BADLY APPROXIMABLE NUMBER OVER IMAGINARY
QUADRATIC FIELDS

ROBERT HINES

ABSTRACT. We recall the notion of nearest integer continued fractions
over the Euclidean imaginary quadratic fields K and characterize the
“badly approximable” numbers, (z such that there is a C = C(z) > 0
with |2 — p/q| > C/|q|? for all p/q € K), by boundedness of the partial
quotients in the continued fraction expansion of z. Applying this algo-
rithm to “tagged” indefinite integral binary Hermitian forms demon-
strates the existence of entire circles in C whose points are badly ap-
proximable over K, with effective constants.

By other methods, we prove the existence of circles of badly approx-
imable numbers over any imaginary quadratic field. Among these badly
approximable numbers are algebraic numbers of every even degree over
Q, which we characterize. All of the examples we consider are associ-
ated with cocompact Fuchsian subgroups of the Bianchi groups SLs(O),
where O is the ring of integers in an imaginary quadratic field.

INTRODUCTION

A natural generalization of continued fractions to complex numbers over
1+\/—3]
2

b

appropriate discrete subrings O of C, in particular over Z[/—1] and Z [
was introduced by A. Hurwitz, [?]. Let K be one of the Euclidean imagi-
nary quadratic fields and O its ring of integers. We write a complex number
uniquely as [z] + (z) with |z] € O the nearest integer to z and (z) € V,
where V' is the collection of complex numbers closer to zero than to any
other point of the lattice O (with some choice along the boundary of V).
For z € V we iterate the map T'(z) = (1/z), T"(z) =: z,, to obtain the
continued fraction
z = lagp; a1, a9, ... = ap + — |1/2;] = a;4q € O,
a2+

and convergents p, /¢, = [ao; a1, ..., anl.

It is known that the convergents p,/q, from the above algorithms all
satisfy

|z _pn/QHl < C/|Qn|2

for some C' > 0. See Proposition [2| below for a proof and Theorem 1 of
[?] for the smallest values of C. This is a simple algorithmic realization
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of Dirichlet’s theorem that for irrational z € C, there are infinitely many
p/q € K satisfying the above inequality. A number z is badly approzimable
if the exponent of two is the best possible, i.e. z is badly approximable if
there exists C’ > 0 such that for any p/q € K we have

12 —p/q| > C"/]ql*.

It is well-known that a real number is badly approximable over Q if and only
if its partial quotients a,, are bounded. We show below (Theorem |[If) that
this is the case for nearest integer continued fractions over K as well, relying
on the work of Lakein [?] who investigated the quality of approximation of
the nearest integer convergents.

It is a folklore conjecture that the only real algebraic numbers with
bounded partial quotients in their continued fraction expansion are the qua-
dratic irrationals, whose partial quotients are eventually periodic. However,
it is shown in [?], using methods expanded upon in this paper, that the
analogous conjecture does not hold exactly over Q(y/—1). There are exam-
ples of algebraic numbers of relative degree greater than two over Q(v/—1)
whose nearest integer continued fraction expansions have bounded partial
quotients. Examples of this phenomenon were first detailed by Hensely, cf.
[?] 5.6. While these examples are not quadratic over Q(v/—1), they are as-
sociated with closed geodesic surfaces in the Bianchi orbifold S Ly (Z][4])\H?
in the same way that real quadratic irrationals are associated to closed
geodesics on the modular surface SLy(Z)\H? .

The first objective of this paper is to make explicit the connection (im-
plicit in [?] for Q(v/—1) and explicit in [?] for Q(v/—=3)) “badly approximable
<= bounded partial quotients” for nearest integer continued fractions over
K, where K is any of the Euclidean imaginary quadratic fields, and to ex-
plore a class of complex numbers with “atypical” behavior, namely those
lying on K-rational circles or lines, which include examples of algebraic
numbers with bounded partial quotients (extending the results of [?]). In

particular, we prove the following.

(Theorem A number z € C is badly approximable over K if
and only if its partial quotients are bounded in norm. Moreover an
explicit approximation constant is given as a function of the bound
on the partial quotients.

(Theorem If z € C lies on a K-rational circle or line, (i.e.
(z,1) is a zero of the indefinite integral binary Hermitian form form
H(z,w) = AzZ — B2w — Bzw + Cwz, A,C € Z, B € O), then its
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remainders z, = T"(z) are “atypical” in that they lie on a finite
number of lines and circular arcs (cf. Figures 5] [6).

(Corollary [1], Corollary Moreover, if the rational circle on
which z lies does not contain any rational points, (i.e. the indefinite
integral binary Hermitian form H is anisotropic), then the remain-
ders z, are bounded away from zero and the partial quotients a,, are
bounded in norm. We give explicit bounds on a,, z, in terms of H
and K.

(Corollary There are algebraic numbers of every even degree
over Q that are badly approximable over K (with effective approxi-
mation constant). We also provide a characterization of these badly
approximable algebraic numbers.

The second objective of this paper is to show that the main results above
hold over every imaginary quadratic field, possibly non-Euclidean. One ap-
proach is elementary - a variation on Liouville’s theorem concerning the
approximation of algebraic numbers (Theorem . The other is dynamical
- instead of using continued fractions, we employ a version of the Dani
correspondence (Theorem [4]) characterizing badly approximable numbers in
terms of bounded geodesic trajectories in the Bianchi orbifolds. In particular

we have the following.

(Theorem [3, Theorem [6, Corollary [3)) Let K be any imaginary
quadratic field. If z € C lies on a K-rational circle without rational
points (i.e. H(z,1) = 0 for an anisotropic indefinite binary Hermitian
form with coefficients in K') then z is badly approximable over K.
In particular, there are algebraic numbers of every even degree over
Q that are badly approximable over K, which we characterize.

