
Formalizing Atom-typing and the Dissemination of
Force Fields with Foyer

Christoph Kleina,b, Andrew Z. Summersa,b, Matthew W. Thompsona,b, Justin
Gilmerc,b, Clare McCabea,d,b, Peter T. Cummingsa,b, Janos Sallaie,

Christopher R. Iacovellaa,b

aDepartment of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville,
Tennessee 37235, United States

bVanderbilt Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University,
Nashville, Tennessee 37235, USA

cInterdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee
37235, United States

dDepartment of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United
States

eInstitute for Software Integrated Systems, Vanderbilt University, Nashville, Tennessee
37235, United States

Abstract

A key component to enhancing reproducibility in the molecular simulation com-
munity is reducing ambiguity in the parameterization of molecular models used
to perform a study. Ambiguity in molecular models often stems from inadequate
usage documentation of molecular force fields and the fact that force fields are
not typically disseminated in a format that is directly usable by software. Specif-
ically, the lack of a generally applicable scheme for the annotation of the rules
of a particular force field and a general purpose tool for performing automated
parameterization (i.e., atom-typing) based on these rules, may lead to errors in
model parameterization that are not easily identified. Here, we present Foyer,
an open-source Python tool that enables users to define and apply force field
atom-typing rules in a format that is both human- and machine-readable and
provides a framework for force field dissemination, thus eliminating ambiguity in
atom-typing and improving reproducibility. Foyer defines force fields in an XML
format, where SMARTS strings are used to define the chemical context of a par-
ticular atom type and “overrides” are used to set rule precedence, rather than a
rigid hierarchical scheme. Herein we describe the underlying methodology and
force field annotation scheme of the Foyer software, demonstrate its application
in several use-cases, and discuss specific aspects of the Foyer approach that are
designed to improve reproducibility.

Keywords: Molecular simulation; Force fields; Reproducibility; Open-source
software

Preprint submitted to Computational Materials Science May 16, 2019

1. Introduction1

Considerable efforts have been undertaken by many research groups to de-2

velop accurate classical force fields for a wide range of systems.[1, 2, 3, 4, 5, 6, 7]3

Force fields are often expressed as a set of analytical functions with adjustable4

fitting parameters that describe the interactions between constituents of a sys-5

tem (often discrete atoms but, more generally, interaction sites). Classical force6

fields are typically able to achieve high accuracy by creating sets of highly spe-7

cific fitting parameters (i.e., atom types), in which each atom type describes8

an interaction site within a different chemical context. The chemical context9

is typically defined by the bonded environment of an interaction site (e.g., the10

number of bonds and the identity of the bonded neighbors) and may also con-11

sider, among other factors, the bonded environment of the neighbors, and/or12

the specific molecule/structure within which the interaction site is included.13

Consequently, a force field may include tens or even hundreds of different atom14

types for a given element. For example, there are 347 atom types that apply15

to carbon in the OPLS force field parameter set distributed with GROMACS[8]16

where each atom type corresponds to a carbon atom within a different chemical17

context. Thus, while force field development efforts have reduced – or in some18

cases completely eliminated – the need for researchers to generate their own19

fitting parameters, determining which parameters (i.e., atom types) to use can20

still be a tedious and error prone task. Failure to properly identify the chemical21

context and atom type of an interaction site will inevitably lead to the unfaithful22

implementation of the force field and thus inconsistent results.23

Part of the difficulty in performing atom-typing (i.e., determining which24

atom type applies to an interaction site) stems from the fact that there is not25

yet a standardized way of unambiguously expressing chemical context and pa-26

rameter usage. As such, journal articles that report novel force field parameters27

may vary significantly in terms of their clarity. In many cases, parameters are28

reported in a tabular format with minimal annotations and few (if any) exam-29

ples of how to appropriately assign the atom types. Since this approach does30

not allow for automated evaluation, different users of the force field may apply31

the atom types differently based on their own interpretation of the information32

provided. Journal articles that utilize existing force fields often do not report33

the specific fitting parameters and typically do not specify which atom types34

were chosen for the interaction sites, instead providing citation(s) to the source35

of the force field parameters. Even if the source of the parameters is clearly and36

fully specified, usage may again depend on the clarity of the original source(s)37

and the interpretation by the end user, hampering reproducibility. Force field38

parameter files that aggregate a large number of atom types (often thousands)39

into a single source suffer from some of the same issues. Often, they include only40

brief, unstructured – and sometimes ambiguous – annotations as to parameter41

usage, and may, or may not, provide clear citations of the original source of the42

parameters.43

To apply force fields, users can perform atom-typing manually (e.g., cre-44

ation of an atom-typed template of a molecule or unit cell), although manual45

2

assignment of parameters becomes tedious and error prone for large molecules46

and/or complex systems, and manual manipulation of files is not considered a47

good practice in terms of reproducibility[9]. Furthermore, manual assignment48

of parameters does not lend itself well to workflows such as screening[10], where49

thousands of unique systems with different chemical constituents and struc-50

tures may need to be atom-typed in an automated fashion. To avoid manual51

assignment, end-users often develop in-house software to apply force fields in an52

automated fashion; however, such software is not typically made freely available53

to the community and may be very limited in scope and applicability. Without54

access to the same software, the exact atom-typing cannot be reproduced by oth-55

ers and if the source code is not made freely available, the logic used to interpret56

and apply the force field is unknown and if there are errors in the software/logic,57

these cannot be identified. There exist a number of freely available atom-typing58

tools that read in a force field parameter file and execute a set of rules to apply59

the force field to a chemical topology [11, 12, 13, 14, 15, 16, 17], enabling the60

exact atom-typing process to be reproduced. However, many of these atom-61

typing tools are either closed-source[12, 15], simulation engine-specific[14, 17],62

and/or force field-specific[13, 15, 16], which limits their utility. Furthermore,63

these tools almost universally rely on a rigid hierarchy of rules[11], where rules64

must be called in a precise order such that more general atom types are only65

chosen when more specialized matches do not exist (i.e., the order of rules de-66

fines the precedence). Maintaining, let alone constructing, these hierarchies is67

challenging, especially for a large number of atom types. In order to add a new68

atom type or correct an error in hierarchical schemes, a developer must have69

a complete picture of the hierarchy and know exactly where the relevant rule70

should be placed such that it does not inadvertently override other rules. This71

may impose practical limits on functionality, where, for example, a user is not72

able to easily extend the rules to include new atom types, or that such attempts73

to extend the rules result in incorrect atom-typing for other systems. For many74

tools, this approach is further complicated by the encoding of the hierarchy as75

a set of heavily nested if/else statements within the source code of the software.76

These heavily nested if/else hierarchies may be difficult to validate and debug,77

and any changes or extensions to the rules, no matter how trivial, require mod-78

ification of the source code itself. Reproducibility issues may therefore arise if79

users make modifications or extensions to a piece of software and these changes80

are not made freely available to the larger community and/or incorporated into81

the main software distribution. This also creates a situation where there are82

effectively two sets of rules since there is no guarantee that the logic statements83

in the source code (i.e., the machine readable rules) agree with the textual84

annotations in the force field parameter file (i.e., the human readable rules).85

Several atom-typing tools have been developed that remove the need to86

encode atom type usage rules within the source code itself. A unifying fea-87

ture of these tools is the use of the simplified molecular-input line-entry system88

