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Abstract—A key value proposition for incorporation of
Artificial Intelligence (AI) and Machine Learning (ML) methods
into aviation is that they offer means of understanding data in
ways that allow hitherto unprecedented insights for decision
making, whether by a human or a machine. When these
techniques are applied to cyber-physical systems, such as
unmanned aircraft systems (UAS), they can result in positive
societal impacts (e.g., search and rescue). However, the
advantages of such techniques must be balanced against
appropriate safety and security requirements so that taken
together the system can ensure an acceptable level of confidence
and assurance in both civilian and military applications. To this
end, there is a need for the capability to suitably characterize such
techniques and assess how they can be integrated into a viable
assurance framework that can maximize safety and security
benefits while bounding the inherent risk of non-determinism
arising from such these approaches.

This paper focuses on assurance and behavior bounds for
decision making systems from a) algorithmic functional
performance; b) schedulability analysis and candidate scheduling
paradigms; and c¢) processor architectures (including multi-core)
to support minimized interference in general. We will place
particular emphasis on machine learning approaches for control,
navigation and guidance applications for unmanned systems. This
paper will review available and emerging approaches (e.g., formal
methods, modeling and simulation, real-time monitors/agents
among others) to ensuring behavior assurance for unmanned
systems engaged in missions of moderate-to-high complexity. The
intent is to examine behavior assurance for advanced autonomous
operations within a holistic life-cycle process

Keywords—UAS behavior assurance, certification, avionics,
AI/ML, algorithms, bounded behavior, guidance navigation and
control.

L INTRODUCTION

Data centric computing paradigms and approaches form the
foundation of what is loosely regarded as the second coming of
Al in recent years. [1-3] The significant upsurge of private and
government investment in the area of Al is reminiscent of a
similar trend in internet and telecom a decade or so back.
Commercial applications range from driverless cars[4], aerial
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drones for package delivery[5], to undersea exploration[6], as
well as surveillance and monitoring systems.

AI/ML techniques seem to offer the potential of key
innovations in decision making [7-8], whether by a human or a
machine. For cyber-physical systems, such as unmanned
aircraft systems (UAS), AI/ML approaches offer the promise of
capabilities and performance well beyond current state-of-
practice. The convergence of processor architectures [10] and
communications networks (5G) [11] coupled with the concepts
of cloud and edge intelligence seem to be aligning with the
specific needs of AI based applications. For the safety
conscious aerospace industry, the AI/ML technologies need to
be complimented by a strong assurance framework that can un-
equivocally establish credibility and confidence in UAS that
utilize them.

However, the potential upside of Al-based UAS must be
balanced against appropriate safety and security requirements,
so that taken together the system can ensure an acceptable level
of confidence and assurance in both civilian and military
applications. As with any major technological advance the
underlying regulatory and certification processes lag behind
and much work needs to be done in order to find the right
balance of regulatory constraint and design freedom to innovate
and operate. In particular, civilian airspace authorities are
already burdened with aging infrastructure and overloaded air
traffic management capacity in dealing with manned
commercial aircraft. The introduction of un-manned aircraft
into the mix creates additional challenges from both a capacity
and regulatory standpoint. In particular, given the absence of
any substantial prior work in the area of assuring UAS with
advanced decision-making algorithms, the challenge is to
develop new approaches to ensuring their safety within an
integrated airspace. To this end, there is a need to adequately
characterize Al-based techniques and assess how they can be
integrated into a viable assurance framework that can maximize
safety [12-14] and security benefits while bounding the inherent
risk of non-determinism arising from such these approaches.



