work with, or exactly at which primes and to what level there are local obstructions for
the group. Indeed, in the proof of Theorem we are able to derive, in the case of the groups
considered within this paper, exactly what the local obstructions should be: something that was
done explicitly for the Apollonian group in [12].
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Secondly, the fact that we work with an arbitrary imaginary quadratic field K (as opposed
to Q(i) and Q(v/=2) as in [6] and [37], respectively), and an abstract subgroup of PSLy(Ok)
makes the local analysis in the major arcs section (Section @ much less straightforward: where
the authors of [6] and [37] could depend on concrete local information about the groups they
work with, we derive this without relying on explicit information about the local obstructions.

Thirdly, in both [6] and [37], the level of the congruence subgroup contained in the Apollonian
group in question is 2, which means that the curvatures of the circles are exactly the set of integers
represented by a corresponding class of shifted binary quadratic forms. In our paper this is no
longer the case and it is possible that the curvatures we consider (after appropriate scaling to
make them integral) comprise a subset of values of the corresponding class of shifted forms. In
fact, while the methods here deal with this nicely, this would make executing the positive density
proof in [3] significantly more cumbersome in our setting than in the original setup of the classical
Apollonian group.

We have made a special effort to make our exposition of these methods particularly accessible,
in the hope that it may benefit students and experts alike.

Notation: Sections [2| through [7] are notation-heavy. For ease of reading, we include a table of
the major notation used in those sections in Table [1] of Section We also note that whenever
the constant n appears, it is assumed to satisfy not only the current claim, but also all claims in
previous contexts.

Acknowledgements: We would like to thank Hee Oh for raising the question of how general
the methods in [3] and [6] are, which is what motivated this paper. We also thank Nathan
Dunfield, Alireza Salehi-Golsefidy, Alex Kontorovich, Chris Leininger, Kei Nakamura and Hee
Oh for helpful conversations. We would also like to thank the referee for many very helpful and
thoughtful comments.

Figures: Figures were produced with Sage Mathematics Software [11].

2. Integrality of A

For the purpose of our methods, we intend to replace A with A := A N PSLy(Z[v/—d]), where
d is as in Definition since we would like to work with an integral group. The next lemma
asserts that A is finite index in A.

Without loss of generality, we can replace A with any finite-index subgroup for the purposes
of Theorem This is because a finite number of orbits of the subgroup comprise the full orbit
of A, and the congruence obstructions from these orbits can be combined to give the obstruction
for the union.

For this reason, we are free to assume throughout the paper that A is torsion-free, by Selberg’s

theorem, saying that any matrix group contains a finite-index torsion-free subgroup [28], and,
by the following lemma, that it is a subgroup of PSLa(Z[v/—d]).

LeEMMA 2.1. Let A be as defined in the introduction, and let A = AN PSLy(Z[v/—d]). Then
[A : A] is finite.

Proof. Recall that K = Q(v/—d). If A C PSLa(Z[v/—d]), then the statement is trivial. Hence,
suppose A ¢ PSLa(Z[v/—d]), such that the denominators featured in its elements are bounded
above, as assumed in the previous section. Let ¢ = p{* - - - pzk, where p1, ..., pg are distinct primes,
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be the least common multiple of all denominators featured among entries of elements of A.

Let Hy = PSLy(;Z[v/—d]), let Hy = A, and let H3 = PSLy(Z[v—d]). Note that H, is not a
group, but contains both Hs and Hs. Furthermore, it is covered by some union of cosets of Hg
in PSLo(K). If H; is covered by a finite union of cosets of Hs3, then Hy = Hy N Hj is covered by
a finite union of cosets of Hy N Hs, i.e. [A: A] is finite.

Therefore, we will cover H; by a finite union of cosets of H3. To show this, note that if
the p;-adic expansions of v1,7v9 € PSLg(%Z[\/—d]) agree in the pi_ei,pi_e"ﬂ, ..., p;" terms for all
1 <7 <k, then the “coefficients” of the entries of 17, L are p;-adic integers for all i. Here, what
we mean by p;-adic expansions of v is what one gets when one considers for each entry of v of
the form a + bv/—d the p;-adic expansion of a and b. By “coeflicients” of an entry a + bv/—d of

~ we mean precisely a and b. Since 7172_1 € PSLQ(q%Z[\/—d]), this in fact implies that 7172_1 €
PSLy(Z[v/—d]). Since there are only finitely many possibilities for the pi_ei,pi_eﬁl, .., p;t terms
in the p;-adic expansion of any number, where i ranges over finitely many indices, we have that
there are in fact finitely many cosets of PSLa(Z[v/ —d]) in PSLQ(%Z[\/_d]), as desired. O

We remark that a converse also holds: if A has its intersection with the Bianchi group as a
subgroup of finite index, then A has bounded denominators.

Therefore, from this point on we assume A is a torsion-free subgroup of PSLy(Z[v—d]).

3. Families of quadratic forms

We now describe the set of curvatures I as a union of values of a family of quadratic forms.
Write A for the discriminant of Ok. If d = 1,2(mod 4), then A = —4d, and if d = 3(mod 4),

then A = —d. Letting v = (éﬂ IB;'7> € PSLy(C), direct computation shows that ~ sends the
v Dy
horizontal line R to a circle of curvature
w(1(R) = 23(T; D) € R. (3.1)

If v € PSLy(Ok), then k(v(R)) € V—AZ.

We may assume without loss of generality that N (R) = R++v/A/2. For, PSL, (Q) is transitive
on circles of PSLy(K)R tangent to R. Therefore we may choose Ny satisfying No(R) = R++v/A/2,
and NN, ! € PSLy(Q). Then we have

MAN = (MNNy ") (NgN~"TANNy ) Ny.
But M’ = MNN;*' € PSLy(K), Ng € PSLy(Ok), and A’ = NgN"'ANN; ! is again Zariski

dense, infinite covolume, geometrically finite and familial. Therefore let us assume N (I@) =
R ++vA/2. By Lemma we may again pass to a finite index subgroup A of A’ and work with

this group in order to prove Theorem

With this choice of N, for any v € A, and M as above, the curvatures of the orbit M~ PSLs(Z) (]IA%—F

@) are given by the shifted quadratic form

2
Fary(a,¢) = V=A|Chrrna + Dasyc)? + 23(Chry Dasy) (3.2)

b

d> € PSLy(Z). Therefore the packing MA(R + @)

in terms of the entries a¢ and ¢ of <CCL
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contains the curvatures of
{Fary (L2 +1,Ly) : ged(a,y) = 1},

where L is the level of the congruence subgroup contained in A. Write

qu/(aa C) = \/i—A?Mw(

Then fary(a,c) is a shifted binary rational quadratic form, i.e.

a,c).

fary(a,¢) = fary(a, ¢) + 0, (3.3)
where
fay(a,¢) = [Carya + Dagyel?, and 0, = MMﬁAM)
In particular, fM,Y has discriminant AD% =—4 (%(TMD Mv))z < 0.

Unlike in the Apollonian case, it is possible that not all of these forms are primitive integral
binary quadratic forms. However, their deviation from such forms, which is a function of the
denominators introduced by M, is uniformly bounded.

LEmMA 3.1. Let M € PSLa(K) and let dy be such that diM € PGLy(Ok). Up to multiply-
ing and/or dividing by integers dividing dj, the form frvy becomes a primitive integral binary
quadratic form.

Proof. We have that M~ € PSLy(K). In particular, we have

AMWDMW — BMWCMW =1. (3.4)
By assumption, Csy, Dpry € d—llOK. Write
d M g

Where C}., D}, € Ok. In particular, the ideal generated by ), and Dj,, has norm at most
d by (3.4).

For any C, D € Ok, if the integral form
|Cx + Dy|* = CCx* 4+ (CD + CD)xy + DDy?

C D’

is imprimitive by a factor of, say, e dividing all its coefficients, then e | N(C, D) (the norm of the
ideal). To see this, suppose p is prime and p* | |Cz + Dy|? for all (x,y). If p is inert, then this
implies (C, D) C pl*/210k, so p* | N(C, D). If p = pp is split, then C, D and C + D are each
contained in some ideal p*p’, where s+t = k. Call these three pairs (s,t) = (s1,t1), (s52,12), (53, t3),
ordered so that s; < so < s3. Then

(C,D) C p*2,p",
since any two of C, D,C + D generate (C, D). Hence, p* | N(C, D).
Therefore |C},. x + DE\My|2 is imprimitive by a factor dividing dj.

This shows that the integrality and/or primitivity of fM.y is achieved by multiplication and/or
division by a factor of at most d, where d; is independent of 7. O
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Finally, the integral curvatures we seek to study are given by the union of the integers
represented by these shifted forms, i.e.

ICMA(@JFQ) - L{‘{fMV(Lx +1,Ly) : ged(z,y) =1} (3.5)
e

4. setup of the circle method
Throughout the circle method, there are the following growing parameters:
T7X7 N7T17T27J7 Q07K07U7 H.

Their precise relationships, used to tune the result, are boxed throughout the paper, and these

are: (4.1), (4.2)), (4.11), (5.1) and (7.53). We collect these equations here for reference:

N =T2X2, Qo = T2
0 =

T = N1/200 K, — Qg

T:T1T27 %)

T2 :T1V7 H:Q()n ’

Each element v € A corresponds to a shifted quadratic form of two variables that represents
curvatures of circles tangent to M~(R + @), given in . Note that M is fixed throughout
the paper.

Our goal is to show that almost all admissible integers are represented by some such shifted
form. To do this, we consider this problem applied to growing subsets of A, and the shifted
binary forms corresponding to the elements in these subsets.

We now define these growing subsets. We choose three growing parameters IV, T, and X such
that

N =T2X2 T = Nmo. (4.1)

Since T is a small power of N, we have that X is almost of the scale of N 3. We further write

T =TT,T =T/ (4.2)

where v > 0 is a large number depending only on the spectral gap of A, and we define the
following set (counting with multiplicity):

m,72 €A
T2 < |[Mn|l<T
12/2 < ||yell < Tp
S(Cary Dary) = T/100

F=8r=<v=m: (4.3)

Here || - || stands for the Frobenius norm.

The reason that we define §7 using two parameters T and T5 is that this is the necessary
setup for Lemma which is a result of Bourgain-Kontorovich from [6], and one that we will be
using in the minor arcs analysis in this paper. Lemma [5.2] and Lemma [5.3| are also stated within

10
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this setup, although for these two results one can set up the problem with just a growing ball of
radius T

Finally, we wish to let two integers x and y range over two sets of integers that are < X.
For this reason we introduce a smooth function ¢ supported on [1,2], such that ¢y > 0 and
Jg (x)dx = 1. If (Lz + 1, Ly) = 1, then far(Lz + 1, Ly) is a curvature.

We then define
=Y X o(EE) ()t =m @

vEST  TYEL
(Lz+1,Ly)=1

If Ry (n) > 0 then n is a curvature. Our goal is to show that Ry (n) > 0 for almost all n, in the
sense described in Theorem [L.Gl

From Theorem 2.2 in [34], the size of Fr is =< T2% (recall that § is the critical exponent of
A). Given the definition of F7, the function Ry is supported on n < N. We obtain

IRnlly = D Rv(n) =< TP X2
n=N
It is expected that this is roughly equidistributed on the set of admissible integers, so that

T26X2 _ T2(572

Rn(n) > (4.5)

for every admissible n.

It would be ideal to show . However, current technology does not enable us to prove this.
Instead, we will show that Ry (n) > T2%~2 for every admissible integer in [N/2, N] outside of
an exceptional set of size O(N'~") for some n > 0.

Notice that in the definition of Ry in , the second sum is over pairs of integers (Lx+1, Ly)
which satisfy a coprimality condition that is hard to track directly in computations. We hence
rewrite this sum as one over all pairs (Lx + 1, Ly) using Mo6bius orthogonality:

1 ifn=1
d) = ’ 4.6
ZM() {0 ifn>1. (4.6)
din

Then

IS M(U)w<Lx;1>¢<§?>1{va(Lw+1Ly)—n}

YEST T,Yy€Z u|(Lxz+1,Ly)
Notice that if u|(Lz + 1, Ly), then (u,L) =1, so y =0 (mod u) and Lz = —1 (mod u). Let u*

be the integer from [1, L — 1] such that uu* =1 (mod L). Then we can write
Luz + uu Luy
Rn(n) = Z Z Z ( > 0 < X > 1{frry (Lux + uu™, Luy) = n}.
(u,L)= YEST T, YEZL

(4.7)

With this manipulation, the innermost sum becomes one over free variables x, y, allowing us to
use abelian harmonic analysis to analyze it.

To facilitate our analysis we will study a relative of R which we denote by RY,, where U
is a small power of N, and determined at (7.53)). We restrict the u-sum in (4.7) to v < U and

11
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R (n) = 03 5 o (B o () s (b b L) =) 49

( uE)U L YEST T, YEL
u,L)=

The following lemma shows that the difference between Ry and RJI{, is small in [y:

LEMMA 4.1.
T26X2

IRy — R¥ i, < i

Proof. From and ( .,
> IRn(n) = R (n)]

neL

<E|T a0 XX o (F ) v () i (e L) = n)

neZ |(u=U YEST *,YEL

DI ISR <Lm+uu )w (%é) 1{fary (Luz + uu*, Luy) = n)

neZ uzU yeFr x,yeZ
X
uzU~EFT T yEZ

X2 T25X2
25
<> T <

u=U

We will study Ry (and RY) via its Fourier transform:

=Y X (U)o (5) et tta s 1.10)

v€ST  TYEL
(Lz+1,Ly)=1

using the fact that we can recover Ry from Ry via the Fourier inversion formula:

1 ~
n):/o Ry (0)e(—nb)db.