(SMILES) [18] language, or variants thereof, for describing chemical structures89

associated with an atom type. For example, Yesselman, et al. [17] developed an90

atom-typing toolset for the CHARMM simulation engine, termed MATCH, that91

3

relies on assigning parameters by representing a molecule of interest as a graph92

and performing subgraph matching against a library of fragments with known93

parameters. These fragments are represented as “super smiles”, an extension94

of the SMILES language. By using super smiles and storing these fragments95

in text files separate from the software, chemical context is expressed without96

the need to define a rigid if/else hierarchy within the software and thus new97

atom types and rules (i.e., fragments encoded as super smiles) can be added98

without modifying the code used to evaluate them. In recent work, Mobley99

and coworkers[19] have developed an approach to defining force fields, termed100

SMIRNOFF, that effectively eliminates explicit atom types altogether, instead101

using SMIRKS (another language related SMILES [20]) to identify chemical102

fragments that are associated with a set of force field parameters. Similar to103

Yesselman, et al. [17], application of the force field relies on representing the104

system as a graph and rules as subgraphs. In other work, the Enhanced Monte105

Carlo (EMC) software developed by in’t Veld [21] encodes chemical context of106

an atom type using SMILES. In all cases, the use of the SMILES-based ap-107

proaches not only removes the need to encode usage within the source code, but108

associates parameters with a human and machine readable definition of their109

chemical context, although, these approaches all still require rules be specified110

in a particular order to enable correct atom-typing.111

In this work, we present Foyer, a Python library for performing atom-typing112

based upon first-order logic over graph structures, designed to address many of113

the aforementioned issues, with a particular emphasis on reproducibility and114

the dissemination of force fields to the community. Foyer relies upon a force-115

field-agnostic formalism to express atom-typing and parameterization rules in a116

way that is expressive enough for human consumption while simultaneously be-117

ing machine readable, allowing a single, unambiguous format to be constructed118

for both dissemination and use by software. This logic is implemented via119

SMARTS[20] to encode chemical context and “overrides” statements to define120

rule precedence. SMARTS extends the SMILES language to support substruc-121

ture definitions and allows expression of greater chemical detail and logic opera-122

tions within the chemical patterns. In Foyer, SMARTS has been extended such123

that it allows user-defined “elements” (not in the periodic table) to be leveraged124

within the chemical context definitions, thus enabling both atomistic and non-125

atomistic force fields to be used. By using SMARTS to define chemical context,126

atom type definitions do not appear in the source code, and thus force fields127

can be created and evolved without modification to the code used to evaluate128

them. Rule precedence is explicitly defined by the aforementioned overrides129

statements, thus atom-typing rules can appear in any order in the file and in-130

clude recursive definitions to other atom types, eliminating physical placement131

in the file as a source of error and providing increased flexibility. Since this132

iterative approach used by Foyer evaluates all rules, automated evaluation can133

be used to help ensure that Foyer force field definitions (1) encompass all atom134

types in the force field and (2) are sufficiently descriptive without conflicting135

rules, both necessary conditions for publishing force fields in a way that is un-136

ambiguous and reproducible. The Foyer software provides routines that create137

4

syntactically correct input files for a variety of common simulation engines and138

is designed to take, as input, chemical topologies from several of other commu-139

nity developed tools (e.g., ParmEd[22], OpenMM[23, 24], and mBuild[25, 26, 27]).140

The manuscript is organized as follows. Sec. 2 introduces the use of SMARTS141

and overrides for encoding force field usage. This section also presents the142

XML file format used by Foyer, which builds upon the OpenMM force field file143

format[23, 24] extended to support the definition of the associated SMARTS,144

and overrides statements, textual descriptions of the parameters, and digital145

objective identifiers (DOIs) for the source of each atom type. Sec. 3 provides an146

overview of the Foyer software used to evaluate the SMARTS and overrides147

statements encoded in the XML file format, including the iterative process –148

and its optimizations – used for determining atom types. This section also149

discusses force field validation and verification within Foyer. Sec. 4 provides150

examples of the use of the Foyer software to perform atom-typing of several151

different chemical systems. Sec. 5 discusses best practices for the use of Foyer152

and force field annotation scheme in terms of reproducibilit, focusing on the use153

of version control and related open-source software development tools to enable154

the creation and evolution of force fields in a transparent, testable manner. Sec.155

6 provides concluding remarks.156

2. Defining chemical context and rule precedence157

2.1. XML File Format158

Foyer utilizes the OpenMM force field XML format[24] to encode parame-159

ters, where this format is extended to allow for the definitions of chemical con-160

text and rule precedence (discussed below). To briefly summarize the OpenMM161

file format, atom types and forces are encoded as XML tags with various at-162

tributes defining the types of elements that they apply to (by name only), as163

well as the associated parameters for that interaction (e.g., the equilibrium bond164

length and spring constant for a harmonic bond). Listing 1 provides an example165

of encoding the OPLS force field parameters for linear alkanes in the OpenMM166

XML format (note, this Listing does not include our extensions). As shown in167

Listing 1, the XML format provides clear descriptions of each of the parameter-168

s/properties defined in the file (e.g., element="C" indicates the entry is defining169

a carbon atom), along with additional tags that provide unambiguous descrip-170

tions of the types of interactions being used (e.g., the <HarmonicBondForce>171

tag is used to define the use of a harmonic force to define bonds). As such,172

this file format includes a wealth of metadata that is both human and machine173

readable. For more detailed information, we refer the reader to the OpenMM174

manual where this force field file format is extensively documented [24].175

The flexible nature of XML allows it to be readily extended via the addition176

of new tags/attributes without fundamentally changing the original format, as177

new tags/attributes can simply be ignored by software that does not require178

them. As shown in Table 1, and discussed in detail later, four new attributes179

have been added to the atom type entries in the existing OpenMM XML file180

5

Table 1: Extensions to the atom type definitions in the OpenMM XML format.

Attribute Description Example
def Chemical context of an atom type via SMARTS [C;X4](H)(H)(H)C

desc Textual description of the atom type Alkane CH3

doi Digital object identifier to the atom type source 10.1021/ja9621760

overrides Atom type(s) the current rule is given precedence over opls_136

format to enable the functionality needed to encode usage rules in Foyer: def,181

desc, doi, and overrides. The use of XML additionally allows sanity checks182

to be performed by using XML schemas to ensure the expected attributes have183

been provided in the file.184

Listing 1: OpenMM formatted XML file for linear alkanes using the OPLS force field.