Figure 1: Example of State-of-Art autonomous aircraft with
advanced avionics (Northrop Grumman X-47D)

A. AI/ML applications in UAS Avionics

Given the relatively nascent state of UAS avionics development
and applicable mission capabilities, the target areas for initial
insertion of AI/ML technologies are not well-defined. Although
there a few instances of advanced autonomous systems
incorporating this type of technology (Figure 1), most of the
currently flying UAS are capable of only very simple missions.
Nevertheless, based on the current successes of AI/ML in other
domains the following key drivers applicable to UAS can be
identified as:

Perception and modeling

a) Ability to extract perception information from large
quantity of data

b) Ability to discern patterns and develop model structures

Open-ended problem solving

a) Reasoning under uncertainty

b) Decision making when conditions are “new”

¢) Optimization under very large number of variables with
unknown relationships

Potential to learn/discover new mechanisms

a) Ability to adapt to new situations

b) Ability to generate new approaches

These AI/ML capabilities can be quite relevant to developing
advanced mission capabilities and ensuring a higher degree of
resilience built-in to these UAS. Some immediate applications
areas of these capabilities within a UAS framework are
discussed here.

Mission Planning: Given that most available UAS have very
simple planning capability which are either static or quite rigid
in dealing with dynamic operational state changes, the use of
Bayesian logic or statistical or stochastic approaches could be
very useful in providing a significant advancement of planning
capability. It is likely that these techniques will be applied
initially to the path planning and route generation (guidance)
problem for UAS.[15]

Obstacle Avoidance: A fundamental concern for safety for all
UAS is the ability to sense and avoid obstacles while in flight
and on the ground. AI/ML techniques are very well suited for
enhancing extant obstacle avoidance algorithms in providing an
un-precedented level of perception and awareness through
learning-enabled components. [16,17]

Navigation and Control: Conventional control methods do not
adapt well to changing operating conditions, therefore the use
of adaptive and situation aware AI/ML approaches to high level
navigation and control will significantly enhance the robustness
of the UAS. [18,19]

Self-organization and Control: Effective command and
control across a large aggregation of unmanned assets is a
difficult problem. This challenge becomes many orders of
magnitude more challenging when swarms are involved.
AI/ML methods that can provide control of swarms through
emergent behavior can be critical for such applications. [20,21]

B. Novel Approaches for Vehicle Navigation, Guidance, and
Control

Focusing on a limited subset of ML/AI avionics applications
described earlier, consider the safety critical task of flight
guidance, navigation and control at the mission management
level. Any algorithm that provides guidance (i.e a route or path)
and/or navigation plan (“turn right at the next waypoint”)
and/or flight control inputs to a UAS vehicle management
system is subject to the “flight/safety critical” certification
criterion from a functional and temporal assurance standpoint.
Examining two specific examples of emerging approaches for
guidance, navigation and control (GNC) that utilize AI/ML
approaches serve to better highlight the challenges ahead.

Backward Reachability Sets and Learning Safety: Work at
UC Berkeley by Claire Tomlin and others [22,23], has focused
on using machine learning methods to characterize and learn
the implicit rules of safe operation for unmanned rotorcraft
through the evolution of flight control (vertical descent)
algorithms in online (in real-time) mode. The approach
computes backward reachability sets to identify feasible paths
that meet current “safety” characterization and metrics. On one
hand this class of approaches take on the “safety-verifiability”
problem head-on by building-in safety into the algorithms.
However, this approach implies that the underlying flight-
control laws are in a state-of-flux and are unknown a" priori!
Current approaches to certification cannot handle this type of
uncertainty and dynamic behavior.

Information theoretic Model Predictive Control (MPC):
Theodorou et. al. at Georgia Tech [24,25] have developed
information theoretic methods using MPC algorithms capable
nonlinear optimization which is used to incorporate multi-layer
artificial neural networks (ANN) as dynamics models. The
MPC algorithms are used to solve model-based reinforcement
learning tasks. This combination of MPC and ANN can be used
in UAS to provide GNC implementation wherein there is no



overt control law to characterize. Again this poses a significant
challenge to any conventional approach to certification under
the safety critical provisions for UAS.

C. Assurance Characteristics of Advanced Mission
Management Algorithms

As has been implied in earlier sections, a potential obstacle to
largescale utilization of advanced algorithms based on data-
centric approaches, is the challenge in establishing assurance
arguments for this class of algorithms [26,27]. Although current
certification procedures are not equipped to handle non-
deterministic approaches, bounded behavior methods [28] offer
feasible alternatives to managing both state-space explosion
and the inherent uncertainty associated with data-centric
methods in general and AI/ML techniques in particular.
Characterizing data-centric methods is often a key challenge in
developing behavior bounds as an initial step of Bounded
Behavior Assurance (BBA) methodology [CITEXXX]. Some
classes of AI/ML methods face additional challenges based on
the specific mechanizations utilized in their implementation. A
few examples of these challenges broken out by algorithm types
are identified below.