It is in evaluating this integral in (4.10)) that the circle method will be applied.

(4.9)

(4.10)

By Dirichlet’s approximation theorem, given any positive integer J, for every real number
0 € [0, 1), there exist integers r, ¢ such that 1 < ¢ < J and ’0 — f’ < ==. The integer J is called

the depth of approximation, and we will take

(4.11)

The general philosophy of the circle method is that most of the contribution to the integral (4.10))
should come from neighborhoods of rationals with small denominator. Such neighborhoods are
called major arcs. One shows that (4.10) is bounded below, by bounding the major arcs below,

and then bounding the minor arcs, considered an error term, above.

12
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In our case the major arcs are comprised of § € [0,1] such that |0 — £| < ¢, where ¢ < Qo.
Here Q¢ and K are small powers of N which depend on the spectral gap and are given in ([5.1]).
Write 8 =6 — L.

q

To define what we call the major arc contribution, we first introduce the hat function

t(z) := max{0,1 — |z|},

In particular, t is nonnegative (we take t(0) = 1).

whose Fourier transform is

From t, we construct a spike function ¥, with period 1 on R, to capture the major arcs:

- XS (e4m-1)) (4.12)

q<Qo r(q) MEZL

Our main term is then

1
= / T(O) Ry (0)e(—nb)do (4.13)
0
and the error term is
1 ~
En(n) ::/0 (1 —%(0))R(0)e(—nb)db. (4.14)
Similarly, we define
1
MY () = / T(OYRY (0)e(—n)dd (4.15)
0
and
1 ~
E¥(n) := /0 (1 —%(0))RK(0)e(—nb)db. (4.16)

In Lemma [4.1| we have shown that |Ry — RY||;, is small. Running the same argument as in
the proof of Lemma one can bound the difference between My and M% in {1 norm. Then,
one obtains

LEMMA 4.2.

My = Ml € ——

Together, Lemma and Lemma [4.2] then imply that

LEMMA 4.3.
T25X2
7

HSN - g][\]/”h <

Appropriate lower bounds on My (n) and average upper bounds on 8% are then combined
to prove the main theorem. Specifically, in Section [6] we show that

THEOREM 4.4. For any n € [N/2, N|NK,, we have
My (n) > T%72,

13
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In Section Section and Section |7.4] we work towards giving an Iy bound for £¥:
THEOREM 4.5.

IEYIE < TY=ANT,

The value of 1 will be described in the course of the proof.
Let 1{n/2 N7 be the indicator function on Z defined by

1 ifn e [N/2,N],
1 n) =
[N/2’N}( ) {0 otherwise.
Then using Cauchy-Schwarz, we have
IEX - Lnvjevilln < IER i L ivy2,n llin < T 72N, (4.17)

replacing 7/2 by 7.
Using (4.17) together with Lemma we have

HSN . ]-[N/Z,N]Hll < T25—2N1—77_ (4.18)
We are now able to prove Theorem assuming Theorem and (4.18).

Proof of Theorem[1.6:. Let €(IN) be the set of exceptional numbers [N/2, N| (those admissible
but not occurring as curvatures). Then, by (4.18)),

3 len()] < llEn, < P3N,
ne€(N)

FOI‘ n e QE(N), RN(H) = 0 and7 by Theorem MN(n) >> T25—2 Therefore
En(n)| = [Rn(n) — My(n)| > T%2,

Thus
#HEN)-T*? < Y |En(n)| < T* 2N,
nee(N)
so that
#E(N) < N7 (4.19)

This is the desired result for the interval [N/2, N], and we extend it to the full interval [0, N]
as follows. Divide [0, N] into a union of subintervals dyadically: [0, N] = [N/2, N]U[N/4, N/2]U
[N/8,N/4]U---. Applying to each subinterval (replacing N by N/2™ for 0 < m < logy(N))
and collecting the error terms, we obtain Theorem [I.6] as desired. O

5. preliminary lemmata

In this section we introduce several lemmata due to Bourgain-Kontorovich which will be used in
later sections. Note that they are not stated exactly as the lemmata which we cite from [6], which
are stated in the framework of counting in orbits of the Apollonian group in Ogr(3, 1) acting on
Descartes quadruples in Z*, while we use the lemmata in the context of subgroups of PSLy(Ox)
acting on a circle. However, the proofs of these lemmata in [6] are very general, and apply almost
verbatim to the context in which we phrase them below, with their group I replaced by A in our
case, and the set of first coordinates of points in the orbit of I' acting on a vector replaced by

14
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the curvatures of the circles one gets as in the orbit of A that we consider. We note also that in
Lemma we sum over cosets of A(g) while Bourgain-Kontorovich sum over cosets of a larger
subgroup. However, this is not necessary to execute the circle method as we do here. Finally, as
stated below, Bourgain-Kontorovich’s bounds involving T° and T© are adjusted to involve 72
and T2®, respectively. This is because we work in PSLy and not in SOg(3,1) as is the case in [6],
and the spin homomorphism from PSLs to SOg(3,1) is quadratic in the entries of the matrices
OfI)SLQ.

These results are the point at which the spectral gap for A feeds into our analysis. The first
two of these are statements about equidistribution modulo g. The first says that the curvatures
cannot have too strong a preference for a given congruence class modulo ¢, as v varies. It is used
in the minor arc analysis.

LeMMA 5.1 Bourgain-Kontorovich [6], Lemma 5.2. There exists a positive constant v and some
1o > 0 which only depend on the spectral gap of A, such that for any 1 < ¢ < N and any r(mod

),

23(CrryDary) 7%
YEST

where T'= T Ty (for notations see the definition of § in (4.3))). The implied constant is indepen-
dent of .

The second lemma states that the behaviour of the form f/y on v from any given congruence
class is independent of the congruence class, in the sense that each class contributes equally
to an exponential sum. It is used for the setup of the major arc analysis, to separate the non-
archimedean and archimedean contributions. Write .A(q) for the kernel of reduction modulo q.

1
LeEMMA 5.2 Bourgain-Kontorovich [6], Lemma 5.3. Let 1 < K < T, fix || < %, and fix
x,y =< X. Then for any vo € A, any q > 1, we have

S elBfary(La + 1, Ly)) =

YEFTM0.A(g)

1
—_ e(Bfp(Lz + 1, Ly)) + O(T*® K),
YEST
where ©1 < § depends only on the spectral gap for A, and the implied constant does not depend

on q,%o, T Or y.

The last lemma is used to bound the Archimedean piece of the major arc analysis. It uses
the spectral gap to control the error in counting v € §r where fy;- takes certain values.

L

LeEMMA 5.3 Bourgain-Kontorovich [6], Lemma 5.4. Fix N/2 < n < N,1 < K < T,°, and
xz,y =< X. Then

N T
> 1{fM.,Y(L:1:+1,Ly)—n]<K} > e+ T
YEST

where ©4 < § depends only on the spectral gap for A. The implied constant is independent of
x,y and n.

Let © be the larger of the ©’s that satisfy Lemma [5.2] and Lemma [5.3| respectively, then we
set the two parameters Qg, Ko as

26—20

Qo=T % ,Ky=Q}. (5.1)

15
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6. Major arc analysis

In this section we prove Theorem bounding My (n) below. We give a brief overview of the
argument, before treating all the details. First, we will write

My = S Sq,(m)M(n) +error,

z,y in a region

where 9M(n) is the Archimedean part and Sg,(n) is the non-Archimedean part (depending on
a parameter Qo controlling the size of the major arcs); both depend on z,y. We need Lemma
(dependent on the spectral gap) in order to accomplish this separation of Archimedean from
non-Archimedean.

We can use Lemma to give a lower bound on the Archimedean part, and most of the
attention of this section is given to bounding &g, (n) below. This requires a careful local analysis
that is one of the novelties of our treatment as compared with previous works [6] [37].

The limit &(n) = limg,—00 6, (1) is the singular series, whose purpose is to be supported
only on the admissible values of n, and bounded below where it is supported. We break it down
as

(o]
&(n) =Y By(n) =[J(1+ Bp(n) + Bya(n) +---).
q=1

p

In turn,

By(n) = q(r)cg(r —n),
r(q)

where 74(r) is the probability of the quadratic form fjs, taking on the value » modulo ¢, as
ranges among cosets of A modulo ¢, and ¢, is a Ramanujan sum, which is multiplicative with
respect to ¢. For a prime p, one should think of By(n) as measuring some deviation from the
equidistribution of the probabilities 7,(n) modulo p; Byk(n) for larger k gives finer information
about the behaviour of these probabilities as we lift to powers of p. This is captured by the
relationship

L+ By(n) + Bpa(n) + -+ + Bye(n) = kapk (n).
This factor is non-zero if and only if n is represented as a curvature modulo p*.

The goal, then, is to understand Bk (n). First, we use strong approximation for A to show
that the Bk (n) eventually vanish as k increases. In particular, B,x(n) = 0 once we have uniform
lifting in the sense of strong approximation (Lemmas and . We find that for all but
finitely many primes, Byx(n) = 0 for k > 2. Therefore &(n) is controlled by the product over

good primes H;(l + By(n)).

The final step is to control By(n): we show that for p { n, B,(n) = O(1/p), while for p | n,
Bpy(n) = O(1/p?). This requires a direct counting argument, finding all solutions modulo p to
the requirement that the curvature be equal to n; at its core is an argument using Gauss sums.
In other words, we show that equidistribution of curvatures modulo p does not fail too badly.
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Now we begin. From and , we have

My (n) = 1 S(a)ﬁN(e)e(—ne)de

LT () (1) (o ()

 q<Qo r(q)

_ Z ¢<Lx;1)w<l§y>22/26<2(fM7(Lx+1,Ly)—n)>

@ f_,%/ELZ) ) q<Qo r(q) VEJT
X b y =

. /Zt <I]¥05> e(B(Fary(La + 1, Ly) — n)df (6.1)

Now we decompose the set § as the intersection of § and the left cosets of

(¢ Y eAs Y1 o

and apply Lemma [5.2) with K = Kj to obtain

S (;m(m w1z =)+ [ (F08) elBliars (L -+ 1.Ly) — )

YET e

= > (Chuttar i -m) [T t(58) X el (Lot 1.0 - m)s
Yo€A/A(q) 0 Y=v0(q)

1 r o N

= - L Ly) — — L Ly) —n))d
[A : A(q)] 7062/;4(11) ) <q(fM70( T y) n)> /—oot (KO 6) ’}’;T e(ﬁ(va( T y) n)) ’
o (Tkih)

Ko 1 (" . ). ST (B . .

N [A: Alq)] ’YOE%:A(CI) (q(fMWO(L +1, Ly) )) ’Y%;Tt < N (fM'Y(L +1, Ly) ))

TQG)KQQG

+0 <N°°> : (6.2)

where Lemma is applied to obtain the third line above. Inserting (6.2)) into (6.1)), we get

my= 5 v (B o () saummn +o (D) 6y

z, YL
(Lz+1,Ly)=1
where
1
Sqo(n) = Gqpay(n) = Z m Z cq (Fmo(Lz + 1, Ly) — n) (6.4)
g<qQo YoEA/A(q)
and
K
D) = My ) = 30 S (o (L 1, 29) =) (6.5)
YEF

17
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Here ¢, is the Ramanujan sum defined by

)= e <m> . (6.6)

g N

Fixing n, we have that c¢,(n) is multiplicative with respect to ¢, and locally,

0 if p™|n,m < k —2,
cpr(n) = —pk—t if p=1||n, (6.7)
P —1) if p¥in.

The error term in (6.3)) is O(T?9727¢) by our choice of Ky (see (1) and (5.1])), where € is

any small positive number at most %(5 — 0) > 0. Applying Lemma with K = Kj, we can
give a lower bound for the Archimedean piece M (n) for any N/2 < n < N:

26

M(n) > —. (6.8)

Therefore, Theorem is proved once we show that &¢g,(n) > 1 for every n admissible (or,
what actually suffices, once we have proven it up to log factors, since our aim is to get a power
saving, which absorbs all log powers). The rest of this section is devoted to proving the following.

PROPOSITION 6.1. We have &¢,(n) > @ if n is admissible, and &g, (n) < 1‘25;0” if n is not
admissible.

To understand &g, (n), we first push Qg to co. We define a formal singular series

&(n) =Y By(n), (6.9)
where

By(n) = A Al VOE%:A((Z) cg (Fmro (L + 1, Ly) — n). (6.10)

So to understand &g, (n) or &(n) one must understand Bgy(n) for each g.
We rewrite By(n) as

By(n) =Y rqlr)eq (r—m), (6.11)
r(q)

where
: E , =r (mo
B A Al)] €A/ A(q) {Farm (L +1, Ly) =7 (mod @)} (6.12)
- 1 va =r (mo
_M:A(q)]voeAZ/A(q) 1 {K (M% <R+ 2 )) = tmed Q)} . (613)

The term 74(r) can be viewed as the probability that a curvature is congruent to r mod g,
as v ranges over A. To get from (6.12) to (6.13) we used the fact that fay(Lx + 1,Ly) =
K (Mvwm, (R + @)) for some w, ,, € I'(L) with left column (Lx + 1, Ly)7.

