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Abstract—A key value proposition for incorporation of 
Artificial Intelligence (AI) and Machine Learning (ML) methods 
into aviation is that they offer means of understanding data in 
ways that allow hitherto unprecedented insights for decision 
making, whether by a human or a machine. When these 
techniques are applied to cyber-physical systems, such as 
unmanned aircraft systems (UAS), they can result in positive 
societal impacts (e.g., search and rescue).  However, the 
advantages of such techniques must be balanced against 
appropriate safety and security requirements so that taken 
together the system can ensure an acceptable level of confidence 
and assurance in both civilian and military applications. To this 
end, there is a need for the capability to suitably characterize such 
techniques and assess how they can be integrated into a viable 
assurance framework that can maximize safety and security 
benefits while bounding the inherent risk of non-determinism 
arising from such these approaches. 

This paper focuses on assurance and behavior bounds for 
decision making systems from a) algorithmic functional 
performance; b) schedulability analysis and candidate scheduling 
paradigms; and c) processor architectures (including multi-core) 
to support minimized interference in general.  We will place 
particular emphasis on machine learning approaches for control, 
navigation and guidance applications for unmanned systems. This 
paper will review available and emerging approaches (e.g., formal 
methods, modeling and simulation, real-time monitors/agents 
among others) to ensuring behavior assurance for unmanned 
systems engaged in missions of moderate-to-high complexity. The 
intent is to examine behavior assurance for advanced autonomous 
operations within a holistic life-cycle process 

Keywords—UAS behavior assurance, certification, avionics, 
AI/ML, algorithms, bounded behavior, guidance navigation and 
control. 

I. INTRODUCTION  

Data centric computing paradigms and approaches form the 
foundation of what is loosely regarded as the second coming of 
AI in recent years. [1-3] The significant upsurge of private and 
government investment in the area of AI is reminiscent of a 
similar trend in internet and telecom a decade or so back. 
Commercial applications range from driverless cars[4], aerial 

drones for package delivery[5], to undersea exploration[6], as 
well as surveillance and monitoring systems.  
AI/ML techniques seem to offer the potential of key 
innovations in decision making [7-8], whether by a human or a 
machine. For cyber-physical systems, such as unmanned 
aircraft systems (UAS), AI/ML approaches offer the promise of 
capabilities and performance well beyond current state-of-
practice. The convergence of processor architectures [10] and 
communications networks (5G) [11] coupled with the concepts 
of cloud and edge intelligence seem to be aligning with the 
specific needs of AI based applications. For the safety 
conscious aerospace industry, the AI/ML technologies need to 
be complimented by a strong assurance framework that can un-
equivocally establish credibility and confidence in UAS that 
utilize them. 
 
However, the potential upside of AI-based UAS must be 
balanced against appropriate safety and security requirements, 
so that taken together the system can ensure an acceptable level 
of confidence and assurance in both civilian and military 
applications. As with any major technological advance the 
underlying regulatory and certification processes lag behind 
and much work needs to be done in order to find the right 
balance of regulatory constraint and design freedom to innovate 
and operate. In particular, civilian airspace authorities are 
already burdened with aging infrastructure and overloaded air 
traffic management capacity in dealing with manned 
commercial aircraft. The introduction of un-manned aircraft 
into the mix creates additional challenges from both a capacity 
and regulatory standpoint. In particular, given the absence of 
any substantial prior work in the area of assuring UAS with 
advanced decision-making algorithms, the challenge is to 
develop new approaches to ensuring their safety within an 
integrated airspace. To this end, there is a need to adequately 
characterize AI-based techniques and assess how they can be 
integrated into a viable assurance framework that can maximize 
safety [12-14] and security benefits while bounding the inherent 
risk of non-determinism arising from such these approaches. 



A. AI/ML applications in UAS Avionics 

Given the relatively nascent state of UAS avionics development 
and applicable mission capabilities, the target areas for initial 
insertion of AI/ML technologies are not well-defined. Although 
there a few instances of advanced autonomous systems 
incorporating this type of technology (Figure 1), most of the 
currently flying UAS are capable of only very simple missions. 
Nevertheless, based on the current successes of AI/ML in other 
domains the following key drivers applicable to UAS can be 
identified as: 
 
Perception and modeling 
a) Ability to extract perception information from large 

quantity of data 
b) Ability to discern patterns and develop model structures 
Open-ended problem solving 
a) Reasoning under uncertainty 
b) Decision making when conditions are “new” 
c) Optimization under very large number of variables with 

unknown relationships 
Potential to learn/discover new mechanisms 
a) Ability to adapt to new situations 
b) Ability to generate new approaches  
 
These AI/ML capabilities can be quite relevant to developing 
advanced mission capabilities and ensuring a higher degree of 
resilience built-in to these UAS. Some immediate applications 
areas of these capabilities within a UAS framework are 
discussed here. 
 