Statistical and Stochastic Data-driven Methods: A large
class of AI/ML algorithms are focused on feature classification
and pattern-matching and many use some form of Bayesian
estimators, Markov chains or Kalman filters to perform these
functions. These techniques present challenges in establishing
useful bounds (performance guarantees, convergence, a’ priori
error estimation) for use in BBA.

Neural Network Computing: Both conventional (ANN) and
deep (DNN) neural networks provide unprecedented
capabilities for a wide range of optimization and decision-
making applications. However, almost without exception the
quality of the resultant product is predicated heavily on the
availability and integrity of training data sets and their
sensitivity to design parameters, as well as the dependency of
the performance to the implementation topology, provide
significant obstacles to establishing a BBA based assurance
profile for such approaches.

D. Implications for Cyber-Physical Assurance

Al workloads have different characteristics than do traditional
algorithmic workloads: computationally intensive, may require
accelerators, non-negligible latency. Autonomous Al
workloads may be both sporadic and safety-critical. Traditional
real-time workload models emphasize periodic execution with
execution times within small variances. Understanding the
environment may require reacting to changes to the
environment, introducing sporadic computation. Acceleration
and heterogeneous computation move scheduling and
allocation from the traditional real-time systems model of tasks
on closely-coupled processors to a loosely-coupled
heterogeneous multiprocessor as in hardware/software co-
design.

II. CERTIFICATION CHALLENGES FOR AI/ML BASED UAS

Enabling increased levels of autonomy for UAS through AI/ML
has vast potential to benefit both safety and efficiency. The
2016 AIAA Intelligent Systems Technical Committee
Roadmap for Intelligent Systems in Aerospace [29] concluded
that incorporating adaptive features, such as those made
possible by AI/ML can,

“. .. improve efficiency, enhance
performance and safety, better manage
system uncertainty, as well as learn and
optimize both short-term and long-term

system behaviors.”

However, incorporation of AI/ML into UAS and aviation as a
whole faces significant airworthiness certification challenges.
While some of these challenges are not necessarily unique to
UAS, the absence of a human pilot onboard the aircraft to
provide the situation awareness, detect-and-avoid, and
contingency management necessary to ensure safety of airspace
users and people on the ground means that the software must
implement all pilot-in-command intended functions necessary
to ensure safety. The primary standard used for evaluating
software aspects of safety and airworthiness for civilian aircraft
is RTCA DO-178C, “Software Considerations in Airborne
Systems and Equipment Certification”.[30] Military
airworthiness authorities sometimes use different standards for
assuring software, but many of the objectives and activities are
the same. While existing standards have proven effective for
assuring software in today’s airborne systems, there is some
question as to whether they are scalable for AI/ML. Given the
ability of AI/ML to “learn”, the repeatability of test results — a
key cornerstone of certification — becomes a challenge. Lacher
et al. [31] observed that “Traditional mechanisms for
exhaustive testing will not work for a system that may make
different decisions given the same input with all of them
potentially correct.” Furthermore, a 2019 Forum for
Aeronautical Software (FAS) report [32] notes several
challenges with applying DO-178C to AI/ML:

1) Writing requirements for the software in a manner that
include safety and security considerations for the intended
function(s) (e.g., decomposing contingency management
into testable, specific intended functions)

2) Understanding the role of the data inputs to the AI/ML in
performance of the intended function(s) (e.g.,
accommodating unanticipated inputs into the software
algorithms)

3) Understanding what the software actually contributes to
the intended function relative to the data from which it is
“learning” (e.g., is the code testable under all aircraft
forseeable conditions)

4) Showing that the AI/ML implementation will return
solutions within accepted bounds with an acceptable level
of confidence (e.g., showing that AI/ML solutions will
not be unsafe).