First we need the multiplicativity of A which will lead to the multiplicativity of B,(n):

18
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LEMMA 6.2. Write ¢ = [, p;", then
Alg) = T AG).
i

Lemma, will lead immediately to the multiplicativity of By(n) with respect to ¢. A
priori Lemma [6.2] is not true for a general group .A. If this is the case, we replace A by some
congruence subgroup of A which satisfies the multiplicative property (such a subgroup exists by
strong approximation in SLg). As noted in Section [2] we may move to a finite index subgroup
without loss of generality.

Given this multiplicativity, we split into an Euler product

&(n) = [[(1 + Bp(n) + Bya(n) +---). (6.14)

The arithmetic meaning of each factor of the Euler product is illustrated by the following formula:

1+ By(n) + Byz(n) + -+ + Br(n) = pPre(n). (6.15)
To see this, let s, be such that p* || fary(Lx + 1, Ly) — n. Then,

k
m=1

k
= W Z (1 + Z cpm (Favry (L + 1, Ly) — n))

YEA/A(p®) m=1
1 0 sy<k
~ 714 k Z { k >k
RN B R R

Therefore, 1+ By(n) 4+ By2(n) + - - - + B, (n) is non-zero if and only if n is represented (mod p*).
Our goal for the rest of the section is to access G(n) (and prove Proposition by analysing
the values of B, (n). First, we will show that

LEMMA 6.3. There is an integer Pp,q > 1 such that
(i) For any p{ Ppaq and k > 2, Br(n) = 0.
(ii) For each of the finitely many primes p | Pyaq, 3k, such that B,k (n) = 0 for any k > ki,
Indeed, Lemma [6.3| follows from the following fact for .A(q) given by strong approximation in
SLo:
LEMMA 6.4. There is an integer Ly > 1 such that
(i) For anyp{L; and k > 1,
AP/ AWP") = SLa(Ok) (0" 1) /SLa Ok ) (") (6.16)
(ii) For each of the finitely many primes p | L1, 3k, such that (6.16]) holds for any k > k.
We refer to primes that divide Pyaq as bad primes, and those that do not divide Py,q as good

primes. We given an explicit form of Lemma [6.4] in Theorem which allows the computation
of a valid Li. We use a Hensel lifting argument to deduce Lemma from Lemma

19



ELENA FucHS, KATHERINE E. STANGE AND XIN ZHANG

Proof of Lemma[6.3 First we rewrite B (n) :

Bpk(n)Z; > cp(Fi(y) —n)

) k
A AR o
1
:m Z Z Cpk (Fi(y) —n) (6.17)
’ YoEA/A(pF—1) v A/ A(pF)

=" )

where Fi(vy) = /i(M’y(]lA% + @)) and we view F} as an algebraic function over the real and
imaginary parts of the entries of 7. As we have assumed A C PSLo(Z[v/—d]) in Section [2, we
may write

ai + az\/ai b1 + ng/ﬁi
c1+eVdi dy+doVdi)

We assume for the moment that M is also in PSLo(Z[v/—d]), and write

M= (Mn + MyopV/di My + M22\/&i>
M3y + MspV/di My + Myp/di)

Then
Fi(y) =Fi(a1,a2,b1,b2,c1, 2, d1, do) (6.18)
=(Mz1a1 + Myic1)? + d(Mazag + Mysco)? + (Mzrar + Myier)(Msaby + Myads) — (6.19)
— (M3z1b1 + Mardy)(Msza + Mascs). (6.20)

As v € PSLy(Ok), these variables are also subject to the following conditions:

FQ(al, ag, bl, bz, C1,Co, dl,dg) = a1d1 — agdgd - blcl + bQCQd —1=0
F3(ay,az2,b1,ba, c1,c2,d1,d2) := ardy + azdy — bicag — bacr =0 (6.21)

If M is integral, one can check that the Jacobian matrix
a(Fla F2a FS)

J =
d(a1,az,b1,be,c1,c2,dy,d2)

maps Zg onto Zz?; as a linear transformation, at each point of the affine variety V[Q,] defined by
the following equations:

F1:n
=0
F3=0

For any k > k, (k, can be taken to be 2 if p is good), the lifting V[Z/p*~1Z] — V[Z/p*Z] becomes
regular by Lemma and for 7 such that Fy(y9) =n (mod p*~1), this gives

Prob (Fl('y) =n (mod p*) ‘ ye AJADPY), vy =9 (mod pkil)) = ; (6.22)

Returning to (6.17)), from (6.7) the innermost sum of (6.17) is zero unless Fi(y9) = n
(mod p*~1). However, in this case, if k > k,, by (6:22) (at k and k + 1) and (6.7)), each in-
nermost sum of (6.17) is still zero. Therefore Bk (n) = 0, for k > k.

Above, we assumed M € PSLa(Z[v/—d]), and we found that the k, of Lemma [6.3 agree with
the k, of Lemma If instead M is fractional in the sense that the M;; have denominator
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qo, then we need to multiply F} by qg to make it integral. For any p"?||qo, one can check that
Z3 C L J(Z8). In this case, By (n) = 0 for k > ky + 2n,,. O

p2np

The obstruction number Lg in the statement of Corollary is thus given by
Lo =[] »*"%™. (6.23)
P

The computation of upper bounds on k), is given by Theorem and some examples are given
in Section [

At this point, in order to prove Proposition [6.1] as there are only finitely many bad primes,
we have shown that it suffices to analyze the contribution of 1 4+ Bj,(n) for good odd primes p.

LEMMA 6.5. Suppose n is admissible. Let p be an odd prime not dividing Ppqq. Then By(n) =
O(1/p?) if ptn and B,(n) = O(1/p) if p | n, where the implied constants are independent of n.

To prove this, we first prove the following.

LEMMA 6.6. Let p be an odd prime not dividing Ppgq.

L+0(%) ifn#0 (mod p)

Tp(n)—{ %—FO(I%) ifn=0 (modp) ’ (6.24)

where the implied constants are independent of n.

There are at least two proofs of this fact. One is the proof we give below, which works directly
in the group SLa(Ok). Another approach is to consider the image under the spin homomorphism
p of Ain Og(Z) where Q(z1,x2,x3,24) = T3+ d$§ + 174, and note that the set of curvatures
we are interested in is, up to a factor of d, exactly the set of fourth coordinates of points in the
orbit p(A)vT, where v = (—d,0,1,0). By strong approximation, modulo p the orbit p(A)v? is
simply the set of all solutions to Q(x1, z2,z3,24) = d (mod p), and 7,(n) is easily computed by
counting representations modulo p of d by specific quadratic forms. This passing between SLg(C)
and Ogr(3,1) is a nod to the description of Apollonian circle packings in [6], [14] and [37], where
curvatures can be seen by looking at orbits of certain thin subgroups of O (Z) as described in the
introduction. Since we describe Apollonian packings somewhat more geometrically, we present

the proof from that point of view.

Proof. Let p be an odd prime not dividing Pyaq. Let v € A. Write ~, for the reduction of v in
A/A(p). By Lemmal[6.4] we have that ~, ranges over all of
SLa(Z[v —d]) /SLa(Z[V —d])(p) = SLa(Z[vV —d}/(p))-

Therefore, we have

() = #VIZ/PZ]
' #SLa(Z[V~d]/(p))

For any commutative ring R with identity, the allowable first columns of SLy(R) is a set
U(R) = {pairs (a,b) | as ideals, (a,b) = R}.
We have that #U(R) = #P'(R) - #R*. Furthermore,
#SLa(R) = #U(R) - # Stab.(SL2(R)) = #U(R) - #R,
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where we write Stab, for the stabilizer of any one element of U. In our case, R = Z[v—d]/(p),
this implies

() = #V[Z/pZ] .
T P (ZIV=d)/(0) # (ZIV=d)/(p))"
We have
2 o (=d
. — ) +1 if 2 )=-1
#P! (ZIV=d)/()) = { Pl it gpd; L, (6.25)
and
. p?—1 if (224)=-1
#(2lv=d/ ) = { FU. Edg L (6.26)

It remains to compute #V[Z/pZ]. But we have
HVIZ/pZ) = #{) € SLz (ZIV=d)/(p)) : Fi(}) = n}
= #{v € U (ZIV=d)/(p)) : Fi(v) = n} - #Stab. (SLy (ZIV=d)/(p)))
= p*#{v € U (ZIV=d/(p)) : Fi(v) = n}.
In the above, we use the notation Fj(v) = Fj(\) for any A having bottom row v (upon which F}

depends exclusively).

Therefore, it remains to compute
# {v eU (Z[\/—d]/(p)) L Fi(v) = n} .
If we assume that M = I, then we can write the equation Fj(\) = Fj(v) = n explicitly in terms

of

\ = a1 +azVdi by + beV/di
N\ +eVdi dy +deV/di
as

2+ c2d+ (crdy — cadi) —n =0 (mod p). (6.27)

We count the number of solutions by evaluating the following exponential sum:

1
- Z Z €p (S(C% + ng + c1dy — cady — n))
p s(p) c1,¢2,d1,d2(p)

_1 Z Z ep (s(er +da/2)? + sd(co — di/2d)* — sd5/4 — sd; /4d — sn))
p
s(p) e1,c¢2,d1,d2(p)
1 1
:5 Z “ e + 5 Z “ e
s=0(p) s#0(p)
1 s sd —5 —s/d
=45 2 A (5)(5) () (5) e
s7#0(p)
[ pPP+plp—1) ifn=0 (modp)
Tl pP-p ifn0 (mod p)
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where () is the Legendre symbol and we obtained the second to last step by applying Gauss
sums first to ¢1, co, then to dq, do.

To obtain #V[Z/pZ] we need to subtract the contribution from solutions not in U (Z[v/—d]/(p)).
It turns out if n = 0 (mod p) then all such are solutions to (6.27); if n # 0 (mod p) then none
such are solutions. We thus arrive at the following result:

pP+plp—1)—1 if _Td =—landn=0 (mod p)

3 : —d

p’—Dp if (=2)]=—-1landn#0 (modp
BVIZ/pZ) = v (mod p)

pPP-p?—p+1 if _Td =landn=0 (mod p)

P> —p if %d =landn#0 (mod p)

Now, if M # I, the effect of M on the equation (6.27) is to apply an invertible linear trans-

formation to (Z[v/—d]/ (p))2 (recall that we are dealing only with good primes p). This takes
U (Z[v/—d)/(p)) to U (Z[v/=d]/(p)). Therefore, the number of solutions #V[Z/pZ] is unaffected.

Therefore, we obtained the formula for 7,(n):

(

p%ill if %d =—landn=0 (mod p)
() pﬁrl if %d =—landn#0 (modp)
Tp(n) =
g zﬁ if %d =landn=0 (modp)
p2p_1 if %d =landn#0 (mod p)
\
and indeed we have that 7,(n) = % + O(I%) if n # 0 (mod p) and 7,(n) = % + O(]%) ifn=0
(mod p) as desired. O
Proof of Lemma [6.5:
Recall from (|6.11)) that
By(n) =) mp(r)ep(r —n)
r(p)
=7p(n)(p—1)+ Z —7p(7)
r(p)
r#n(p)
=7pn)(p—1) = (1 —7(n))
= p7p(n) — 1
Now apply Lemma O

We now combine everything to obtain an estimate of S(n).

LEMMA 6.7. The term S&(n) # 0 if and only if n is admissible, and when n is admissible, we

have &(n) > bén.

Proof. We have already observed that n is admissible if and only if it is represented modulo all
integers, which occurs if and only if &(n) # 0. If n is admissible, Lemma 6.3 demonstrates that
S(n) < [, sooa(1 + Bp(n)). Lemma shows that 1+ By(n) =1+ O(1/p) or 1+ O(1/p?); the
contribution from the latter converges, and the contribution from the former is bounded below
by 1/logn. O
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Finally, we show that the difference between &g, (n) and &(n) is indeed small:

LEMMA 6.8. We have
logn

Qo

16qo(n) = 6(n)| <

Recall here that Qg is a small power of V.

