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Abstract. We recall the notion of nearest integer continued fractions
over the Euclidean imaginary quadratic fields K and characterize the
“badly approximable” numbers, (z such that there is a C = C(z) > 0
with |z − p/q| ≥ C/|q|2 for all p/q ∈ K), by boundedness of the partial
quotients in the continued fraction expansion of z. Applying this algo-
rithm to “tagged” indefinite integral binary Hermitian forms demon-
strates the existence of entire circles in C whose points are badly ap-
proximable over K, with effective constants.

By other methods, we prove the existence of circles of badly approx-
imable numbers over any imaginary quadratic field. Among these badly
approximable numbers are algebraic numbers of every even degree over
Q, which we characterize. All of the examples we consider are associ-
ated with cocompact Fuchsian subgroups of the Bianchi groups SL2(O),
where O is the ring of integers in an imaginary quadratic field.

Introduction

A natural generalization of continued fractions to complex numbers over

appropriate discrete subringsO of C, in particular over Z[
√
−1] and Z

[
1+

√
−3

2

]
,

was introduced by A. Hurwitz, [?]. Let K be one of the Euclidean imagi-

nary quadratic fields and O its ring of integers. We write a complex number

uniquely as ⌊z⌉ + ⟨z⟩ with ⌊z⌉ ∈ O the nearest integer to z and ⟨z⟩ ∈ V ,

where V is the collection of complex numbers closer to zero than to any

other point of the lattice O (with some choice along the boundary of V ).

For z ∈ V we iterate the map T (z) = ⟨1/z⟩, T n(z) =: zn, to obtain the

continued fraction

z = [a0; a1, a2, . . .] = a0 +
1

a1 +
1

a2+

, ⌊1/zi⌉ = ai+1 ∈ O,

and convergents pn/qn = [a0; a1, . . . , an].

It is known that the convergents pn/qn from the above algorithms all

satisfy

|z − pn/qn| ≤ C/|qn|2

for some C > 0. See Proposition 2 below for a proof and Theorem 1 of

[?] for the smallest values of C. This is a simple algorithmic realization
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of Dirichlet’s theorem that for irrational z ∈ C, there are infinitely many

p/q ∈ K satisfying the above inequality. A number z is badly approximable

if the exponent of two is the best possible, i.e. z is badly approximable if

there exists C ′ > 0 such that for any p/q ∈ K we have

|z − p/q| ≥ C ′/|q|2.

It is well-known that a real number is badly approximable over Q if and only

if its partial quotients an are bounded. We show below (Theorem 1) that

this is the case for nearest integer continued fractions over K as well, relying

on the work of Lakein [?] who investigated the quality of approximation of

the nearest integer convergents.

It is a folklore conjecture that the only real algebraic numbers with

bounded partial quotients in their continued fraction expansion are the qua-

dratic irrationals, whose partial quotients are eventually periodic. However,

it is shown in [?], using methods expanded upon in this paper, that the

analogous conjecture does not hold exactly over Q(
√
−1). There are exam-

ples of algebraic numbers of relative degree greater than two over Q(
√
−1)

whose nearest integer continued fraction expansions have bounded partial

quotients. Examples of this phenomenon were first detailed by Hensely, cf.

[?] 5.6. While these examples are not quadratic over Q(
√
−1), they are as-

sociated with closed geodesic surfaces in the Bianchi orbifold SL2(Z[i])\H3

in the same way that real quadratic irrationals are associated to closed

geodesics on the modular surface SL2(Z)\H2 .

The first objective of this paper is to make explicit the connection (im-

plicit in [?] forQ(
√
−1) and explicit in [?] forQ(

√
−3)) “badly approximable

⇐⇒ bounded partial quotients” for nearest integer continued fractions over

K, where K is any of the Euclidean imaginary quadratic fields, and to ex-

plore a class of complex numbers with “atypical” behavior, namely those

lying on K-rational circles or lines, which include examples of algebraic

numbers with bounded partial quotients (extending the results of [?]). In

particular, we prove the following.

(Theorem 1) A number z ∈ C is badly approximable over K if

and only if its partial quotients are bounded in norm. Moreover an

explicit approximation constant is given as a function of the bound

on the partial quotients.

(Theorem 2) If z ∈ C lies on a K-rational circle or line, (i.e.

(z, 1) is a zero of the indefinite integral binary Hermitian form form

H(z, w) = Azz − Bzw − Bzw + Cwz, A,C ∈ Z, B ∈ O), then its
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remainders zn = T n(z) are “atypical” in that they lie on a finite

number of lines and circular arcs (cf. Figures 5, 6).

(Corollary 1, Corollary 2) Moreover, if the rational circle on

which z lies does not contain any rational points, (i.e. the indefinite

integral binary Hermitian form H is anisotropic), then the remain-

ders zn are bounded away from zero and the partial quotients an are

bounded in norm. We give explicit bounds on an, zn in terms of H

and K.

(Corollary 3) There are algebraic numbers of every even degree

over Q that are badly approximable over K (with effective approxi-

mation constant). We also provide a characterization of these badly

approximable algebraic numbers.

The second objective of this paper is to show that the main results above

hold over every imaginary quadratic field, possibly non-Euclidean. One ap-

proach is elementary - a variation on Liouville’s theorem concerning the

approximation of algebraic numbers (Theorem 3). The other is dynamical

- instead of using continued fractions, we employ a version of the Dani

correspondence (Theorem 4) characterizing badly approximable numbers in

terms of bounded geodesic trajectories in the Bianchi orbifolds. In particular

we have the following.

(Theorem 3, Theorem 6, Corollary 3) Let K be any imaginary

quadratic field. If z ∈ C lies on a K-rational circle without rational

points (i.e.H(z, 1) = 0 for an anisotropic indefinite binary Hermitian

form with coefficients in K) then z is badly approximable over K.

In particular, there are algebraic numbers of every even degree over

Q that are badly approximable over K, which we characterize.

In the mathoverflow post [?], which inspired this work, the question is

raised as to whether or not the examples of [?] exhaust the badly approx-

imable algebraic numbers over Q(
√
−1). Obvious ways to stay out of the

cusps of SL2(O)\H3 are to consider closed geodesics (anisotropic indefinite

integral binary quadratic forms, i.e. quadratic irrationals) or compact geo-

desic surfaces (anisotropic integral indefinite binary Hermitian forms, giving

the examples we explore in this paper). Whether badly approximable num-

bers algebraic over K must be associated to compact geodesic curves and

surfaces in the Bianchi orbifolds is an interesting question (an extension of

the folklore conjecture above), although it is not clear to the author why

this should be so.
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Nearest integer continued fractions over the Euclidean

imaginary quadratic fields

Let K = Kd = Q(
√
−d), d > 0 a square-free integer, be an imaginary

quadratic field and O = Od the ring of integers of K. For d = 1, 2, 3, 7, 11

the Od are Euclidean with respect to the usual norm |z|2 = zz, noting that

the collection of disks {z ∈ C : |z − r| < 1}r∈O cover the plane, and in fact

are the only d for which Od is Euclidean with respect to any function (cf.