A. Technology challenges with current certification
processes particularly relevant to UAS

Increasingly in aviation, and particularly in the small UAS
industry, important factors in keeping software-related costs
manageable involves the use of software re-use, open source
code, and commercial-off-the-shelf components (some of
which may contain embedded software). The small UAS
industry has even embraced some open-source real-time
operating systems — traditionally these operating systems are
pedigreed to the highest level of software assurance. The FAS
report [32] concluded that supplemental guidance is needed to
“... help the applicant better assess the effort to use/integrate
Open Source/COTS software life cycle data in the final
product.” Implementing AI/ML solutions with components that
are not assured with traditional methods calls into question
aircraft airworthiness and the safety level of UAS operating in
non-segregated airspace.

B. Policy and standards challenges

In addition to these certification challenges, there are key policy
hurdles to integrating AI/ML onto UAS. Our current airspace
regulatory system was written at a time when it was assumed
that a human pilot-in-command was onboard the aircraft. For
example, the U.S. Code of Federal Regulations [33] states:

$ 91.3 Responsibility and authority of the pilot in command.

a) The pilot in command of an aircraft is directly responsible
for, and is the final authority as to, the operation of that
aircraft.

b) In an in-flight emergency requiring immediate action, the
pilot in command may deviate from any rule of this part to
the extent required to meet that emergency.

¢) Each pilot in command who deviates from a rule under
paragraph (b) of this section shall, upon the request of the
Administrator, send a written report of that deviation to the
Administrator.

For a UAS implementing AI/ML to achieve functions normally
reserved for a human pilot-in-command, it raises the question
as to how this regulation applies to the AI/ML. If the human
pilot-in-command is not onboard the aircraft and unable to
intervene in the real-time decision making of the AI/ML, is the
human still the “final authority”? Does the AI/ML have the
authority to “deviate from any rule of this part to the extent
required”? Further considerations of pilot training, liability in
the event of mishap, and interaction with air traffic control will
also have to be adjudicated.

Another potential barrier to the implementation of AI/ML
surrounds the question of risk perception from the public. A
2018 study on public perception of autonomy [34] found “...an
overwhelming response of uncomfortable feelings toward
autonomy in aircraft...” among those surveyed. Despite
evidence that automation has improved safety in aviation over
the last several decades, many people remain skeptical of the
introduction of autonomy into aviation. Since policy-makers

and regulators must answer to the public, promoting trust in
autonomy is a key aspect to the introduction of AI/ML.

C. Moving beyond conventional certification methods for
UAS integrated into civillian airspace

For the aerospace industry to move forward with the
introduction of AI/ML into UAS, several enablers are
recommended. First of all, the recent FAA transition to
performance-based standards should be expanded and applied
to UAS in general and in particular to AI/ML. The FAA stated
in the Notice of Proposed Amendment to Part 23 [35],
“Incorporating the use of consensus standards as a means of
compliance with performance-based regulations would provide
the FAA with the agility to more rapidly accept new technology
as it develops, leverage industry experience and expectations to
develop of new means of compliance documents, and
encourage the use of harmonized means of compliance....”
One such consensus standard is ASTM F3269, “Standard
Practice for Methods to Safely Bound Flight Behavior of
Unmanned Aircraft Systems Containing Complex Functions”
which provides for the use of a pedigreed run-time assurance
(RTA) architecture to bound the behavior of an untrusted
complex function (i.e., one enabled by AI/ML). [35] Figure 2
shows the F3269 generic RTA architecture which bounds the
behavior of the complex function using a pedigreed safety
monitor and pedigreed recovery control functions. This is one
example of an implementation of bounded behavior assurance
for UAS containing AI/ML.
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Figure 2. ASTM F3269 Generic Run-Time Assurance
Architecture (from [36]).