In the mathoverflow post [?], which inspired this work, the question is
raised as to whether or not the examples of [?] exhaust the badly approx-
imable algebraic numbers over Q(y/—1). Obvious ways to stay out of the
cusps of SLy(O)\H? are to consider closed geodesics (anisotropic indefinite
integral binary quadratic forms, i.e. quadratic irrationals) or compact geo-
desic surfaces (anisotropic integral indefinite binary Hermitian forms, giving
the examples we explore in this paper). Whether badly approximable num-
bers algebraic over K must be associated to compact geodesic curves and
surfaces in the Bianchi orbifolds is an interesting question (an extension of

the folklore conjecture above), although it is not clear to the author why
this should be so.
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NEAREST INTEGER CONTINUED FRACTIONS OVER THE EUCLIDEAN
IMAGINARY QUADRATIC FIELDS

Let K = K; = Q(v/—d), d > 0 a square-free integer, be an imaginary
quadratic field and O = O, the ring of integers of K. For d = 1,2,3,7,11
the Oy are Euclidean with respect to the usual norm |z|* = 2z, noting that
the collection of disks {z € C: |z — r| < 1},¢c0 cover the plane, and in fact
are the only d for which O, is Euclidean with respect to any function (cf.
[?7] 4). Consider the open Voronoi cell for O, C C, the collection of points
closer to zero than to any other lattice point, along with a subset £ of the
boundary, so that we obtain a strict fundamental domain for the additive

action of O on C,
V=Vi={z€C:lz|<|z—7r], re O}UE, € CIV.

For the Euclidean values of d, and only for these values, V; is contained in
the open unit disk. The regions Vj are rectangles for d = 1,2 and hexagons
for d = 3,7,11; see Figure[l] For z € C, we denote by |z] € O and (z) € V
the nearest integer and remainder, uniquely satisfying

z=|z] +(2).
We now restrict ourselves to Euclidean K to describe the continued frac-
tion algorithm and applications, but we will return to arbitray imaginary
quadratic K in a later section.
We have an almost everywhere defined map 7' =T} : V; — V, given by
T(z) = (1/z). For z € C define sequences a,, € O, z, € V, for n > 0:

ap = |z],20 =2 —ap = (2),

1 1 1
an:{ —‘,zn:< >: —a, =T"(2).
Zn—1 Zn—1 “n—1

In this way, we obtain a continued fraction expansion for z € C,

z=ay+ =: [ag; ai, az, ...,

e
where the expansion is finite for 2 € K. The convergents to z will be denoted
by
Pn
dn
where p,, g, are defined by

Pn Pn—1 _ Qo 1 Gy, 1
qn  Qn-1 - 1 0 1 0 )

= [ao;ala ce. aan]7
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Here are a few easily verified algebraic properties that will be used below:

qnz — P :(—1)n20' .z Z:M

" " " %L"‘an?m—l’
n _1n n n—

S N ) (N Sy )
& Gt G/ q) G Gn-1

The first equality proves convergence p,/q, — z for irrational z and gives
a rate of convergence exponential in n. A useful parameter is p = py, the

radius of the smallest circle around zero containing V,

_VIEd o 14d
Pd = 9 5 _77pd_4\/a

, d=3,7,11.

We note that |a,| > 1/p4 for n > 1, which is easily verified for each d.
Taking the transpose of the matrix expression above, we have the equality

n 1 atg.
il el

n—1 n—
1 +%

Ap; Qp—1, - - - 70'1]

as rational numbers (indicated by the overset “alg.”), but this does not hold
at the level of continued fractions, i.e. the continued fraction expansion of
(n/Gn—1 is not necessarily [an; a,—1,...,a1]. See Figure [2|for the distribution
of gn_1/qn, for 5000 random numbers and 1 < n < 10, over Q(v/—1) and
Q(v/=3). The bounds |g,12/q,| > 3/2 are proved in [?] and [?] for d = 1
and 3 respectively.

//:::L\ P G,
N
=1 <£vl>

FIGURE 1. 9V and translates (blue), (V™) (red), and unit
circle (black) for d =1,2,3,7,11.
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FIGURE 2. The numbers ¢,_1/¢,, 1 < n < 10, for 5000 ran-
domly chosen z over Q(v/—1) and Q(+/—3).

Monotonicity of the denominators g, was shown by Hurwitz [?] for d =
1,3, Lunz [?] for d = 2, and stated without proof in [?] for d = 1,2,3,7,11.
As this is a desirable property to establish, we outline the proof for the
cases d = 7,11 in an appendix. The proofs are unenlightening and follow

the outline for the simpler cases d = 1,3 in [?].

Proposition 1. For any z € C, the denominators of the convergents p,/qs,

are strictly increasing in absolute value, |qn—1| < |¢n|.

Proof. See the appendix. O

To conclude this section, we record the following lemma, which is used

in the proof of Theorem , applied to the inverse of g, = Iq) " Z ") for
n n—1

which ¢,(00) = pn/q¢n and g, *(00) = —¢,_1/q, as depicted in Figure

Lemma 1. Let w = g(z) = %IZ with a,b,c,d € O, |ad — bc| = 1, and
g(p/q) = oo (i.e. p/q = —d/c). Then the disk D = {z € C : |z — p/q| <
C/lq|*} gets mapped via g to the region g(D) = {w € C: [w—a/c| > 1/C},

the exterior of the disk of radius 1/C centered at g(co).

Proof. We have

w_a/c_az—i-b_g —det(g)
S eztd e A(z+dfe)
= afel = o 1

elPlz+d/el a2 —p/al
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so that

lw—a/c| >1/C <= > 1/C <= |z —p/q| < C/lq*.

41?2z — p/q
O

Some references for nearest integer continued fractions include: [?] (some
generalities and d = 1,3), [?] 46 (d = 1,2,3), [?] (d = 1,2,3,7,11), [?]
Chapter 5 (d = 1), and [?] (a general approach including some properties
of the cases we consider).