Proof. Let L1 be as in Lemma Write ¢ = q1g2q3, where ¢1 = (¢, L1),q2 = (q¢/q1,n), so
that (g3, L1n) = 1. Noting that By, (n) has a universal upper bound, and recalling that B(n) is
multiplicative with respect to g, we have

(6o (n) = &(n)| < Y [By(n)

7>Qo
= Z | B, (1) Z | By, (1) Z |Bgs (n)]
q1|L1 (g2,L1)=1 (g3,Lin)=1
q2|n q19293=Qo
1 ¢ logn
<) Z 2. z<2q2Q0 o
q1|L1 (q2,L1)= (qs,ng) 1
Qan Q3/q132
as desired. ]

Lemma and Lemma together imply Proposition Therefore, by the discussion
preceding Proposition we have shown Theorem

7. minor arcs

The aim of this section is to prove
1
/0 (1= T(6))2|RY(6)[2d6 < T2 N1, (7.1)

By Plancherel’s theorem, ([7.1]) leads to Theorem
We bound the integral (7.1) above by Z; + Z5 + Z3, where J is the depth of approximation

(see (4.11])) and

1

-y / - s RY 6. r2)

q<Qo r( q qJ

ZZ

Qo<g<X 7r(

= Y Y7 0 - s0)RE 6)do. (7.4)

r_ 1
X<q<J r(q) a9 a7

—2(0))RY(6) a8, (7.3)

%"" i\H

E\‘QW »mm\

The integrand is periodic on R modulo 1, and by Dirichlet’s Theorem on Diophantine approxi-
mation, the domains of these integrals cover the circle R modulo 1.

The first integral 7Z; concerns small ¢ in the range of the major arc analysis, the second
integral Zo concerns ¢ in the intermediate range QJy < g < X, and the last integral Z3 concerns
large q.
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In Section [7.2] we show

T, < TV AN, (7.5)
Then, in Sections [7.3| and [7.4] we divide [Qo, X] dyadically and prove
= Y Z " RY (0)d0 < THANI, (7.6)
Q<q<2Q 7(q) ~ar

where Qp < Q@ < X and X <Q < J respectively. In doing this, we deal with the ranges of Q)
corresponding to Z; and Z, separately and this will give the desired upper bounds on those sums.

It is evident that whether or not M is fractional has little effect in the minor arc analysis: the
main player here is the congruence subgroup I'(L) which gives rise to shifted quadratic forms.
We can simply replace the shifted quadratic form by a constant multiple of the form, and the
analysis will run in exactly the same way.

7.1 Lemmata for minor arcs

In this section, we include some lemmata which will be used in the minor arc analysis. The reader
can choose to continue to the next section and refer back here for statements. These lemmata
relate to the evaluation and bounds for exponential sums of the form

S(¢,A,B,C,D,E) = Y e(Ax® + Bay + Cy* + Dz + Ey). (7.7)
z,y(q)

and certain of their averages. For simplicity we assume ¢ is odd. For z € Q,,, we define

deg,m (z) = _ max {k:p~*2e7Z,}.

We need the following lemma, which is a direct corollary of Gauss sums (see Page 13 of [10]).

LEMMA 7.1. For a,b € Z, we have

Z epm (ax? + bx) =

x€L/p™mZL
p™ - 1{p™|b} if p™|a
€ Ty , , (7.8
pm/2( )1/2 < a)> ( (p p17 ) ) ep <_%> ~1{degpm(b) > degpm(a)} ifp™ fa (7.8)

where €(n) = 0 if n =1 (mod 4) and €(n) = 1 if n = 3 (mod 4), and < > is the Legendre
symbol.

The Legendre symbol ( Z > = 1 if a is a quadratic residue, and —1 if it is a quadratic

non-residue. By convention we also let ( Z ) = 1if a = 0 (mod p). The Legendre symbol is

multiplicative only on the set of nonzero congruence classes mod p.

Write g(z,y) = Az? + Bay + Cy? and A, = B? — 4AC. Let k, = deg,m (A, B,C). If k; <m
and p™|A, /pkg, we say ¢ is degenerate at p™; in this case g is essentially a quadratic form of
only one variable.
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From Lemma we obtain:

LEMMA 7.2. Let p be an odd prime. Let k, = deg,m(gcd(A, B,C)). If k; = m, then
S(p™, A, B,C,D,E) = p*™1{p™|{D, E}}.

If kg < m, then

m

1 e B
S(p™,A,B,C,D,E) —pp? <Pm, Ag) IRRGAY (@Mg/p’@“)epm (M>

phs A,
(-1)"9x(p™, A, B,C, D, E) (7.9)
_ Ay
where v(g) = 0 if g is non-degenerate at p™ and ( (Ag.p*m=2) ) =1, or g is degenerate and the
p

quadratic form g(z,y)/p*s can represent nonzero quadratic residue mod p; v(g) = 1 otherwise.
The function x(p™; A, B,C,D,E) =1 if S(p™,A,B,C,D,E) # 0, and x(p™; A,B,C,D,E) =0
it S(p™,A,B,C, D, E) # 0.

Proof. It is a case-by-case proof, and the statement of Lemma is a synthesis of all cases.
If k;, = m, the proof is trivial. We thus assume If k;, < m. Then after a linear unimodular
change of variables, we can rewrite
S(p™,A,B,C,D,E)=S(p™, A',0,C", D' E) (7.10)

where deg,m (A’) = kg and C" = Zﬁ,". For instance, if deg,m(A) = deg,m(ged(A, B, C)), then we

canlet ' = v+ Ly, v =y, then Az?+ Bay+Cy?*+ Dz + By = Ax"* 4+ (C — %)y’2 + D'+ (E—
%)y’. If, instead, deg,m(B) < deg,m(A),deg,»(C), then we can apply the change 2’ = = +y,
y' = x — y to reduce to the previous case.

Now we can evaluate S(p™, A, B,C,D,E) = S(p™, A’,0,C’, D', E') from Lemma

We have
S(pm7A7B7ch7E) = S(pm,Al,07C/,D/,E/)

=p™(p™, A’)%(pm7 (j’)%f((p’fum))f((p*ﬁ,c'))
A’ c’
. (A7 pm—T) (C7 p™—T) 1{ degpm (D/,) 2 degpm (A:) }€pm <g(E1’_D)> , (7]_1)
p p deg,m (E") > deg,m (C") Ay
We interpret (7.11)) in an intrinsic way. First, while all other factors are nonzero, the factor

deg,m (D') > deg,m(A')
! { deg,m (E') > deg,m (C") (7.12)

is the same as the indicator function indicating whether S is zero or not. So we have (7.12) =
x(p™, A, B,C,D, E).

For the term A’, we know deg,m (A") = deg,m (gcd(4, B, C)) = ky < m, and that deg,n (C’) =
degpm (Ag/A/)

A’ ! A
If p™ { ', then | (W71 T | = [ Timsy |
b P P

26



LOCAL-GLOBAL PRINCIPLES IN CIRCLE PACKINGS

C/
If p™ | C’, then ( (@ pm=) ) =1, and
p

(A=) g(z,y)/pkein Z/pZ (7.13)

( W 1 if nonzero quadratic residue (A%,;,l) is represented by
p )
—1 otherwise.

O]

We note here that the function x(p™, A, B, C, D, E) concerns whether the p"*—degrees of the
x,y coefficients are bigger than or equal to that of the 22, y? coefficients after diagonalizing the
quadratic part of Az? + Bxy + Cy? + Dz + Ey. We list the following two noteworthy properties
of x:

(i) x(p™, A, B,C, D, E) is invariant under scaling of the quadratic part or the linear part, i.e.
for any (r,p) = 1,

x(p™, A,B,C,D,E)=x(p",rA,rB,rC,D,E) = x(p"™, A, B,C,rD,rE). (7.14)
(ii) x(p™, A, B,C, D, E) is invariant under changing variables of x,y. If xt = 1 +a,y = y1 + b,
then
Az? + Bxy + Cy? + Dx + By = Ax? + Bxiy, + Cy? + (2Aa + Bb+ D)y
+ (2Cb + Ba + E)y; + Ad® + Bab + Cb* + Da + Eb. (7.15)
Comparing the coefficients of the quadratic parts and linear parts of (7.15)), we have
x(p™, A, B,C,D,E) =x(p™, A, B,C,2Aa+ Bb+ D,2Cb+ Ba + E). (7.16)
In Section [7.2] we will encounter the exponential sum
1 *
(g6 = & S g (rfary (Luzo + uu*, Luyo) + zo€ +50C) (7.17)
x0,y0(q)

Write
fary (2,9) = fary (2, y) + 0, = A"22 4+ B"zy + C"y* +0,.
The quadratic form has discriminant AO%. We assume that M is integral, so that /- is primitive
and integral by Lemmal[3.1] If M is not integral, then one needs to multiply the curvature formula

by a universal constant, to obtain integrality. By Lemma the ged of the coefficients of far,
after this normalization is bounded for all +, and consequently all the estimates from Lemma

[7.4] [7.5] stand, up to a constant factor.
We first give a bound for S, (¢, u, &, ():

LEMMA 7.3. Assume that (r,q) = 1. Then

A1/2 2L2 702
‘S’)/(qauar7§7<)’<| ‘ uq (q ’Y)'

Proof of Lemma for q odd. For the proof when ¢ is even, see the discussion at the end of this
section.

First we consider the case ¢ = p™. If p™ | u?>L?, then we trivially bound |S,| < 1 and we
automatically get the lemma. We thus assume p™ { u2L?, then we apply the second case of
Lemma [7.2] to analyze S,.
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We write

S ™ 16, Q) = S egm (ary (Lo + s, Luyo) + o€ + yoC)
P 20,50 (p™)
_ Z e (TL2u2(A”x2 + Bz ", 2
= m e 0 oy + C"yp)
20,50 (p™)
+ (2rA" Luu* + &)xo 4 (rB" Lu*u* + O)yo + ru? A"u*? + 70) (7.18)

Therefore, having the primitivity of fa/y in mind and applying Lemma |7.2[to (7.18)), we obtain
(here p*s = (p™, u’L?)):

S’Y(pma ua T, 57 C)
1 . 1 1
:p—mepm (ro, + rut A" ) (p™, wrL?)2 (p™, u2L203A) 2

m

f((;:mﬂw)>i€<<pmvu2ﬂ2°%ﬁ)) ) (_1)v(ru2L2wa)

A" (rB" Luu* + ¢)? — B"(2r A" Lu®u* + &)(r B" Lu®u* + ¢) + C" (2r A" Lu?u* + £)?
" Epm rL2u2(B" — 4A"C")
x (p™, rulL2A" ru L2 B ruL2C", 2r A" Lu*u* + &, rB" Lu*u* + ¢)

1 u*é 1 1
= (m - L) (P, u?L?)2 (p™, u*L*02A)2

f((z)mi;ﬂ)>i€<(pmmgL%%A)) (=1)PE L) e fa(C, =€)
U\ ru?L2A0?

x (P L2 A" i LB ru 2O, 2r A" LuPu* + €, r B" Lu*u* + ) (7.19)
From ([7.19) we thus have

1
|S'y(pma U,Taéa C)‘ < pim

Using the multiplicativity of S, we obtain

(p™, L)% (p™ u?LP02A) 3.

(", L), LA

|S’Y(Q7 u,r, 57 C)’ g H

pmi
p;lla
,u?L? 3 ,ulL?02A > AM2u2 L2 (g, 02
< (q )2 (g 34) < A (,%5) (7.20)
q q
O
We will also encounter a certain average of such sums. Let
el AN ! YV
S(Qa U, ’77 ga Ca 7 ) f ) C ) - Z S’Y(q’ U, Ta ga C)S’Y’(Q7 u, Ta 5 ) C ) (721)
7(q)
Set ¢ = p™. From ([7.19)), we can write
(7.21) = Sy - Sa, (7.22)
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with S7 and Sy as follows. The factor S; consists of factors not involving 7:

$1 = (L) (L2 A) (220, A i ()

- p2m

m ™ *
o) (ot =) &= (7.23)

For So, we have

! v(ru?L? v(ru2L? , ~1\/[ Cv _5
S2= 3 e (10 = 0)) (1)) (1) e (fu(LAo)>
r(p™) v
%MW’(CC _5/)
epm ( TUQLQAD?W X (%) (7.24)
We can bound 57 directly from ([7.23)):

(p™, u2L2)(p™, u?L202 A)3 (p™, u?L%0%, A)

|Sl| < p2m

(7.25)

We note that (—1)“(T“2L2fMAf), (—1)”(”2L2WW’) are multiplicative over r. Moreover, from
and , we observe that with all other parameters fixed, x is a periodic function over r with
period dividing (L, p™). Therefore the function x(*) can be viewed as a function on (Z/(p"™, L)Z)*
bounded by 1, so can be written as at most (p", L) linearly combined multiplicative characters
on Z/p™Z with coefficients bounded by 1. Therefore, the factor S is a combination of at most
(p™, L) Kloosterman-Salié sums.

If o, # 0./, applying Kloosterman’s elementary 3/4 bound for this type of sum (Lemma 3.4.1,
[36]), we obtain

|So] < (p™, L)p ™ (p™, 0 — D)7, (7.26)

If 9y = 0y but fauy((,—&) # fay (¢, —&'), then we can use the last two factors in the
summand of (7.24)) to obtain a bound for Sy. It can be checked that if Sy # 0, then the condition

that x(r;*) =1 in leads to
et (fm(c, —s)) et <wa(</,—§/)> S0

ru?L2A02 ru2L2A03,
Therefore, the elementary Kloosterman 3/4 bound in this case gives
Smter, m 1
‘SQ| < (pm’ L)p4 * (p an’)/(Cv _5) - fM'y/(C/a _5/))4 . (727)

Collecting (7.25), (7.26]), (7.27), using the multiplicativity of S(q,u,r,v,&,¢,v,&,¢’), and
absorbing A, L in the < relation, we obtain the following two lemmas in the case ¢ is odd.