<ForceField>
<AtomTypes>
<Type name="opls_135" class="CT" element="C" mass="12.01100"/>
<Type name="opls_136" class="CT" element="C" mass="12.01100"/>
<Type name="opls_140" class="HC" element="H" mass="1.00800"/>

</AtomTypes>
<HarmonicBondForce>
<Bond class1="CT" class2="CT" length="0.1529" k="224262.4"/>
<Bond class1="CT" class2="HC" length="0.1090" k="284512.0"/>

</HarmonicBondForce>
<HarmonicAngleForce>
<Angle class1="CT" class2="CT" class3="CT" angle="1.966986067"\\

k="488.273"/>
<Angle class1="CT" class2="CT" class3="HC" angle="1.932079482"\\

k="313.800"/>
<Angle class1="HC" class2="CT" class3="HC" angle="1.881464934"\\

k="276.144"/>
</HarmonicAngleForce>
<RBTorsionForce>
<Proper class1="CT" class2="CT" class3="CT" class4="CT" c0="2.9288"\\

c1="-1.4644" c2="0.2092" c3="-1.6736" c4="0.0" c5="0.0"/>
<Proper class1="CT" class2="CT" class3="CT" class4="HC" c0="0.6276"\\

c1="1.8828" c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>
<Proper class1="HC" class2="CT" class3="CT" class4="HC" c0="0.6276"\\

c1="1.8828" c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>
</RBTorsionForce>
<NonbondedForce coulomb14scale="0.5" lj14scale="0.5">
<Atom type="opls_135" charge="-0.18" sigma="0.35"\\

epsilon="0.276144"/>
<Atom type="opls_136" charge="-0.12" sigma="0.35"\\

epsilon="0.276144"/>
<Atom type="opls_140" charge="0.06" sigma="0.25"\\

epsilon="0.12552"/>
</NonbondedForce>

</ForceField>

185

2.2. Using SMARTS to define chemical context186

The chemical context of an interaction site is typically defined by its bonded187

environment, notably the number of bonds and the identities of bonded neigh-188

6

Table 2: 2D depictions of molecular fragments referred to in the text

Alkane Alkene Benzene

C, CH3 C, CH2 H C, (R2-C=) C, (RH-C=) H C H

opls_135 opls_136 opls_140 opls_141 opls_142 opls_144 opls_145 opls_146

Table 3: Currently implemented SMARTS atomic primitivesa

Symbol Symbol name Atomic property requirements Default
* wildcard any atom (no default)
A aliphatic aliphatic (no default)
r<n> ring size in smallest SSSRb ring of size <n> any ring atom
X<n> connectivity <n>total connections exactly one
#n atomic number atomic number <n> (no default)
aThis table has been adapted from the Daylight SMARTS website.
bSmallest set of smallest rings.

Table 4: Extensions to SMARTS atomic primitives

Symbol Symbol name Atomic property requirements Default
A non-element non-atomistic element (no default)

%<type> atomtype of atomtype <type> (no default)

Table 5: SMARTS Logical Operatorsa

Symbol Expression Meaning
exclamation !e1 not e1
ampersand e1&e2 e1 and e2 (high precedence)
comma e1,e2 e1 or e2
semicolon e1;e2 e1 and e2 (low precedence)
aThis table has been adapted from the Daylight SMARTS
website.

7

boring interaction sites, but may also include longer range information, such189

as the bonded environment of neighbors. To encode this information, Foyer190

utilizes SMARTS[20], a language for defining chemical patterns. SMARTS is191

an extension of the more commonly used SMILES[18] notation, providing ad-192

ditional tokens that enable users to express greater chemical detail and logic193

operations. SMARTS notation is expressed as strings that simultaneously in-194

clude arbitrary chemical complexity but are concise and clear enough for human195

consumption, in addition to being machine readable. As an example, consider196

defining the chemical context of OPLS-AA atom types for carbon and hydrogen197

atoms in a linear alkane, as shown in Listing 2 (note, only the <AtomTypes>198

section of the file is shown, as this is the only section that differs from Listing199

1). The reader is referred to Table 2 for a visual depiction of these atom types.200

To encode the chemical context, the def attribute is added to the OpenMM201

XML format to encode the corresponding SMARTS string. Here, the atom type202

that specifies the terminal methyl group, opls_135 (“-CH3”) can be expressed203

as [C;X4](C)(H)(H)H in the SMARTS notation. In this SMARTS notation,204

[C;X4] indicates that the element of interest – always the first token in the205

SMARTS string – is a carbon atom (i.e., C) and this carbon atom has 4 total206

bonds (i.e., ;X4, where ; indicates the logical operator AND). The identities of207

the 4 bonded neighbors are 1 carbon atom and 3 hydrogen atoms, expressed as208

(C)(H)(H)H. Similarly, the opls_136 atom type, which describes a methylene209

group in an alkane, is expressed in SMARTS notation as [C;X4](C)(C)(H)H.210

Here, the only change from the opls_135 definition lies in the identity of the211

4 bonded neighbors (2 carbon atoms and 2 hydrogen atoms). Increased chem-212

ical complexity can be described by adding details about each of neighboring213

interaction sites within SMARTS. For example, the opls_140 atom type, which214

describes a generic alkane hydrogen, is defined as H[C;X4] - a hydrogen atom215

bonded to a carbon atom with 4 bonds. Multiple valid SMARTS can be defined216

for each atom type, where, e.g., opls_140 could be defined simply as def="H"217

since there is only a single hydrogen atom type defined in Listing 2. However,218

such a definition would not necessarily provide a user of the force field with a219

clear understanding of the chemical context for which this atom type applies,220

and may limit future evolution of the force field. Our extension of the XML file221

format also includes the desc attribute (e.g., shown in Listing 2) that allows for222

unstructured comments to be provided for each entry if desired.223

We note that the parser in the Foyer libraries does not currently support224

the full SMARTS language, instead providing support for the subset that was225

found to be relevant to the definition of chemical context for atom types. Table226

3 lists the currently supported primitives, Table 4 shows our extensions to the227

language, and Table 5 outlines the logical operators supported.228

8

Listing 2: Atom type definitions for carbon and hydrogen atoms in a linear alkane using the
OPLS force field. Note, only the section that applies to atom types is shown for clarity.

<ForceField>
<AtomTypes>
<Type name="opls_135" class="CT" element="C" mass="12.01100"\\

def="[C;X4](C)(H)(H)H" desc="alkane CH3"/>
<Type name="opls_136" class="CT" element="C" mass="12.01100"\\

def="[C;X4](C)(C)(H)H" desc="alkane CH2"/>
<Type name="opls_140" class="HC" element="H" mass="1.00800"\\

def="H[C;X4]" desc="alkane H"/>
</AtomTypes>

</ForceField>

229

2.3. Establishing rule precedence230

Rule precedence must be established when multiple atom type definitions231

can apply to a given interaction site. In typical hierarchical schemes, this is232

determined implicitly by the order in which rules are evaluated; in general,233

more specific rules are evaluated first and when a match is found, the code234

stops evaluating rules altogether. While this approach works, it becomes more235

challenging to maintain the correct ordering of rules as the number of atom236

types grows and as chemistries become more complex and specific. Users may237

find it difficult, if not impossible, to make even small additions to a larger force238

field without breaking existing behavior. Foyer allows rule precedence to be239

explicitly stated via the use of the overrides attribute added to the XML file240

format. This allows atom type usage rules to be encoded in any order within241

the file, eliminating incorrectly placed rule order as a source of error. Foyer242

iteratively evaluates all rules on all interaction sites in the system, maintaining243

for each interaction site a “whitelist” consisting of rules that evaluate to True244

and a “blacklist” consisting of rules that have been superseded by another rule245

(i.e., those that appear in the overrides attribute). The set difference between246

the white- and blacklists of an interaction site yields the correct atom type if247

the force field is implemented correctly (incorrect/incomplete definition of force248

fields is discussed later). As an example of a system where overrides need to249

be defined, consider describing alkenes and benzene in a single force field file,250

as shown in Listing 3 (note, only the <AtomTypes> section of the force field file251

is shown). The reader is again referred to Table 2 for visual depictions of the252

relevant atom types.253

9

Listing 3: Atom type definitions for alkenes and benzene using the OPLS force field high-
lighting the overrides syntax and mechanism for referencing other atom types. Note, only the
section that applies to atom types is shown for clarity.

