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Abstract

Local discontinuous Galerkin (LDG) methods are popular for convection—diffusion
equations. In LDG methods, we introduce an auxiliary variable p to represent the
derivative of the primary variable «, and solve them on the same mesh. In this paper,
we will introduce a new LDG method, and solve u and p on different meshes. The sta-
bility and error estimates will be investigated. The new algorithm is more flexible and
flux-free for pure diffusion equations without introducing additional computational
cost compared with the original LDG methods, since it is not necessary to solve each
equation twice. Moreover, it is possible to construct third-order maximum-principle-
preserving schemes based on the new algorithm. However, one cannot anticipate
optimal accuracy in some special cases. In this paper, we will find out the reason
for accuracy degeneration which further leads to several alternatives to obtain optimal
convergence rates. Finally, several numerical experiments will be given to demonstrate
the stability and optimal accuracy of the new algorithm.
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1 Introduction

In this paper, we aim to construct new local discontinuous Galerkin (LDG) schemes
for solving the following nonlinear convection—diffusion equation

ur+ f)y = b)xx, ey

or equivalently

ue + f(u)y = (@ @Wuy)y, 2

as well as their two-dimensional versions, where a2(u) = b’ (u) > 0. We also assume
that a(u) > 0. The initial condition is given as u(x, 0) = ugp(x).

The discontinuous Galerkin (DG) method was first introduced in 1973 by Reed
and Hill [24] in the framework of neutron linear transport. Subsequently, Cockburn et
al. developed Runge-Kutta discontinuous Galerkin (RKDG) methods for hyperbolic
conservation laws in a series of papers [5—8]. In [9], Cockburn and Shu introduced the
LDG method to solve the convection—diffusion equations. Their idea was motivated
by Bassi and Rebay [1], where the compressible Navier-Stokes equations were suc-
cessfully solved. As in traditional LDG methods, we introduce an auxiliary variable
p to represent a(u)u, and thus can rewrite (2) into the following system of first order
equations

{ ur + f)y = (a@W)p)x, 3)
p = Au)y,
where A(u) = f “a(t) dt. Usually, u and p are solved on the same mesh.
The LDG method is one of the most important numerical methods for convection—
diffusion equations. However, for some special convection—diffusion systems, such as
chemotaxis model [19,22] and miscible displacements in porous media [10,11], the
LDG methods are not easy to construct and analyze. In each of the two models, the
convection term is the product of one of the primary variables and the derivatives of
the another primary variable. Most of the well established numerical fluxes for the
convection terms, such as the upwind fluxes, cannot be applied, since the coefficients
of the convection terms turn out to be discontinuous after the spatial discretization. It
is well known that hyperbolic equations with discontinuous coefficients are in general
not well-posed [13,18]. Therefore, the DG schemes may not be stable when applied
to those model equations. Within the DG framework, there are three different ways to
bridge this gap. Firstly, in [15,20,30] the authors combined the convection terms and
diffusion terms together and obtain the optimal error estimates. The idea was moti-
vated by Wang et. al. [25-27], where u, and the jump of u across the cell interfaces
were proved to be bounded by p. Moreover, to make the numerical solutions to be
physically relevant, we have to add a very large penalty which depends on the numer-
ical approximations of the derivatives of the primary variables [16,20]. The second
approach is to applied the flux-free numerical methods such as the Central DG (CDG)
methods [21]. However, for CDG methods, we have to solve each equation in (3) on
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both the primary and dual meshes, which double the computational cost. The last idea
is to apply the Staggered DG (SDG) methods [3]. However, the method requires some
continuity of the numerical approximations, which is not easy to apply limiters. In
this paper, we introduce a new LDG method, and solve # and p on the primitive and
dual meshes, respectively, and do not require any continuity across the cell interfaces.
Since p is continuous across the cell interfaces in the primitive mesh, we can apply the
upwind fluxes for the convection term for the complicated systems discussed above.

Finally, the most significant advantage of the new algorithm is the construction of
third-order maximum-principle-preserving (MPP) LDG methods. Recently, in Zhang
and Shu [31], genuinely MPP high-order DG schemes for scalar equations and two-
dimensional incompressible flows in vorticity-streamfunction formulation have been
constructed. Subsequently, positivity-preserving high order DG schemes for com-
pressible Euler equations were given in Zhang and Shu [32]. Later, the technique
was applied to other hyperbolic systems, such as pressureless Euler equations [29],
Extended MHD equations [34], relativistic hydrodynamics [23], etc, and the L! sta-
bility was demonstrated. For parabolic equations, the extension was given in Zhang
and Shu [33], where second-order MPP discontinuous Galerkin methods were demon-
strated, and the construction of third-order schemes seem to be not straightforward.
Later another approach based on the flux limiter were discussed in [17,28]. In Chen et
al. [2], the third-order MPP direct DG method was introduced. However, the scheme
was not easy to implement and we need to add two penalty terms. In Du and Yang [12],
we applied the new LDG method and constructed third-order MPP schemes. There
is a mild penalty which does not depend on the numerical approximations. Since the
dual meshes can be moved arbitrarily, we also showed that if the dual mesh agree
with the primitive mesh, the penalty coefficient turns out to be infinity. Therefore, our
algorithm does not violate the results given in Zhang and Shu [33].

In contrast to the above advantages, the new LDG method may not have optimal
convergence rates when applied to the pure diffusion equations if the dual mesh is
generated by the midpoint in each cell on the primitive mesh and piecewise odd order
polynomials are applied. This is the main reason why in the SDG method the numerical
approximations are required to be continuous across some of the cell interfaces. In this
paper, we will theoretically study the stability and error estimates of new algorithm.
We will demonstrate the reason for the accuracy degeneration and introduce several
alternatives to gain the optimal convergence rates.

The organization of this paper is as follows. In Sect. 2, we construct the new
LDG scheme for nonlinear convection—diffusion equations on overlapping meshes in
one space dimension. The stability and error estimates will be given. The extension to
problems in two space dimensions will be discussed in Sect. 3. Numerical experiments
will be given in Sect. 4 to demonstrate the accuracy and good performance of the new
LDG scheme. Finally, we will end in Sect. 5 with concluding remarks.

2 Numerical scheme for one-dimensional case

In this section, we will introduce the new LDG method for solving the one-dimensional
nonlinear convection—diffusion equation (3) on overlapping meshes.
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Fig.1 Overlapping meshes 1. 1.
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2.1 Overlapping meshes

Different from the LDG method introduced in Cockburn and Shu [9], in which u and
p are solved on the same mesh, our new method solves (3) on two meshes, as shown
in Fig. 1. For simplicity, we consider periodic boundary conditions and the algorithms
for other boundary conditions will be discussed in the future.