Another key enabling activity for incorporation of AI/ML into
UAS is to encourage policy-makers and regulators to build
public trust in UAS containing AI/ML. The 2016 Defense
Science Board Summer Study on Autonomy stated,
“Establishing trustworthiness at design time and providing
adequate capabilities so that inevitable variations in operational
trustworthiness can be assessed and dealt with at run time is
essential, not only for operators and commanders, but also for
designers, testers, policymakers, lawmakers, and the American
public.” [36] Research into methods to assure AI/ML in the
design are ongoing and should continue. A 2019 ASTM



Technical Report [37] recommends tailoring the airworthiness
requirements and means of compliance for autonomy by taking
into account the role of the automation, the complexity of the
automation, and the net risk of incorporating automation into
the aircraft design versus having the human pilot perform the
function. Operational trustworthiness can be gained through a
“crawl, walk, run” approach where UAS are first permitted in
low-risk operational areas and then expanded outside of these
safety corridors, moving into more integrated airspace as trust
is built. Itis important that the risk perception from all aviation
stakeholders — manufacturers, pilots, air traffic controllers,
regulators, etc. — be consulted and included as operations
expand.

Finally, policies and regulations should take into account the
benefits of UAS with AI/ML and not only focus on the risks. A
2018 National Academy of Sciences report [38] recommended,
“UAS operations should be allowed if they decrease safety risks
in society — even if they introduce new aviation safety risks —
as long as they result in a net reduction in total safety risk.” By
using a bounded behavior framework approach to integrating
AI/ML into UAS, it is feasible to realize the benefits of this new
technology for aviation, provide a path to airworthiness
certification, build trust with policy-makers, regulators, and the
public, and increase overall safety to the public.

III.  THE BOUNDED BEHAVIOR ASSURANCE (BBA)
METHODOLOGY

The Bounded Behavior Assurance (BBA) approach [28] to
assuring safety of autonomous systems is centered upon being
able to specify bounds on the functional and timing run-time
aspects of system prior to run-time, such that safety is assured
so long as the state remains within these bounds. During run-
time, decisions are taken to optimize mission-effectiveness
while simultaneously monitoring system state [39] to determine
if behavior is approaching the boundaries of safety. If this
happens, mission-effectiveness ceases to become the primary
objective; instead corrective action is taken to ensure that
system state remains within the acceptable bounds. Hence the
BBA approach does not seek the eliminate the inherent non-
determinism and unpredictability of run-time behavior in
AI/ML-based autonomous systems; instead, it uses the
mechanism of run-time monitoring (and corrective action, if
needed) in order to bound the degree of such unpredictability.

It is becoming increasingly clear that safety assurance in
autonomous systems cannot realistically be looked upon as a
single-step process that is completed after system development
and prior to deployment; instead, a lifelong approach is required
that must be initiated at the very beginning of the design process
and continue through the lifetime of the system. The BBA
approach to safety assurance requires that acceptable safe
system states be identified and formally specified[40]. Doing so
becomes a serious challenge as the functional requirements
placed upon autonomous systems repeatedly evolve during the
life-time of the system: novel use-case scenarios that were
unanticipated at design time and initial deployment are

frequently envisioned and proposed, and added on to the
mission-capability requirements for the autonomous systems.
The open-ended nature of many planned operational scenarios
for autonomous systems inevitably means that these systems
will confront completely unanticipated scenarios — “unknown
unknowns”: what kinds of assurance requirements could be
placed upon system behavior in such unanticipated scenarios?

Although the BBA approach to safety assurance offers a
promising alternative to conventional testing-based approaches
(which appear to not generalize easily to complex autonomous
systems that incorporate learning), it does require a rigorous
cross-layer approach to system specification and analysis that
incorporates integrated consideration of functional and timing
behavioral issues at the levels of hardware, the real-time
operating system (RTOS), scheduler and associated resource-
allocation mechanisms, and the application layer. These and
related open issues must be thoroughly investigated before the
BBA approach can be fully implemented as a means of assuring
safety for complex autonomous systems.