<ForceField>
<AtomTypes>
<Type name="opls_141" class="CM" element="C" mass="12.01100"\\

def="[C;X3](C)(C)C" desc="alkene C (R2-C=)"/>
<Type name="opls_142" class="CM" element="C" mass="12.01100"\\

def="[C;X3](C)(C)H" desc="alkene C (RH-C=)"/>
<Type name="opls_144" class="HC" element="H" mass="1.00800"\\

def="[H][C;X3]" desc="alkene H"/>
<Type name="opls_145" class="CA" element="C" mass="12.01100"\\

def="[C;X3;r6]1[C;X3;r6][C;X3;r6][C;X3;r6][C;X3;r6][C;X3;r6]1"\\
overrides="opls_142"/>

<Type name="opls_146" class="HA" element="H" mass="1.00800"\\
def="[H][C;%opls_145]" overrides="opls_144" desc="benzene H"/>

</AtomTypes>
</ForceField>

254

When atom-typing a benzene molecule, the carbon atoms in the ring will255

match the SMARTS patterns for both opls_142 (an alkene carbon) and opls_145256

(a benzene carbon). Without the overrides attribute, Foyer will find that mul-257

tiple atom types apply to each carbon atom. Providing the overrides indicates258

that if the opls_145 pattern matches, it will supersede opls_142. Thus, the dif-259

ference between the whitelist (containing opls_142 and opls_145) and blacklist260

(containing only opls_142) would be opls_145.261

Note that multiple atom types can be listed in a single overrides attribute.262

The approach taken here also allows atom types to inherit overrides from the263

atom types they override. For example, consider a case in which atom types264

1, 2 and 3 each evaluate to True for an interaction site. If atom type 3 over-265

rides atom type 2 (i.e., adds atom type 2 to the blacklist) and atom type 2266

overrides atom type 1 (i.e., adds atom type 1 to the blacklist), then atom type267

3 will implicitly override atom type 1. Additionally, in Foyer, the SMARTS268

grammar has been modified such that specific atom type names can also be269

included within the definition (see Table 4). For example, opls_146, the hy-270

drogen atom attached to carbon atoms in a benzene ring, has the SMARTS271

definition [H][C;%opls_145], as shown in Listing 3. This states that the inter-272

action site of interest is a hydrogen atom (H) and is bonded to a carbon atom273

that has atom type opls_145 (C;%opls_145). Because Foyer evaluates rules274

iteratively for each interaction site, such recursive definitions can be utilized275

without the need to explicitly define atom types in a chemical topology input276

file. For example, in this case, when Foyer identifies the interaction site of a277

carbon atom to be opls_145, the next iteration to evaluate the hydrogen atom278

will find that opls_146 now evaluates to True. Similar to how an overrides279

statement clearly defines precedence, this recursive definition provides a clear280

way to identify chemical context and the relationship between different atom281

types for highly specific parameters. We note, that one could also replace the282

recursive reference to opls_145 with its SMARTS string, although, in this case,283

it would result in a more complex, less human readable definition.284

10

Because the logic used to define chemical context is separated from the285

source code used to evaluate it, one can construct a force field file that contains286

only the relevant subset of atom types need for a given application area. Using287

the above example of benzene and alkenes, if a system only contained benzene288

molecules, one could avoid specifying the overrides attributes altogether by289

simply creating a force field file containing only atom types relevant to ben-290

zene and eliminating those associated with alkenes. In many cases, considering291

smaller subsets is beneficial as the amount of effort required to differentiate and292

set rule precedence between atom types is reduced. Additionally, using smaller293

files will reduce the likelihood of errors related to defining chemical context and294

rule precedence, reduce the number of test molecules with known atom types295

required to fully validate the rules, and increase the readability of the force field296

files by limiting the number of entries.297

2.4. Extension of SMARTS for non-atomistic systems298

Foyer is able to atom-type systems in which an interaction site does not299

represent a single atom with a standard element, but instead may represent a300

group of atoms (relevant to united-atom and coarse-grained force fields) or a301

generic site (relevant to simplified models). Standard SMARTS notation does302

not support non-atomic species due to its reliance on the presence of an element303

specification for each interaction site. To circumvent this limitation, the Foyer304

SMARTS parser allows users to define custom “elements” by prefixing their305

string representation with an underscore (see Table 4). For example, _CCC306

could represent a coarse-grained interaction site intended to model three carbon307

atoms. In its current implementation, Foyer makes a first pass through force308

field files to detect any custom element definitions. These are injected into309

the grammar that parses SMARTS strings and are given priority over standard310

elements. This allows non-atomistic and atomistic atom types to be used either311

separately or together.312

In practice, united-atom and coarse-grained force fields can be defined in an313

almost identical fashion to all-atom force fields, where the only difference is that314

“elements” are user-defined strings prepended with an underscore. As an exam-315

ple, consider an alkane modeled with the united-atom TraPPE force field[28, 29].316

An interaction site in this force field represents both carbon and the hydrogen317

atoms bonded to it. Thus, this force field contains two distinct atom types, one318

that represents CH3 (_CH3) and one that represents CH2 (_CH2). These can319

be encoded as shown in Listing 4. Focusing on atom type CH3_sp3, usage is320

encoded with the definition [_CH3;X1][_CH3,_CH2] which states that the base321

“element” is _CH3 with one bond (i.e., ;X1) to either a _CH3 or a _CH2 group.322

In SMARTS, a comma indicates an “OR” logic statement and a semicolon is323

used to denote an “AND” logical statement (see Table 5 for a complete list324

of SMARTS logical operators). In this example, [_CH3;X1] states the element325

must be _CH3 “AND” have only a single bond. Atom-type _CH2_sp3, which rep-326

resents a “middle” alkane carbon and its 2 associated hydrogen atoms, is defined327

similarly as [_CH2;X2]([_CH3,_CH2])[_CH3,_CH2]. Here, the base “element”328

is a _CH2 with two bonds (i.e., ;X2), each of which may be either “element”329

11

_CH3 or _CH2. Note, the interaction sites defined in the input chemical topology330

would need to follow the same naming convention as the force field file, namely331

they would need to be labeled as _CH3 and _CH2.332

Listing 4: Atom:type definitions for united atom alkanes using TraPPE.

<ForceField>
<AtomTypes>

<Type name="CH3_sp3" class="CH3" element="_CH3" mass="15.03500"\\
def="[_CH3;X1][_CH3,_CH2]" desc="Alkane CH3, united atom"/>

<Type name="CH2_sp3" class="CH2" element="_CH2" mass="14.02700"\\
def="[_CH2;X2]([_CH3,_CH2])[_CH3,_CH2]"\\
desc="Alkane CH2, united atom"/>