Mission Planning: Given that most available UAS have very 
simple planning capability which are either static or quite rigid 
in dealing with dynamic operational state changes, the use of 
Bayesian logic or statistical or stochastic approaches could be 
very useful in providing a significant advancement of planning 
capability. It is likely that these techniques will be applied 
initially to the path planning and route generation (guidance) 
problem for UAS.[15] 
 

Obstacle Avoidance: A fundamental concern for safety for all 
UAS is the ability to sense and avoid obstacles while in flight 
and on the ground. AI/ML techniques are very well suited for 
enhancing extant obstacle avoidance algorithms in providing an 
un-precedented level of perception and awareness through 
learning-enabled components. [16,17] 
 
Navigation and Control: Conventional control methods do not 
adapt well to changing operating conditions, therefore the use 
of adaptive and situation aware AI/ML approaches to high level 
navigation and control will significantly enhance the robustness 
of the UAS. [18,19] 
 
Self-organization and Control:  Effective command and 
control across a large aggregation of unmanned assets is a 
difficult problem. This challenge becomes many orders of 
magnitude more challenging when swarms are involved. 
AI/ML methods that can provide control of swarms through 
emergent behavior can be critical for such applications. [20,21] 
 

B. Novel Approaches for Vehicle Navigation, Guidance, and 
Control 

Focusing on a limited subset of ML/AI avionics applications 
described earlier, consider the safety critical task of flight 
guidance, navigation and control at the mission management 
level. Any algorithm that provides guidance (i.e a route or path) 
and/or navigation plan (“turn right at the next waypoint”) 
and/or flight control inputs to a UAS vehicle management 
system is subject to the “flight/safety critical” certification 
criterion from a functional and temporal assurance standpoint. 
Examining two specific examples of emerging approaches for 
guidance, navigation and control (GNC) that utilize AI/ML 
approaches serve to better highlight the challenges ahead.  
 
Backward Reachability Sets and Learning Safety: Work at 
UC Berkeley by Claire Tomlin and others [22,23], has focused 
on using machine learning methods to characterize and learn 
the implicit rules of safe operation for unmanned rotorcraft 
through the evolution of flight control (vertical descent) 
algorithms in online (in real-time) mode. The approach 
computes backward reachability sets to identify feasible paths 
that meet current “safety” characterization and metrics. On one 
hand this class of approaches take on the “safety-verifiability” 
problem head-on by building-in safety into the algorithms. 
However, this approach implies that the underlying flight-
control laws are in a state-of-flux and are unknown a` priori! 
Current approaches to certification cannot handle this type of 
uncertainty and dynamic behavior. 
 
Information theoretic Model Predictive Control (MPC): 
Theodorou et. al. at Georgia Tech [24,25] have developed 
information theoretic methods using MPC algorithms capable 
nonlinear optimization which is used to incorporate multi-layer 
artificial neural networks (ANN) as dynamics models. The 
MPC algorithms are used to solve model-based reinforcement 
learning tasks. This combination of MPC and ANN can be used 
in UAS to provide GNC implementation wherein there is no 

Figure 1: Example of State-of-Art autonomous aircraft with 
advanced avionics (Northrop Grumman X-47D) 



overt control law to characterize. Again this poses a significant 
challenge to any conventional approach to certification under 
the safety critical provisions for UAS. 
 

C. Assurance Characteristics of Advanced Mission 
Management Algorithms 

As has been implied in earlier sections, a potential obstacle to 
largescale utilization of advanced algorithms based on data-
centric approaches, is the challenge in establishing assurance 
arguments for this class of algorithms [26,27]. Although current 
certification procedures are not equipped to handle non-
deterministic approaches, bounded behavior methods [28] offer 
feasible alternatives to managing both state-space explosion 
and the inherent uncertainty associated with data-centric 
methods in general and AI/ML techniques in particular. 
Characterizing data-centric methods is often a key challenge in 
developing behavior bounds as an initial step of Bounded 
Behavior Assurance (BBA) methodology [CITEXXX]. Some 
classes of AI/ML methods face additional challenges based on 
the specific mechanizations utilized in their implementation. A 
few examples of these challenges broken out by algorithm types 
are identified below. 
 