LEMMA 7.4. Ifd, # 0./, then

|S(q7 Uy 757, 57 C’ ’7/7 6,1 C,)| < u4q_%+6(q7 0’7 - D’y')% (qa 0’%)% (q7 O'Qy’)% :
LEMMA 7.5. If07 = 0y and fM7(<7 —f) #* fM,Y/(CI, —fl), then

1S(q, 1,77, €, ¢, € ¢ <utq™ T agy (¢, =€) — Fagy (€, =€) 7 (g, 02).
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We briefly explain how to extend Lemmas through when ¢ is even. It is enough
to consider ¢ = 2™ by multiplicativity. The extra complication arises in Lemma when we
complete squares for some exponential sums (e.g., ZZ:O es(x? 4+ x)): we encounter certain “re-
stricted” Gauss sums, meaning the sum index is restricted to certain congruence classes mod 2.
This slightly alters the statement of Lemma for ¢ = 2™. We can handle this by writing an
indicator function of the allowed congruence classes. In Lemmas and we can handle
the extra indicator function by writing it as a linear combination of two additive characters to
the modulus 2. We obtain a linear combination of more Kloosterman-Salié sums in Lemmas [7.4]
and and this eventually gives an extra constant factor to the bound on |S2|. The rest of the
proof is the same.

7.2 Minor arc analysis, part I
We begin by estimating Z;. First we take the Fourier transform of R% (defined at (4.8])):

7?,][{/(9) = Z 1(w) Z Run(0), (7.28)

(Jf;)li . YEST
where
Lux + uu* Luy .
Ruy(0) = Y 9 < v (=5 ) eary (Luz + uu”, Luy)6). (7.29)

T,YEZ

We will first give an L> bound for R, (see (7.36)).

Write 6 = 2 + B and rearrange the order of x,y according to the congruence classes mod g:

Ruy (2 + 5) = ) e <va(LUfC0 + ““*vL“?JO);)

x0,y0(q)

S v (L“"” - ““) ¥ <L;y) e (fary (Luz +uu®, Luy) 8| (7.30)

X
x=x0(q)
y=yo(q)

Applying Poisson summation to the z,y sum in the bracket [-], we obtain

Z/ !/ <Lux0+;¢y+uu:)w<Lu@§qu)

€.CEL
(ﬁwv(Lu:nr+qw ) +uu®, Lu(yo + qu)) B) e(—2€ — y()dxdy

X¢ X¢ u*g
2L2u2 Z/ / Y(a <fM7(Xx Xy)ﬁ—quiL —quLy>e(Lq>dxdy

ecez
- €q(70€ + o) (7.31)

Plugging ([7.31)) back into ([7.30)), we have

Ru. ( +5) - Z 8,6, O, (B 4,1, €), (7.32)

£,CEZ
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where

1
8 (q.um.6,0) = > eq (rfary (Lux + wu*, Luy) + 20€ + yo€) (7.33)
z0,%0(q)

a

nd
Jy(B:q,u,&,C) = /_Z /_Z¢($)1l)(y)e (fM,Y (Xz, Xy) B — XE X¢ ) . <U*§

s T

quLx quLy ) dxdy

(7.34)

Note that the sum in ([7.32) is principally supported on a few terms, since the 7, term decays
quickly. We will use non-stationary and stationary phase methods to give bounds for the 7,
terms. We review the statements here, for reference.

PROPOSITION 7.6 [37, Page 24, Non-stationary phase]. Let ¢ be a smooth compactly supported
function on (—o0,00) and f be a function which, for x in the support of ¢, satisfies
(i) |f(@)] > A>0,
(i) A>[fO(@)],...,[f" ()]
Then

/OO d(x)e(f(x))de <gn A"

PROPOSITION 7.7 [37, Page 25, Stationary phase|. Let f be a quadratic polynomial of two
variables x and y whose homogeneous part has discriminant —D with D > 0. Let ¢(z,y) be a
smooth compactly supported function on R?, then

| stwnetre iy <, jﬁ

We apply the non-stationary phase to J,. We can obtain a bound A as required in the
statement by taking

X X

X¢ or X¢ > T2X2|6].

qu qu
(Note that the discriminant of a7, is bounded above by T.) Using the former for example, the
value of A is then XU/quL, which is > 1 since u < U, ¢ < Qo and by (4.1)) and (5.1)).

Therefore, the main contribution of the &, ¢ sum in ((7.32)) comes from the &, ¢ terms such that
% < T?X?|3| and % < T?X?|B|, or in other words the terms &, such that

£,¢ < qul®X || < uT?X/J =u < U,
where we used |(| < q%, and J = T%X (by (4.11)).

For the terms ¢, ( < u, we have an upper bound for 7, using the stationary phase:

. 1
"7’7(/87q7u7§7g)’ <<m1n{17]12)(2|6’} (735)
Lemma and ([7.35) together lead to a bound for R, (g + ,6’) and hence for ﬁ% (g + ,8):
~ T2(572U
5 (540) |« S (7:30)
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Now we are ready to give an estimate for Z;. We rewrite Z; as
2
r ~ r
ne 3 S| ()R (o)
q<Qo 7(q) 1 4
KO Ky

1
We now split the integral [ %/ above into three parts [ %, 13; and [ | ~ For each integral
N N ]

dg. (7.37)

we use - to bound the RU term In the first integral, we use

(-=(G2))

2
and in the second and third integral, we trivially bound ‘(1 - % (g + B))’ above by 1. Alto-
gether, we have

2_]\7262
= K027

LEMMA 7.8.
U2T45_4NQ%

T _— .
1 < X (7.38)

Since Ko > Qf > QAU?N¢ (see (7.53)), we have I; < T¥~4N1—<

7.3 Minor arc analysis, part 11

In this section we give an upper bound for

zQ=z/z

Q<q<2Q” 47 r(q)

for Qo < @ < X and show the following.

2
dp (7.39)

“(Gro)

LEMMA 7.9.
Ty < TA6—4 prl-n

Proof. Going back to ([7.28), we apply Cauchy-Schwarz to the u sum to get an upper bound for

R (L + B):
~ r 2
()
q
Using , we obtain
TAIPN 2 X4
> ‘R% <;+B)' <<UZF DT> Slgu1,66.7,¢,¢)
r(q)

u<U £7CGZ 5’7C/€Z /YegT ’YIEST

: j’Y(ﬁ;QauagaC)j’yl(ﬁ;(buagl’gl) (741)

By the non-stationary phase, the main contribution to ((7.41]) comes from the terms &, ¢, ¢, (' <
U, and for these terms, we have

<Y 3 3 Rus <; + B) Ry (2 + 5) (7.40)

u<U~ve€FT v €T

Ty(B5q,u, &, Q) Ty (B5 ¢, 1, €, (") < min {1, T&%Q} (7.42)
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Using Lemma together with (7.42)), we obtain

2
Hau (7 6 x4 —2+e i 3(q.02,)2 !
STIRE <q+ﬁ>' < Y > UX'qi(g,0, —0,)3(q,03)2(¢,03,)2 m n{l’T4X452}

r(q) YEFT V' EFT

(7.43)

Observe that ¢J < T?2X?, so that

1
7 i 1 1 dg L 7.44)

_%mm  Tix5e <<T2X2 (7.
q
Plug ([7.43)) and (7.44) into (7.39)), and we obtain
N6U6X2 1

To<—— > > Y (4,0, —0,)3(q,02)/?(q,02)"/? (7.45)

Q<q<L2Q vEFT V' ST

We split ((7.45) into two parts IC(QZ) and Igé) according to whether 2, = 0,/ or not. We first
(=).

estimate IQ

_ NEU6X2
Iy < > 2 2 @)

Q<q<L2Q~YEFT v E€FT

D’Y/ [UV

€776 v2
N” S Y S S 1dy

YEST A €T dp2 Q<q<2Q
0 /—D»y

NEU6X2
> > 2@
YEST ' €T d|o2
,Y/—D»y

Ne€ U6X2T26
L——Fm5—

T2 Zl

v E€FT
D,Y/ =0~

N1+6U6T4674
where we have bounded the number of divisors of 02 by N€ and in the last step we used Lemma
- to estimate the sum (using modulus 7" in the statement of the Lemma), with reference to

ED.

. We introduce a new parameter H and we further split Igﬁ)

(#)

Now we estimate IQ
Igé)) and ISAK) according to (0,9,/) > H or not.

into two

We first estimate Ié?7é’>). Recall (|7.43)). Then we have
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6 2
g Y Y Y eiead))

QR<qL2QYEST A E€FT

(D / UA/)>H
U6X i
D0 > DD (e Y Hiaelld (7.47)
YEST h|oy Y EFT q1|0%q2|02 Q<q<2Q
h>H WE =0,(h)

Notice that [g1, ¢2] > (qqu) Therefore,

€ 2
[7.47) < % DD (7.48)

YEST Aoy Y EFT
h=H 0, /=0, (h)

Again using Lemma we have
N€ U6X2 N1+6U6T45—4

38 < e 2. D~ (7.49)

YEST h|07
h>H

Now we estimate I(7é’<). Using ((7.43) and replacing (q,b%)%, (q, 03,)% by (¢,04), (¢,04/), we have

Igf,<) NUsx? SO o0y

=

(Q7 07)(617 D’Y )

T2Q4 QR<q<L2Q~EFT A EFr
(071707)<H
NEUGXZ 1
ol 2 2 2 X Y dibd] 3 Wdndadillgh  (7.50)
QF Gt i e dafo Q<q<2Q
D’y—D’Y(d?l)

Writing h = (04,0,), then %1, Cﬁf,df are mutually relatively prime. Since h < H, we have the
estimate

H2
S 1{{dr, oy ds]la} < ded (7.51)
Q<q<2Q 14203

Therefore,

@YY Y Y Y4

YEST dioy d3<2Q el '€Fr  d2fo
7, =0 (d3)

N6U6X2H2T45
<
T2Q7 3<2Q
N1+6U6H2T4574
< Qno

To make the terms at (7.46)), (7.49), (7.52)), and later on at (7.69) < T~ N'~" for an appropriate
positive 7, we can set

3
170
d3

(7.52)

ng g
H=Q,  ,U=H= (7.53)
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Thus we have proven Lemma O

7.4 Minor arc analysis, part III

In this section we give an upper bound for Zg when @ is large, i.e. X < @ < J. We keep all
notation from the previous sections. Namely, we show the following.

LEMMA 7.10.

Ty < TY AN,

Proof. Recall

R (L+8) = X w0 Y- Run (46), (7.54)

(usz)[il YEST
where
r Lux + uu* Luy . r
Ruq <q + ﬁ) = Z (0 (X) (0 (X) e (foy (Luzx + wu™, uLy) (q + ﬂ)) . (7.55)

z,Y,EL

We insert extra harmonics by writing ey (7fary (Lux + uu*, uLy)) into its Fourier expansion:

eq (rfavry (Lux + uu™, uly))

:q12 Z ZZZeq (rfary (Lus 4+ uu®, Lut) + sm + tn) e <17’;x — 7”;34)

m(q) n(q) s(q) t(q)

=SS e (<12 ) (7.56)

m(q) n(q)
Inserting ([7.56)) into (7.55)), we obtain

Ru,’y <T + 6) = Z ZS’Y(Qa U, 7”, m7 n))‘“/ <ﬁ7 Xa U, ma n) (757)
q q q
m(q) n(q)
where

A (B, X, u,5,t) = Z W <Lum)—(|—W“> 0 (LXuy> e (fay (Lux + uu™, Luy) B — sz —ty) (7.58)
T, YL

Now we apply Cauchy-Schwarz to the u sum for ﬁ% (see , (7.54)), and insert it back
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into Zg at (7.39). We have

2
-y Y[ (’“w) a3
Q<a<2Q r(q) /J 4
2
<y ¥ Z/ 5 Rus (L8)| a8
u<U Q<q<2Q r( qJ YEST 1

<<UZ Z Z Z Z Z S, (q,u,m,m,n)Sy (q,u,r,m',n')

u<U vE€FT v €FT Q<q<2Q m,n,m’,n'(q) \ r(q)

1 /
‘/qJ )\’Y (B,X7U,m,n> )\'y’ (B)X)/me?n)dﬁ
_ql q q q 4q

qJ
UYL Y Y Y Sewnmndmia)

u<U y€§T v €Fr Q<q<2Q m,n,m’/ ,n'(q)

L / /
: / A, <B,X,u,m,”> Ay </3,X,u,m,”> dB (7.59)
— q g q g

1
qJ

Applying Poisson summation and non-stationary phase to A, and A,/, we see that the main
contribution to (7.59)) comes from the terms m,n,m’,n’ < %. For these terms, we use the trivial

bound:
<B X, u, m n)
q g
From (/7.59)) and (7.60|) we have
Iq <UX Z DI > 18(gu v mon, Ay m! )| (7.61)

U<U YEST V' EST R<qS2Q m,n,m/ ;n/ K 5L

<ﬂXuTZ Z>‘<<Xz (7.60)

We split ((7.61) into Ié:) and Zgé) according to whether 9, = 0,/ or not:

Zu42 > > o IS(guy,mon,y m 0| (7.62)

u<U YEST ¥ €5 Q<q<2Q m,n,m’ n/ K 5L
D =04

and

75 Z Z Z Z Z |S(Q7u77am7n7717m/7n/)

U<U YEST ’Y '€Fr Q<q<2Q mn,m/ 0/ <S¢
/#Dq

(7.63)

We first deal with Ig). Using Lemma to bound |S|, we obtain:

¢<<*Z S S Y Wt (g0, - 0,)1(q,02)3(g,02)

U<U YEST ’y '€Fr Q<q<2Q m,n,m’ 'K 5E
/7507

(7.64)
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Bounding (¢, — 0.), (q,D%) (q,bg,) by T,T?,T? respectively, we obtain

1) < USTHHiXT1Q e « TR ANIH (UGT%X—3Q%) . (7.65)

Since Q < J = T?X, the term in the parentheses above is < UZT%X_i, and thus we have
(#)

obtained a significant power saving for 1,

Now we deal with Ié;). We split Ig) into Ic(g:’:) and Ié?:’# according to whether fazy (n, —m) =
M~ (n/,—m') or not. We first give an upper bound for 757 From Lemma 7.5
v Q

757 <<fZ DN > u'qH(4,03)% (g,03,)

u<U m,n,m’ ;n' K yEFT D’)/GSDT Q<q<2Q
v =%
faay (6= FF pry (6,—C)
1
. |fM7(n, —m) — wal(n/, —m')]4 . (766)

We bound (¢,92), (,02,) by T2 and [fars (n, —m) — farys (', —m’)| by T2 so that we have

IG5 <« UZ QT+ TV X3 <« TUINY(UTTOX 1), (7.67)

where we have used Q < T2X. Again we obtain a significant power saving from (7.67)).