We first define the primitive mesh on which the primary variable u is solved. Itis just
a decomposition of the computational domain €2 = [0, 1], which can be non-uniform.
We denote the i-th cell as

[iz[xl;%,xﬂr%], i=1,...,Ny.
The cell length and the cell center of I; are denoted as

Axizxi+%—xi_%, xizf,
respectively. We define Ax = max; Ax;. In this paper, we consider regular meshes,
i.e. there exists a positive constant C > 1 such that Ax < C min; Ax;. Clearly, if
C =1, then the mesh is uniformly distributed.

Based on the primitive mesh, we move each cell center within the corresponding
cell to obtain a new mesh called the P-mesh, which is used to solve the auxiliary
variable p, i.e. in each cell /;, we choose a point x; given as

- Ax; .
xi:xi+7éi07 Sioe[_191]7 l=1,-~-aNx~ (4)

For simplicity, we consider &;, to be a constant independent of i and denoted as
& € [—1, 1]. It is easy to check X; € [x;_1 ,xH_%]. The (i — %)-th cell of the dual

mesh is defined as

PI_%:[il—lﬂil]a i=15"'7N)C7
where we denote Xo = Xy, — 1. We further denote the cell length and the cell center
of P;_ 1as

- - Xi—1+ X
=% —%i1,  K_1=

AX. i-1 s

1
i=3

respectively. We can easily check that
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min{Ax;_1, Ax;} < A)hctl;% < max{Ax;_1, Ax;},

and hence we have max; Afcif < Ax. Due to the periodic boundary condition, we

Nl—=

can also define P 1= [0, X1] U [xn,, 1]. Therefore, we consider a polynomial on P%

as a polynomial on [Xg, X1 ]. We define the dual mesh to be the P-mesh which consists
of all these P cells. Notice that when & = 0, we have X; = x; and PH—% = [x;, Xit+1]-
In this case, the cell interfaces of the dual mesh are exactly the cell centers of the
primitive mesh. This kind of mesh is the most commonly used overlapping mesh,
such as in the central discontinuous Galerkin (CDG) method [21]. When & = 1, we

have X; = x; 41 and hence the P-mesh is the same as the primitive mesh.
2

2.2 Norms

In this section, we proceed to define some norms to be used throughout the paper.

For any interval I, we define ||lu||; and ||u#|| 0,7 to be the standard L2-and L*®-norm
of u on I, respectively. For any natural number £, we consider the norm of the Sobolev
space H'(I), defined by

1

2
9Pu 2

axP

lulle =14 >

0=p=t

I
For convenience, if / is the whole computational domain, then the corresponding
subscript will be omitted.
Moreover, for any u € C(I;), we define
1 +
lullry =l |+ by,
Similarly, for any u € C(P;_ 1 ), we define

lullr, = g |+ 1)

2.3 LDG method on overlapping meshes

In this section, we introduce the LDG methods for the following pure diffusion equa-
tion

{uz = (a(u)p)x,

p = AWy, )

where A(u) = f“ a(t)dt. We define the finite element spaces to be
Vi o= {up s uply, € PRI, i =1,..., Ny},
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Pui={pn: pulp_, € PACP_p) i =1, Ny},

[~

By multiplying (5) with test functions and using the integration by parts, our new LDG
method on overlapping meshes is defined as follows: find (uj, pn) € Viy x Py, such
that for any test functions (v, w) € V), x Py, we have

[ s == [ aopivds +iypay, —aypipt©

+§ l_f

f phwdx = —/ Alup)wedx + A G))w; — A(upG—))wi . (7)
P P

where v;l = v_(xl.+%) and w; = w™ (X;). Likewise for v;r , and wi+_1. For sim-
2 —2
plicity, we denote v; = v~ , and v" |, = v{. The numerical flux & at the point
s 2 Nets Nets 2
Xy 1 is taken as
Aup)].
— [AGn)]; 1
BT T, ®
Unliy]

where [s]; L= s:r | = s;r , denotes the jump of a function s across the cell interface
2 2 2
x = x;_ 1. Similarly, we can also denote the jump of w across x = X; on the P-mesh
2
as [w]; = w;r — w; . Notice that pj, is continuous at the interfaces of the primitive
cells and hence pj (x; 41 ) is well defined. We choose the numerical flux ﬁi 41 as the
2 2

value of pj evaluated at x = x; 1 with a penalty term

+3

&yl

Axi+%

Biry = PhCxy ) + el - ©)

Remark 1 The parameter o,

maximum-principle-preserving technique introduced in Du and Yang [12].

1 in (9) is used for optimal rates of convergence and the
Finally, we would like to define

2

Ny Ny
H,(uy, pn,v) = — Zf a(up)prvedx =Y 4 1 p_1ol_y.  (10)
i=1 74 i=1

Ny Ny
Hpy(up, w) = — Z/P Awp)wedx =Y A E)[wl, (1D
i=1""-] i=1
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which would be useful in the stability analysis and error estimates. With the above
notations, the LDG scheme can be rewritten as

/th),vdx — Hy(up, pi. v). (12)

/ prwdx = Hp(up, w). (13)
Q

2.4 Stability analysis

In this section, we proceed to demonstrate the stability of the new LDG method. We
would start with the following lemma.

Lemma 1 Suppose H, and H), are defined in (10) and (11), respectively, then we have

Ne [AQun)l;_1

2
o1 uplt
1 7 2 l_f

H, (up, pn,un) + Hy(up, pp) = —
i=1

=

iy A%
Ny .

i 1[A@p)];_1lunl;_1
=-y — —2 L 14
i=1 Ax"—%

Proof Taking w = pj, in (11) and using integration by parts, we obtain

Ny

Ny
Hy(un, pi) = — ) /P Alun)(pr)xdx =Y Alwun Gl pili
i=1""-1

i=1

Ne o ax Ni o Ny
= - Z[ 7 AGu) (pr)wdx — Z/ AGun)(pr)dx =y Al (F))lpali
i=1 i=1"%-1

ti-1 i=1

Nx

Ne x| Ne L% §
= Z‘/ 2 a(uh)(uh)xphdx+2/ a(”h)(”h)xl’hdx+Z[A(Mh)]i_%l7h(xi_%)
i=1 "Y1 i=17%-1 -

i=1

Ny Ny
= ; /If aup)(up)xprdx + Z[A(uh)]i,%l’i1 (x,»,%)~ (15)

i=1

Taking v = uy, in (10), we obtain

Ny
Hy(up, ph,up) = — Z/ a(up) pr(up)xdx
i=1 71

Ny [A(Mh)],-f% o
B ; m ph(xi—%) + A.fi_% [uh]i_% [Mh]l._%_
(16)
Summing (15) and (16), we have (14). .
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[AQn)]. | 1

By the definition of A(u) in (5), we can easily check # > 0, which further

i+%
leads to the L, stability of the LDG method on overlapping meshes. The proof is
straightforward, so we omitit and only demonstrate the result as the following theorem.