[?] 4). Consider the open Voronöı cell for Od ⊆ C, the collection of points

closer to zero than to any other lattice point, along with a subset E of the

boundary, so that we obtain a strict fundamental domain for the additive

action of O on C,

V = Vd = {z ∈ C : |z| < |z − r|, r ∈ O} ∪ E , E ⊆ ∂V.

For the Euclidean values of d, and only for these values, Vd is contained in

the open unit disk. The regions Vd are rectangles for d = 1, 2 and hexagons

for d = 3, 7, 11; see Figure 1. For z ∈ C, we denote by ⌊z⌉ ∈ O and ⟨z⟩ ∈ V

the nearest integer and remainder, uniquely satisfying

z = ⌊z⌉+ ⟨z⟩ .

We now restrict ourselves to Euclidean K to describe the continued frac-

tion algorithm and applications, but we will return to arbitray imaginary

quadratic K in a later section.

We have an almost everywhere defined map T = Td : Vd → Vd given by

T (z) = ⟨1/z⟩. For z ∈ C define sequences an ∈ O, zn ∈ V , for n ≥ 0:

a0 = ⌊z⌉ , z0 = z − a0 = ⟨z⟩ ,

an =

⌊
1

zn−1

⌉
, zn =

⟨
1

zn−1

⟩
=

1

zn−1

− an = T n(z0).

In this way, we obtain a continued fraction expansion for z ∈ C,

z = a0 +
1

a1 +
1

a2+

=: [a0; a1, a2, . . .],

where the expansion is finite for z ∈ K. The convergents to z will be denoted

by
pn
qn

= [a0; a1, . . . , an],

where pn, qn are defined by(
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)
· · ·
(

an 1
1 0

)
.
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Here are a few easily verified algebraic properties that will be used below:

qnz − pn = (−1)nz0 · . . . · zn, z =
pn + znpn−1

qn + znqn−1

,

z − pn
qn

=
(−1)n

q2n(z
−1
n + qn−1/qn)

,
qn
qn−1

= an +
qn−2

qn−1

.

The first equality proves convergence pn/qn → z for irrational z and gives

a rate of convergence exponential in n. A useful parameter is ρ = ρd, the

radius of the smallest circle around zero containing Vd,

ρd =

√
1 + d

2
, d = 1, 2, ρd =

1 + d

4
√
d
, d = 3, 7, 11.

We note that |an| ≥ 1/ρd for n ≥ 1, which is easily verified for each d.

Taking the transpose of the matrix expression above, we have the equality

qn
qn−1

= an +
1

an−1 +
1

+ 1
a1

alg.
= [an; an−1, . . . , a1]

as rational numbers (indicated by the overset “alg.”), but this does not hold

at the level of continued fractions, i.e. the continued fraction expansion of

qn/qn−1 is not necessarily [an; an−1, . . . , a1]. See Figure 2 for the distribution

of qn−1/qn, for 5000 random numbers and 1 ≤ n ≤ 10, over Q(
√
−1) and

Q(
√
−3). The bounds |qn+2/qn| ≥ 3/2 are proved in [?] and [?] for d = 1

and 3 respectively.

Figure 1. ∂V and translates (blue), ∂(V −1) (red), and unit
circle (black) for d = 1, 2, 3, 7, 11.
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Figure 2. The numbers qn−1/qn, 1 ≤ n ≤ 10, for 5000 ran-
domly chosen z over Q(

√
−1) and Q(

√
−3).

Monotonicity of the denominators qn was shown by Hurwitz [?] for d =

1, 3, Lunz [?] for d = 2, and stated without proof in [?] for d = 1, 2, 3, 7, 11.

As this is a desirable property to establish, we outline the proof for the

cases d = 7, 11 in an appendix. The proofs are unenlightening and follow

the outline for the simpler cases d = 1, 3 in [?].

Proposition 1. For any z ∈ C, the denominators of the convergents pn/qn

are strictly increasing in absolute value, |qn−1| < |qn|.

Proof. See the appendix. □

To conclude this section, we record the following lemma, which is used

in the proof of Theorem 1, applied to the inverse of gn =

(
pn pn−1

qn qn−1

)
, for

which gn(∞) = pn/qn and g−1
n (∞) = −qn−1/qn as depicted in Figure 3.

Lemma 1. Let w = g(z) = az+b
cz+d

with a, b, c, d ∈ O, |ad − bc| = 1, and

g(p/q) = ∞ (i.e. p/q = −d/c). Then the disk D = {z ∈ C : |z − p/q| <
C/|q|2} gets mapped via g to the region g(D) = {w ∈ C : |w− a/c| > 1/C},
the exterior of the disk of radius 1/C centered at g(∞).

Proof. We have

w − a/c =
az + b

cz + d
− a

c
=

− det(g)

c2(z + d/c)
,

|w − a/c| = 1

|c|2|z + d/c|
=

1

|q|2|z − p/q|
,
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so that

|w − a/c| > 1/C ⇐⇒ 1

|q|2|z − p/q|
> 1/C ⇐⇒ |z − p/q| < C/|q|2.

□

Some references for nearest integer continued fractions include: [?] (some

generalities and d = 1, 3), [?] 46 (d = 1, 2, 3), [?] (d = 1, 2, 3, 7, 11), [?]

Chapter 5 (d = 1), and [?] (a general approach including some properties

of the cases we consider).

Badly approximable numbers over the Euclidean imaginary

quadratic fields via nearest integer continued fractions

For each of the Euclidean imaginary quadratic fieldsK there is a constant

C > 0 such that for any z ∈ C there are infinitely many solutions p/q ∈ K,

(p, q) = 1 to

|z − p/q| ≤ C/|q|2,()

by a pigeonhole argument for instance (cf. [?] Chapter 7, Proposition 2.6).

The smallest such C are 1/
√
3, 1/

√
2, 1/ 4

√
13, 1/ 4

√
8, and 2/

√
5 for d =

1, 2, 3, 7, 11 respectively (for references, see the Introduction to [?]). We can

obtain rational approximations with a specific C satisfying inequality ()

using the nearest integer algorithms described above. The best constants

coming from the nearest integer convergents, supz,n{|qn|2|z − pn/qn|}, can
be found in Theorem 1 of [?].