BADLY APPROXIMABLE NUMBERS OVER THE EUCLIDEAN IMAGINARY
QUADRATIC FIELDS VIA NEAREST INTEGER CONTINUED FRACTIONS

For each of the Euclidean imaginary quadratic fields K there is a constant
C' > 0 such that for any z € C there are infinitely many solutions p/q € K,

(p,q) =1 to
() |z —p/ql < C/lql,

by a pigeonhole argument for instance (cf. [?] Chapter 7, Proposition 2.6).
The smallest such C are 1/\/5, 1/\/5, 1/\4/@, 1/{‘/@, and 2/\/3 for d =
1,2,3,7,11 respectively (for references, see the Introduction to [?]). We can
obtain rational approximations with a specific C satisfying inequality (])
using the nearest integer algorithms described above. The best constants

coming from the nearest integer convergents, sup, . {|¢n|*|z — pn/gnl}, can
be found in Theorem 1 of [?].

Proposition 2. For z € C\ K, the convergents p,/q, satisfy
1
12 = Pn/tn| £ —F——73,
(1/p = 1Dlgn/?
i.e. we can take p/q = pn/q, and C' = rpp in the inequality ().

Proof. Using simple properties of the algorithm and the bounds 1/z, € V!,
|Gn-1/Gn| < 1, we have

|2 pu/ail ! <1t
Z = Pn/ln| = < .
2|20 + Gt /an| ~ laal2(1/p— 1)

g

We say z is badly approximable over K if there is a C’ > 0 such that

1z —p/ql = C'/|q?
for all p/q € K, i.e. z is badly approximable if the exponent of two on
lg| is the best possible in the inequality (]) We will show that the badly

approximable numbers are characterized by the boundedness of the partial
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quotients in the nearest integer continued fraction expansion, analogous to
the well-known fact for simple continued fractions over the real numbers.
First a lemma showing that the nearest integer convergents compare well

with the best rational approximations.

Lemma 2. There are effective constants o = oy > 0 such that for any
irrational z with convergents p,/q, and rational p/q with |g,—1] < |q| < |gn]
we have

lgnz — pn| < algz — pl.

Proof. Write p/q in terms of the convergents p,/q¢n, Pn_1/qn—1 for some

s,te O

P\ _ [ Pn Pn ) _ [ PnS+tDPnat

q qn Gn-—1 14 qns + Qn—lt .
If s =0, then p/q = pr_1/qn_1, impossible by the assumption |g,_1| < |q|.
If t =0, then p/q = p,/qn and the result is clear with @ = 1. We may
therefore assume [s|, [t| > 1. We have
P p‘ ‘ P ’ P
dn q dn q4n 4n
noting that ¢ = (—1)"(pg, — pnq) by inverting the matrix relating p, ¢, s,
and t.

Define § by |t| = d|qu|?|z — pn/qn|, so that

1
192 = Pl = ez — pal-
10— la/anl|

|t

Y

Z ‘

If > 1, then we have our a.. A lower bound for ¢ is
— i >

|Qn|2|2_pn/Qn| -
The infimum above is calculated in [?], Theorem 1, where it is found to be
( 1 d=1,

486—/3 __ _
56 — 0.78493 ... d=2,

. _ 7 \/ﬁ B B
inf{(|gnlgnz — pul) '} = VIR = 1.28633... d=3,

\/%:0.92307... d=1,

/RS TS — .50627 ... d = 11
\ o 59627 .. .

The smallest integers of norm greater than one in O, have absolute values
of V2 (for d = 1,2,7) and v/3 (for d = 3,11). Multiplying these potential
values of |t| by the above constants gives values of § greater than one, so

J

t]inf {(lgul 427 — pal) ).

that |0 — |¢/qn|| > |0 — 1| is bounded away from zero. Hence we are left to
explore those rationals p/q with [¢| = 1.



BADLY APPROXIMABLE NUMBERS 9

For general t we have

Pn + ZnPn—1 Pn + ZnPn—1
Z—pPp=q——— — p = nS—l—tn, —_— — nS—l—tn,
1 b qqn + Znfn—1 P (q 1 1) An + Zndn—1 (p b 1)
_ (=1)"(sz0 — 1)
dn + Zndn—1
and
—1)"
gnZ — Pn = Ma
Gn + ZnGn—1

and we want « > 0 such that

lgnz — pn| < alqz — pl.

Substituting the above we have
|20 |2ns — t|
‘Qn + Znanly - ‘Qn + Znanll

gz — pn| < algz — p| <=

e —— < a.

|s — /2]

If [s—t/z,] <1/2 and [t| = 1, then s/t = a,; since s/t € O is the nearest
integer to 1/z,. However (with |¢,—1| < |q| < |gn|, ¢ = s¢n + tqn-1),

Gn—-1

n

qn—1
dn

L)<

— Y
an

Qn—l—l
dn

t qn

— _ 3+Qn—1 _

Ap41 +

:‘s—i—t

and we obtain a contradiction if |s —¢/z,| < 1/2 and || = 1. Hence when
|t| =1 we can take a = 2.

In summary, we can take

241421... d=1
9.08592... d=2
Qg = 2 d=3 5
3.27419... d=17
30.51490... d=11
taking the maximum of 2 (covering the case |[t| = 1) and the bound on

No attempt was made to optimize the value of « in the lemma. The above
result for d = 1,3 and a = 1 is contained in Theorem 2 of [?]. Another proof
for d = 1 and aw = 5 is Theorem 5.1 of [?], and a proof for d = 3, a = 2
can be found in [?]. The purpose of the above lemma is to establish the
following proposition (which for d = 3 is Corollary 1.3 of [?]).

Theorem 1. A number z € C\ K is badly approzimable if and only if

its partial quotients a,, are bounded (if and only if the remainders z, are
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bounded away from zero). In particular, if |a,| < 8 for alln and p/q € K,
then |z — p/q| > C"/|q|* where

B 1

GRS CETES)

Proof. If z is badly approximable, then there is a C’ > 0 such that for each
2

!

convergent p,/q, to z, the disk |w — p,/q,| < C"/|g.|? does not contain z.