Theorem 1 The LDG method introduced in (6) and (7) is stable and

= <0.
2dtlluhll +lpnll” =

Remark 2 The above theorem is valid for all o, 1 > 0. Especially, we can take the

penalty parametere; 1 = Oforalli = 1,2, ..., Ny. However, numerical experiments
2

demonstrate that, this may lead to accuracy degeneration in some special cases.

2.5 Error estimates

In this section, we proceed to the error estimates. For simplicity, we consider linear
equations only, e.g. a(u) = 1 (A(u)=u), then (6) and (7) become

/1- (up)rvdx = — /1 Phvxdx + 131-+%U,-1% - ﬁi_%vf_l : (17)

2

/ prwdx =—/ upwxdx + up(X)w; —uh(iifl)wltl. (18)
P P
Moreover, H, in (10) can also be written as

Ny Ny
Hu<uh,ph,v)=—2fll prvedx =) py_ylvl_1. (19)
i=174 i=1
We denote the error as e, = u — u;, and e, = p — py, then the error equations are

_ o~ - _ o~ +
/IA(eu),vdx = / epvxdx+epi+%vi+% ePi—%U,-_%’ (20)
1 1

/ epwdxz—/ eywyedx + e, (X))w; —eu(iifl)witl. 21)
P. Pi—l

i—

(1]

We first study some basic properties of the finite element space. Let us start with the
classical inverse properties.

Lemma 2 Assuming uj, € Vj, then there exists a constant C > 0 independent of Ax
and uy, such that for o > 1

_ —1/2
19%unll; < CAX Nunllyy,  Nunlle, < CAx; gl
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Similarly, for any ujy, € Py, there exists a constant C > 0 independent of Ax and uy,
such that for « > 1

o < ~—a < ~—1/2
19y “h”PH% < CAxiJr%lluhllPH% ||Mh||1"’_+% < CAxiJr% ||Mh||Pl.+%-

We also introduce the standard L projection Pk1 into Vj, and sz into Py, by:

/ Pkluv dx :/ uvdx, Yv € Pk(I,-), and
I; I;

szuvdx:f uv dx , VvePk(PiJr%),
P

J, |

z+% t+%
respectively. By the scaling argument, we obtain the following lemma [4].
Lemma 3 Suppose the function u(x) € C k+L([.), then there exists a positive constant

C independent of Ax and u, such that

1
1 1 2 1 k+1
lu = Plully, + Axillu — Plu)clly, + Ax7 llu = Plullco,;; < CAx{ lullgsr,1;-

i

Moreover, ifu(x) € C k+1 (P, 41 ), then there exists a positive constant C independent
2
of Ax and u, such that

1
2 - _p2 =7 _p2
llu PkullPH% +Axi+%||(u Pku)x”PH% +Axi+1llu Pk””oo,PH%

[N}

~k+1
<
< CAF s r

where |\u||k+1,1 is the standard H* ' norm over the interval I.
As the general treatment of the DG methods, we write the errors as
ey =Ny —& ep=1p—5p,
where
Nu=u—Plu, & =uy—Plu, n,=p—Plp, & =py—Pp.

With the above notations, we can rewrite the error equations (20) and (21) as

o~ —_ o~ +
/l,- (&)rvdx = / epvydx — epi+%vi+% +epi7%vi s (22)

-2

i

f Epwdx =f eywydx — ey (Xir1)w; | + eu(ii)wl*. (23)
P 1 P 1

i+7 H'Z

Now, we can state the main theorem.
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Theorem 2 Suppose the exact solution u € C*2(Q) and the finite element space is
made up of piecewise polynomial of degree k in each cell. The numerical solutions
satisfy (17) and (18). Then the error between the numerical and exact solutions satisfy

T
llewl| +/ llepll dt < CAxk,
0

where C is independent of Ax.

Proof Sum up (22) and (23) with v = &, and w = &,, and then sum up over i to
obtain

2L e + 1 ||2=§:/(n — ) (E)ndx
TR P 2 ), p —5p)Su)x
Nx (e — &ul;_1
+Z (npi_é - gp[_% +ai—5Tz> [g’_u]i_%
i=1

Ny Ny
+> /P Ol — &) Epxdx + (e — &) (FDIE i
i=1""-1

i=1

Nx Nx Oll-,%[flu]i,%
= E/I, npEu)xdx + ; Mpi-1 + “AF [§u]i,%

=3

Ny Ny
+Z/;) 1 Nu(§p)xdx + Zﬂu()?i)[ép]i + Hy G, §py §u)
i=1 i—7 i=1
+Hp(6u, §p) = Ri + Ry + Ry, (24)

where

Ny Ny
Ry = Z/; np(gu)xdx + Z/P 1 Nu(p)xdx,
i=1°"" i=1 i-7

N ai,%[nu]i,%
Ro=3  — &y + Hulu €p, &) + Hp G, §p),
i=1 =5

Ny Ny
Ry = npi &y + ) maGIEpN:.
i=1

i=1
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Now we estimate R; i = 1, 2, 3 term by term.

Nx
Ri<) (||77p||l,-||(§u)x”1,- + ”nu”PI_7% ”(E,ﬂ)x”PI_l)

i=1

[

Ny
<y (unpnpi_%up% NGl 1,1+ Il 1,1, 0, ||(sp)x||p[_%>
i=1

Ny

<caxty :<<||P||k+1,1>il + ||P||k+1,Pi+1> (A1
. 2 2
i=1

+ (el + Nellesr,z;) Ipllp, 1)
2

< CAX* (IplleslEall + lullerlEp]) - (25)

where in the first step, we applied Cauchy-Schwarz inequality, in the second step we
used Lemmas 2 and 3, and the last step follows from Cauchy-Schwarz inequality
again. Applying Lemma 1, we obtain the estimate of R»

Ne .
i—5 2
Ry < : A% . ([nu]i,%[éu]if% - [E“]i—%>
i=1 =3
<C 3 0‘,75[ ]2
< NMul, 1
= Ax =2
Ny
<C> o Ax (||u||%,.,1 + Ilulli)’
i=l1
< CAx*, (20

where in step 3, we applied Lemma 3, steps 2 and 4 follow from direct computation.
Finally, we estimate R3.