Proposition 2. For z ∈ C \K, the convergents pn/qn satisfy

|z − pn/qn| ≤
1

(1/ρ− 1)|qn|2
,

i.e. we can take p/q = pn/qn and C = ρ
1−ρ

in the inequality ().

Proof. Using simple properties of the algorithm and the bounds 1/zn ∈ V −1,

|qn−1/qn| ≤ 1, we have

|z − pn/qn| =
1

|qn|2|z−1
n + qn−1/qn|

≤ 1

|qn|2(1/ρ− 1)
.

□

We say z is badly approximable over K if there is a C ′ > 0 such that

|z − p/q| ≥ C ′/|q|2

for all p/q ∈ K, i.e. z is badly approximable if the exponent of two on

|q| is the best possible in the inequality (). We will show that the badly

approximable numbers are characterized by the boundedness of the partial
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quotients in the nearest integer continued fraction expansion, analogous to

the well-known fact for simple continued fractions over the real numbers.

First a lemma showing that the nearest integer convergents compare well

with the best rational approximations.

Lemma 2. There are effective constants α = αd > 0 such that for any

irrational z with convergents pn/qn and rational p/q with |qn−1| < |q| ≤ |qn|
we have

|qnz − pn| ≤ α|qz − p|.

Proof. Write p/q in terms of the convergents pn/qn, pn−1/qn−1 for some

s, t ∈ O (
p
q

)
=

(
pn pn−1

qn qn−1

)(
s
t

)
=

(
pns+ pn−1t
qns+ qn−1t

)
.

If s = 0, then p/q = pn−1/qn−1, impossible by the assumption |qn−1| < |q|.
If t = 0, then p/q = pn/qn and the result is clear with α = 1. We may

therefore assume |s|, |t| ≥ 1. We have⏐⏐⏐⏐z − p

q

⏐⏐⏐⏐ ≥ ⏐⏐⏐⏐⏐⏐⏐⏐pnqn − p

q

⏐⏐⏐⏐− ⏐⏐⏐⏐z − pn
qn

⏐⏐⏐⏐⏐⏐⏐⏐ = ⏐⏐⏐⏐⏐⏐⏐⏐ t

qqn

⏐⏐⏐⏐− ⏐⏐⏐⏐z − pn
qn

⏐⏐⏐⏐⏐⏐⏐⏐ ,
noting that t = (−1)n(pqn − pnq) by inverting the matrix relating p, q, s,

and t.

Define δ by |t| = δ|qn|2|z − pn/qn|, so that

1

|δ − |q/qn||
|qz − p| ≥ |qnz − pn|.

If δ > 1, then we have our α. A lower bound for δ is

δ =
|t|

|qn|2|z − pn/qn|
≥ |t| inf

z,n
{(|qn||qnz − pn|)−1}.

The infimum above is calculated in [?], Theorem 1, where it is found to be

inf
z,n

{(|qn||qnz − pn|)−1} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 d = 1,√
486−

√
3

786
= 0.78493 . . . d = 2,√

7+
√
21

7
= 1.28633 . . . d = 3,√

2093−9
√
21

2408
= 0.92307 . . . d = 7,√

30−8
√
5−5

√
11+3

√
55

50
= 0.59627 . . . d = 11.

The smallest integers of norm greater than one in Od have absolute values

of
√
2 (for d = 1, 2, 7) and

√
3 (for d = 3, 11). Multiplying these potential

values of |t| by the above constants gives values of δ greater than one, so

that |δ − |q/qn|| ≥ |δ − 1| is bounded away from zero. Hence we are left to

explore those rationals p/q with |t| = 1.
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For general t we have

qz − p = q
pn + znpn−1

qn + znqn−1

− p = (qns+ tqn−1)
pn + znpn−1

qn + znqn−1

− (pns+ tpn−1)

=
(−1)n(szn − t)

qn + znqn−1

and

qnz − pn =
(−1)nzn

qn + znqn−1

,

and we want α > 0 such that

|qnz − pn| ≤ α|qz − p|.

Substituting the above we have

|qnz − pn| ≤ α|qz − p| ⇐⇒ |zn|
|qn + znqn−1|

≤ α
|zns− t|

|qn + znqn−1|

⇐⇒ 1

|s− t/zn|
≤ α.

If |s− t/zn| < 1/2 and |t| = 1, then s/t = an+1 since s/t ∈ O is the nearest

integer to 1/zn. However (with |qn−1| < |q| ≤ |qn|, q = sqn + tqn−1),⏐⏐⏐⏐qn+1

qn

⏐⏐⏐⏐ = ⏐⏐⏐⏐an+1 +
qn−1

qn

⏐⏐⏐⏐ = ⏐⏐⏐⏐st + qn−1

qn

⏐⏐⏐⏐ = ⏐⏐⏐⏐s+ t
qn−1

qn

⏐⏐⏐⏐ = ⏐⏐⏐⏐ qqn
⏐⏐⏐⏐ ≤ 1,

and we obtain a contradiction if |s − t/zn| < 1/2 and |t| = 1. Hence when

|t| = 1 we can take α = 2.

In summary, we can take

αd =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2.41421 . . . d = 1
9.08592 . . . d = 2

2 d = 3
3.27419 . . . d = 7
30.51490 . . . d = 11

,

taking the maximum of 2 (covering the case |t| = 1) and the bound on
1

δ−|q/qn| for |t| > 1. □

No attempt was made to optimize the value of α in the lemma. The above

result for d = 1, 3 and α = 1 is contained in Theorem 2 of [?]. Another proof

for d = 1 and α = 5 is Theorem 5.1 of [?], and a proof for d = 3, α = 2

can be found in [?]. The purpose of the above lemma is to establish the

following proposition (which for d = 3 is Corollary 1.3 of [?]).

Theorem 1. A number z ∈ C \ K is badly approximable if and only if

its partial quotients an are bounded (if and only if the remainders zn are
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bounded away from zero). In particular, if |an| ≤ β for all n and p/q ∈ K,

then |z − p/q| ≥ C ′/|q|2 where

C ′ =
1

α(β + 1)(β + ρ+ 1)
.

Proof. If z is badly approximable, then there is a C ′ > 0 such that for each

convergent pn/qn to z, the disk |w − pn/qn| ≤ C ′/|qn|2 does not contain z.

Mapping pn/qn to ∞ via g−1
n , where

gn =

(
a0 1
1 0

)
. . .

(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)
,

maps the disk |w − pn/qn| ≤ C ′/|qn|2 to the region |w + qn−1/qn| ≥ 1/C ′,

centered at g−1
n (∞) = −qn−1/qn (cf. Lemma 1). Because g−1

n (z) is inside the

disk of radius 1/C ′ centered at −qn−1/qn and | − qn−1/qn| < 1, we have

an+1 + zn+1 = 1/zn = g−1
n (z),

|an+1| ≤ |zn+1|+ |g−1
n (z)| ≤ ρ+ 1 + 1/C ′.