</AtomTypes>
</ForceField

333

2.5. Determining bonded parameters334

Once a chemical topology is atom-typed, bonded interactions can be deter-335

mined by simply searching for the matching pairs, triplets, and quartets (bonds,336

angles, and torsions, respectively). In many force fields, the bonded parameters337

are not as specific as the non-bonded interactions, and thus are not defined di-338

rectly based on atom types. Thus, rather than atom types, a more general class339

identifier (sometimes referred to as the “bond family”) is used to identify these340

interactions. In Listing 5, both opls_136 and opls_962 are part of the same341

class “CT”. Thus a bond between opls_136-opls_962 would have the same342

parameters (defined as class1="CT" class2="CT" in Listing 5) as a bond be-343

tween opls_136-opls_136 (also defined as class1="CT" class2="CT"). How-344

ever, this general approach breaks down for certain chemical topologies. For ex-345

ample, while the atom types for carbon atoms in alkanes[3] and perfluoralkanes[30]346

are both of class “CT” and share the same bond and angle parameters for car-347

bon atoms, they differ in terms of torsional parameters. In order to handle348

this conflict, many codes require users to comment out the more general set349

of parameters or include statements within the code that accomplish the same350

task. However, in this approach, one would not be able to atom-type a system351

composed of a mixture of alkane and perfluoroalkane molecules, since only one352

set of parameters can be included simultaneously. Note that while one could353

define a new class to differentiate between alkanes and perfluoroalkanes, this354

wouldresult in a force field file with many duplicate parameters sets that simply355

have different labels.356

The OpenMM format allows bonded parameters to be defined using the357

type attribute in place of the class attribute, where type refers directly to358

the name attribute that stores the atom type, allowing for bonded interactions359

to be defined with increased specificity. Additionally, mixed use of type and360

class in the definition of these bonded interactions is supported. Referring361

to Listing 5, to provide the necessary distinction between torsional parameters362

for perfluoroalkanes and alkanes, one could define perfluoroalkane torsions using363

type attributes (i.e., type1="opls_962" type2="opls_962" type3="opls_962"364

12

type4="opls_962", where opls_962 is defined in the <AtomTypes> XML sec-365

tion), and alkane torsions with the more general quartet for alkanes of class1="CT"366

class2="CT" class3="CT" class4="CT" that uses class attributes. However,367

when iterating through bonded parameter definitions, OpenMM assigns pa-368

rameters based on the first match found. In the example described above,369

perfluoroalkane torsional parameters would therefore need to be defined be-370

fore alkane parameters in the torsional section, and thus the ordering shown in371

Listing 5 would result in the incorrect assignment of torsional parameters for372

perfluoroalkanes. Several approaches can be taken to address this. overrides373

statements could be used to set rule precedence for bonded topologies and thus374

eliminate the need to specify order in the file, however additional modification to375

the force field file format would be required because bonded parameters do not376

have a “name” attribute like atom types. In the approach taken by SMIRNOFF377

[19], bonded parameters are defined directly using their chemical context (i.e.,378

via SMIRKS), eliminating this issue altogether; however, taking a similar ap-379

proach would result in the duplication of many parameters in the same was as380

defining a new class attribute. A more simple approach taken by Foyer is381

to perform a preprocessing step on the bonded parameters. This step orders382

bonded parameters such that the most specific cases are sorted to the top of383

the list to set precedence. This accomplished by assigning a weight to each384

entry proportional to the number of type attributes included (as these are the385

most specific). For example, a torsion that explicitly defines the atom types for386

which it applies (i.e., has 4 type attributes) would be given the highest weight,387

and sorted to the top of the list, whereas an entry that specifies only class388

attributes would be given the lowest. Thus, for the force field XML shown in389

Listing 5 Foyer would reverse the order of the two defined dihedrals during390

preprocessing.391

13

Listing 5: Force field XML snippet showing atom types defined for carbon in CH2 and CF2

substructures, a bonded definition between carbons, and C-C-C-C dihedral definitions for
hydrogenated and perfluorinated alkanes.

<ForceField>
<AtomTypes>
...
<Type name="opls_136" class="CT" element="C" mass="12.01100"\\

def="[C;X4](C)(C)(H)H" desc="alkane CH2" />
<Type name="opls_962" class="CT" element="C" mass="12.01100"\\

def="[C;X4](C)(C)(F)F" desc="perfluoroalkane CF2" />
...
</AtomTypes>
<HarmonicBondForce>
...
<Bond class1="CT" class2="CT" length="0.1529" k="224262.4"/>
...
</HarmonicBondForce>
...
<RBTorsionForce>
...
<Proper class1="CT" class2="CT" class3="CT" class4="CT" c0="2.9288"\\

c1="-1.4644" c2="0.2092" c3="-1.6736" c4="0.0" c5="0.0"/>
<Proper type1="opls_962" type2="opls_962" type3="opls_962"\\

type4="opls_962" c0="14.91596" c1="-22.564312" c2="-39.41328"\\
c3="11.614784" c4="35.446848" c5="0.0"/>

...
</RBTorsionForce>
...

</ForceField>

392

3. Foyer software393

In order to read the force field usage specification discussed above and per-394

form atom-typing, the Foyer software has been developed as an open-source395

Python library. Python allows for portability between platforms and provides a396

wealth of freely available modules (e.g., NumPy[31], SciPy[32], NetworkX[33])397

to facilitate many of the underlying operations. The source, documentation,398

tutorials, and examples of Foyer are freely available and can be found on the399

GitHub project repository[34], tutorial repository[35], and website[36]. Figure400

1 provides an overview of the general software workflow, which we will discuss401

here.402

3.1. Inputs and Preprocessing403

Foyer accepts, as input, the XML force field file and an input chemical topol-404

ogy for which to apply the force field. In addition to sorting bonded parameters405

by specificity as described in the previous section, the XML force field file un-406

dergoes a preprocessing and validation step via application of an XML schema407

definition. Here Foyer enforces which elements (e.g. HarmonicBondForce) are408

valid and how their attributes should be formatted. While this does not test409

the accuracy of the parameters, it does ensure that all of the expected pa-410

rameters are defined. Additionally, the schema ensures that atom types are411

14

Load chemical topology Load force field XML

Convert to OpenMM
Topology

Perform residue-based
atom-typing?

Determine
unique

residues in
Topology,

generate
residue map

Perform atom-typing

Find atom types

Convert to OpenMM System,
assign force field parameters

Convert to ParmEd Structure,
validate parameterization

Write to simulation engine data format
using mBuild or ParmEd

Preprocessing, validation,
update elements

No

Yes

Unique
residues

Figure 1: Flowchart of the Foyer software from chemical topology and force field XML inputs
to a simulation data file output.

not defined more than once and that atom types referenced in other sections412

(e.g., <HarmonicBondForce>) are actually defined in the <AtomTypes> section.413

Next, the SMARTS strings defined by the def attribute for all atom types are414

parsed and checked for validity. This does not validate whether a SMARTS415

string is correctly defined for a given interaction site but simply ensures that416

the SMARTS string can be interpreted by Foyer and does not contain any417

erroneous characters. Parsing errors are captured and re-raised with error mes-418

sages that allow a user to pin point the location of the problem in the XML file419

and within the SMARTS string. Wherever possible, Foyer attempts to provide420

helpful suggestions for fixing detected errors.421

Input chemical topologies can be passed to Foyer through various data struc-422

tures; the current version supports the OpenMM Topology object[23, 24], the423

ParmEd Structure object[22, 37], and the mBuild Compound object[26, 25, 27].424

Each of OpenMM, ParmEd, and mBuild topologies support inputs from a variety425

of common molecular file formats, such as PDB and MOL2, and thus it is typi-426

cally straightforward to convert a given system into a data structure that Foyer427

can accept. Regardless of the input format, once read into Foyer the chemical428

topology is converted to an OpenMM Topology object. The OpenMM Topology429

object provides a standardized data container to store the necessary system in-430

formation and allows for leveraging of routines already defined within OpenMM’s431

library.432

15

3.2. Atom-typing433

A flowchart of Foyer’s atom-typing procedure is shown in Fig. 3. To per-434

form atom-typing, Foyer constructs a graph of the complete system defined by435

the chemical topology (or alternatively a graph of each unique residue, see the436