Ny Ny
Ry < ) lnplloo,p_y (N&ullr,y + 1&alle) + D Imulloc. (uspur,fl + ||§p||1*/_+l)
i=1 : i=1 2 2
Ny
<caxty” <||p||k+1,p,fl (N&alrmy + 18ullz) + el (us,,upfi - ||sp||p[+l)>
i—1 2 2 2
< CAX* (Ip k1 1€l + lulles1l1Ep1) 27)

where step 1 is straightforward, step 2 follows from Lemmas 2 and 3, and in the

last step we applied the Cauchy—Schwarz inequality. Substitute (25)—(27) into (24) to
obtain

1d
ﬁnéunz + 1€, 1% < CAX* + CAX (& + g, 1)
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which further yields

d
Ensunz + 1IEpl1> < CAX* + |1, 11°.

Finally, we can apply the Gronwall’s inequality and complete the proof. O

In Theorem 2, we only proved suboptimal convergence rate. Numerical experiments
in Sect. 4 demonstrate that in some cases the order of accuracy is exactly k. In the
traditional error estimates, one would like to study the steady state problem, and
construct the elliptic projection. We can show that the elliptic projection may not
exist. To explain this point, we use uniform meshes and denote Ax as the mesh size
for both the primitive and P-meshes. We consider the following steady state problem

pxzov p:MXa

subject to periodic boundary condition. To make the problem well-posed, we need
another assumption that f o 4(x) dx = 0. Then the numerical scheme turns out to be

A +
= hiyvl ) (28)

0= _/1; phvxdx+pi+%vi+%

/ prwdx = — / upwyxdx +up(Xir1)w; | — up (F)w;'. (29)
P P

i+1 i+

Nl—

We take &y = 0 in (4), i.e. the dual mesh is constructed by using the midpoint of
the primitive mesh and Oti_% =0foralli = 1,2, ..., Ny. Moreover, we use P!

polynomials and assume
up(x) = u? +ui1Li(x), x € l;,

PR = p P Ly (), X € P,

where L;(x) and L i+ (x) are the scaled Legendre polynomial in cell /; and P, +1s

respectively. Take v(x) = 1 and v(x) = L;(x) in (28), respectively, to obtain

! 0

1
_ 0 _ .0 _ _ 0 1 _ 0 — .1 0
0= Py =Py O TPy TRl T Py g Py TPy Py
(30)
which further yield
0 _ .0 1 _ 1
Pipd =Pt Pt =P
Take w(x) = I and w(x) = L, 1 (x) in (29), respectively to obtain
0 Ax Ly, 1
Apo_% =uj | —u;, Tpi+% =—§ui +§I/li+1. (€29
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Clearly, (30) and (31) are not uniquely solvable, one nontrivial solution could be
up(x) = Li(x)in I; and p;, = 0. It is easy to check that fQ up dx = 0. Therefore, for
the special case given above, the traditional elliptic projection does not exist, and the
LDG method cannot be used to solve the steady state problems. For time-dependent
problems, though the numerical approximations exist, numerical experiments demon-
strate only a suboptimal convergence rate. However, some slight modification of the
scheme can yield optimal convergence rates. They are listed as follows:

1. Use even order polynomials, i.e. k =0, 2, .. .;
2. Take &y = 0 with @ # 0;
3. Take &y # 0;

Besides the above, for convection—diffusion equations, we can always obtain optimal
rates of convergence even though we take &y = o = 0.

3 Numerical scheme for two-dimensional case

In this section, we will construct the LDG scheme on overlapping meshes in two space
dimensions and study the following PDE over the domain 2 = [0, 1] x [0, 1],

ur = (@@)p)x + (bw)q)y.
p= Ay, (32)
q = B(M)y,

subject to periodic boundary conditions, where A(u) = f “a(t)dt and B(u) =

u
J“ b(r)ds.
We first define the primitive mesh for the primary variable # which is a regular
rectangular decomposition of Q. Let 0 = x; < x3 < .-+ < N4l = 1 and

2 2
O=y1 <y 3 < <Yyl = 1 be the grid points in x and y directions, respectively,
and denote the i, j-th cell as

Lij=1I; x Jj, i=1,...,Ny, j=1,...,Ny.

where [; = [x._%, xH_%] and J; = [yj_%, yj+%]. Moreover, we denote

Av — . x_xl_%+xl+l Avi — B _y]_%+y]+%
e B M A BIRPEs NR 2

and

Ax =max Ax;, Ay=maxAy;, h=max{Ax, Ay}
i J
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We also move each cell horizontally to obtain the P-mesh: P;_ 1= [Xi—1, %] %
[y L y]+1] where

- Ax; .
x,'=x,~+T§o, Soel[—1,1], i=1,2,..., Ny, (33)
with Xop = Xy, — 1. Similarly, we can define the Q-mesh: 0, 1= [x. 1,x.,1]x%
N i—5 i+5
[¥j-1,Y;]1, where
_ Ayj .
y]_y]+Tn07 7706[_171]» j_lvzaaNya (34)

with yo = yn, — 1. The P-mesh and Q-mesh are used to solve the auxiliary variables
p and g, respectively. Similar to the problem in one space dimension, we can also
define P%’. = ([0, X1] U [Xn,, 1]) x J; and Q,; 4= = 1; x (10, 311U [yn,, 1D.