Statistical and Stochastic Data-driven Methods: A large 
class of AI/ML algorithms are focused on feature classification 
and pattern-matching and many use some form of Bayesian 
estimators, Markov chains or Kalman filters to perform these 
functions. These techniques present challenges in establishing 
useful bounds (performance guarantees, convergence, a’ priori 
error estimation) for use in BBA.  
 
Neural Network Computing: Both conventional (ANN) and 
deep (DNN) neural networks provide unprecedented 
capabilities for a wide range of optimization and decision-
making applications. However, almost without exception the 
quality of the resultant product is predicated heavily on the 
availability and integrity of training data sets and their 
sensitivity to design parameters, as well as the dependency of 
the performance to the implementation topology, provide 
significant obstacles to establishing a BBA based assurance 
profile for such approaches. 
 
D. Implications for Cyber-Physical Assurance 
AI workloads have different characteristics than do traditional 
algorithmic workloads: computationally intensive, may require 
accelerators, non-negligible latency. Autonomous AI 
workloads may be both sporadic and safety-critical. Traditional 
real-time workload models emphasize periodic execution with 
execution times within small variances. Understanding the 
environment may require reacting to changes to the 
environment, introducing sporadic computation. Acceleration 
and heterogeneous computation move scheduling and 
allocation from the traditional real-time systems model of tasks 
on closely-coupled processors to a loosely-coupled 
heterogeneous multiprocessor as in hardware/software co-
design. 

 

II. CERTIFICATION CHALLENGES FOR AI/ML BASED UAS 

Enabling increased levels of autonomy for UAS through AI/ML 
has vast potential to benefit both safety and efficiency.  The 
2016 AIAA Intelligent Systems Technical Committee 
Roadmap for Intelligent Systems in Aerospace [29]  concluded 
that incorporating adaptive features, such as those made 
possible by AI/ML can, 

 “. . . improve efficiency, enhance 
performance and safety, better manage 
system uncertainty, as well as learn and 
optimize both short-term and long-term 

system behaviors.” 

 However, incorporation of AI/ML into UAS and aviation as a 
whole faces significant airworthiness certification challenges.   
While some of these challenges are not necessarily unique to 
UAS, the absence of a human pilot onboard the aircraft to 
provide the situation awareness, detect-and-avoid, and 
contingency management necessary to ensure safety of airspace 
users and people on the ground means that the software must 
implement all pilot-in-command intended functions necessary 
to ensure safety.  The primary standard used for evaluating 
software aspects of safety and airworthiness for civilian aircraft 
is RTCA DO-178C, “Software Considerations in Airborne 
Systems and Equipment Certification”.[30] Military 
airworthiness authorities sometimes use different standards for 
assuring software, but many of the objectives and activities are 
the same.  While existing standards have proven effective for 
assuring software in today’s airborne systems, there is some 
question as to whether they are scalable for AI/ML.  Given the 
ability of AI/ML to “learn”, the repeatability of test results – a 
key cornerstone of certification – becomes a challenge.  Lacher 
et al. [31] observed that “Traditional mechanisms for 
exhaustive testing will not work for a system that may make 
different decisions given the same input with all of them 
potentially correct.” Furthermore, a 2019 Forum for 
Aeronautical Software (FAS) report [32] notes several 
challenges with applying DO-178C to AI/ML: 
 
1) Writing requirements for the software in a manner that 

include safety and security considerations for the intended 
function(s) (e.g., decomposing contingency management 
into testable, specific intended functions) 

2) Understanding the role of the data inputs to the AI/ML in 
performance of the intended function(s) (e.g., 
accommodating unanticipated inputs into the software 
algorithms) 

3) Understanding what the software actually contributes to 
the intended function relative to the data from which it is 
“learning”  (e.g., is the code testable under all aircraft 
forseeable conditions) 

4) Showing that the AI/ML implementation will return 
solutions within accepted bounds with an acceptable level 
of confidence (e.g., showing that AI/ML solutions will 
not be unsafe). 