Finally we estimate Ié?:’:) . From Lemma [7.4{ and (7.62)), we have

SRR SR D SN DI T 3 > e

u<U YEST Q<9<2Q mn< D’y ESDT m/ /<
"TO fapy (0, —m)=fary (n,—m)

To analyze (7.68]), we introduce the following two lemmata, the proofs of which are minor
adaptions of the proofs of Lemma 3.15 and Lemma 3.16 from [37].

LEMMA 7.11. Fix v € §7. Then we have

3 3 1< N (fars (m,—m), 02)

Y €Fr m’ ' <
05/ =0y fp s (0! ,=m!)=faz+ (n,—m)

N

LEMMA 7.12. For any v € §r, d\ai and any integer W > 0, we have
Yoo 1< wri 4w

~ m,n<W
Far (n,—m)=0(d)
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We now return to (7.68). From Lemma [7.11] and Lemma [7.12] we have

G EEY Y Y O o)

u<U v€37 Q<g<2Q m,n< ¢

NEUX Z Z Z 7,(] Zd* Z 1{%M7(m,—n)50(d)}

u<U y€Fr Q<q<2Q dp3  ma<y

NEUX 2:q) (WP w
Sy oy Bya (L
u<U veFr Q<q<2Q dfo2 ?

N€U4X4Z 3 7,q q

YEST Q<q<2Q

N€U4X3T2
2.0 d Y1

YEST d|o2 Q<q<2Q

=0(d)
<<N6U4X2T25 < N1+6T45 4(U4T2—25)
< N1t (7.69)

Thus we have a power saving here, too.

Put together, (7.64)), (7.66)), (7.69) lead to the desired bound in Lemma O

With the bounds on 77, 75, and Z3 that we have obtained here, Theorem and the main
Theorem [L.6] follow.

8. Spectral Gap for a Class of Kleinian Groups

In this section, we prove Theorem which will in particular imply that a familial group
A has a geometric spectral gap. Theorem concerns more generally an infinite-covolume,
geometrically finite, Zariski dense Kleinian group A < PSLs(Of) containing a Zariski dense
subgroup I' < PSLy(Z).

We first simplify the situation by moving to SLo instead of PSLy. In particular, if let A’ be
the preimage of A in SLy, then the quotients A’(¢)\H and A(q)\H are the same for all ¢ € Z™.
Therefore, their geometric spectral theories agree. The properties of being geometrically finite,
infinite-covolume, Zariski dense and having a Zariski dense surface subgroup are preserved.

Assume also that A is not itself contained in SLa(Z) (in which case it has a spectral gap in
the senses described below by [§]).

Assume also that I' has a multiplicative structure, in the sense that for any ¢ =[], p;",

I'/T(q) HF/F

For, if I does not have this multiplicative structure, we replace I' by F:=In A, where A is a
principal congruence subgroup of SLy(Z), so that [ has a multiplicative structure. The existence
of this subgroup is guaranteed by the strong approximation property. Then T still has Zariski
closure SLa(R) as it is finite index in I' (See (0.13), Chapter I of [22]).
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As a byproduct, we prove a version of strong approximation for A, as follows.

THEOREM 8.1. Let A and I' be as above. There exists an integer Pp.q depending on A, such
that if ¢ € Z, with ¢ = qpadq - q1 where (q1, Ppag) = 1, we have

(i)
A/ A(q) = A/ A(qbaa) x A/ A(q1)
(ii)
A/ A(q1) = SL2(Ok ) /SL2(Ok ) (q1)
I1 SL2(Ox)/SLa(Ok) (9]")

p;ilq1

12

(iii) For each p|Ppaq, there exists my > 1 such that for all k, > m,,

A(p) [ A(p') = SL(2,0k) (™) /SL(2,0) () .

Moreover, we can choose m,, so that m, < m;, + tp, where m;, is the smallest positive power
m of p such that for all kj, > my,,

T(p™)/T(p*%) = SLo(Z)(p™) /SLa(Z) (p').
and v, is the smallest non-negative integer such that
p'*sl(2,Zy ®7 Ok) C Spang, (A -sl(2,Zy)).
In this notation, the action of A is the restriction of the adjoint action of the Lie group SL
on its Lie algebra sl, i.e. conjugation.
(iv) If p|Ppag, then p can only be possibly one of the following:
(a) p=2,3, or
(b) p is such that T'/T'(p) # SLo(Z/pZ), or

(c) p is a common factor of all curvatures in the associated orbit A-P(R) (after scaling all
1
raw curvatures by ﬁ)

Note that in the case of a familial group A (which is the object of this paper), I' can be taken
to be the principal congruence subgroup of SLa(Z) contained in A, in which case the bad primes
of the second kind in the theorem above are simply those dividing the level of this congruence
subgroup.

We begin with the definitions of geometric and combinatorial spectral gaps for A. Let A be

2 2 2
the hyperbolic Laplacian operator associated to the metric ds? = W on H3:

A__Q 8724_872_’_872 + 2
-2 a2 oy? 022 “o2

For any integer ¢ > 1, let .A(q) denote the kernel of reduction modulo g. The operator A is
symmetric and positive definite on L?(A(g)\H?) with the standard inner product. From Lax-
Phillips [20], the discrete spectrum consists of finitely many eigenvalues

Xo(q) = 6(2—6) < Milq) < Malq) - .

From [33], we have \g(q) # A1(q). If there exists € > 0 independent of ¢ such that A;(q)—Xo(q) > €
for all ¢ then € is called a geometric spectral gap and A is said to have a geometric spectral gap.
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We now recall the definition of a combinatorial spectral gap for A. Suppose A has a finite
symmetric generating set S. Let

A (A S) < -+ < N(A,8) < \(A,8) =1

denote the eigenvalues of the averaging operator T4 g := 1 —A 4 5/|S| where A 4 g is the discrete
Laplacian operator

(Aasf)(9) =Y (flg) — f(hg)).

heS

We say that A has a combinatorial spectral gap if there is a finite symmetric collection of
generators S and a positive € such that

N(A/A(g).S) < 1—e

for all positive integers q, where € is independent of q (here S denotes the image of S modulo
q). Informally, a spectral gap for A/.A(q) gives a measure of how quickly a random walk on the
Cayley graph of A/ A(q) reaches the whole graph. A spectral gap for A indicates a uniform rate
for all q.

We now give an overview of the proof of Theorem Let T be an element of A which

does not normalize SLy(R), i.e., T ¢ SLa(R) UiSLa(R) <(1) 01>. Write I = TTT!, and let

A = (T, F/> < A. We first prove a combinatorial spectral gap for A’, using ideas similar to those
of Varjud in the appendix of [6], some of which have also been used by Sarnak in [26], Shalom in
[30], and Kassabov-Lubotzky-Nikolov in [I6]. We then convert this to a combinatorial spectral
gap for A. Finally, we use the fact that a combinatorial spectral gap for A implies a geometric
spectral gap if the Hausdorff dimension of the limit set of A is greater than 1 via a variant of [4}
Theorem 1.2], which states that geometric and combinatorial spectral gaps co-occur as long as
the Hausdorff dimension of the limit set of the group is greater than 1.

PRroPOSITION 8.2. A’ has a combinatorial spectral gap.

As a Zariski-dense subgroup of SLg(Z), I' is known to have a spectral gap (see [§]), and
therefore so does I". We will show that A’/ A'(¢) is made up of a bounded number of copies of
I'/T(q) and T"/T"(q), which will imply a spectral gap for A"/A'(q). To be precise, we quote a
Lemma of Varju:

LEMMA 8.3 [0, Lemma A.4]. Let G be a finite group with a finite symmetric generating set S.
Suppose Gy, ...,G, < G, and that for each g € G, there exist g; € G; such that g = g192 - .. gk.
Then,

1—-M(G,S) > min

1<i<k

|Sﬂ Gl’ ' 1— )\ll(GZ,Sﬁ Gl)
5] 202 '

As a consequence, we have immediately:

LEMMA 8.4. Suppose G is a group with a finite symmetric generating set S and a tuple (G1, Ga, . .., Gy)
of subgroups of G such that:

(i) each G; has a spectral gap;
(i) SN G; # 0 for each Gy;
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iii) for each integer q, for each g € p,(G), it is possible to write g = g1g2 - - - g Where g; € p.(G;),
q q
ie.

k
pg(G) =[] pa(Go).
=1

Then G has a combinatorial spectral gap.

To verify the hypotheses of Lemma for G = A’, we will use k = 2kg, and the tuple
(Gl, GQ, ce 7G2k0) = (F, F/, F, F/, ce ,F/). Write

Ax(q) = {g1h1 - ghw g1, - gk € T/T(q), ha -+ hy € T'/T ()}
Then, for the third hypothesis of Lemma we need to show:
LEMMA 8.5. There exists some ko such that Ay, (q) = A /A (q) for every q.

Our approach is to break ¢ into prime powers, and prove a universal bound for prime powers
for all but finitely many ‘bad primes’. We therefore break the proof into two lemmata dealing with
the good primes and bad primes, respectively. The first lemma uses some geometric arguments to
construct elements of A’/ A’(p™) in terms of I and I'". The second lemma works prime-by-prime,
and uses the Lie algebra sls to lift to higher powers of p uniformly.

LEMMA 8.6. There exists a finite set of primes S such that, for p ¢ S, and for all m > 1, we have
Ava(p™) = A'JA (™).
Proof. Throughout the proof we assume p ¢ S, and we augment S as necessary while preserving

its finiteness.

Consider Cr = T~ - PY(R). If Cr is a line, let v be the identity matrix. Otherwise it is a
circle, and we write rv/d for its radius, zo + v/—dy for its center, and let

(1 =z
=0 1)

Note that xg, yg, r are rational numbers which may be written with denominator b, the curvature
of Cr (formulae for these integers in terms of the entries of T" are given in [31, Proposition 3.7]).
Then the intersection points of 7'~ -P!(R) with the imaginary axis are of the form v/—ds where,
in the case that Cr is a line, v/—ds is the height of the line, and if Cr is a circle, s = yg £ 7,
and 7v/d is the radius of T7~! . P! (R). In any case, choose such an s, and remark that v and s are
defined over Q.

Consider reduction modulo p™ Ok on the projective line:
ppm = PHOK) = PHOK /(™).
Then the reduction map

ppr : SL2(Ok) — SL2(Ok /(p™))
is equivariant with respect to reduction on the projective line. Let S contain any primes where
ppm - T = SLa(Z/(p™))

is not surjective for some m > 1 (there are finitely many such, by strong approximation for I).
We allow for p to be inert, split, or ramified.

Let S also contain any primes appearing in denominators of v, so that p,m () is defined, and
has a lift in I'. By expanding S, we may assume p and s are coprime.
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Therefore s is invertible modulo p" and there is a representation ¢ : O /(p™) — M(2,Z/(p™))
given by

T+ yv—d— (y 9371 _yd5> .

s x
In particular, the eigenvalues of the matrix are z + y+/—d, and the determinant is the norm
N(x + yv/—d). It has exactly two fixed points modulo p™, namely +sv/—d.

Let # and y be a solution to 22 + dy?> = 1 (mod p™) having ged(xy,p) = 1. The existence
of such is a consequence of an argument with Gauss sums [9, Exercise 13(v), p. 32|, if p > 5.
Therefore let 2,3 € S. Therefore, = + y+/—d is of norm 1 modulo p™, so that ¢s(x +yv/—d) is in
SL2(Z/(p™)), and therefore has a lift, call it Tp, in T'. We guarantee that neither of (z 4 yv/—d)?
are equivalent to integers modulo p™ (i.e. in the subring Z/(p™) C Ok /(p™)), since p 1 2zy by
construction.