We define the finite element spaces to be

={un tuply; € PXUij), i=1,..., Ny, j=1,.... Ny},

={pn: Ph|P eP(P =1 Ny, j=1,..., Ny},
Oy = {qh:thQi,jJr% EPk(Q, ]+1) i=1,...,Ny, j=1,...,Ny}.
Givenu € Vj,, we denote Mi+—‘ LU ut uT , to be the traces of « on the four

_ UM WAL NS .
edges of I;;, respectively. Likewise for the traces of P, 1 j along the vertical edges
2!

and those of Q, ol along the horizontal edges. Moreover, we use [u] = u™ —u™ and

{u} = %(MJr + u™) as the jump and average of u at the cell interfaces, respectively.
Now, we can introduce the LDG method on overlapping meshes: find (uj,, pn, gi) €
Vi X Py x Qp, such that for any test functions (v, w, z) € Vj, x P, x Qp, we have

/Ii,(uh)tvdmy :_/Ii,a(uh)phUXdXdy+/Jj i+5.Piv gt i

1;j i
7 A +
_/;i bi,j_%qu LAY %dx, (3%
f prwdxdy =—f A(uh)wxdxd)’+/ A(up(Xir1))w; 1 dy
P. 1. P. 1. i
i+75.]J its.J
- [ AwGuay (36)
Jj
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/ przdxdy = —/ B(up)zydxdy +/ B(up(yj+1))z ;4 dx
Qi+t Qi j+l i
) )
-~ f B(un(3,))z; dx. (37)
[.

The numerical flux a along the edge x = x,, 1 is taken as

+3

[A(uh)]i+%,j

a. 1 .=
i+3,] [uh]i_%’j

Similarly, the numerical flux b along the edge y = y ju! is taken as

[B(uh)]i’j_‘_%
i,j+> [uh]l‘,j+%

where [s]; 1 ;= st —s7, denotes the jump of a function s across the cell
Ir35,] i+75,] i+75,]
boundary {x,, 1} x J;. Likewise for [s]. ., 1. Moreover, we choose

i+5 . i,j+3

1

A i+5.]
pi+%,j = Ph(xH_%, )+ AR [uh]i-l-%,j’
i+3.J
o. . 1
A N i,j+73
ql’,,/+% - Qh(X, y,+%) + AR 1 [uh]i,j-i-%
LT3

Following the same analyses for problems in one space dimension, we can obtain
the stability analysis and error estimates. Therefore, we will skip the proof and only
demonstrate the results in the following two theorems.

Theorem 3 The LDG methods introduced in (35)—(37) is stable and

1d 2 2 2
- <0.
5 7 1enll” + pnll™ + llgnll™ =

Theorem 4 Suppose the exact solution for linear parabolic equation (32) with a(u) =
b(u) = 1 satisfies u € C¥T1(Q) and the finite element space is made up of piecewise
polynomial of degree k in each cell. The numerical solutions satisfy (35)—(37). Then
the error between the numerical and exact solutions satisfy

T
llu — unll +/0 (lp = pull + llg — qull) dt < ChY,
where C is independent of h.
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Table 1 Example 1: midpoint, uniform mesh

k  Number No penalty a=02
of cells
L2 norm Order L°° norm Order L2 norm Order L°° norm Order
10 3.36E—02 - 7.43E—02 - 8.05E—-03 - 1.76E—02 -
20 1.68E—02 1.00 3.73E-02 0.99 1.45E-03 247 2.84E-03 2.63
1 40 8.42E—-03 1.00  1.87E—02 1.00 3.00E—04 227 5.46E—-04 2.38
80 421E-03 1.00  9.34E—-03 1.00 7.02E—05 2.10 1.40E—-04 1.96
160 2.10E—03 1.00  4.67E—03 1.00 1.72E—-E—-05 2.03 3.54E—05 1.99
10 3.05SE—04 - 8.61E—04 - 2.56E—04 - 6.86E—04 -
20 3.85E—-05 299 1.11IE-E-04 295 3.21E-05 3.00 8.99E—05 2.93
2 40 4.83E—06 3.00 1.40E-05 2.99 4.02E-06 3.00 1.14E-05 2.98
80 6.04E—E—07 3.00 1.75E—06 3.00 5.03E-07 3.00 143E—E—-06 3.00
160 7.55E—08 3.00 2.19E-07 3.00 6.28E—08 3.00 1.79E-07 3.00
10 8.53E—06 - 1.50E—05 - 8.61E—06 - 1.42E—-05 -
20 5.69E—07 391 1.12E-06 375 5.29E-07 4.02 8.80E—07 4.01
340 4.30E—08 372 9.91E-08 3.49 3.29E-08 4.01 5.51E-08 4.00
80 4.05E—-09 3.41 1.08E-08 320 2.06E-09 4.00 3.45E—-09 4.00
160 4.55E—10 3.15 1.29E—09 3.06 1.28E—10 4.00 2.15E—10 4.00
10 6.55E—07 - 1.84E—06 - 2.28E—-07 - 5.80E—07 -
20 1.84E—08 5.16 5.19E-08 5.15 7.04E-09 5.02 1.95E-08 4.90
4 40 5.60E—10 5.04 1.58E—09 5.03 2.19E-10 5.01 6.20E—10 4.97
80 1.74E—11 5.01 4.92E-11 5.01 6.82E—12 5.00 1.95E-11 4.99
160 5.43E—-13 5.00 1.54E-12 5.00 2.13E—13 5.00 6.12E—13 4.99

4 Numerical examples

In this section, we will use numerical experiments to demonstrate the stability and
the accuracy of the new LDG method on overlapping meshes. In all the numerical
experiments, we use piecewise polynomials of degree k = 1, 2, 3, 4. If not otherwise
stated we consider third-order SSP Runge-Kutta time discretization [14] with At =
0.1Ax? if k = 1,2 and At = 0.01Ax? if k = 3,4 to reduce the time error, and
take the final time 7 = 1. Moreover, the random mesh is generated by randomly and
independently perturbing each node in a uniform mesh by up to 20%.

Example 1 We solve the following heat equation in one space dimension

Ur = Uxx,
{M(x, 0) = sin(x), * € (0. 27]. (33)