 
A. Technology challenges with current certification 

processes particularly relevant to UAS 

Increasingly in aviation, and particularly in the small UAS 
industry, important factors in keeping software-related costs 
manageable involves the use of software re-use, open source 
code, and commercial-off-the-shelf components (some of 
which may contain embedded software).  The small UAS 
industry has even embraced some open-source real-time 
operating systems – traditionally these operating systems are 
pedigreed to the highest level of software assurance.  The FAS 
report [32] concluded that supplemental guidance is needed to 
“… help the applicant better assess the effort to use/integrate 
Open Source/COTS software life cycle data in the final 
product.” Implementing AI/ML solutions with components that 
are not assured with traditional methods calls into question 
aircraft airworthiness and the safety level of UAS operating in 
non-segregated airspace. 
 
B. Policy and standards challenges 

In addition to these certification challenges, there are key policy 
hurdles to integrating AI/ML onto UAS.  Our current airspace 
regulatory system was written at a time when it was assumed 
that a human pilot-in-command was onboard the aircraft.  For 
example, the U.S. Code of Federal Regulations [33] states: 
 
§ 91.3 Responsibility and authority of the pilot in command. 
a) The pilot in command of an aircraft is directly responsible 

for, and is the final authority as to, the operation of that 
aircraft.  

b) In an in-flight emergency requiring immediate action, the 
pilot in command may deviate from any rule of this part to 
the extent required to meet that emergency.  

c) Each pilot in command who deviates from a rule under 
paragraph (b) of this section shall, upon the request of the 
Administrator, send a written report of that deviation to the 
Administrator. 

 
For a UAS implementing AI/ML to achieve functions normally 
reserved for a human pilot-in-command, it raises the question 
as to how this regulation applies to the AI/ML.  If the human 
pilot-in-command is not onboard the aircraft and unable to 
intervene in the real-time decision making of the AI/ML, is the 
human still the “final authority”?  Does the AI/ML have the 
authority to “deviate from any rule of this part to the extent 
required”?  Further considerations of pilot training, liability in 
the event of mishap, and interaction with air traffic control will 
also have to be adjudicated.    
Another potential barrier to the implementation of AI/ML 
surrounds the question of risk perception from the public.  A 
2018 study on public perception of autonomy [34] found “…an 
overwhelming response of uncomfortable feelings toward 
autonomy in aircraft…” among those surveyed. Despite 
evidence that automation has improved safety in aviation over 
the last several decades, many people remain skeptical of the 
introduction of autonomy into aviation.  Since policy-makers 

and regulators must answer to the public, promoting trust in 
autonomy is a key aspect to the introduction of AI/ML. 
 

C. Moving beyond conventional certification methods for 
UAS integrated into civillian airspace 

For the aerospace industry to move forward with the 
introduction of AI/ML into UAS, several enablers are 
recommended.  First of all, the recent FAA transition to 
performance-based standards should be expanded and applied 
to UAS in general and in particular to AI/ML.  The FAA stated 
in the Notice of Proposed Amendment to Part 23 [35], 
“Incorporating the use of consensus standards as a means of 
compliance with performance-based regulations would provide 
the FAA with the agility to more rapidly accept new technology 
as it develops, leverage industry experience and expectations to 
develop of new means of compliance documents, and 
encourage the use of harmonized means of compliance….”   
One such consensus standard is ASTM F3269, “Standard 
Practice for Methods to Safely Bound Flight Behavior of 
Unmanned Aircraft Systems Containing Complex Functions” 
which provides for the use of a pedigreed run-time assurance 
(RTA) architecture to bound the behavior of an untrusted 
complex function (i.e., one enabled by AI/ML). [35] Figure 2 
shows the F3269 generic RTA architecture which bounds the 
behavior of the complex function using a pedigreed safety 
monitor and pedigreed recovery control functions.  This is one 
example of an implementation of bounded behavior assurance 
for UAS containing AI/ML. 
 
 

 
Figure 2.  ASTM F3269 Generic Run-Time Assurance 

Architecture (from [36]). 
 