Therefore Ty~ TyyT !, considered modulo p™, has a fixed point in PY(Z/(p™)). Since
SLo(Z/(p™)) is transitive on P*(Z/(p™)), we can conjugate this fixed point to oo modulo p™.
Therefore, we find an element Ty in TTTT~'T" which fixes co modulo p™.

So Ty has the form
_ (a0 b m
T = (0 al) (mod p™),

where ag,a1 € Ok, apa; = 1 (mod p™). As ap and a; are the eigenvalues of T} and hence Ty,
they are x 4 yv/—d. In particular, we have arranged that a3 & Z/(p™).

Now take
- 1 n\,,_1_ (1 na%
o= () 1= ().

We know a3 ¢ Z/(p™) and a3 is invertible. Now, this implies that a3Z/(p™)+Z/(p™) = Ok /(p™).
This implies that all upper triangular matrices are in PTTT~'I'TTT~'T modulo p™.

The rest of the proof follows Varju. Specifically, an exactly analogous argument shows that
the lower triangular matrices with 1’s on the diagonal are also in TTTT'T'TTT~'T" modulo p™.
Therefore, in A7(p"™) we obtain all elements of the form

1 a) (1 0\ (1 ¢\ _ (l+ab a+c+abc
0 1 b 1 0 1) b L4+bc )°

This includes any matrix v with lower-left entry not congruent to 0 modulo p, since it is possible
to solve for a, b, ¢ modulo p™ in that circumstance. As this is more than half of the group ppm (A’),
the emma is proved. O

LEMMA 8.7. Let p be any prime. Then there exists some positive integers k, and m,, such that
Ap, (p") = A /A (p™)
for all m > m,,.
Proof. Let SLo act on sls via the standard adjoint action of a Lie group on its Lie algebra by
conjugation, i.e.
SLy x sly = sly, gxv— g-v:=gug L.

We will first find a Qp-basis of s[(2, Q, ®g Kq) formed of elements from s((2,Q) and I'T" - sl(2, Q).
Using this basis, we will apply an inductive argument to show that, for all m > m, (where m,, will
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be defined below), a finite-index subgroup of SLa (O )/SLa(Ok ) (p™), whose index is independent
of m, is contained in A4(p™).
To find the aforementioned basis, we begin with the standard basis for the real Lie algebra

sl(2,R):
o=, %) w0 2) =0 )

The above is also a Q,-basis for sl(2,Q,) for any p, and a Q-basis for sl(2, Q).

First, we remark that I'(v) spans SL2(R)(v) over R for any non-zero v € sl(2,C). For, since
I' is Zariski dense in SLo, and the adjoint action is Zariski continuous, the Zariski closure of the
orbit I'(v) in sl(2,R) is SLa(R)(v).

Next, we claim that the orbit SLy(R)(v) must be of real dimension 3. This follows from
irreducibility of the adjoint action of SLy(R) on s[(2,R) in the case that v € s[(2,R). In fact,
the same elementary irreducibility argument shows that the orbit SLa(R)(v) for any v € sl(2,C)
is at least 3-dimensional (any v can be conjugated to be diagonal, hence AH with A € C; then
conjugations and linear combinations yield AR and \L).

Furthermore, for v ¢ sl(2,R), we have SLy(R)(v) Nsl(2,R) = {0}. By dimensional considera-
tions, then, in this case

Spang (I'(v),sl(2,R)) = s((2,C).
Next, we show that the stabilizer of s[(2,R) under the adjoint action of SLy(C) is exactly
SLo(R) U iSLa(R). For, suppose M is in the stabilizer. Then, taking m € s[(2,R) N SLy(R) (for
example, an elliptic element of order 2 with fixed points on P!(R)), we find that it must stabilize

the circle M (P!(R)), which is only possible if M (P!(R)) = P!(R). Hence the stabilizer of s[(2, R)
is contained in the stabilizer of P}(R) under the SLy(C) action on P!(C).

We have assumed T ¢ SLo(R) U iSLa(R) <(1) —01

sl(2,R) = {0}. In particular, we may take any w € sl(2,Q), and obtain T(w) ¢ sl(2,R). We
may now conclude that for some appropriate choice of v2,v3,74 € I', we have:

Spang{H, R, L, w3 = v2(T(w)),ws = y3(T(w)), ws = v4(T(w))} = sl(2,C).

Let W denote this basis, where we have chosen w € sl(2,Z).

>. Hence, by simplicity, T'(sl(2,R)) N

We may actually conclude that W is a Q-basis of sl(2, K;), which is 3 K4-dimensional, hence
6 Q-dimensional. We may extend scalars and find that W is also a Q,-basis of sl(2,Q, ®q Kg4).

We have therefore found the desired Q,-basis of SL2(Q, ®q Kg), namely W.

Next we define m,,. Since I' is Zariski dense, for each p we can find a positive m;, such that
for all m > mj, T'(p™) is dense in SLz(Z,)(p™). For technical reasons, we take m;, = mj, + 1,
where ¢, is the smallest non-negative integer so that

p'*sl(2,Z, ®7 Ok) C Spang (W). (8.1)
This ¢) is necessarily finite. In the case that W is a Z,-integral basis of s[(2,7Z, ®z Ok), then

tp = 0, and the technical condition may be dropped in the sense that m, = m;,.

Next, we prove the following claim: For any g € SLo(Og)(p™»)/SL2(Ok)(p™) and any
m Z my, We may express g as
9= Li(TLaT 7y ) (T LT g (T LTy ") (mod p™)

for some Lq, Lo, L3, Ly € T.
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This would imply g € A4(p™).

We prove this by induction. The base case m = m,, is trivial. Suppose for m = k we can find
Ly, Loy, L3k, Ly € I' such that

9= L1g(v2TLox T 5 ) (38T LT 3 ) (4T LT ') (mod pF)
Then
9= L1g(v2T Lo T vy ) (vsTLsp T~ 5 (T Lok T g ) + phu

for some u € sl(2,Z, ®z Ok ). Therefore, using the basis W, and the fact that A, R, L give a
Zy-integral basis for sl(2,7Z,), we can find u; € sl(2,Z,), and ta,t3,t4 € Q, so that

U = U1 + towsg + t3ws + tgwy.
If W forms a Z,-integral basis for s((2,Z, ®z, Ok ), then t; € Z,, for i = 2, 3,4. Otherwise,
ti € p Ly,
(by (8.1)). This implies
tipfw € p"rsl(2,Z,).
Since T'(pF~%) is dense in SLQ(ZP)(pk_LP), we can find (1, B2, 83,84 € I' such that g; = 1
(mod p*~%) and
Bi=1+pu; (mod p*th)
By =1 +tp"w  (mod pF*)
B3 =1 +tspPw (mod p*tt)
Ba=1+tp*w (mod p*)

Then we set L; ;1 = L; 13; for i = 1,2, 3,4. This is enough to prove the statement for m = k+1
(here, we rely on the fact that k,k — ¢, > 1):

Ly (2T Lo gt Ty ) (1T Ly e a T 93 ) (T Lagea T~ M5 ") - (mod ptt)
=Ly (12T Lo T 'y ) (13T Lo T g (T Lap Ty ) +pPu =g (mod p**t).
This completes the induction. Therefore, we have g € A4(p™) for any g € SLa(Ok ) (p™)/SLa(Ox ) (p™)
and any m = m,,.
Now, [SLa(Ok) : SLa(Ok ) (p™)] < p™r. It must be that A;(p™) contains something outside
SLa(Ok ) (p™»)/SLa(Ok ) (p™). Therefore, Ayy1(p™) contains at least two cosets; Aqq2(p™) con-

tains at least 3 cosets and so forth. So if we set k, = 4 + p%™», we have Ay, (p™) = A JA (p™)
for all m > m,,. O

Proof of Lemma[8.5 For each p and m, there is a k, such that
A//A/(pm) = Akp,'m (pm)

For p € S, this kyp, is uniform with respect to p (Lemma , while for any fixed p ¢ S, this
kpm is uniform for m > m,, (Lemma 8.7)). As S is finite, the supremum of the k, ,, is finite, say
ko. Therefore,

AJA (™) = Agy (0™)

for any p, m.
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We have assumed I’ and therefore I have a multiplicative structure. In other words, for any
q =11, p;", we have

T'/T(q) HF/F ),
I' /T (¢ HF/F

A direct corollary is that A" also has a multiplicative structure

A JA (q HA JA (p (8.2)

since A’ is generated by ' and I", and that Ako has a multiplicative structure:
Ay, (q H Apo (p

These isomorphisms are compatible so that the composition of isomorphisms
Ao (q HAko =[[A/A @) = AJA ()
i

is the identity map. Therefore,
Aro(q) = A’/ A (q)
as desired. O

Proof of Proposition[8.3. We verify the hypotheses of Lemma [8.4|for G = A/, S = S'UTS'T1,
where S is a finite set of generators for I', k = 2ko, and (G1, Ga, ..., Ga,) = (I, T/, T, TV, ... TV).
The group I has a spectral gap as a Zariski dense subgroup of SLy(Z), by [8]; hence I does also.
The second hypothesis is immediate, and the third is verified by Lemma Therefore A’ has a
combinatorial spectral gap. O

Next, we wish to pass from A’ to A.

ProproOSITION 8.8. A has a combinatorial spectral gap.

Before proving this, we note that our main spectral theorem follows immediately.

Proof of Theorem[I.3 The theorem follows from the fact that .4 has a combinatorial spectral gap
(Proposition and a version of [4, Theorem 1.2] for SLo(Ok ) giving equivalence of geometric
and spectral gaps when the Hausdorff dimension of the limit set of the group is greater than 1,
which would follow from the arguments in [4] modified as described in the paragraph preceding
Theorem 2.1 in [4]. O

To prove Proposition we recall an equivalent condition for a combinatorial spectral gap
to the one given at the beginning of this section. Given a graph G and subset V', write 9V for
the set of edges joining V' to its complement in GG. Then define the expansion ratio of G to be

hg = min —_—
vea viciia V]

Let e be the gap between the two biggest eigenvalues of the discrete Laplacian operator on G.
It is known the expansion ratio of G is related to e by the inequalities [19, Propositions 3.2.31,
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3.2.33]:
2
hG
2Mé
where Mg is the maximum valence of vertices in G. In particular, h,, g is bounded away from 0
uniformly with respect to ¢ if and only if G satisfies a combinatorial spectral gap.

< eq < 2Mcghg,

Proof of Proposition[8.8 We will demonstrate the existence of a positive constant h such that
for any positive integer ¢, and any V C A/A(q) with |V| < 1|4/ A(g)|, we have

0V'| = h|V]|. (8.3)

We use the corresponding property for A’ (which has a combinatorial spectral gap by Propo-
sition [8.2). Let ho be such that for any positive integer ¢ and any V C A’/ A'(q) with |V| <
1A/ A (g)|, we have

|OV| = holV]. (8.4)

By the strong approximation property for A and A’, there is a universal M such that the
index [A/A(q) : A'JA'(q)] < M. Let S be a finite generating set for A, which is symmetric
under inverses (this exists since we assume A is geometrically finite, hence finitely generated).
We say two cosets a.A /A (q) and a’ A’/ A'(q) are connected if there exists some s € S such that
saA'JA' (q) = d A'J A (q). By the symmetry of S, this connectedness is an equivalence relation.

Fix ¢. Let a1 A" JA'(q), -, a1 A" ) A (q) be the cosets of A"/ A'(q) in A/ A(q), with [ < M. If
[ =1, then follows trivially from , with h = hg, for this value of q. Therefore, assume
1 >2.

Let V; = VNa;A' /A (¢) and define
K= max{HVi\ — V| : a;A' ) A (q) and ajAl/A/(q) are connected} .

Case 1: k < 1'2%2. Then we have
N mind |V 4]
max{|V;|} — min{|V;|} < Ik < TR
From this, one finds that for each i,
9 |V] 11|V
i v g =5 8.5
10 I Vil 10 1 (8.5)

Case la: If [V'| < 334/ A(q)], then each |Vj| < %|AI/A/(Q)]. Applying (8-4), we have | Eg(V;, a; A /A’ (q)—
Vi)| = ho|V;|. Therefore,

V| = 1Eg(Vi,aiA' /A (q) = Vi)| = holV. (8.6)

Case 1b: If [V| > 9|4/ A(qg)|, then from (8.5) we have

9 |A/A (9] 11| A"/ A (9)]
22 l 22 l '
And then it can be worked out that

< Vil <

ony
22

ohy

>
oV > 5

|A/A(g)] = — V| (8.7)
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Case 2: k > 1|0Ll|2' There exists s € S such that sal-.lA//_lA'(q) = aj.A/,/.Al/(q) and ||V;| = |Vj|| = k.
Since multiplication by s is a bijection between a;A /A (¢) and a;A /A (¢), by the pigeon hole
principle, multiplication by s must map at least x elements from the bigger set, say V;, to
a;A'J A (q) — Vj, so we have at least

V] V]
> = - > .
VI > k=105 2 10112 (8.8)
Combining (8.6),(8-7) and (8.8)), we find we can set h = min{ —9{;0, 10]1\/[2 .
O

Lastly, we prove the statement of explicit strong approximation, with reference to the proof
of the spectral gap just completed.