Hence an+1 is bounded. See Figure 3 below for an illustration.

By Lemma 2, for z and p/q with |qn−1| < |q| ≤ |qn| we have⏐⏐⏐⏐z − pn
qn

⏐⏐⏐⏐ ≤ α

⏐⏐⏐⏐z − p

q

⏐⏐⏐⏐ ⏐⏐⏐⏐ qqn
⏐⏐⏐⏐ ≤ α

⏐⏐⏐⏐z − p

q

⏐⏐⏐⏐ |q|2|qn|2

⏐⏐⏐⏐ qn
qn−1

⏐⏐⏐⏐
= α

⏐⏐⏐⏐z − p

q

⏐⏐⏐⏐ |q|2|qn|2

⏐⏐⏐⏐an + qn−2

qn−1

⏐⏐⏐⏐
≤ α

⏐⏐⏐⏐z − p

q

⏐⏐⏐⏐ |q|2|qn|2
(|an|+ 1),

|qn|2
⏐⏐⏐⏐z − pn

qn

⏐⏐⏐⏐ ≤ α(|an|+ 1)|q|2
⏐⏐⏐⏐z − p

q

⏐⏐⏐⏐ .
This shows that if z has bounded partial quotients, then z is badly ap-

proximable if and only if it is badly approximable by its convergents. For

approximation by convergents, we have⏐⏐⏐⏐z − pn
qn

⏐⏐⏐⏐ = 1

|qn|2|z−1
n + qn−1/qn|

=
1

|qn|2|an+1 + zn+1 + qn−1/qn|
≥ 1

|qn|2(|an+1|+ ρ+ 1)
,

showing that if the partial quotients of z are bounded, then z is badly

approximable by convergents and therefore badly approximable. For an ap-

proximation constant, the above discussion gives |z−p/q| ≥ C ′/|q|2 for any
p/q ∈ K where

C ′ =
1

α(β + 1)(β + ρ+ 1)

and β is an upper bound for the |an|. □
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pn
qn

−qn−1

qn

Figure 3. Over Q(
√
−1), we have the points pn/qn = gn(∞)

and −qn−1/qn = g−1
n (∞), along with the unit circle and its

image under gn (black), circles of radius 1/C ′ and C ′/|qn|2
(red), and the lines defining V and their images under gn
(blue).

The continued fraction expansions of points on K-rational

circles

In this section we focus on producing z with bounded partial quotients

extending the results of [?] to all of the Euclidean imaginary quadratic fields

Kd. We will show that there are many circles in the complex plane all of

whose points have bounded partial quotients.

We will consider equivalence classes of indefinite integral binary Hermit-

ian forms. A binary Hermitian form H(z, w) is a function of the form

H(z, w) = (z, w)

(
A −B
−B C

)(
z
w

)
= Azz −Bzw −Bzw + Cww, A,C ∈ R, B ∈ C.

We denote by ∆(H) the determinant det(H) = AC−|B|2 of the Hermitian

matrix defining H. The binary Hermitian form H is integral over K if the

matrix entries of H are integers, i.e. A,C ∈ Z and B ∈ O. The form

is indefinite (takes on both positive and negative values) if and only if

∆(H) < 0. The zero set of an indefinite H on the Riemann sphere P 1(C) is
a circle (using homogeneous coordinates [z : w] on the projective line)

Z(H) := {[z : w] ∈ P 1(C) : H(z, w) = 0}
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which is either a circle or a line in the chart Cz = {[z : 1] ∈ P 1(C)}

Z(H) ∩ Cz =

{
{z : |z −B/A|2 = −∆/A2} if A ̸= 0,

{z : Re(Bz) = C} if A = 0.

We will be interested in equivalence of forms over GL2(O), where g ∈
GL2(C) acts as a normalized linear change of variable on the left, gH =

| det(g)|(g−1)∗Hg−1 (here ∗ denotes the conjugate transpose), and also with

the Möbius action of GL2(C) on P 1(C),

g · [z : w] = [az + bw : cz + dw], g =

(
a b
c d

)
.

We collect some easily verified facts in the following lemma.

Lemma 3. The following hold for the action gH = | det(g)|(g−1)∗Hg−1,

g ∈ GL2(C), on indefinite binary Hermitian forms.

The action of GL2(C) is determinant preserving, i.e. ∆(gH) = ∆(H).

The map H ↦→ Z(H) is GL2(C)-equivariant (i.e. g ·Z(H) = Z(gH)).

Furthermore, an integral form H is isotropic (i.e. H(z, w) = 0 for some

[z : w] ∈ P 1(K)) if and only if −∆(H) is in the image of the norm map

NK
Q : K → Q.

Proof. For g ∈ GL2(C) we have

det(gH) = | det(g)|2 det((g−1)∗Hg−1) =
| det(g)|2 det(H)

det(g)det(g)
= det(H).

The second bullet follows from

((z̄ w̄)g∗)(gH)(g(z w)t) = | det(g)|((z̄ w̄)g∗)((g−1)∗Hg−1)g(z, w)t

= | det(g)|H(z, w).

Finally, the factorization (assuming A ̸= 0 else −∆ = |B|2 is a norm and

H(1, 0) = 0)

AH(z, w) = |Az −Bw|2 +∆|w|2

shows that −∆ is a norm if and only if there are z, w ∈ K not both zero

with H(z, w) = 0. □

SupposeH is an indefinite integral binary Hermitian form of determinant

∆ and z = [a0; a1, . . .] satisfies H(z, 1) = 0. Define Hn = g−1
n H, where

g−1
n =

(
0 1
1 −an

)
· · ·
(

0 1
1 −a0

)
, gn =

(
pn pn−1

qn qn−1

)
,

with notation

Hn =

(
An −Bn

−Bn Cn

)
.
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In particular, we have

An = H(pn, qn),

Cn = H(pn−1, qn−1) = An−1.

Note that Hn(1, zn) = 0 for all n ≥ 1 because gn(1/zn) = z.

The main observation for us is the following theorem, which is essentially

Theorem 4.1 of [?] generalized to the other Euclidean K and arbitrary

integral binary Hermitian forms. One could follow the inductive geometric

proof of [?], but we give an algebraic proof analogous to one demonstrating

that real quadratic irrationals have eventually periodic simple continued

fraction expansions, e.g. [?], Theorem 28. In fact, we may as well note that

the proof of Theorem 2 below applies mutatis mutandis to integral binary

quadratic forms over K, showing that the continued fraction expansions of

quadratic irrationals over K are eventually periodic as expected.