Mapping p,/q, to co via g, ', where

— Qo 1 Qn, 1 — Pn  DPn-1
el o)l o G Gt )
maps the disk |w — p,/q.] < C"/|gn|* to the region |w + ¢,_1/q.| > 1/C",

centered at g, ' (00) = —@n_1/qn (cf. Lemmall]). Because g, '(2) is inside the
disk of radius 1/C" centered at —g,—1/¢, and | — ¢,—1/q,| < 1, we have

Api1 + 2py1 = 1)z, = g;l(z),
|ani1| < |znia| + 19, (2) < p+1+1/C".

Hence a, 1 is bounded. See Figure [3| below for an illustration.
By Lemma [2 for z and p/q with |g,—1] < |g| < |gs| we have

2
P <a .- 2L Sa’z—]—) ]q]2 n
n q| | q| |9nl? | gn-1
2
=« Z—]—) |q|2 an+qn2‘
q| |an| Gn—1
p| lq?
< 2_5 |qn’2(\an|+1),
4P 2 = 22| < a(lan] + 1)jg? z—g’\.

This shows that if z has bounded partial quotients, then z is badly ap-
proximable if and only if it is badly approximable by its convergents. For
approximation by convergents, we have

Pn 1

- q_n B |Qn|2|zr:1 +Qn—1/qn|
1 1

= > ,
’qn’2|an+1 + Zpt1 T+ anl/Qn| - an|2(|an+1| +p+ 1)
showing that if the partial quotients of z are bounded, then z is badly

approximable by convergents and therefore badly approximable. For an ap-
proximation constant, the above discussion gives |z —p/q| > C"/|q|* for any

p/q € K where
1

ECECETESY
and [ is an upper bound for the |a,|. O

C/
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FIGURE 3. Over Q(v/—1), we have the points p,, /¢, = gn(o0)
and —q,_1/q, = g, *(c0), along with the unit circle and its
image under g, (black), circles of radius 1/C” and C'/|q,|*

(red), and the lines defining V' and their images under g,
(blue).

THE CONTINUED FRACTION EXPANSIONS OF POINTS ON K -RATIONAL
CIRCLES

In this section we focus on producing z with bounded partial quotients
extending the results of [?] to all of the Euclidean imaginary quadratic fields
K,4. We will show that there are many circles in the complex plane all of
whose points have bounded partial quotients.

We will consider equivalence classes of indefinite integral binary Hermit-

ian forms. A binary Hermitian form H(z,w) is a function of the form

o A -B z
H(27w>_(zaw)<_§ C )(w)
= A2z — Bzw — Bzw + Cuww, A,C €R, BeC.

We denote by A(H) the determinant det(H) = AC — | B|? of the Hermitian
matrix defining H. The binary Hermitian form H is integral over K if the
matrix entries of H are integers, i.e. A,C € Z and B € O. The form
is indefinite (takes on both positive and negative values) if and only if
A(H) < 0. The zero set of an indefinite H on the Riemann sphere P!(C) is
a circle (using homogeneous coordinates [z : w| on the projective line)

Z(H) :={[z:w] € PC): H(z,w) = 0}
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which is either a circle or a line in the chart C, = {[z : 1] € P!(C)}

[ A{z:|lz=BJAPP =-A/A%} i A#O,
Z(H)NC. = { {z:Re(Bz) =C} if A=0.
We will be interested in equivalence of forms over GLy(Q), where g €
GLy(C) acts as a normalized linear change of variable on the left, YH =
| det(g)|(g~)*Hg™" (here x denotes the conjugate transpose), and also with

the Mobius action of GLy(C) on P'(C),

g.[z:w]:[az+bw:cz+dw]>g:<ccl Z)

We collect some easily verified facts in the following lemma.

Lemma 3. The following hold for the action 9H = |det(g)|(¢g”*)*Hg™!,
g € GLy(C), on indefinite binary Hermitian forms.

The action of GLo(C) is determinant preserving, i.e. A(YH) = A(H).

The map H — Z(H) is GLy(C)-equivariant (i.e. g-Z(H) = Z(H) ).
Furthermore, an integral form H is isotropic (i.e. H(z,w) = 0 for some
[z : w] € PY(K)) if and only if —A(H) is in the image of the norm map
N(g K — Q.
Proof. For g € GLy(C) we have

| det(g)|* det(H)

det(9H) = | det(g)|? det((g~1)* Hg™) T — det(H).

The second bullet follows from
((z@)g")(“H)(9(2 w)") = | det(g)|((z @)g")((g~") Hg™)g(z, w)'
= |det(g)|H(z,w).
Finally, the factorization (assuming A # 0 else —A = | B|? is a norm and
H(1,0)=0)
AH(z,w) = |Az — Bw|* + Alw|?
shows that —A is a norm if and only if there are z,w € K not both zero

with H(z,w) = 0. O

Suppose H is an indefinite integral binary Hermitian form of determinant
A and z = [ag; a1, .. .| satisfies H(z,1) = 0. Define H,, = 9 H, where

1_ (0 1 0 1 _ [ Pn Pn-
In = ( 1 —an 1 —ao » I = n  Gn—1 ’

with notation
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In particular, we have

An = H(pm Qn)a
Cn == H(pnfla QHfl) = Anfl-

Note that H,(1,z,) = 0 for all n > 1 because g,(1/z,) = 2.

The main observation for us is the following theorem, which is essentially
Theorem 4.1 of [?] generalized to the other Euclidean K and arbitrary
integral binary Hermitian forms. One could follow the inductive geometric
proof of [?], but we give an algebraic proof analogous to one demonstrating
that real quadratic irrationals have eventually periodic simple continued
fraction expansions, e.g. [?], Theorem 28. In fact, we may as well note that
the proof of Theorem [2| below applies mutatis mutandis to integral binary
quadratic forms over K, showing that the continued fraction expansions of
quadratic irrationals over K are eventually periodic as expected.