Another key enabling activity for incorporation of AI/ML into 
UAS is to encourage policy-makers and regulators to build 
public trust in UAS containing AI/ML.  The 2016 Defense 
Science Board Summer Study on Autonomy stated, 
“Establishing trustworthiness at design time and providing 
adequate capabilities so that inevitable variations in operational 
trustworthiness can be assessed and dealt with at run time is 
essential, not only for operators and commanders, but also for 
designers, testers, policymakers, lawmakers, and the American 
public.” [36] Research into methods to assure AI/ML in the 
design are ongoing and should continue.  A 2019 ASTM 



Technical Report [37] recommends tailoring the airworthiness 
requirements and means of compliance for autonomy by taking 
into account the role of the automation, the complexity of the 
automation, and the net risk of incorporating automation into 
the aircraft design versus having the human pilot perform the 
function. Operational trustworthiness can be gained through a 
“crawl, walk, run” approach where UAS are first permitted in 
low-risk operational areas and then expanded outside of these 
safety corridors, moving into more integrated airspace as trust 
is built.   It is important that the risk perception from all aviation 
stakeholders – manufacturers, pilots, air traffic controllers, 
regulators, etc. – be consulted and included as operations 
expand. 
 
Finally, policies and regulations should take into account the 
benefits of UAS with AI/ML and not only focus on the risks.  A 
2018 National Academy of Sciences report [38] recommended, 
“UAS operations should be allowed if they decrease safety risks 
in society – even if they introduce new aviation safety risks – 
as long as they result in a net reduction in total safety risk.” By 
using a bounded behavior framework approach to integrating 
AI/ML into UAS, it is feasible to realize the benefits of this new 
technology for aviation, provide a path to airworthiness 
certification, build trust with policy-makers, regulators, and the 
public, and increase overall safety to the public. 

III. THE BOUNDED BEHAVIOR ASSURANCE (BBA) 

METHODOLOGY 

The Bounded Behavior Assurance (BBA) approach [28] to 
assuring safety of autonomous systems is centered upon being 
able to specify bounds on the functional and timing run-time 
aspects of system prior to run-time, such that safety is assured 
so long as the state remains within these bounds.  During run-
time, decisions are taken to optimize mission-effectiveness 
while simultaneously monitoring system state [39] to determine 
if behavior is approaching the boundaries of safety. If this 
happens, mission-effectiveness ceases to become the primary 
objective; instead corrective action is taken to ensure that 
system state remains within the acceptable bounds.  Hence the 
BBA approach does not seek the eliminate the inherent non-
determinism and unpredictability of run-time behavior in 
AI/ML-based autonomous systems; instead, it uses the 
mechanism of run-time monitoring (and corrective action, if 
needed) in order to bound the degree of such unpredictability.   
 
It is becoming increasingly clear that safety assurance in 
autonomous systems cannot realistically be looked upon as a 
single-step process that is completed after system development 
and prior to deployment; instead, a lifelong approach is required 
that must be initiated at the very beginning of the design process 
and continue through the lifetime of the system. The BBA 
approach to safety assurance requires that acceptable safe 
system states be identified and formally specified[40]. Doing so 
becomes a serious challenge as the functional requirements 
placed upon autonomous systems repeatedly evolve during the 
life-time of the system: novel use-case scenarios that were 
unanticipated at design time and initial deployment are 

frequently envisioned and proposed, and added on to the 
mission-capability requirements for the autonomous systems. 
The open-ended nature of many planned operational scenarios 
for autonomous systems inevitably means that these systems 
will confront completely unanticipated scenarios — “unknown 
unknowns”: what kinds of assurance requirements could be 
placed upon system behavior in such unanticipated scenarios?   
 
Although the BBA approach to safety assurance offers a 
promising alternative to conventional testing-based approaches 
(which appear to not generalize easily to complex autonomous 
systems that incorporate learning), it does require a rigorous 
cross-layer approach to system specification and analysis that 
incorporates integrated consideration of functional and timing 
behavioral issues at the levels of hardware, the real-time 
operating system (RTOS), scheduler and associated resource-
allocation mechanisms, and the application layer. These and 
related open issues must be thoroughly investigated before the 
BBA approach can be fully implemented as a means of assuring 
safety for complex autonomous systems. 
 