Clearly, the exact solution is
u(x,t) = e 'sin(x).
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Table 2 Midpoint, random mesh (20%)

k Number  No penalty a=02
of cells

L2 norm Order L norm Order L2 norm Order L% norm  Order

10 3.99E-02 - 1.19E-01 - 8.30E-03 - 222E-02 -
20 1.82E—02 1.19  4.56E-02 145 1.51E-03 2.61 3.33E-03 2.90
1 40 9.13E-03 1.02 2.52E—-02 0.88 3.50E—04 2.56 1.06E-03  2.00
80 4.55E-03 1.08 1.50E-02 0.80  7.93E-05 1.95 2.49E—-04 1.90
160 2.28E—-03 0.98 7.55E-03 0.98 1.95E-05 221 6.04E—-05 2.23
10 325E-04 - 1.34E-03 - 327E-04 - 1.0SE-03 -
20 4.66E—-05 2.60 1.69E—-04 2.77 3.74E-05 2.99 1.51E—-04 2.66
2 40 5.64E—06 3.01 233E-05 282 5.04E-06 3.14 225E-05 299
80 7.37E-07 3.00 3.20E-06 2.93 6.02E—07 3.22 2.24E—06 3.49
160 9.50E—-08 3.23 4.17E-07 3.21 7.92E-08 2.96 3.55E-07 2.69
10 1.44E-05 - 5.43E-05 - 1.70E-05 - 4.17E-05 -
20 1.22E—-06 3.83 4.64E-06 3.81 7.59E—07 3.96 1.95E-06  3.90
3 40 1.05SE-07 3.4l 4.22E-07 3.34  5.58E—-08 4.23 1.65E-07 4.01
80 1.40E-08 2.97 6.75E—-08 2.70 3.08E—09 4.22 1.07E-08 3.98
160 1.57E-09 3.38 7.61E-09 3.37 1.93E—10 4.06 7.56E—10 3.89
10 1.04E—-06 - 3.75E-06 - 3.00E-07 - 1.20E-06 -
20 3.67E-08 5.41 2.30E-07 4.52 1.23E-08 5.20 5.41E-08 5.05
4 40 1.12E—-09 5.53 8.64E—09 5.21 3.24E—10 5.40 1.33E-09 5.49
80 3.84E—11 5.01 2.99E—10 4.99 1.01IE—-11 4.84 6.59E—11 4.20
160 1.16E—12 4.68 6.21E—12 5.18 3.30E—-13 5.07 2.09E-12 5.10

We consider uniform mesh and take &y = 0 in (4), i.e. the dual mesh is generated by
using the midpoint of the primitive mesh. We compute the error between the numerical
and exact solutions and the results under the L?- and L*°-norms are given in Table 1.

From the table, we can only observe suboptimal accuracy if k£ is an odd number
and the penalty parameter @ = 0. To obtain optimal convergence rates, we can choose
a # 0 or use even order polynomials. We repeat the same example with random
meshes with results given in Table 2, we can observe exactly the same convergence
rates discussed above.

Another possible way to recover optimal convergence rates would be taking &y # 0.
In Tables 3 and 4, we take « = 0, and choose &y = 0.05 which is close to 0 and
£ = +/3/3 which is away from 0. We can clearly observe optimal convergence rates.
Moreover, the errors for & = +/3 /3 is less than those for &y = 0.05.

Example 2 We solve the following convection—diffusion equation

x €0, 2n]. (39)

Ur + Uy = Uyx,
u(x,0) =sin(x),
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Table3 &5 = 0.05 and &) = +/3/3, uniform mesh

k Number & = 0.05 & =/3/3
of cells
L? norm Order L% norm Order L2 norm Order L norm  Order
10 3.13E-02 - 7.06E—-02 - 3.82E-03 - 9.09E-03 -
20 1.29E—-02 1.28 296E—-02 1.25 9.56E—04 2.00 221E-03 2.04
1 40 3.75E-03 1.78 8.72E-03 1.77 2.39E—-04 2.00 5.53E-04 2.00
80 8.46E—04 2.15 2.00E-03 2.12 5.98E—05 2.00 1.38E—-04 2.00
160 1.98E—04 2.10 4.72E—-04 2.08 1.49E—05 2.00 3.46E—05 2.00
10 3.08E—04 - 9.12E-04 - 3.09E-04 - 1.03E-03 -
20 3.88E—05 2.99 1.17E—-04 2.96 3.76E—05 3.04 1.26E—04 3.03
2 40 4.85E—-06 3.00 1.47E-05 2.99 4.67E—-06 3.01 1.57E-05 3.01
80 6.07E—07  3.00 1.84E—06  3.00 5.83E—07 3.00 1.96E—06  3.00
160 7.59E—08 3.00 2.30E-07 3.00 7.28E—08  3.00 2.44E—07 3.00
10 2.12E-05 - 7.02E-05 - 6.01E-05 - 2.02E-04 -
20 3.36E—06 2.66 1.06E—-05 2.72 3.85E—06 3.97 1.33E-05 3.93
3 40 2.73E-07 3.62 8.54E—07 3.64 221E-07 4.12 7.73E—07 4.10
80 1.74E—08 3.98 5.42E—08 3.98 1.33E—08 4.06 4.66E—08 4.05
160 1.09E—-09 3.99 3.40E-09 3.99 8.20E—10 4.02 2.88E—09 4.02
10 6.71IE-07 - 1.96E—-06 - 4.75E-07 - 1.45E—-06 -
20 1.87E—-08 5.17 5.48E—08 5.16 1.48E—-08 5.00 4.71E—-08 4.94
4 40 5.69E—10 5.04 1.67TE—-09 5.04 4.63E—-20 5.00 1.49E—09 4.99
80 1.77E—-11 5.01 5.19E—11 5.01 1.45E—12  5.00 4.65E—11 5.00
160 5.51E-13  5.00 1.62E—12  5.00 4.53E-13  5.00 1.46E—12  5.00

Clearly, the exact solution is

u(x,t) = e 'sin(x —1).

We consider random meshes only and use upwind fluxes for the convection term. We
take &y = o = 0 to test the accuracy and the results are given in Table 5. From the
table, we can observe optimal convergence rates.

Example 3 We solve the heat equation in two space dimensions:

{

Up = Uxy + Uyy,
u(x,0) = sin(x) cos(y),

Clearly, the exact solution is
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u(x, 1) = e sin(x) cos(y).