Theorem 2. If [z : 1] is a zero of an indefinite integral binary Hermitian
form H, then the collection {H, : n > 0} is finite.

Proof. In what follows, A = A(H) = A(H,). The inequality

Z_pn Qng
2= P/l < 1

allows us to write
~
Pn = qnz + q_n7 |7n| <K

n

where £ = sup,,{|¢a||¢nz — pn|} < 2 is the best constant from [?] used in
the proof of Lemma [2]
Substituting this into the formula for A, above gives

An - H(an + 'Vn/Qn’ Qn>

Yn
n

4n dn

n dn

—_ 2 _
= |g.[*H (2, 1) + A <qn—zﬁ b el 4 ) ~ B, _ Iy

Tn

=4 (qn—z’ﬁ - guaat | 22

4n

4n

n dn

2 _
dn
and

|A,| < |A|R? + 2| Bk + 2|Al|2|k < |A|K? + 4| Bk + 26V —A
< max{|A|, |A|k* + 4| B|r + 2sV/—A} =1 1.
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(We take the max above so that the parameter 7 is useful for bounds on z,,
a, when n = 0, cf. Corollary [2f below.) From this it follows that

|Cal = [An1| <,
Bo| = /ACr — A < /2 — A,

so that there are only finitely many possibilities for H,. O

By requiring H to be anisotropic, we bound the finitely many circles

Z(H,) away from zero and infinity, obtaining bounded partial quotients.

Corollary 1. If [z : 1] is a zero of an anisotropic indefinite integral binary
Hermitian form H, then z has bounded partial quotients in its nearest integer

continued fraction expansion (and is therefore badly approximable over K ).

A quantitative measure of the “hole” around zero (see Figures , @ can
be given in terms of the determinant A = det(H) of the form, which in
turn bounds the partial quotients and controls the approximation constant

|z —p/q| > C'/|q|*.

Corollary 2. If z € Z(H) is a zero of the anisotropic integral indefinite
binary Hermitian form H of determinant A, then the remainders z,, n > 0,

are bounded below by

|2n| >

VA \/ 2 —
with partial quotients bounded above by
lan] < p+V=A+ /2 - A

where n is as in the proof of Theorem[d. From these bounds, one can produce
aC'(H) > 0 such that |2—p/q| > C"/|q|? for allp/q € K and [z : 1] € Z(H).

Proof. We use the notation of Theorem [2| Since 1/z, lies on Z(H,) N C,,
which has radius v/ —A/|A,| and center B, /A,, we have

1 v/ —
— < < V2 —A+V=A,
|2n] ' \A \
25| >
V- AJr\/n -
We also have .
Apy1 + Znpl =

so that

1
|an+1|<|zn+1|+_<p+\/ A"f'\/77 -

|25
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From Theorem [1] it follows that |2 — p/q| > C"/|q|? for all p/q € K, where
B 1
af+1)(B+p+1)

c’ B=p+V-At - A

g

We conclude this section with an example of the above over Q(7). The

number
V3eX 5 = [142i; —14i, —3,242i, —1+3i, —2, —2i, 2420, 3—1, —2+2i, .. ]

is a zero of the anisotropic indefinite integral binary Hermitian form H(z, w) =
2|2 — 3|w|?. Data from 10,000 iterations of the continued fraction algorithm
and bounds from Corollary [2| are:

max {|a,|} =4.47213... <7.22749 ...,

0<n<10000
min_ {|z|} = 0.25201 ... > 0.15336.. .,

0<n<10000
min  {|¢.(¢.z — pn)|} = 0.28867... > 0.00563. ...

0<n<10000

There are 64 distinct partial quotients a,, and 56 distinct forms H,,. The re-
mainders z, are shown on the left in Figure [4|below. The remainders appear
to have different densities along the arcs Z(H,) NV, spending more time
on the circles of radius v/3 (show in black in Figure [4)) than on the circles
of radius v/3/2 (shown in red in Figure [4). The bound on the normalized
error seems to be rather poor, but it is interesting to note that the minimum
0.28867 ... above agrees with ﬁ?} to high precision (for which we give some

explanation in the next section).

FIGURE 4. The first 10,000 remainders z, of z = /3¢™/5
over Q(7) (left) and the arcs Z(H,) NV (right).
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BADLY APPROXIMABLE CIRCLES OVER ARBITRARY IMAGINARY
QUADRATIC FIELDS A LA LIOUVILLE

The fact that all of the points on a K-rational circle without rational
points are badly approximable holds for any imaginary quadratic K, not
only those that are Fuclidean. Here we give an elementary proof along the
lines of Liouville’s theorem. For more details on the approximation proper-
ties of quadratic irrationals in Z(H), see [?], Theorem 1.1.

Theorem 3. Let H(z,w) = AzzZ— Bzw— Bzw+Cww be a binary Hermitian
form that is indefinite, anisotropic, and integral. Let A(H) = AC —|B|? < 0
be the determinant of H and

p(H) = min{|H(p, )| : (0,0) # (p,q) € Ok} >0
its absolute minimum. If H(z,1) = 0, then z is badly approximable with

p(H)
lq(qz — p)| > N TP

for any p/q € K with |z —p/q| < e. Hence

. p(H)
lim inf z— :p,q € Ok, 0} > ————.
|qHC>Q{|617(q PP g €0k q# 0} 2o A
Proof. We will apply the mean value theorem to an f : R? — R in the form
0 0
f(b1,ba) — flay, a2) = (8_£(Cl’02>’ 8—5(01>Cz)> (b1 — a1, by — a)

for some (cq, ¢2) on the line segment joining (ay, ag) and (by, b2). By the mean
value theorem, the Cauchy-Schwarz inequality, and because H(z,1) = 0, we
have

|H(p/q,1)| = |H(p/q,1) — H(2,1)| < Cclz —p/al, Cc =2/ =A(H)+2|Ale,
for any p/q € K with |z — p/q| < e. Multiplying by |q|? gives
0 < u(H) < |Alp|* = Bpg — Bpg + Clg|’| < Cclal*|z — p/dl,
since H is anisotropic and integral. Therefore z is badly approximable with
lq(qz — p)| = p(H)/Ce > 0.