Residue-based Atom-typing section below) and iteratively searches for SMARTS437

matches via subgraph isomorphism (where subgraphs are generated for each438

SMARTS definition). Graph construction and matching are performed using439

the NetworkX package[33], an open-source Python project that provides an in-440

tuitive interface for a multitude of graph-based algorithms and is the de facto441

standard network analysis library in Python. During this step, the iterative442

process of determining the atom type is undertaken, adding rules to the white443

and back lists for each interaction site in the system.444

The implementation of the SMARTS based atom-typing scheme is com-445

prised of several steps and internally relies on a subgraph isomorphism to de-446

tect matches as highlighted in Figure 2. First, a SMARTS string is parsed into447

an abstract syntax tree (AST) from which we populate a SMARTSGraph object.448

This class inherits from the Graph class in the NetworkX package. Elements in449

this SMARTSGraph are represented as nodes and chemical bonds as edges. Inher-450

iting from NetworkX is convenient in that it allows us to leverage most of the451

algorithms and visualization methods already implemented there. The primary452

distinguishing feature of the SMARTSGraph is the set of methods that encode the453

logic for matching the more complex SMARTS tokens. These methods can be454

directly used by NetworkX’s implementation of the VF2 subgraph isomorphism455

algorithm[38]. A thin wrapper provided by the find_matches method allows456

a SMARTSGraph instance to search for all subgraph isomorphisms within a bare457

chemical topology (an non-atom-typed graph of just elements and bonds). This458

method returns the indices of all elements that match the first token in the459

SMARTS string, which defines the atom type that we are looking for. Success-460

fully matching elements have the atom type definition added to their whitelist461

and any overridden types added to their blacklist. The appropriate atom type462

for an interaction site is determined by examining the difference between white-463

and blacklists, where a sufficiently descriptive force field should yield only a464

single atom type as the difference between the two lists.465

The use of white- and blacklists provides users with a means to validate the466

completeness of the chemical contexts defined by the set of SMARTS strings467

and overrides. For example, when considering a test molecule, if multiple468

valid atom types are found as the difference between white- and blacklists,469

this indicates the rules are not sufficiently unique and likely have incomplete470

information provided to the override attributes. Foyer provides the list of471

conflicting types to aid in resolving such issues. If no atom types exist as the472

difference, the interaction site of interest cannot be described by the force field473

rules as implemented. Typically, this will require adding a new atom type or474

amending an existing atom type’s definition. This may also indicate, that there475

is an error in how rule precedence has been defined, such as, all the rules on476

the whitelist “overriding” each other. The efficacy of this type of validation in477

Foyer will depend on providing a sufficient range of systems to fully explore the478

16

[C;X4](C)(H)(H)H

C;X4 H

H

H

C

yield matching
atom indices

[0, 1] 
the two carbons
in this example

SMARTSGraph SMARTSGraph.find_matches(topology)

SMARTS definition

C1H3

H2

C0

H4

H5

H6

H7

Figure 2: Schematic of the workflow to apply SMARTS patterns to chemical topologies. The
SMARTS strings used to define atomtypes are read into a SMARTSGraph class which inherits
from NetworkX’s core data structure. Using the find matches method, a SMARTSGraph instance
can search for subgraph isomorphisms of itself within a provided chemical topology and will
yield all atoms that match the first token in the original SMARTS string - the atom type that
we are looking for.

combinations of atom types that can be applied, where, as a general rule, the479

set of systems chosen to perform validation tests should collectively utilize all480

atom types defined in the force field. Note, these validation tests can be done481

to identify conflicts and under-defined systems, but do not necessarily indicate482

that the force field has been implemented corrected; separate verification tests483

are needed to ensure proper implementation, whereby the atom types identified484

by Foyer are compared to that of molecules with known, validated atom types,485

as discussed later.486

3.2.1. Residue-based Atom-typing487

Many systems of interest to molecular simulation contain topologies that488

consist of duplicates of smaller molecules or repeat units, each with identical489

topologies. A brute-force implementation of the atom-typing process wastes490

time by repeating subgraph isomorphism computation on each repeat unit and491

thus would not scale well with system size. To eliminate unnecessary calcu-492

lations, a map of atom-typed residues is saved after each unique residue is493

atom-typed the first time. Then, when an identical residue is found, it copies494

17

Convert SMARTS (i.e., rules) into graphs,
filter rules

Does rule match any atoms
in Topology?

No

Add rule to matching atoms’ whitelists

Add overrides to matching atoms’
blacklist

Choose next rule, search for matches
using subgraph isomorphism

Determine atom type from set
difference of white- and blacklist

Atoms in
Topology

Does rule have overrides?

OpenMM Topology and validated XML

Yes

Yes

No

Have all rules been
examined?

Yes

No

Figure 3: Flowchart of Foyer’s atom-typing process.

the atom-typed information from the residue map instead of repeating the sub-495

graph isomorphism. This feature is enabled by default but can optionally be496

turned off.497

As an example, consider a box of N hexane molecules. After the subgraph498

isomorphism is called on the first molecule, the result is copied and saved into499

a map. Then, when molecules 2 to N are encountered, those results are copied500

into the running topology. The time it takes for the apply function to finish is501

timed for each case and plotted in Figure 4 relative to the brute force approach,502

where significant speed improvements are observed for common system sizes.503

3.3. Force field assignment and output504

Once atom-typed, the OpenMM Topology, now containing atom types for all505

particles in the system, is used to create an OpenMM System object and bonded506

parameters of systems determined. This step can be accomplished by simply507

searching the list of bonded parameters for the appropriate pair, triplet, quartet508

of atom types for bonds, angles, and dihedrals, respectively; such routines exist509

within OpenMM and are utilized in this context, where again we note these510

interactions undergo a sorting to ensure more specific definitions appear first in511

the file. Additionally, validation checks are performed at this time to ensure all512

triplets and quartets of interaction sites have had angle and dihedral (proper513

18

1 10 100 1000
Number of hexane molecules

100

101

102

103

At
om

ty
pi

ng
 ti

m
e,

 se
co

nd
s

5x

21x

29x

No map
With map

Figure 4: Comparison of atom-typing cost with and without the use of a residue templates.
Without a residue template map, the scaling is approximately linear with system size. With a
map, the scaling is independent of system size for small systems and becomes approximately
linear at larger system sizes due to operations other than the subgraph isomorphism. The
speedup approaches a factor of approximately 30 as the system size becomes large. The times
to atom type each system were obtained with a 2013 MacBook Pro, 3GHz Core i7, 8 GB
RAM.