(x,y) €[0,27] x [0, 27].
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Table4 & = 0.05 and &) = +/3/3, random mesh (20%)

k Number & = 0.05 & =/3/3
of cells
L? norm Order L% norm Order L2 norm Order L norm  Order
10 3.82E-02 - 1.06E-01 - 424E—-03 - 141E-02 -
20 1.38E—02 143 3.72E-02 1.47 1.08E-03 2.23 3.85E-03 2.11
1 40 3.97E—-03 1.80 1.ISE-02 1.69 2.81E-04 223 1.30E—-03 1.80
80 9.28E—04 221 2.75E-03 2.18 7.05E—-05 1.92 2.66E—-04 2.20
160 220E-04 2.12 7.76E—04 1.86 1.71IE-05 2.12 7.70E-05 1.86
10 491E-04 - 1.61IE-03 - 437E-04 - 2.05E-03 -
20 5.71E-05 3.26 2.67E—-04 2.72 5.29E-05 2.79 2.62E—-04 2.72
2 40 6.14E—06  3.19 3.05E-05 3.10 6.00E—06 3.97 3.53E-05 3.65
80 745E—07 2.86 3.15E-06 3.08 8.31E—07 298 5.55E-06 2.78
160 947E—08 3.03 4.89E—-07 2.74 1.14E-07 2.62 9.08E—07 2.38
10 240E-05 - 9.34E-05 - 7.52E-05 - 3.19E-04 -
20 5.36E—-06 2.39 2.84E-05 1.89 4.67E—-06 4.10 1.58E—-05 443
3 40 3.57E-07 3.93 1.76E—06  4.04 2.78E—07 4.56 1.I1IE-06 4.29
80 2.79E—08 4.02 1.79E—07 3.60 1.82E—08 4.00 8.01E—-08 3.86
160 1.74E—-09  3.90 1.32E—-08 3.67 1.14E—-09 4.07 6.02E—09 3.80
10 942E-07 - 3.06E-06 - 9.23E-07 - 427E-06 -
20 4.14E—-08 5.72 2.59E-07 4.52 3.26E—08 5.60 226E-07 4.92
4 40 1.17E—-09 5.37 991E-09 4.92 7.79E—10 5.19 5.85E—-09 5.09
80 347E—11 5.22 272E—10 5.34 2.58E—11 5.08 1.54E—10 542
160 1.39E—12  4.59 9.81E—12 4.73 1.10E—-12 4.73 6.05SE—12 4.84
Table 5 Example 2: &) = o = 0. random mesh
Number L2 norm Order L norm Order L% norm Order  L® norm Order
of cells
pl p2
10 8.00E-03 - 1.71IE-02 - 2.78E—-04 - 8.53E-04 -
20 2.08E—-03  1.92 5.19E-03  1.70 425E-05 294 1.45E—-04  2.78
40 5.46E—04  1.78 1.38E-03  1.76 5.73E—-06  3.22 2.60E-05 2.77
80 1.39E—-04  2.20 3.60E—-04 2.16 7.29E-07  2.96 3.72E-06  2.79
160 3.52E-05 1.93 9.10E-05 1.93 9.65E—08  2.84 4.82E—-07  2.87
p3 P
10 1.49E-05 - 5.33E-05 - 2.67E-07 - 9.82E-07 -
20 9.62E—-07  4.51 3.95E-06 4.29 1.35E—-08  5.15 746E—08  4.45
40 6.47E—08  3.89 243E-07  4.02 6.08E—10  4.50 3.23E-09 4.6
80 377E-09  4.10 1.56E—-08  3.96 2.14E—11  4.67 143E—-10 4.34
160 236E—10 4.04 1.06E—09  3.92 9.57E—-13  5.01 5.05E—-12  5.40
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Table 6 Example 3: &y = ng = o = B = 0, different meshes

k Number  Uniform mesh Random mesh
of cells
LZnorm  Order L norm Order LZnorm  Order L* norm Order
10 2.20E-02 - 5.08E—02 - 225E-02 - 6.25E—-02 -
20 1.10E-02 1.01 2.46E-02 1.05 1.I13E—-02 0.99 344E-02 0.86
1 40 5.48E—03 1.00 1.22E—-02 1.01 5.67E-03 1.00 1.75E—-02 0.98
80 2.74E—03 1.00  6.09E-03 1.00 2.83E—-03 1.00 9.42E-03 0.89
160 1.37E—-03 1.00  3.04E-03 1.00 141E-03 1.00 4.72E-03 1.00
10 4.18E—-03 - 2.01E-02 - 425E-03 - 244E—02 -
20 1.07E—03 1.97  5.24E-03 1.94 1.I0E-03 196 7.27E-03 1.75
2 40 2.69E—04 1.99 1.32E—-03 1.98  2.78E—04 1.98 1.96E—03 1.89
80 6.74E—05 2.00 3.32E—-E—-04 2.00 6.94E—05 2.00 6.56E—04 1.58
160 1.69E—-05 2.00 8.31E-05 2.00 1.73E—-05 2.00 1.54E-04 2.09
10 6.50E—-05 - 3.59E—-04 - 8.32E-05 - 7.01E-04 -
20 395E-06 4.04 2.25E-05 399 527E-06 398 545E-05 3.69
3 40 2.46E—07 4.01 1.42E—06 398 331E-07 399 3.67E—-06 3.89
80 1.54E—08 4.00 8.93E—08 4.00 2.05E-08 4.01 2.13E—07 4.11
160 9.81E—10 397 5.62E—09 3.99 1.39E-09 3.89 1.53E-08 3.79
10 147E-05 - 1.08E—04 - 1.63E—05 - 1.71E-04 -
20 9.29E—07 398  7.11E-06 3.93 1.05E—06 3.96 1.26E—05 3.76
4 40 5.82E—08 4.00 4.46E—07 399 6.16E-08 4.09 7.57E-07 4.06
80 3.64E-09 4.00 2.79E—-08 400 3.15E-09 429 S571E-08 3.73
160 2.27E—10 4.00 1.75E—09 4.00 1.05SE—10 490 1.75E-09 5.03

We first test the example with £y = 0 in (33), no = 0 in (34) and « = B = 0. The
results are given in Table 6. From the table, we can only observe (k + 1)-th order
convergence rates for k = 3.

To recover the optimal convergence rates, we choose other penalty parameters and
the results are listed in Table 7. We use random meshes only and can observe that
if both penalty parameters are nonzero, we can obtain optimal rates of convergence.
However, if only one of the penalty parameters is nonzero, we still have the accuracy
degeneration if piecewise odd order polynomials are applied.

Moreover, following Example 1, we also choose random meshes and take different
values of &y and 7¢. The results are provided in Table 8. We can observe that, if both
of them are nonzero, the optimal convergence rates can be recovered. However, if one
of them is zero, (e.g. &y = 0), the optimal rates cannot be obtained for k = 1.