Letting € tend to zero gives

. p(H)
lim inf —p)|ip,g €Ok, q# 0} > ————
minf{lg(gz —p)| : p.q € Ox,q # 0} 2 o A
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BADLY APPROXIMABLE CIRCLES OVER ARBITRARY IMAGINARY
QUADRATIC FIELDS VIA THE DANI CORRESPONDENCE

In this section we give another proof, dynamical in nature, that all of
the points on a K-rational circle without rational points are badly approx-
imable. We no longer have continued fractions at our disposal, but we have
a characterization of badly approximable z obtained from consideration of
a geodesic trajectory in SLy(O)\H? “aimed” at z, a variation of a result of
Dani ([?]). This is a justification for the intuitive equivalence of “badly ap-
proximable” and “staying out of the cusps” (or “bounded partial quotients”
from continued fractions).

If K has class number h(K), then SLy(O)\H? has h cusps, i.e. there are
h orbits for the action of SLy(O) on P'(K) ([?] Chapter 7, Theorem 2.4).
It therefore makes sense to discuss approximating a complex number with
rationals representing different ideal classes. However, we will continue to

use the notion of badly approximable in the form
there exists C’ > 0 such that for all p/q € K, |z —p/q| > C"/|q|*.

We begin with a brief discussion of the spaces under consideration. The
group SL,(C) acts transitively on three dimensional hyperbolic space H?
(as a subset of the real quaternions) via fractional linear transformations:

H={(=2+tj:2€C, 0<teR}, g-C=(aC+b)(cC+d)".

The stabilizer of j € H? is SUy(C), double covering SO3(R) = SUy(C)/{=+1}.
Using the basepoint 7 € H? (and some choice of frame at j, of which we
will have no need), we make the following identifications:

SLy(C)/SU,(C) I,
PSL,y(C) oriented orthonormal frame bundle of H?,
SLy(O)\SLy(C)/SUL(C) the Bianchi orbifold SLy(O)\H?,
SLy(O)\SLy(C) oriented orthonormal frame bundle of SLy(O)\H?.

For example,

1 720 .
< 0 i ) < 60 ot/ )SUQ(C) 2+ ey

We also note that the projection SLy(O)\SLy(C) — SLy(O)\H? is proper
and closed.
The following theorem characterizes badly approximable numbers by the

boundedness of a (framed) geodesic trajectory.
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Theorem 4 (Dani correspondence). For z € C, define

- {(31)(7 1) reefeswee

The trajectories
SLy(0) - . € SLy(0)\SLy(C),
W, :=SLy(0)-Q, - SUy(C) C SLy(O)\H?,

are precompact if and only if z is badly approximable.

The Dani correspondence as stated above follows from a version of Mahler’s

compactness criterion.

Theorem 5 (Mahler’s compactness criterion). Let Q C SLy(C). The set
SLy(O) - Q C SLy(O)\SLy(C) is precompact if and only if

inf{|| Xglla: 9 €Q, X =(21,22) € 0*\ {(0,0)}} >0,

where || X||a = /|z1]? + |x2|%.

For completeness, we give a proof of Theorem |5/ at the end of the section.

We now give a proof of the Dani correspondence as stated in Theorem [4

Proof of Dani correspondence. For the proof, note that
0% Q. ={(e"'q.e'(p+q2) : t =20, (¢,p) € O°}.

Suppose z is badly approximable with |q(¢z + p)| > C' for all p/q € K.
If there exists ¢t > 0 and p/q € K with |[(e7q,e'(qz + p))|l2 < VC’, then
taking the product of the coordinates gives

le™'qe' (qz + p)| = la(gz +p)| < C',

a contradiction. Hence inf{||Xgl|ly: g € Q., X € O*\ {(0,0)}} > /C" and
SLy(0) - Q, is precompact by Mahler’s criterion.

If z is not badly approximable, then for every n > 0 there exists p, /g, €
K such that |g,(g.z + pn)| < 1/n% If ¢, is such that e~|g,| = 1/n, then
€ (anz + pa)| = nl@n(gnz + o)l < 1/n and [[(e7"qn, € (qnz + pu))ll2 <
V2/n. Therefore SLy(0)-€2, is not contained in any compact set by Mahler’s

criterion. The result for w, follows from the invariance || Xk|s = || X]|2 for
X € C?, k € SU,(C), and the fact that the projection SLy(O)\SLy(C) —
SLy(O)\H? is proper and closed. O

One obvious way for the trajectory w, to remain bounded is for it to be
asymptotic to a compact object, such as a compact geodesic surface. The

following lemma (essentially compactness of the quotient of unitary groups
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SU(H,Og)\SU(H,C), which follows from Mahler’s criterion) provides a
plethora of compact geodesic surfaces in the Bianchi orbifolds SLo(O)\H?.

Lemma 4 ([?], 9.6). Let H be an integral indefinite binary Hermitian form.

The orientation preserving stabilizer of the zero set Z(H),

g-Z(H)=Z(H) and
Stab®™ (Z(H)) = g € SLy(O) : g preserves the components of 3 ,
PYC)\ Z(H)

is a maximal non-elementary Fuchsian subgroup of SLy(O). If H is anisotropic,
then Stab™ (Z(H)) is cocompact. In particular, if P(H) C H3 is the geodesic
plane with boundary Z(H), then the image of P(H) in SLy(O)\H? is com-

pact for anisotropic H.
Together, Lemma [4] and Theorem [ imply the following.