A. Functional Assurance

AI/ML based algorithms have numerous different roles in
autonomous systems [41]. In perception, they are responsible
for reading in input from physical sensors such as cameras and
determining what that input represents. (“Smart” cameras, such
as the ones used in driver-assist features in cars for identifying
pedestrians, are an example of this use of AI/ML in an
autonomous system.) For such use in perception, it is often the
case that exact formal specifications are simply not available:
there is no formal machine-checkable specification for the field
of pixels that distinguish a pedestrian from, e.g., a color
photograph of a human being. Hence it appears that assurance
cases for AI/ML-based perception systems must be based on
extensive testing, and assurance arguments explaining why the
training data used to train the system should be considered
adequate. The development of a framework for such assurance
cases is one of the major open issues that need to be addressed.
In addition to perception, AI/ML based algorithms may play an
important role in reflection: incorporating input from
perceptors, other sensors, and prior knowledge in order to
develop an internal understanding of the environment within
the system is operating. Here again, there are major challenges
that must be addressed in order to be able to apply the BBA
approach for assuring system safety. How do bounds on the
uncertainties in perception from multiple different sources
compose with each other, along with bounds on the
uncertainties in prior knowledge, to provide the safety envelope
within which run-time behavior is allowed to exist?

AI/ML based systems are also used for decision making by
autonomous systems. Additional challenges must be overcome
in order to render BBA applicable to such use of AI/ML; in
particular, formal methods are needed that allow for the
specification of behavior that incorporates bounds on
acceptable system state, and techniques must be developed that
allow for mapping bounded-behavior models of the external
environment (conditions; threats; etc.) onto these bounded-



behavior models of the output produced by the AI/ML based
decision-making component.

B.  Temporal Assurance

Requirement specifications for unmanned aircraft systems have
a temporal component in additional to a functional one:
specified functional outputs are required to be computed within
specified latencies. Establishing beforehand that such temporal
specifications will always be met during all executions of the
system is already challenging for current (non-autonomous)
systems due to the high degree of timing unpredictability
inherent in modern commercial off-the-shelf (COTYS)
components that comprise the computing platforms in modern
aircraft; these challenges are further exacerbated when the
required functions are computed using AI/ML based
algorithms for which the functional outputs are also
unpredictable. Novel scheduling and schedulability-analysis
approaches are being explored for enabling the application of
the BBA approach for assuring timing correctness in
autonomous systems using AI/ML based algorithms. Some
such approaches break down a functional computation for
which an end-to-end delay bound must be assured as a multi-
stage computation in which a sequence of functional blocks
must complete execution within a specified duration. During
run-time both the duration of execution of a stage, and and some
estimate of the quality of the functional output produced by that
stage, are monitored at the end of each stage. These monitored
values guide the choice of implementation for the following
functional blocks: if the duration that has elapsed during some
particular stage is larger than expected then a simpler
implementation choice that has a smaller expected execution
duration must be selected for the following stages in order to
ensure timing safety. Conversely if some stage completes
execution sooner than expected then a more sophisticated
computation-intensive AI/ML based implementation can be
selected for the following stage, which allows for improved
performance of the mission of the autonomous system without
compromising safety. A priori characterization of the expected
execution duration of each implementation, and of the value
returned by it, may be deterministic or stochastic; if the latter,
then probabilistic schedulability analysis techniques are used.

C. Processor Architecture Considerations — Interference/
Isolation

Embedded computing and cyber-physical systems must satisfy
not only functional requirements but also timing, power, and
thermal behavior. Functional requirements describe
input/output behavior. Timing behavior is often in the form of
latency from input to output. Power consumption for a given
computation is limited both by the capacity of the associated
power supply. Exceeding certain temperatures governed by
device physics will result in physical damage to the processor;
thermal behavior can serve as an indirect limit on power
consumption. All of these non-functional requirements require
complex analysis for modern processors [42]. Processor
microarchitectures, caches, and memory systems all contribute

complexity to the modeling of timing/power/thermal behavior.
In most cases for modern processors, we can only estimate
these properties within certain bounds. The characteristics of
software also add to the complexity of non-functional analysis.
Complex execution paths, data dependencies, data and code
placement in the cache, and other factors all make estimation of
software characteristics difficult.