Theorem 2. If [z : 1] is a zero of an indefinite integral binary Hermitian

form H, then the collection {Hn : n ≥ 0} is finite.

Proof. In what follows, ∆ = ∆(H) = ∆(Hn). The inequality

|z − pn/qn| ≤
κ

|qn|2

allows us to write

pn = qnz +
γn
qn

, |γn| ≤ κ

where κ = supz,n{|qn||qnz − pn|} < 2 is the best constant from [?] used in

the proof of Lemma 2.

Substituting this into the formula for An above gives

An = H(qnz + γn/qn, qn)

= |qn|2H(z, 1) + A

(
qnz

γn
qn

+ qnz
γn
qn

+

⏐⏐⏐⏐γnqn
⏐⏐⏐⏐2
)

−B
qn
qn

γn −B
qn
qn

γn

= A

(
qnz

γn
qn

+ qnz
γn
qn

+

⏐⏐⏐⏐γnqn
⏐⏐⏐⏐2
)

−B
qn
qn

γn −B
qn
qn

γn,

and

|An| ≤ |A|κ2 + 2|B|κ+ 2|A||z|κ ≤ |A|κ2 + 4|B|κ+ 2κ
√
−∆

≤ max{|A|, |A|κ2 + 4|B|κ+ 2κ
√
−∆} =: η.
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(We take the max above so that the parameter η is useful for bounds on zn,

an when n = 0, cf. Corollary 2 below.) From this it follows that

|Cn| = |An−1| ≤ η,

|Bn| =
√

AnCn −∆ ≤
√

η2 −∆,

so that there are only finitely many possibilities for Hn. □

By requiring H to be anisotropic, we bound the finitely many circles

Z(Hn) away from zero and infinity, obtaining bounded partial quotients.

Corollary 1. If [z : 1] is a zero of an anisotropic indefinite integral binary

Hermitian form H, then z has bounded partial quotients in its nearest integer

continued fraction expansion (and is therefore badly approximable over K).

A quantitative measure of the “hole” around zero (see Figures 5, 6) can

be given in terms of the determinant ∆ = det(H) of the form, which in

turn bounds the partial quotients and controls the approximation constant

|z − p/q| ≥ C ′/|q|2.

Corollary 2. If z ∈ Z(H) is a zero of the anisotropic integral indefinite

binary Hermitian form H of determinant ∆, then the remainders zn, n ≥ 0,

are bounded below by

|zn| ≥
1

√
−∆+

√
η2 −∆

,

with partial quotients bounded above by

|an| ≤ ρ+
√
−∆+

√
η2 −∆,

where η is as in the proof of Theorem 2. From these bounds, one can produce

a C ′(H) > 0 such that |z−p/q| ≥ C ′/|q|2 for all p/q ∈ K and [z : 1] ∈ Z(H).

Proof. We use the notation of Theorem 2. Since 1/zn lies on Z(Hn) ∩ Cz,

which has radius
√
−∆/|An| and center Bn/An, we have

1

|zn|
≤
⏐⏐⏐⏐Bn

An

⏐⏐⏐⏐+ √
−∆

|An|
≤
√

η2 −∆+
√
−∆,

|zn| ≥
1

√
−∆+

√
η2 −∆

.

We also have

an+1 + zn+1 =
1

zn
so that

|an+1| ≤ |zn+1|+
1

|zn|
≤ ρ+

√
−∆+

√
η2 −∆.
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From Theorem 1, it follows that |z − p/q| ≥ C ′/|q|2 for all p/q ∈ K, where

C ′ =
1

α(β + 1)(β + ρ+ 1)
, β = ρ+

√
−∆+

√
η2 −∆.

□

We conclude this section with an example of the above over Q(i). The

number
√
3e2πi/5 = [1+2i;−1+i,−3, 2+2i,−1+3i,−2,−2i, 2+2i, 3−i,−2+2i, . . .]

is a zero of the anisotropic indefinite integral binary Hermitian formH(z, w) =

|z|2−3|w|2. Data from 10,000 iterations of the continued fraction algorithm

and bounds from Corollary 2 are:

max
0≤n<10000

{|an|} = 4.47213 . . . ≤ 7.22749 . . . ,

min
0≤n<10000

{|zn|} = 0.25201 . . . ≥ 0.15336 . . . ,

min
0≤n<10000

{|qn(qnz − pn)|} = 0.28867 . . . ≥ 0.00563 . . . .

There are 64 distinct partial quotients an and 56 distinct forms Hn. The re-

mainders zn are shown on the left in Figure 4 below. The remainders appear

to have different densities along the arcs Z(Hn) ∩ V , spending more time

on the circles of radius
√
3 (show in black in Figure 4) than on the circles

of radius
√
3/2 (shown in red in Figure 4). The bound on the normalized

error seems to be rather poor, but it is interesting to note that the minimum

0.28867 . . . above agrees with 1
2
√
3
to high precision (for which we give some

explanation in the next section).

Figure 4. The first 10,000 remainders zn of z =
√
3e2πi/5

over Q(i) (left) and the arcs Z(Hn) ∩ V (right).
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Badly approximable circles over arbitrary imaginary

quadratic fields à la Liouville

The fact that all of the points on a K-rational circle without rational

points are badly approximable holds for any imaginary quadratic K, not

only those that are Euclidean. Here we give an elementary proof along the

lines of Liouville’s theorem. For more details on the approximation proper-

ties of quadratic irrationals in Z(H), see [?], Theorem 1.1.

Theorem 3. Let H(z, w) = Azz̄−Bz̄w−Bzw̄+Cww̄ be a binary Hermitian

form that is indefinite, anisotropic, and integral. Let ∆(H) = AC−|B|2 < 0

be the determinant of H and

µ(H) = min{|H(p, q)| : (0, 0) ̸= (p, q) ∈ O2
K} > 0

its absolute minimum. If H(z, 1) = 0, then z is badly approximable with

|q(qz − p)| ≥ µ(H)

2
√
−∆+ 2|A|ϵ

for any p/q ∈ K with |z − p/q| ≤ ϵ. Hence

lim inf
|q|→∞

{|q(qz − p)| : p, q ∈ OK , q ̸= 0} ≥ µ(H)

2
√

−∆(H)
.