and improper) parameters assigned (checks for bond parameterization of inter-514

action site pairs are performed by OpenMM in the prior step). These validation515

checks provide the user with an error (that can optionally be overridden) to516

help prevent the return of incorrectly parameterized Structures. To output517

the atom-typed system into a usable format for a simulation engine, the fully518

atom-typed and parameterized system is returned as a ParmEd Structure ob-519

ject. Through the use of the ParmEd Structure, Foyer has access to various520

additional functionality, such as I/O routines that properly parse the ParmEd521

Structure into common chemical file formats (MOL2, PDB, NAMD and GRO-522

MACS formats, among others[22]). For file formats not natively supported by523

ParmEd, custom I/O routines for outputting to these formats (e.g., the LAMMPS524

data file format) have been developed within the mBuild package.525

It should be noted that by utilizing ParmEd to take advantage of the exten-526

sive I/O routines, the force fields that Foyer currently supports must match527

functional forms supported by the internals of the ParmEd Structure object.528

For example, non-bonded interactions are currently limited to a 12-6 Lennard-529

Jones functional form. However, due to the large amount of force fields that uti-530

lize this functional form (e.g., Amber[1], GAFF[39], OPLS[3], TraPPE[28, 29],531

CHARMM[2]), the current version of Foyer is still widely applicable; planned532

future development will include support additional functional forms to better533

accommodate the diverse force field landscape that exists.534

3.4. Validating/verifying output535

Foyer provides scripts to validate its output files by comparing against536

systems with known atom types (e.g., those determined by hand or reference537

molecules provided by a force field developer). Output validation requires (1)538

system(s) with known, validated atom types and (2) the force field XML file.539

19

The known systems are read into Foyer and atom types are determined using540

the rules in the XML file. The atom types generated by Foyer are then com-541

pared against the known atom-typed system(s). The pytest[40] library is used542

to provide a clear, descriptive output of the results of these validation tests. Im-543

plementing output validation tests is particularly useful to force field developers544

as they ensure that the desired output is retained if a force field file is evolved545

through the addition of new atom types definitions or merged with a separate546

force field file. The utility of these validation checks relies not only upon pro-547

viding accurate reference systems, but also a sufficient variety of test systems548

that encompass all defined atom types, as discussed previously. An example of549

such a validation test suite is provided as part of the Foyer template repository550

freely available on GitHub[41] .551

4. Usage Examples552

At the time of publication, Foyer includes example force field XML files with553

def, overrides, and doi statements for 110 OPLS atom types as well as param-554

eters and atom types for the simulation of alkanes and primary alcohols using555

the TraPPE force field. As discussed later in Sec. 5, separate repositories have556

been created to demonstrate how to reproducibility distribute force fields. These557

include OPLS compatible sets of parameters for perfluoropolyethers[42, 43, 44],558

perfluoroalkanes[45], and alkylsilanes grafted silica substrates [46]. Implemen-559

tation of additional atom types for OPLS and TraPPE force fields and the560

implementation of other ParmEd compatible force fields is an active area of561

work.562

Here, a basic overview of the usage of Foyer is provided, although we di-563

rect readers to the GitHub project repository[34] and tutorial repository [35]564

for additional usage examples. Consider constructing a bulk system of ethane565

molecules and applying the OPLS force field. Listing 6 shows a simple mBuild566

script to load an ethane molecule and fill a 2nm x 2nm x 2nm box with 100567

molecules. This defines the system’s chemical topology to which the force field568

will be applied. As input, the force field file is identical to Listing 1 but with569

the <AtomType> information from Listing 2, as Listing 2 includes the usage rule570

definitions. Listing 6 demonstrates two different syntaxes for applying a force571

field using Foyer and saving the output, in this case to the file format required572

by GROMACS. The second option allows different forcefields to be applied to573

different topologies in the system. Listing 7 shows an example of creating two574

separate chemical topologies in the system, and applying two different force field575

files to each. The two atom-typed structures that result (ethane_fluid and576

silica_substrate) are then combined using a simple + operator and saved577

to any format supported by ParmEd (this assumes that cross interactions be-578

tween ethane and silica are defined using standard mixing rules). Note that if579

the surface and polymers were bonded together (e.g., to create a surface-bound580

monolayer), the force field files would need to be combined into a single XML581

document.582

20

Listing 6: Script to fill a box with ethane and apply the OPLS-AA force field to the system.� �
1 import mbuild as mb

2 from mbuild.examples import Ethane

3 from foyer.test.utils import get_fn

4 from foyer import Forcefield

5

6 ### Approach 1 ###

7 # Create the chemical topology

8 ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=100, box=[2, 2, 2])

9 # Apply and save the topology

10 ethane_fluid.save(’ethane-box.top’, forcefield_files=get_fn(’oplsaa_alkane.xml’))

11 ethane_fluid.save(’ethane-box.gro’)

12

13 ### Approach 2 ###

14 # Create the chemical topology

15 ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=100, box=[2, 2, 2])

16 # Load the forcefield

17 opls_alkane = Forcefield(forcefield_files=get_fn(’oplsaa_alkane.xml’))

18 # Apply the forcefield to atom-type

19 ethane_fluid = opls_alkane.apply(ethane_fluid)

20

21 # Save the atom-typed system

22 ethane_fluid.save(’ethane-box.top’, overwrite=True)

23 ethane_fluid.save(’ethane-box.gro’, overwrite=True)� �

583

Listing 7: Script to build a system with an amorphous silica substrate in contact with a bulk
ethane system and apply a different force field to the substrate and fluid respectively.� �

1 from foyer import Forcefield
2 from foyer.test.utils import get_fn
3 import mbuild as mb
4 from mbuild.examples import Ethane
5 from mbuild.lib.atoms import H
6 from mbuild.lib.bulk_materials import AmorphousSilica
7

8 # Create a silica substrate, capping surface oxygens with hydrogen
9 silica = mb.SilicaInterface(bulk_silica=AmorphousSilica())

10 silica_substrate = mb.Monolayer(surface=silica, chains=H(), guest_port_name=’up’)
11 # Determine the box dimensions dictated by the silica substrate
12 box = mb.Box(mins=[0, 0, max(silica.xyz[:,2])], maxs=silica.periodicity + [0, 0, 4])
13 # Fill the box with ethane
14 ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=200, box=box)
15 # Load the forcefields
16 opls_silica = Forcefield(forcefield_files=get_fn(’opls-silica.xml’))
17 opls_alkane = Forcefield(forcefield_files=get_fn(’oplsaa_alkane.xml’))
18 # Apply the forcefields
19 silica_substrate = opls_silica.apply(silica_substrate)
20 ethane_fluid = opls_alkane.apply(ethane_fluid)
21 # Merge the two topologies
22 system = silica_substrate + ethane_fluid
23 # Save the atom-typed system
24 system.save(’ethane-silica.top’)
25 system.save(’ethane-silica.gro’)� �

584

5. Promoting Reproducible Force Field Dissemination585

Force field files and associated documentation, examples, and validation586

tests, can be readily developed and distributed using standard software de-587

21

velopment approaches to improve quality and reproducibility. For example,588

the common git + GitHub/Bitbucket based distribution process allows force589

field creators to disseminate their force field files and associated content to the590

public via a version controlled repository that can be referenced from relevant591

publications. In this approach, a specific version of the force field used in a592

publication can be tagged in the git repository and a reference to this tagged593

version provided in the manuscript, allowing for a clear reference to the ex-594

act parameters and usage rules employed in the work. Other services, such as595

Zenodo [47], can additionally provide a digital object identifier (DOI) for the596

tagged record and a snapshot of the content of the archive. A variety of other597

features of this standard software development process translate well to force598

field development. Version control systems like git are designed to facilitate dis-599

tributed, collaborative software development and allow for changes to the files600

in the repository to be easily tracked in a transparent manner. For example, as601

a force field is evolved or corrected, revisions can be easily tracked, including the602

author(s) responsible for the changes, and the specific differences between force603

field versions clearly identified using standard tools such as DIFF and through604

the use of descriptive “commit” statements as the content of the repository is605

changed. The support for tracking issues in services such as GitHub/Bitbucket606

additionally allow the community to provide feedback, request clarification, or607