Many system-on-chip applications exhibit non-uniform
workloads that can cause variations in computational load,
power consumption, and thermal load. These variations can
occur over both time and space. Temporal variations may
result in metaphorical hot spots of heavy computation on
processing elements or communication load for the network-
on-chip. Spatial variations may result in literal hotspots with
elevated temperatures on some parts of the chip. Embedded
computer vision is an example application with non-uniform
workloads. Xu ef al. [43] measured the workload created by a
real-time gesture recognition system and developed a design
methodology for application-specific, non-regular networks-
on-chips tailored to a given traffic pattern.

Digital neural networks (DNNs) can be optimized to reduce
computational, memory bandwidth, and power requirements.
Networks can be optimized using several methods. Reduced-
precision arithmetic can result in smaller bit widths for values
and smaller arithmetic units. Zhuang et al. [44] progressively
decreased bit width during training; they also used a full-
precision model in parallel to guide training of the limited-
precision model. Another approach is creating sparse
coefficient networks that reduce memory bandwidth thanks to
zero coefficients that do not need to be fetched. Guo ef al. [45]
compressed DNNs using structured sparsity learning. Li et al.
[46] applied structured sparsity learning as a co-design
methodology.

Several CPU attacks have recently been identified that
compromise supposedly protected data during execution. The
Meltdown vulnerability [47], discovered in 2017 and
announced in 2018, exploits a race condition and a cache side-
channel attack to avoid checks that are meant to enforce
isolation between processes. Spectre [48], also discovered in
2017 and announced in 2018, exploits effects of speculative
execution due to branch misprediction. The Microarchitectural
Data Sampling (MDS) attack [49], announced in 2019, refers to
a set of techniques related to side channel effects from
speculative execution. We can identify several threat models
for the disclosure of data from the computing platform:

e Data may be directly observed using circuits attached to
the computing platform. An attacker with physical access
to the system may be able to attach monitoring devices.

e Side channel attacks may observe data using
electromagnetic radiation, power measurements, or other
physical mechanisms.

Several threat models for software stack target both functional
[50] and non-functional behavior:



e Trojan horses or tampering with software installation can
introduce malicious code that can both observe and modify
behavior.

e Timing attacks change the timing behavior of the system
without necessarily modifying values. A missed deadline
can have serious effects.

e Replay attacks [51, 52] send previously recorded data to
other parts of the system to hide their changes to the
activity of signals. Replay attacks were used in the Stuxnet
attack to hide software attacks that damaged equipment.

IV. CONCLUSIONS AND RECOMMENDATIONS

Incorporation of AI/ML into UAS and aviation at large offers
potential benefits to performance, cost, and safety. However,
there are immediate challenges that accompany the use of
AI/ML methods and hurdles that may prevent the realization of
the promise of these technologies for UAS applications. We
examined promising AI/ML approaches that have near term
relevance for UAS avionics in general and focused on guidance,
navigation and control applications. We summarize some of the
key considerations for advanced approaches to mission
management algorithms for UAS. We have highlighted some
of the fundamental assurance challenges inherent in these
approaches for safety critical applications. We then illustrated
specific challenges in current certification approaches and
associated regulation and policy governing UAS in civilian
airspace while noting the changing direction of regulatory
authorities in response to these challenges.

We also presented an overview of an assurance approach
(BBA) that can be used to develop assurance framework for
UAS using advanced technologies such as AI/ML algorithms
Using BBA or similar approaches still requires significant
advances in maturing and characterizing these algorithms vis-
a-vis safety and security. We proceed to identify some of these
obstacles from both functional and temporal assurance
perspectives.

We conclude this review by examining the underlying security
and safety implications for processor hardware architectures
that are likely to be used to drive the computational loads
associated with AI/ML methods. We find that a BBA approach
toward incorporating AI/ML into UAS has the potential to
accelerate the integration of these technologies into the aircraft.
Furthermore, we find that a BBA approach has benefits with
regard to moving UAS from lower risk segregated operations
to more operationally relevant parts of the airspace. We
recommend that developers, regulators, policymakers, and
researchers evaluate the BBA approaches and use them to the
maximum extent to realize the promise of artificial intelligence
and machine learning in UAS.
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