A. Functional Assurance  

AI/ML based algorithms have numerous different roles in 
autonomous systems [41]. In perception, they are responsible 
for reading in input from physical sensors such as cameras and 
determining what that input represents. (“Smart” cameras, such 
as the ones used in driver-assist features in cars for identifying 
pedestrians, are an example of this use of AI/ML in an 
autonomous system.) For such use in perception, it is often the 
case that exact formal specifications are simply not available: 
there is no formal machine-checkable specification for the field 
of pixels that distinguish a pedestrian from, e.g., a color 
photograph of a human being.  Hence it appears that assurance 
cases for AI/ML-based perception systems must be based on 
extensive testing, and assurance arguments explaining why the 
training data used to train the system should be considered 
adequate.  The development of a framework for such assurance 
cases is one of the major open issues that need to be addressed. 
In addition to perception, AI/ML based algorithms may play an 
important role in reflection: incorporating input from 
perceptors, other sensors, and prior knowledge in order to 
develop an internal understanding of the environment within 
the system is operating.  Here again, there are major challenges 
that must be addressed in order to be able to apply the BBA 
approach for assuring system safety.  How do bounds on the 
uncertainties in perception from multiple different sources 
compose with each other, along with bounds on the 
uncertainties in prior knowledge, to provide the safety envelope 
within which run-time behavior is allowed to exist?   
AI/ML based systems are also used for decision making by 
autonomous systems. Additional challenges must be overcome 
in order to render BBA applicable to such use of AI/ML; in 
particular, formal methods are needed that allow for the 
specification of behavior that incorporates bounds on 
acceptable system state, and techniques must be developed that 
allow for mapping bounded-behavior models of the external 
environment (conditions; threats; etc.) onto these bounded-



behavior models of the output produced by the AI/ML based 
decision-making component. 
 
B. Temporal Assurance 

Requirement specifications for unmanned aircraft systems have 
a temporal component in additional to a functional one: 
specified functional outputs are required to be computed within 
specified latencies. Establishing beforehand that such temporal 
specifications will always be met during all executions of the 
system is already challenging for current (non-autonomous) 
systems due to the high degree of timing unpredictability 
inherent in modern commercial off-the-shelf (COTS) 
components that comprise the computing platforms in modern 
aircraft; these challenges are further exacerbated when the 
required functions are computed  using AI/ML based 
algorithms for which the functional outputs are also 
unpredictable.  Novel scheduling and schedulability-analysis 
approaches are being explored for enabling the application of 
the BBA approach for assuring timing correctness in 
autonomous systems using AI/ML based algorithms.  Some 
such approaches break down a functional computation for 
which an end-to-end delay bound must be assured as a multi-
stage computation in which a sequence of functional blocks 
must complete execution within a specified duration.  During 
run-time both the duration of execution of a stage, and and some 
estimate of the quality of the functional output produced by that 
stage, are monitored at the end of each stage.  These monitored 
values guide the choice of implementation for the following 
functional blocks: if the duration that has elapsed during some 
particular stage is larger than expected then a simpler 
implementation choice that has a smaller expected execution 
duration must be selected for the following stages in order to 
ensure timing safety.  Conversely if some stage completes 
execution sooner than expected then a more sophisticated 
computation-intensive AI/ML based implementation can be 
selected for the following stage, which allows for improved 
performance of the mission of the autonomous system without 
compromising safety.  A priori characterization of the expected 
execution duration of each implementation, and of the value 
returned by it, may be deterministic or stochastic; if the latter, 
then probabilistic schedulability analysis techniques are used. 
 
C. Processor Architecture Considerations – Interference/ 

Isolation 

Embedded computing and cyber-physical systems must satisfy 
not only functional requirements but also timing, power, and 
thermal behavior. Functional requirements describe 
input/output behavior. Timing behavior is often in the form of 
latency from input to output. Power consumption for a given 
computation is limited both by the capacity of the associated 
power supply. Exceeding certain temperatures governed by 
device physics will result in physical damage to the processor; 
thermal behavior can serve as an indirect limit on power 
consumption. All of these non-functional requirements require 
complex analysis for modern processors [42]. Processor 
microarchitectures, caches, and memory systems all contribute 

complexity to the modeling of timing/power/thermal behavior. 
In most cases for modern processors, we can only estimate 
these properties within certain bounds. The characteristics of 
software also add to the complexity of non-functional analysis. 
Complex execution paths, data dependencies, data and code 
placement in the cache, and other factors all make estimation of 
software characteristics difficult. 
 