Proof. We will apply the mean value theorem to an f : R2 → R in the form

f(b1, b2)− f(a1, a2) =

(
∂f

∂x
(c1, c2),

∂f

∂y
(c1, c2)

)
· (b1 − a1, b2 − a2)

for some (c1, c2) on the line segment joining (a1, a2) and (b1, b2). By the mean

value theorem, the Cauchy-Schwarz inequality, and because H(z, 1) = 0, we

have

|H(p/q, 1)| = |H(p/q, 1)−H(z, 1)| ≤ Cϵ|z− p/q|, Cϵ = 2
√

−∆(H)+ 2|A|ϵ,

for any p/q ∈ K with |z − p/q| ≤ ϵ. Multiplying by |q|2 gives

0 < µ(H) ≤ |A|p|2 −Bp̄q −Bpq̄ + C|q|2| ≤ Cϵ|q|2|z − p/q|,

since H is anisotropic and integral. Therefore z is badly approximable with

|q(qz − p)| ≥ µ(H)/Cϵ > 0.

Letting ϵ tend to zero gives

lim inf
|q|→∞

{|q(qz − p)| : p, q ∈ OK , q ̸= 0} ≥ µ(H)

2
√

−∆(H)
.

□
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Badly approximable circles over arbitrary imaginary

quadratic fields via the Dani correspondence

In this section we give another proof, dynamical in nature, that all of

the points on a K-rational circle without rational points are badly approx-

imable. We no longer have continued fractions at our disposal, but we have

a characterization of badly approximable z obtained from consideration of

a geodesic trajectory in SL2(O)\H3 “aimed” at z, a variation of a result of

Dani ([?]). This is a justification for the intuitive equivalence of “badly ap-

proximable” and “staying out of the cusps” (or “bounded partial quotients”

from continued fractions).

If K has class number h(K), then SL2(O)\H3 has h cusps, i.e. there are

h orbits for the action of SL2(O) on P 1(K) ([?] Chapter 7, Theorem 2.4).

It therefore makes sense to discuss approximating a complex number with

rationals representing different ideal classes. However, we will continue to

use the notion of badly approximable in the form

there exists C ′ > 0 such that for all p/q ∈ K, |z − p/q| ≥ C ′/|q|2.

We begin with a brief discussion of the spaces under consideration. The

group SL2(C) acts transitively on three dimensional hyperbolic space H3

(as a subset of the real quaternions) via fractional linear transformations:

H3 = {ζ = z + tj : z ∈ C, 0 < t ∈ R}, g · ζ = (aζ + b)(cζ + d)−1.

The stabilizer of j ∈ H3 is SU2(C), double covering SO3(R) ∼= SU2(C)/{±1}.
Using the basepoint j ∈ H3 (and some choice of frame at j, of which we

will have no need), we make the following identifications:

SL2(C)/SU2(C) H3,

PSL2(C) oriented orthonormal frame bundle of H3,

SL2(O)\SL2(C)/SU2(C) the Bianchi orbifold SL2(O)\H3,

SL2(O)\SL2(C) oriented orthonormal frame bundle of SL2(O)\H3.

For example,(
1 z
0 1

)(
et/2 0
0 e−t/2

)
SU2(C) ↔ z + etj.

We also note that the projection SL2(O)\SL2(C) → SL2(O)\H3 is proper

and closed.

The following theorem characterizes badly approximable numbers by the

boundedness of a (framed) geodesic trajectory.
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Theorem 4 (Dani correspondence). For z ∈ C, define

Ωz =

{(
1 z
0 1

)(
e−t 0
0 et

)
: t ≥ 0

}
⊆ SL2(C).

The trajectories

SL2(O) · Ωz ⊆ SL2(O)\SL2(C),

ωz :=SL2(O) · Ωz · SU2(C) ⊆ SL2(O)\H3,

are precompact if and only if z is badly approximable.

The Dani correspondence as stated above follows from a version of Mahler’s

compactness criterion.

Theorem 5 (Mahler’s compactness criterion). Let Ω ⊆ SL2(C). The set

SL2(O) · Ω ⊆ SL2(O)\SL2(C) is precompact if and only if

inf{∥Xg∥2 : g ∈ Ω, X = (x1, x2) ∈ O2 \ {(0, 0)}} > 0,

where ∥X∥2 =
√

|x1|2 + |x2|2.

For completeness, we give a proof of Theorem 5 at the end of the section.

We now give a proof of the Dani correspondence as stated in Theorem 4.

Proof of Dani correspondence. For the proof, note that

O2 · Ωz = {(e−tq, et(p+ qz)) : t ≥ 0, (q, p) ∈ O2}.

Suppose z is badly approximable with |q(qz + p)| ≥ C ′ for all p/q ∈ K.

If there exists t ≥ 0 and p/q ∈ K with ∥(e−tq, et(qz + p))∥2 <
√
C ′, then

taking the product of the coordinates gives

|e−tqet(qz + p)| = |q(qz + p)| < C ′,

a contradiction. Hence inf{∥Xg∥2 : g ∈ Ωz, X ∈ O2 \ {(0, 0)}} ≥
√
C ′ and

SL2(O) · Ωz is precompact by Mahler’s criterion.

If z is not badly approximable, then for every n > 0 there exists pn/qn ∈
K such that |qn(qnz + pn)| < 1/n2. If tn is such that e−tn|qn| = 1/n, then

|etn(qnz + pn)| = n|qn(qnz + pn)| < 1/n and ∥(e−tnqn, e
tn(qnz + pn))∥2 ≤√

2/n. Therefore SL2(O)·Ωz is not contained in any compact set by Mahler’s

criterion. The result for ωz follows from the invariance ∥Xk∥2 = ∥X∥2 for

X ∈ C2, k ∈ SU2(C), and the fact that the projection SL2(O)\SL2(C) →
SL2(O)\H3 is proper and closed. □

One obvious way for the trajectory ωz to remain bounded is for it to be

asymptotic to a compact object, such as a compact geodesic surface. The

following lemma (essentially compactness of the quotient of unitary groups
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SU(H,OK)\SU(H,C), which follows from Mahler’s criterion) provides a

plethora of compact geodesic surfaces in the Bianchi orbifolds SL2(O)\H3.

Lemma 4 ([?], 9.6). Let H be an integral indefinite binary Hermitian form.

The orientation preserving stabilizer of the zero set Z(H),

Stab+(Z(H)) =

⎧⎨⎩g ∈ SL2(O) :
g · Z(H) = Z(H) and

g preserves the components of
P 1(C) \ Z(H)

⎫⎬⎭ ,

is a maximal non-elementary Fuchsian subgroup of SL2(O). If H is anisotropic,

then Stab+(Z(H)) is cocompact. In particular, if P (H) ⊆ H3 is the geodesic

plane with boundary Z(H), then the image of P (H) in SL2(O)\H3 is com-

pact for anisotropic H.

Together, Lemma 4 and Theorem 4 imply the following.

Theorem 6. Let K be any imaginary quadratic field and H an anisotropic

indefinite K-rational binary Hermitian form, i.e.