Theorem 6. Let K be any imaginary quadratic field and H an anisotropic
indefinite K -rational binary Hermitian form, i.e.
H = A2z — Bzw — Bzw + Cuww, A,C €Q, B€ K,
0<—A(H)=BB— AC & N} (K).
If z€ C, H(z,1) =0, then z is badly approzimable over K, i.e. there exists
C’" > 0 such that for all p/q € K, we have |z — p/q| > C'/|q]*.

Proof. Let m denote the projection 7 : H® — SLy(O)\H?. The circle Z(H) is
the boundary at infinity of a geodesic plane P(H) (a hemisphere orthogonal
to C C OH?®). The geodesic ray

Q.- SU(C) ={z+e?j:0<t < o0}
is asymptotic to P(H) as they share the point z at infinity. Since 7w does not

increase distances and m(P(H)) is compact by Lemma [d] 7(Q, - SU5(C)) =
w, is bounded in SLy(O)\H?. By Theorem , z is badly appoximable. [

We now give a proof of Mahler’s criterion Theorem [5 in this setting,

reducing it to the following standard version over Z.

Theorem 7 ([?], Theorem 2). Let Q@ C GL,(R). Then GL,(Z) - Q C
GL,(Z)\GL,(R) is precompact if and only if the following two conditions
are satisfied:

sup{| det(g)| : g € Q} < oo, inf{[|Xg|2:9€Q, X €Z"} >0,

where | X |2 = /23 + ...+ 22 for X = (21,...,2,) € R". In other words,
the lattices generated by the rows of elements of 1 must have bounded co-

volume and no arbitrarily short vectors.
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Proof of Mahler’s criterion. Choose an integral basis for O, say 1 and w =

DKJFT VD for concreteness, where D is the field disciminant,

Do — —d, d=3mod4
E=Y —4d, d=1,2mod 4 -

We have a homomorphism
r s

¢:C— My(R), z — ( sPxl=Dr) oy Dy

), Z =T+ sw,
4

taking a complex number z to the matrix of multiplication by z in the our
integral basis. This extends to a homomorphism

® : SLy(C) — SLy(R), ( 5,11 5122 > = ( %b((ﬁ)) géj;)) ) ’

with ®(SLs(C)) N SLy(Z) = P(SL2(O)). Hence we obtain a closed embed-
ding
O SLy(O)\SLy(C) — SLy(Z)\SLy(R).
One can easily verify that the bijection
U:C* = R, (a+bw,c+dw)— (a,b,c, d)
is S Ly(C)-equivariant, i.e.
U((a+ bw,c+ dw)g) = (a,b,c,d)®(g), g € SLy(C),
and that the norms ||[¥(-)||2, || - ||2 are equivalent on C?:
ROz < - lla < R-NWC) |2,

where

1/2
Ry = 2
- (1+Iw|2i|1+w2|)

are the radii of the inscribed and circumscribed circles of the ellipse |a +
bw|*> = 1. Applying the standard version of Mahler’s criterion (Theorem
above) to ®(£2) gives the result. O

For a generalization of Mahler’s criterion and the Dani correspondence
tailored to simultaneous approximation over number fields which includes

what is presented here, see [7].

EXAMPLES OF BADLY APPROXIMABLE algebraic NUMBERS OVER ANY
IMAGINARY QUADRATIC FIELD

In this section, we emphasize the fact that there are many algebraic
numbers satisfying the hypotheses of Corollary [I] and Theorem [ and give

a characterization of these numbers.
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For z such that |z]* = s/t € Q is not a norm from K, the anisotropic

integral form shows that z is badly approximable. This essen-

t 0
0 —s
tially exhausts all of the examples we've given as we can translate an integral
form by a rational to center it at zero, then clear denominators to obtain

an integral form as described, i.e.

(A -BY (1 -BJA s (A0
H‘(—E C)’g_(o 1 )’A'H_<0 AC—BE)'

For some specific algebraic examples, consider quadratically scaled roots
of unity z = y/n¢ for |2|> = n € Q not a norm, or the generalizations of
examples from [?], z = /a+V Va2 —nfora € Q, Va2 < n, and n = |z|?
not a norm. See Figures [f] [0 for visualizations of the orbits of algebraic

numbers satisfying |z|? = n for various n and d = 1, 3.

FIGURE 5. 20,000 iterates of T" for z = 2 + \/m over
Q(v/—1) with n = 4,5,6,7.

FIGURE 6. 10,000 iterates of T" for z = 2 + \/m over
Q(v/=3) with n = 2,3,4,5.

We would like to characterize the badly approximable algebraic numbers
captured above. One such characterization comes from a parameterization

of the algebraic numbers on the unit circle (taken from the mathoverflow
post [?]).



22 R. HINES

Lemma 5 ([?]). The algebraic numbers w on the unit circle, ww = 1, are
those numbers of the form
utVur—4
2
where u is a real algebraic number in the interval [—2,2]. If u # £2, the

w =

minimal polynomial f of w is
[ty =t"g(t+1/1)

where g(t) is the minimal polynomial of u, deg(g) = m. In particular, the

degree of f is even.

Proof. We know that w,w = 1/w have the same minimal polynomial f(z) €
Q[z], say of degree d. One can deduce that x¢f(1/z) = f(z) so that f(z) is
palindromic (if f(z) = >, fez® then f;_r = fi) and since the roots come
in reciprocal pairs, d is even. The even degree palindromic polynomials are

of the form f(z) = 2%?g(x + 1/x) for some polynomial g

d d/2
f(x) = kawk = xd/Qka(xk +1/2")
k=0 k=0
d/2
=2 | r(e+1/2)+ ) fulz + 1/2)F
k=0

/2
= 2Pg(x 4+ 1/2), g(x) =r(x) + Y fra,
k=0

noting that the difference (z+1/2)* — (¥ +1/2%) is a polynomial in z+1/x
by symmetry of the binomial coefficients. The roots of the even degree
palindromic f on the circle double cover the roots of ¢ in the interval (—2, 2)
(via w = € — u = 2cosf). Conversely, taking an irreducible polynomial
g(x) € Qx| of degree d/2 with a root in the interval (—2,2) gives a degree
d irreducible polynomial f(x) = z%2?g(x + 1/x) with roots on the unit
circle. U

Hence we have the following corollary describing the badly approximable

algebraic numbers coming from Corollary [I] and Theorem [6]

Corollary 3. For any imaginary quadratic field K, there are algebraic num-
bers of each even degree over Q that are badly approximable over K. Specifi-
cally, for any real algebraic number u € [—2,2], any positive n € Q\NS(K),
and any t € K, the number

+vu? —4
o=ty WEVE
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15 badly approzimable.