Example 4 We solve the convection—diffusion equation in two space dimensions

(x,y) €[0,27] x [0, 27]. 41)

Ur +uy + Uy = Uyx + Uyy,
u(x,y,0) = sin(x) cos(y),
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Table 7 Example 3: &y = ng = 0, different « and B, random mesh

k Number o« =0,8=02 a=02, =02
of cells
LZnorm  Order L®norm Order L2 norm Order L% norm Order
10 1.86E—02 - 6.48E—02 - 1.07E-02 - 395E-02 -
20 8.78E—03 1.08 3.09E—02 1.07 2.32E-03 221  9.68E—03 2.03
1 40 4.43E-03 0.99 1.89E—02 0.71 5.40E—04 210 2.85E-03 1.77
80 222E-03 0.99 9.76E—-03 0.95 1.31E—04 2.05 7.09E-04 2.0l
160 1.11IE-03 1.00 447E-03 1.13 3.25E-05 2.01 1.89E—04 191
10 1.79E—-03 - 1.07E—-02 - 1.21E-03 - 7.55E—-03 -
20 1.62E—04 3.47 1.10E—03 3.28 1.23E—-04 329 9.67E—-04 2.96
2 40 1.62E—05 3.32  1.23E-04 3.15 1.41E—-E-05 3.13 1.13E-04 3.10
80 1.78E-06 3.19  145E-05 3.09 1.69E—06 3.07 1.38E—05 3.03
160 2.14E-07 3.05 1.82E—06 3.00  2.09E—07 3.02 1.74E—06 2.99
10 8.02E—05 - 6.45E—-04 - 7.36E—05 - 5.64E—-04 -
20 5.72E—-06 3.81 5.76E—-05 3.49  4.70E—06 397  4.92E-05 3.52
3 40 4.92E—-07 3.54 3.776E—06 3.94 2.95E-07 4.00 322E-06 3.94
80 491E-08 333 3.32E-07 350 1.79E—08 4.04 1.76E—07 4.19
160 5.85E—09 3.07 38IE-08 3.12 1.11E-09 4.01 1.32E—-08 3.74
10 5.38E-06 - 4.54E-05 - 4.66E—06 - 3.82E-05 -
20 1.67E—-07 5.01 1.96E—06 4.53 1.56E—-07 490 1.76E—-06 4.44
4 40 5.14E—-09 5.02 6.15E—-08 4.99  4.94E—09 499  5.59E-08 4.98
80 1.52E—10 5.08 1.87E—09 5.04 1.48E-10 5.06 1.73E-09 5.01
160 4.73E—12 5.01 5.99E—11 496  4.60E—12 5.01 5.61E—11 4.95

Clearly, the exact solution is

u(x,y, t) =e 2 sin(x — 1) cos(y — 1).

We consider random meshes only and use upwind fluxes for the convection term. We
take & = no = o = B = 0 to test the accuracy and the results are given in Table 9.
From the table, we can observe optimal convergence rates.

5 Conclusion

In this paper, we have introduced a new LDG method on overlapping meshes. The
scheme is stable but the order of accuracy may not be optimal. We demonstrated a
potential reason for the accuracy degeneration and provided several alternatives to
recover the optimal convergence rates.
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Table 8 Example 3: different &y and ng, « = g = 0, random mesh

k Number &y =0, n9 =0.05 &y = 0.05, no = 0.05
of cells
L% norm Order L*®norm Order L%Znorm  Order L% norm  Order
10 2.21E-02 - 6.73E—-02 - 2.18E-02 - 6.63E—02 -
20 1.07E—02 1.04 346E-02 096 1.0l1E-02 1.11 3.76E—02 0.82
1 40 4.78E—03 1.17 1.84E—02 0.91 3.74E—-03 143 1.71E—-02 1.14
80 2.11E-03 1.18 9.03E-03 1.02 9.24E—-04 2.02 4.99E-03 1.78
160 1.01E-03 1.06 431E-03 1.07 2.15E-04 210 1.26E—03 1.98
10 4.06E—03 - 248E—02 - 395E-03 - 246E—02 -
20 9.46E—04 2.10 6.57E—03 192 8.18E-04 227 5.76E—03 2.09
2 40 1.59E—04 2.57 1.20E-03 245 1.12E—-04 2.87 8.30E—04 2.80
80 1.76E—05 3.17 1.60E—04 291 1.12E-05 3.32  9.04E-05 3.20
160 1.79E—06 330 1.68E—05 3.25 1.21E-06 3.22  1.00E-05 3.17
10 8.45E—05 - 7T48E—-04 — 8.50E-05 - 7.06E—-04 -
20 5.70E—06 389 S5.64E-05 3.73 6.02E-06 3.82 596E—05 3.57
3 40 4.25E-07 375 38lE-06 3.89 4.88E-07 3.62 4.53E—06 3.72
80 2.59E-E—-08 4.03 227E-07 4.07 3.11E-08 3.97 290E-07 3.97
160 1.65E—09 398 1.59E-08 3.84 193E-09 4.01 2.03E—08 3.84
10 1.54E—05 - 1.71IE-04 - 1.49E-05 - 1.66E—04 -
20 8.58E—07 4.17 1.08E—05 3.99 7.10E-07 439 8.90E—06 4.22
4 40 3.05E—08 4.81 425E-07 4.67 2.11E—08 5.07 2.81E-07 4.99
80 7.83E—10 5.28 1.30E—-08 5.03 5.34E—-10 530 7.31E—09 5.26
160 2.06E—11 525 346E-10 5.23 1.50E—-11 5.16 2.08E—10 5.13
Table 9 Example 4: &y = 9 = « = = 0. random mesh
Number of cells L% norm Order L° norm Order L2 norm Order L norm  Order
pl p2
10 1.0IE-02 - 4.10E-02 - 1.04E—-03 - 6.67TE—03 -
20 2.69E—-03 1.90 1.21E-02 1.76 1.43E—04 2.86 1.0OIE-03 2.73
40 6.86E—04 1.97 323E-03 1.90 1.87E—-05 2.94 1.31E—-04 294
80 1.72E—-04  2.00 7.54E—-04 2.10 2.38E—06 2.98 1.70E—-05 2.95
160 4.30E-05 2.00 1.98E—04 1.93 3.00E-07 2.99 2.18E—06 2.96
p3 p4
10 7.36E-05 - 6.30E—04 - 4.66E-06 — 4.77E-05 -
20 4.85E—-06 3.92 4.98E—-05 3.66 1.65E—07 4.82 1.88E—06 4.67
40 3.10E-07 3.97 3.72E-06 3.74 535E-09 4.94 6.86E—08 4.78
80 1.90E—-08 4.02 2.25E-07 4.05 1.64E—10 5.03 2.05E-09 5.06
160 1.20E—09 3.99 1.42E—08 3.98 S5.ISE—12 499 6.98E—11 4.88
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