H = Azz̄ −Bz̄w −Bzw̄ + Cww̄, A,C ∈ Q, B ∈ K,

0 < −∆(H) = BB − AC ̸∈ NK
Q (K).

If z ∈ C, H(z, 1) = 0, then z is badly approximable over K, i.e. there exists

C ′ > 0 such that for all p/q ∈ K, we have |z − p/q| ≥ C ′/|q|2.

Proof. Let π denote the projection π : H3 → SL2(O)\H3. The circle Z(H) is

the boundary at infinity of a geodesic plane P (H) (a hemisphere orthogonal

to C ⊆ ∂H3). The geodesic ray

Ωz · SU2(C) = {z + e−2tj : 0 ≤ t < ∞}

is asymptotic to P (H) as they share the point z at infinity. Since π does not

increase distances and π(P (H)) is compact by Lemma 4, π(Ωz · SU2(C)) =
ωz is bounded in SL2(O)\H3. By Theorem 4, z is badly appoximable. □

We now give a proof of Mahler’s criterion Theorem 5 in this setting,

reducing it to the following standard version over Z.

Theorem 7 ([?], Theorem 2). Let Ω ⊆ GLn(R). Then GLn(Z) · Ω ⊆
GLn(Z)\GLn(R) is precompact if and only if the following two conditions

are satisfied:

sup{| det(g)| : g ∈ Ω} < ∞, inf{∥Xg∥2 : g ∈ Ω, X ∈ Zn} > 0,

where ∥X∥2 =
√
x2
1 + . . .+ x2

n for X = (x1, . . . , xn) ∈ Rn. In other words,

the lattices generated by the rows of elements of Ω must have bounded co-

volume and no arbitrarily short vectors.
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Proof of Mahler’s criterion. Choose an integral basis for O, say 1 and ω =
DK+

√
DK

2
for concreteness, where DK is the field disciminant,

DK =

{
−d, d ≡ 3 mod 4
−4d, d ≡ 1, 2 mod 4

.

We have a homomorphism

ϕ : C → M2(R), z ↦→
(

r s

sDK(1−DK)
4

r + sDK

)
, z = r + sω,

taking a complex number z to the matrix of multiplication by z in the our

integral basis. This extends to a homomorphism

Φ : SL2(C) → SL4(R),
(

z1 z2
w1 w2

)
↦→
(

ϕ(z1) ϕ(z2)
ϕ(w1) ϕ(w2)

)
,

with Φ(SL2(C)) ∩ SL4(Z) = Φ(SL2(O)). Hence we obtain a closed embed-

ding

Φ̃ : SL2(O)\SL2(C) → SL4(Z)\SL4(R).

One can easily verify that the bijection

Ψ : C2 → R4, (a+ bω, c+ dω) ↦→ (a, b, c, d)

is SL2(C)-equivariant, i.e.

Ψ((a+ bω, c+ dω)g) = (a, b, c, d)Φ(g), g ∈ SL2(C),

and that the norms ∥Ψ(·)∥2, ∥ · ∥2 are equivalent on C2:

R+∥Ψ(·)∥2 ≤ ∥ · ∥2 ≤ R−∥Ψ(·)∥2,

where

R± =

(
2

1 + |ω|2 ± |1 + ω2|

)1/2

are the radii of the inscribed and circumscribed circles of the ellipse |a +

bω|2 = 1. Applying the standard version of Mahler’s criterion (Theorem 7

above) to Φ(Ω) gives the result. □

For a generalization of Mahler’s criterion and the Dani correspondence

tailored to simultaneous approximation over number fields which includes

what is presented here, see [?].

Examples of badly approximable algebraic numbers over any

imaginary quadratic field

In this section, we emphasize the fact that there are many algebraic

numbers satisfying the hypotheses of Corollary 1 and Theorem 6 and give

a characterization of these numbers.
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For z such that |z|2 = s/t ∈ Q is not a norm from K, the anisotropic

integral form

(
t 0
0 −s

)
shows that z is badly approximable. This essen-

tially exhausts all of the examples we’ve given as we can translate an integral

form by a rational to center it at zero, then clear denominators to obtain

an integral form as described, i.e.

H =

(
A −B
−B C

)
, g =

(
1 −B/A
0 1

)
, A · gH =

(
A2 0
0 AC −BB

)
.

For some specific algebraic examples, consider quadratically scaled roots

of unity z =
√
nζ for |z|2 = n ∈ Q not a norm, or the generalizations of

examples from [?], z = m
√
a+

√
m
√
a2 − n for a ∈ Q,

m
√
a2 < n, and n = |z|2

not a norm. See Figures 5, 6 for visualizations of the orbits of algebraic

numbers satisfying |z|2 = n for various n and d = 1, 3.

Figure 5. 20,000 iterates of T for z = 3
√
2 +

√
3
√
4− n over

Q(
√
−1) with n = 4, 5, 6, 7.

Figure 6. 10,000 iterates of T for z = 3
√
2 +

√
3
√
4− n over

Q(
√
−3) with n = 2, 3, 4, 5.

We would like to characterize the badly approximable algebraic numbers

captured above. One such characterization comes from a parameterization

of the algebraic numbers on the unit circle (taken from the mathoverflow

post [?]).
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Lemma 5 ([?]). The algebraic numbers w on the unit circle, ww = 1, are

those numbers of the form

w =
u±

√
u2 − 4

2

where u is a real algebraic number in the interval [−2, 2]. If u ̸= ±2, the

minimal polynomial f of w is

f(t) = tmg(t+ 1/t)

where g(t) is the minimal polynomial of u, deg(g) = m. In particular, the

degree of f is even.

Proof. We know that w,w = 1/w have the same minimal polynomial f(x) ∈
Q[x], say of degree d. One can deduce that xdf(1/x) = f(x) so that f(x) is

palindromic (if f(x) =
∑

k fkx
k then fd−k = fk) and since the roots come

in reciprocal pairs, d is even. The even degree palindromic polynomials are

of the form f(x) = xd/2g(x+ 1/x) for some polynomial g

f(x) =
d∑

k=0

fkx
k = xd/2

d/2∑
k=0

fk(x
k + 1/xk)

= xd/2

⎛⎝r(x+ 1/x) +

d/2∑
k=0

fk(x+ 1/x)k

⎞⎠
= xd/2g(x+ 1/x), g(x) = r(x) +

d/2∑
k=0

fkx
k,

noting that the difference (x+1/x)k−(xk+1/xk) is a polynomial in x+1/x

by symmetry of the binomial coefficients. The roots of the even degree

palindromic f on the circle double cover the roots of g in the interval (−2, 2)

(via w = eiθ ↦→ u = 2 cos θ). Conversely, taking an irreducible polynomial

g(x) ∈ Q[x] of degree d/2 with a root in the interval (−2, 2) gives a degree

d irreducible polynomial f(x) = xd/2g(x + 1/x) with roots on the unit

circle. □

Hence we have the following corollary describing the badly approximable

algebraic numbers coming from Corollary 1 and Theorem 6.