For instance, the examples in Figures [5] and [6] have t = 0 and u =

243/ /n.

APPENDIX: MONOTONICITY OF DENOMINATORS FOR d = 7,11

The purpose of this appendix is to prove Proposition [I| for d = 7, 11.
Proofs for d = 1,3 are found in [?] and a proof for d = 2 in [?] (VII, Satz
11). Monotonicity for d = 7,11 was stated in [?] without proof (for reasons
obvious to anyone reading what follows). All of the proofs follow the same
basic outline, with d = 11 being the most tedious.

Proof of Proposition[1l For the purposes of this proof, define k, = ¢,,/¢n_1;
we will show |k,| > 1. We will also use the notation By(r) for the ball of
radius ¢ centered at r € O. When n = 1 we have |ky| = |ai| > 1/p > 1. The
recurrence k, = a, +1/k,_ is immediate from the definitions. We argue by
contradiction following [?]. Suppose n > 1 is the smallest value for which
|kn| <1 so that |k;| > 1 for 1 <i <n. Then

(| = [fon — 1/kn_1] < 2.

For small values of a;, those for which (a; + V)N V=1 N (C\ V™) £ 0,
the values of a;;1 are restricted (cf. Figure . More generally, there are
arbitrarily long “forbidden sequences” stemming from these small values of
a;. We will use some of the forbidden sequences that arise in this fashion to
show that the assumption k, < 1 leads to a contradiction.

(d = 7) The only allowed values of a,, for which |a,| < 2 are a, =

HT‘E =: w without loss of

iliT‘m. By symmetry, we suppose a,, =
generality. It follows that k, € B;(w) N B;(0). Subtracting w = ay,
we see that 1/k,_; € By(0) N By(—w). Applying 1/z then gives
kn_1 € Bi(w — 1)\ By(0). Since k,_1 = an_1 + 1/k,_2, the only
possible values for a,,_1 are w, w —1, w — 2, 2w — 1, and 2w — 2. One

can verify that the two-term sequences

| ai [ain]
w—2| w
w—1| w

are forbidden, so that a,,_1 = 2w — 1 or 2w — 2. We now have either
kn1 € Bi2w—1)NBy(w—1)ifa,_ 1 =2w—1,0r k,_; € B1(2w —
2)N By(w—1) if a1 = 2w — 2. Subtracting a,,_; and applying 1/z
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shows that a,,_o = 2w —1or 2w —2if a,_; = 2w—1, and a,,_» = 2w
or 2w — 1 if a,_; = 2w — 2.

Continuing shows that for : <n —1

€ (B1(2w —2)U B (2w — 1) U B1(2w)) N (By(w — 1) U By (w)),

the green region on the left in Figure [7} This is impossible; for in-
stance k1 = a; € O but the region above contains no integers.
(d = 11) The only allowed values of a, for which |a,| < 2 are

% vV_ll Iev-ll \/2_11 =: w without loss

. By symmetry, we suppose a,, =
of generality. Hence k, € B;(0)NB;(w). Subtracting a,, and applying
1/z shows that k,_; € Byjs(25) \ B1(0) and a,—y =w — 1 or w. If
a,—1 = w — 1, subtracting, applying 1/z and using the three-term

forbidden sequences

H Q; \ Q41 \Gz'+2 H
w—1llw—-1| w

w w—1| w
wHl|lw—1] w

shows that a,_» = 2w or 2w — 1, with k, o € B1(2w) N By(w) or
By (2w — 1) N By (w) respectively.

If a,_1 = w, subtracting and applying 1/z gives a,_o = w — 2 or
w—1 with k,_5 € Bys(252) N By (w—2) or (Byja(452) N Bi(w—1))\
B /2(“’7_1) respectively. If a,,_» = w — 1, subtracting a,_», applying

1/z, and using the three-term forbidden sequences
[ o [ ai [ai]
w—1llw—-1| w
w—2|lw—1| w
shows that a, 3 = 2w — 2 or 2w — 1 with k, 3 € B1(2w — 2) N
Bi(w—1) or Bi(2w — 1) N By(w — 1) respectively. If a,,_o = w — 2,
subtracting a,_» and applying 1/z shows that a, 3 = w or w + 1,
with kn_g € (Bi(w) N Byja(“31)) \ Bi(0) or Bi(w + 1) N Byjp(“37)

respectively. If a,,_3 = w+ 1, we loop back into a symmetric version

of a case previously considered (namely k,_4 € Byjs(452) \ Bi(0)
and a,_4 = w—1 or w—2). If a,_3 = w, subtracting a,,_3, applying
1/z, and using the forbidden sequences

H a; \az’+1\ Ai+2 \az‘+3\ai+4 H
w—1| w |w—2
w w |lw—2| w
w+l| w |lw—2] w w

shows that a,_4 = 2w or 2w — 1 with k,_4 € B1(2w) N By(w) or
By (2w — 1) N By (w) resepectively.
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Continuing, we find k; for ¢ < n — 1 restricted to the region de-
picted on the right in Figure [/} This region contains no integers,
contradicting k; € O.

FIGURE 7. In the proof of Proposition[l} the assumption &, <

1 with a, = HTﬁ (left) or a, = Y= (right) leads to

restricted potential values for k; with i < n (green regions).

g
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