Many system-on-chip applications exhibit non-uniform 
workloads that can cause variations in computational load, 
power consumption, and thermal load.  These variations can 
occur over both time and space.   Temporal variations may 
result in metaphorical hot spots of heavy computation on 
processing elements or communication load for the network-
on-chip. Spatial variations may result in literal hotspots with 
elevated temperatures on some parts of the chip. Embedded 
computer vision is an example application with non-uniform 
workloads. Xu et al. [43] measured the workload created by a 
real-time gesture recognition system and developed a design 
methodology for application-specific, non-regular networks-
on-chips tailored to a given traffic pattern. 
 
Digital neural networks (DNNs) can be optimized to reduce 
computational, memory bandwidth, and power requirements. 
Networks can be optimized using several methods. Reduced-
precision arithmetic can result in smaller bit widths for values 
and smaller arithmetic units. Zhuang et al. [44] progressively 
decreased bit width during training; they also used a full-
precision model in parallel to guide training of the limited-
precision model. Another approach is creating sparse 
coefficient networks that reduce memory bandwidth thanks to 
zero coefficients that do not need to be fetched. Guo et al. [45] 
compressed DNNs using structured sparsity learning. Li et al. 
[46] applied structured sparsity learning as a co-design 
methodology.  
 
Several CPU attacks have recently been identified that 
compromise supposedly protected data during execution. The 
Meltdown vulnerability [47], discovered in 2017 and 
announced in 2018, exploits a race condition and a cache side-
channel attack to avoid checks that are meant to enforce 
isolation between processes. Spectre [48], also discovered in 
2017 and announced in 2018, exploits effects of speculative 
execution due to branch misprediction. The Microarchitectural 
Data Sampling (MDS) attack [49], announced in 2019, refers to 
a set of techniques related to side channel effects from 
speculative execution. We can identify several threat models 
for the disclosure of data from the computing platform: 
• Data may be directly observed using circuits attached to 

the computing platform. An attacker with physical access 
to the system may be able to attach monitoring devices. 

• Side channel attacks may observe data using 
electromagnetic radiation, power measurements, or other 
physical mechanisms. 

 
Several threat models for software stack target both functional 
[50] and non-functional behavior: 



• Trojan horses or tampering with software installation can 
introduce malicious code that can both observe and modify 
behavior. 

• Timing attacks change the timing behavior of the system 
without necessarily modifying values. A missed deadline 
can have serious effects. 

• Replay attacks [51, 52] send previously recorded data to 
other parts of the system to hide their changes to the 
activity of signals. Replay attacks were used in the Stuxnet 
attack to hide software attacks that damaged equipment. 

 

IV. CONCLUSIONS AND  RECOMMENDATIONS 

Incorporation of AI/ML into UAS and aviation at large offers 
potential benefits to performance, cost, and safety.  However, 
there are immediate challenges that accompany the use of 
AI/ML methods and hurdles that may prevent the realization of 
the promise of these technologies for UAS applications. We 
examined promising AI/ML approaches that have near term 
relevance for UAS avionics in general and focused on guidance, 
navigation and control applications. We summarize some of the 
key considerations for advanced approaches to mission 
management algorithms for UAS. We have highlighted some 
of the fundamental assurance challenges inherent in these 
approaches for safety critical applications. We then illustrated 
specific challenges in current certification approaches and 
associated regulation and policy governing UAS in civilian 
airspace while noting the changing direction of regulatory 
authorities in response to these challenges.  
We also presented an overview of an assurance approach 
(BBA) that can be used to develop assurance framework for 
UAS using advanced technologies such as AI/ML algorithms 
Using BBA or similar approaches still requires significant 
advances in maturing and characterizing these algorithms vis-
à-vis safety and security. We proceed to identify some of these 
obstacles from both functional and temporal assurance 
perspectives.  
We conclude this review by examining the underlying security 
and safety implications for processor hardware architectures 
that are likely to be used to drive the computational loads 
associated with AI/ML methods. We find that a BBA approach 
toward incorporating AI/ML into UAS has the potential to 
accelerate the integration of these technologies into the aircraft.  
Furthermore, we find that a BBA approach has benefits with 
regard to moving UAS from lower risk segregated operations 
to more operationally relevant parts of the airspace.  We 
recommend that developers, regulators, policymakers, and 
researchers evaluate the BBA approaches and use them to the 
maximum extent to realize the promise of artificial intelligence 
and machine learning in UAS. 
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