Corollary 3. For any imaginary quadratic field K, there are algebraic num-

bers of each even degree over Q that are badly approximable over K. Specifi-

cally, for any real algebraic number u ∈ [−2, 2], any positive n ∈ Q\NK
Q (K),

and any t ∈ K, the number

z = t+
√
n · u±

√
u2 − 4

2
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is badly approximable.

For instance, the examples in Figures 5 and 6 have t = 0 and u =

24/3/
√
n.

Appendix: Monotonicity of denominators for d = 7, 11

The purpose of this appendix is to prove Proposition 1 for d = 7, 11.

Proofs for d = 1, 3 are found in [?] and a proof for d = 2 in [?] (V II, Satz

11). Monotonicity for d = 7, 11 was stated in [?] without proof (for reasons

obvious to anyone reading what follows). All of the proofs follow the same

basic outline, with d = 11 being the most tedious.

Proof of Proposition 1. For the purposes of this proof, define kn = qn/qn−1;

we will show |kn| > 1. We will also use the notation Bt(r) for the ball of

radius t centered at r ∈ O. When n = 1 we have |k1| = |a1| ≥ 1/ρ > 1. The

recurrence kn = an+1/kn−1 is immediate from the definitions. We argue by

contradiction following [?]. Suppose n > 1 is the smallest value for which

|kn| ≤ 1 so that |ki| > 1 for 1 ≤ i < n. Then

|an| = |kn − 1/kn−1| < 2.

For small values of ai, those for which (ai + V ) ∩ V −1 ∩ (C \ V −1) ̸= ∅,
the values of ai+1 are restricted (cf. Figure 1). More generally, there are

arbitrarily long “forbidden sequences” stemming from these small values of

ai. We will use some of the forbidden sequences that arise in this fashion to

show that the assumption kn < 1 leads to a contradiction.

(d = 7) The only allowed values of an for which |an| < 2 are an =
±1±

√
−7

2
. By symmetry, we suppose an = 1+

√
−7

2
=: ω without loss of

generality. It follows that kn ∈ B1(ω) ∩ B1(0). Subtracting ω = an,

we see that 1/kn−1 ∈ B1(0) ∩ B1(−ω). Applying 1/z then gives

kn−1 ∈ B1(ω − 1) \ B1(0). Since kn−1 = an−1 + 1/kn−2, the only

possible values for an−1 are ω, ω− 1, ω− 2, 2ω− 1, and 2ω− 2. One

can verify that the two-term sequences

ai ai+1

ω − 2 ω
ω − 1 ω
ω ω

are forbidden, so that an−1 = 2ω − 1 or 2ω − 2. We now have either

kn−1 ∈ B1(2ω − 1) ∩B1(ω − 1) if an−1 = 2ω − 1, or kn−1 ∈ B1(2ω −
2) ∩B1(ω − 1) if an−1 = 2ω − 2. Subtracting an−1 and applying 1/z
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shows that an−2 = 2ω− 1 or 2ω− 2 if an−1 = 2ω− 1, and an−2 = 2ω

or 2ω − 1 if an−1 = 2ω − 2.

Continuing shows that for i ≤ n− 1

ki ∈ (B1(2ω − 2) ∪B1(2ω − 1) ∪B1(2ω)) ∩ (B1(ω − 1) ∪B1(ω)) ,

the green region on the left in Figure 7. This is impossible; for in-

stance k1 = a1 ∈ O but the region above contains no integers.

(d = 11) The only allowed values of an for which |an| < 2 are
±1±

√
−11

2
. By symmetry, we suppose an = 1+

√
−11
2

=: ω without loss

of generality. Hence kn ∈ B1(0)∩B1(ω). Subtracting an and applying

1/z shows that kn−1 ∈ B1/2(
ω−1
2
) \ B1(0) and an−1 = ω − 1 or ω. If

an−1 = ω − 1, subtracting, applying 1/z and using the three-term

forbidden sequences

ai ai+1 ai+2

ω − 1 ω − 1 ω
ω ω − 1 ω

ω + 1 ω − 1 ω

shows that an−2 = 2ω or 2ω − 1, with kn−2 ∈ B1(2ω) ∩ B1(ω) or

B1(2ω − 1) ∩B1(ω) respectively.

If an−1 = ω, subtracting and applying 1/z gives an−2 = ω − 2 or

ω−1 with kn−2 ∈ B1/2(
ω−2
2
)∩B1(ω−2) or (B1/2(

ω−2
2
)∩B1(ω−1))\

B1/2(
ω−1
2
) respectively. If an−2 = ω − 1, subtracting an−2, applying

1/z, and using the three-term forbidden sequences

ai ai+1 ai+2

ω − 1 ω − 1 ω
ω − 2 ω − 1 ω

shows that an−3 = 2ω − 2 or 2ω − 1 with kn−3 ∈ B1(2ω − 2) ∩
B1(ω − 1) or B1(2ω − 1) ∩ B1(ω − 1) respectively. If an−2 = ω − 2,

subtracting an−2 and applying 1/z shows that an−3 = ω or ω + 1,

with kn−3 ∈ (B1(ω) ∩ B1/2(
ω+1
2
)) \ B1(0) or B1(ω + 1) ∩ B1/2(

ω+1
2
)

respectively. If an−3 = ω+1, we loop back into a symmetric version

of a case previously considered (namely kn−4 ∈ B1/2(
ω−2
2
) \ B1(0)

and an−4 = ω− 1 or ω− 2). If an−3 = ω, subtracting an−3, applying

1/z, and using the forbidden sequences

ai ai+1 ai+2 ai+3 ai+4

ω − 1 ω ω − 2
ω ω ω − 2 ω

ω + 1 ω ω − 2 ω ω

shows that an−4 = 2ω or 2ω − 1 with kn−4 ∈ B1(2ω) ∩ B1(ω) or

B1(2ω − 1) ∩B1(ω) resepectively.
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Continuing, we find ki for i ≤ n − 1 restricted to the region de-

picted on the right in Figure 7. This region contains no integers,

contradicting k1 ∈ O.

1 1

Figure 7. In the proof of Proposition 1, the assumption kn <

1 with an = 1+
√
−7

2
(left) or an = 1+

√
−11
2

(right) leads to
restricted potential values for ki with i < n (green regions).

□
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