Proof of Theorem [8.1. First, we isolate the primes p for which A/ A(p) # SL2(Ok)/SLa2(Ok ) (p).
Lemma 8.6 shows that A/ A(p) = SLa(Ok)/SL2(Ok)(p) for ‘good’ primes, but in the course of
the proof, we throw a variety of primes into S, for which we do not prove this; they are to be dealt
with as bad primes. The first class of primes placed in S are those arising from the denominator
of 7. The denominator of 7 is always a divisor of the curvature of 7-1 - PY(R) ([31, Proposition
3.7]). Therefore, by choice of T' (applying an element of I to T~1), we can avoid any prime not
dividing all curvatures in .A-P!(R). The second class of primes removed are those not coprime to
s. However, by choice of s, we can again avoid any odd prime not dividing the curvature b (since
r = 1/b, so that s = (y £+ 1)/b for some integer y [31, Proposition 3.7]). Other primes moved to S
during the proof are those p for which I'/T'(p") # SLo(Z/p™Z) for some m > 1, and the special
primes p = 2, 3. Note that if I'/T'(p) = SL2(Z/pZ), then by Lemma 3 on page IV-23 of J-P.Serre
in [29] one automatically has that I'/T'(p™) = SL2(Z/p™Z). Hence the statement in part 3(b)
of Theorem is equivalent to I'/T'(p™) # SLo(Z/p™Z) for some m > 1. For all primes not
contained in S, the proof demonstrates that A’/ A'(p) = SLa(Ok)/SLa(Ok)(p), which implies
.A/.A(p) = SL2(0K>/SL2(0K)(])).

Now let Py,q be the product of the primes of S as above. We obtain parts (1) and (2)
immediately from the fact that A/A(p) = SL2(Ok)/SL2(Ok)(p) for all other primes. Part (4)
is by definition.

It remains to prove part (3). Let p|Pyaq. In the course of the proof of Lemma we find
that A’ (p™) /A’ (p*) = SLa(Ok)(p™)/SL2(Ok ) (p*), where by judicious choice of the basis W
in the proof, m, = m;, + 1, where ¢, is as defined as the smallest non-negative integer so that

p'sl(2,Z, ®z Ok ) C Spang (A’ -sl(2,Z,)).

However, if the goal is only that A(p"™#)/A(p*) = SL2(Ok)(p™)/SL2(Of ) (p*), and not a
spectral gap for A, the proof of Lemma can be modified for A instead of A’, as follows. Using
the same justification, we find that Spang (A(sl(2,Qp))) is of dimension 6, hence we can find a
Qp-basis of sl(2,Q, ®g Kq) of the form

H, R, L,ws = as(w),ws = az(w), ws = as(w),

where w € s1(2,Zp). We may choose w and a; such that we have a Zy-basis for Spany, (A(s(2,Zp))).
Running the rest of the proof with a; in place of «;T, we no longer obtain a spectral gap but we
obtain surjectivity with the stated ¢,. ]
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9. Example packings

As discussed in the introduction, Kontorovich and Nakamura present a collection of examples
which satisfy the hypotheses of Theorem[I.6] Here we first present one explicit example appearing
in Kontorovich and Nakamura satisfying the hypotheses of Theorem Second, we verify that
the hypotheses hold for the entire family of K-Apollonian packings.

9.1 A cuboctohedral packing
The packing presented here is neither the Apollonian packing, nor any K-Apollonian packing, but
it appears as an example of a super-integral polyhedral packing of Kontorovich and Nakamura
[18]. The packing is shown in Figure |1} where cuboctahedral symmetry is evident.

Define

G = <cl(z) =Z+V-6, c2(2) = L, c3(z) = (1+V=6)z— 3m> ,

/b7 41 Y=z 11 -V/=6
_ _ z 5z — 12
Ga= () =7 ) =746, @)=y @l =T ),

Define A” as a group generated by the fourteen reflections:

"
A =<01, az, a3, a4, Ciaszc;, cCia4c;, C2a4C2, C3G3C3, C1€3a3C3C1, C3Q1C3,
€3C2a4C2C3, (C203a3C3C2, C2C3041C3C2, 010203a1C30201>.

Note that

Gy < A" < G1GaGy ! < M (PGLy(Z[V—6]) x ) M, M = (? (1)> :

These 14 reflections correspond to the 14 faces of a cuboctahedron. The fundamental domain
therefore consists of hyperbolic upper half 3-space minus 14 tangent geodesic hemispheres. This
shows that A" is of infinite covolume but geometrically finite.

Let A = A” NPSL2(Ok). The limit set of A” is shown in Figure [l Since [A” : A] is finite,
this limit set is the closure of a union of finitely many K-rational M&bius images of a single circle
orbit; in this case, of AC where C' = R+ v/—6. Therefore we aim to demonstrate that A is an
infinite-covolume, geometrically finite, Zariski dense, familial Kleinian group.

The geometric finiteness and infinite covolume are inherited by A from A”, as it is finite
index. By arguments exactly analogous to those in [32] Theorems 9.3-9.4], the limit sets of A"
and A have Hausdorff dimension greater than 1 and are Zariski dense.

It simply remains to prove the following lemma.
LEMMA 9.1. The group Go is a congruence subgroup of PGLa(Z).
This implies G2 N A is a congruence subgroup of PSLy(Z).

Proof of Lemmal9.1. We will show that G2 contains the principal congruence subgroup I'(6).

Let
11 10
i=(p 1) 7=(1 1)

These matrices generate PSLa(Z). We will use the fact that I'(6) is the subgroup generated by
the following elements [15, p. 1357]: LS, RS, L2R3L—2R~3, L3R?L—3R~2. It suffices now to verify
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that

(a1a4) 1(a1a3) L2R3L_2R_3,
(alag) a1a4(a1a3) = [*R’L3R72

O

Finally, we apply Theorem The potential bad primes are exactly p = 2,3, since the
curvatures of the packing are coprime and the congruence subgroup is of level 6. Letting Ty =
asa; € A and V = cjascia; € A, and using the notation H, L, R for the basis of s[(2,Z) as in
the proof of Lemma one can compute the following elements of A - sl(2,7Z):

VHV™!, VLV™Y VRV T,VRV Ty, Ty 'VRVIT,.

These are enough to verify that 1o < 1 and ¢3 = 0. Therefore the modulus of the congruence
obstruction divides 12. As experimental confirmation, computing curvatures < 159 appearing in
the limit set packing (Figure 1)), we find that the curvatures missing in this range are exactly
those = 7,9,11 (mod 12) as well as 13 and 16.

9.2 K-Apollonian packings
In this section we show that all K-Apollonian circle packings satisfy the hypotheses of Theorem
[1.6] For an example of a K-Apollonian packing, see Figure [2]

The (strong) K-Apollonian groups defined in [32] are shown there to be finitely generated
Zariski dense subgroups of PSLa(Of ) containing congruence subgroups (either I1(2) or I'® in the
notation of [32, Section 10]). They are of infinite covolume since they are of infinite index, and
each packing contains the horizontal line R+ VA A /2. Therefore all the hypotheses of Theorem
are satisfied save geometric finiteness. For that, it suffices to consider the remark following
Theorem [L.6

However, it may be useful to give an explicit description of a group associated to the packing.
For each imaginary quadratic field K, we may use an adaptation of the weak K-Apollonian group
given in [32, Theorem 9.2]:

A’:<S:<_01 é) T:<(1) }) V:<_01 I)><PGL2(OK)

This group has the K-Apollonian packing as a limit set, and this limit set is of the form AR =
AR+ V/A/2). Tt has the following fundamental domain, given here as a list of the boundaries
in C of its geodesic walls:

A:R(z) =0, S(2) <S(1)/2
B:3(2)=S(1)/2, 0 < R(2) < 1
C:R(z) =1, S(2) <S(1)/2

D:|z—-1/2]=1/2.

It is straightforward to verify that this region satisfies the Poincaré Polyhedron Theorem and is
therefore a fundamental domain for A4; it is therefore geometrically finite and of infinite covolume.
It has PSL2(Z) < A (in the form of the first two generators above). It is Zariski dense by the
same arguments as in [32], Section 10].
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In order to apply Theorem we need only pass to the finite-index subgroup A = A’ N
PSL2(Ok), by replacing V' with

o 2
Vo = VST LSV — <T L ) .
1 —7—1

The curvatures of the K-Apollonian circle packings are primitive integral (after scaling by
v/—A). Therefore, with this choice of group, Theorem tells us immediately that the only
primes of bad reduction for strong approximation are 2 and 3. In fact, it tells us more. Write
L, R, H for the usual generators of s[(2,7Z) as in the proof of Lemma Then following matrices
are among A - s((2,7Z):

VoRVy Y, SVoRVy'S, TVoRV;'T™', STV RV, TS, TSVoRV, ST

Using these suffices to verify that for A = 0 (mod 4), 12 < 2 and t3 = 0; while for A £ 0 (mod 4),
o < 1 and t3 = 0. Then Theorem tells us that the modulus of the congruence obstruction
for K-Apollonian packings is a divisor of 24 in all cases, and in fact a divisor of 12 if A £ 0
(mod 4). This is in accordance with [32) Conjecture 1.4], which gives an explicit prediction for
the modulus for the congruence obstruction.
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10. Notations

Table 1: Table of Notation used in Sections [2| through

A a familial Kleinian group in PSLy(K),
assumed from Section 3 onwards to be in PSLy(Z[v/—d])

A(q) elements of .A congruent to identity modulo ¢
8 0 — 2 16l <
By(n) TAAQ] A(q)] Z%eA/A (q) Ca (Faryo (L 41, Ly) — )
C a circle tangent to the real line
C the extended complex plane

/
() >0 ()
o hausdorff dimension of limit set of .4
A discriminant of K
e(n) 0ifn=1 (mod 4) and 1 if n =3 (mod 4)
0, 2% (i.e., the shift of the shifted form)
6(:17) e2m‘a:
eq() '
€ small positive number
n small positive number depending on M, A, and C
En(n) minor arcs (error term) defined in
EY(n) modification of error term defined in
f<y f=0(9)
f=xg f<gand g« f
T, 81 growing region in A defined in
/f\MW(a, c) shifted binary form v/—A |Cyra + DMﬂ,c|2 + 23(Chriy Dty
F\,F, Fy defined in (6.18) and (6.21)
vy element of A
h (07, 0.)
I Sacon Do ’“/;*f/jf (1= T(0)RE (0)[2d6
I > Qua<x Z v o 11— () RE (6) *de
I, Sxcaer 2 o W 10— S(0)RS, () 2o

l ~ 2

Iq > ] 1{%7 )RJUV (5+6 )‘ 4P
T+(B: ¢, u, €,C) S22 (@) (y)e (va (Xa, Xy) f — qpo — ,ﬁy) (qu) drdy
R imaginary part
J T?X, depth of approximation; see
K Q(v~d)
K(+) curvature of circle -
K the set of curvatures in integral packing
Ka {neZ | VqeZ3k € K,such that n = k(mod q)}
Ka(N) Ko N[0, N]
Ky small power of N given in , depending on spectral gap
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L

Lo

M (B, X, u,s,t)
M

My (n)

M5 (n)

M(n)

N

Ok

P, pi

&(n)
S(Q7A7BachaE)
S’y(Qa u,r, 57 C)
S(q,u,7,6,¢,7,¢,¢)

T
T,T5

-~

—~
_ 8
= ~—
~

MRS SO N

Loem
\—/:H—“

the level of the congruence subgroup of PSLa(Z) contained in A

positive integer such that IC, is union of some congruence classes mod Lg

ez ¥ (B500)  (B2) e (fars (Luw + we”, Luy) B — sz — ty)
Moebius transformation in PSLa(K)

major arcs (main term) defined in

modification of main term defined in

RS es VAR (ary (L + 1, Ly) — n))

a growing parameter; see Section

ring of integers in K

prime numbers

p|n and p’* fn

smooth function supported on [1,2], with ¢ > 0 and [ ¢(z)dz =1

product of bad primes

positive integer

small power of N given in , depending on spectral gap
the extended real line, manifest as the horizontal axis in C
real part

representation number of n in packing defined in
modification of R (n) defined in

et 1) g Run (5 + B)
rational number of small denominator

sum over all 0 < r < g where (r,q) =1
1
ZngO TEA@] 2=r0eA/Alg) Ca (Fare (Lx + 1, Ly) —n)
Zq:l Bq(n)
> zy(a) e(Az? + By + Cy? + Dz + Ey)
5D n0wo(e) a (Tasy (Luzo + uw®, Luyo) + 2o + yo¢)
/
Z r(q) S’y(qv u,r, 57 C)S’V/(Q7 u, T, 5/7 C/)
N1/200. gee Section |4
growing parameters used to define §r in 1'
max{0,1 — |z|}, a hat function used in definition of major arcs
spike function in 1' used to define major arcs
1
)] 2roed/Alq) Hinye (Lo +1, Ly) = r}
number in [0, 1]
max of ©1,05 in Lemma and Lemma in context of A
small power of IV; see Section
positive number less than U
integer such that uu* = 1(L)
N99/200. gee Section
cardinality of finite set -
characteristic function
Frobenius norm

ng('v')
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