identify errors in a file in a transparent manner. Whenever the developers wish608

to they can create a new release of the force field that, as noted above, can be609

tagged or provided with a citable DOI. Verification and validation of a force field610

can also be simplified by using this software design approach, by implementing611

automated testing tools that can perform checks on every new iteration (i.e.,612

commit) of the force field content, to ensure errors are not introduced as the613

force field is changed.614

To promote these practices, we have created a template git repository on615

GitHub which contains the basic framework needed to create, test, and publish a616

new force field as well as a guided tutorial that introduces users to the SMARTS617

based atom-typing scheme[41]. This process was successfully used in recent work618

that derived force field parameters for perfluoropolyethers[42], a novel lubricant619

class. The force field was published in conjunction with the manuscript and620

made freely available on GitHub[43]. The specific version of the force field621

at time of publication is citable via a separate DOI[44]. Any adjustments or622

improvements to the force field could now be released under a new DOI while623

the old one would still exist and point to the originally published force field in624

order to maintain provenance.625

5.1. Atom type DOI labels626

While automated atom-typing and the containment of atom types and force627

field parameters within a single file helps reduce user error and promotes repro-628

ducibility, users also require knowledge of the original source of parameters, in629

order to ensure proper citation and validation that the parameters are appro-630

priate for their system of interest. Foyer achieves this goal by adding a doi631

attribute to each Type definition within the AtomTypes block of a force field632

22

XML. Listing 8 shows the same atom-type definition for the OPLS-AA methyl633

carbon as in Listing 2 with the additional doi attribute providing the DOI to634

the original source where parameters for this atom type were derived.635

Listing 8: Atom type definition for a methyl carbon tagged with the source DOI

<ForceField>
<AtomTypes>
<Type name="opls_135" class="CT" element="C" mass="12.01100"\\
def="[C;X4](C)(H)(H)H" desc="alkane CH3" \\
doi="10.1021/ja9621760"/>

</AtomTypes>
</ForceField>

636

This feature eliminates ambiguity concerning the origin of parameters for637

a particular atom type. Furthermore, Foyer automatically logs associations638

between DOIs and atom types during the atom-typing process, providing a639

BibTeX file featuring the full citation for the sources of all parameters applied640

to a particular system, along with additional notes detailing precisely which641

atom types are contained within each source. For example, Listing 9 shows the642

BibTeX file generated for a nitropropane molecule using the OPLS-AA force643

field, which includes all reference information as well as notes describing which644

atom type parameters were obtained from each reference.645

23

Listing 9: BibTeX file generated during atom-typing of nitropropane using the OPLS-AA
force field (modified with line breaks for readability).

@article{Price_2001,

doi = {10.1002/jcc.1092},

url = {https://doi.org/10.1002%2Fjcc.1092},

year = 2001,

publisher = {Wiley-Blackwell},

volume = {22},

number = {13},

pages = {1340--1352},

author = {Melissa L. P. Price and Dennis Ostrovsky and William L. Jorgensen},

title = {Gas-phase and liquid-state properties of esters, nitriles, and nitro

compounds with the {OPLS}-{AA} force field},

journal = {Journal of Computational Chemistry},

note = {Parameters for atom types: opls_761, opls_760, opls_764, opls_763}

}

@article{Jorgensen_1996,

doi = {10.1021/ja9621760},

url = {https://doi.org/10.1021%2Fja9621760},

year = 1996,

month = {jan},

publisher = {American Chemical Society ({ACS})},

volume = {118},

number = {45},

pages = {11225--11236},

author = {William L. Jorgensen and David S. Maxwell and Julian Tirado-Rives},

title = {Development and Testing of the {OPLS} All-Atom Force Field

on Conformational Energetics and Properties of Organic Liquids},

journal = {Journal of the American Chemical Society},

note = {Parameters for atom types: opls_135, opls_140, opls_136}

}

646

6. Conclusions647

The Foyer Python library and annotation scheme for defining force field us-648

age has been presented in this work. Foyer defines a general applicable approach649

for the specification of classical force fields in a format that is both human and650

machine readable and provides tools for automated atom-typing and validation.651

The force field annotation scheme used in Foyer defines parameters and their652

usage within an XML formatted force field, allowing force fields to be devel-653

oped and evolved without the need to modify the source code used to evaluate654

them. This annotation scheme uses SMARTS to define the chemical context655

of an atom type and defines rule precedence via explicit override statements,656

allowing rules to appear in any order in a force field file. The Foyer software657

treats chemical topologies as graphs and rules as subgraphs, to identify atom658

types, using an iterative approach. This iterative approach allows force fields to659

be automatically evaluated for completeness and identify under specified force660

fields, helping to prevent the dissemination and usage of ambiguously defined661

force fields. Foyer is designed to be compatible with several common simulation662

engines and utilizes/extends several existing open-source Python tools and file663

24

formats, in order to maximize flexibility and general applicability. Collectively,664

the approach utilized by Foyer can used to improve the clarity of force field us-665

age and dissemination within the molecular simulation community. The Foyer666

software is open-source and freely available via GitHub[34].667

7. Acknowledgments668

This material is based upon work supported by the National Science Founda-669

tion under Grant Nos. 1535150 and 1835874. We also acknowledge the National670

Energy Research Supercomputing Center, which is supported by the Office671

of Science of the U.S. Department of Energy under Contract No. DE-AC02-672

05CH11231.673

References674

[1] S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona,675

S. Profeta, P. Weinerl, A New Force Field for Molecular Mechanical Sim-676

ulation of Nucleic Acids and Proteins, Journal of the American Chemical677

Society 106 (1984) 765–784 (1984). doi:10.1021/ja00315a051.678

[2] A. D. MacKerell, N. Banavali, N. Foloppe, Development and cur-679

rent status of the CHARMM force field for nucleic acids., Biopolymers680

56 (4) (2000) 257–65 (2000). doi:10.1002/1097-0282(2000)56:4¡257::AID-681

BIP10029¿3.0.CO;2-W.682

[3] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Development and Test-683

ing of the OPLS All-Atom Force Field on Conformational Energetics and684

Properties of Organic Liquids, Journal of the American Chemical Society685

118 (45) (1996) 11225–11236 (jan 1996). doi:10.1021/ja9621760.686

[4] J. I. Siepmann, S. Karaborni, B. Smit, Simulating the critical behaviour of687

complex fluids, Nature 365 (6444) (1993) 330 (1993). doi:10.1038/365330a0.688

[5] J. J. Potoff, J. I. Siepmann, Vapor-liquid equilibria of mixtures containing689

alkanes, carbon dioxide, and nitrogen, AIChE Journal 47 (2001) 1676–1682690

(2001). doi:10.1002/aic.690470719.691

[6] H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-692

Phase Applications s Overview with Details on Alkane and Benzene Com-693

pounds, Journal of Physical Chemistry 5647 (1998) 7338–7364 (1998).694

doi:10.1021/jp980939v.695

[7] C. Oostenbrink, A. Villa, A. E. Mark, W. F. Van Gunsteren, A biomolec-696

ular force field based on the free enthalpy of hydration and solvation: The697

GROMOS force-field parameter sets 53A5 and 53A6, Journal of Computa-698

tional Chemistry 25 (2004) 1656–1676 (2004). doi:10.1002/jcc.20090.699

25

[8] Gromacs OPLS Atom Types.700

URL https://github.com/gromacs/gromacs/blob/701

e131e1d16c589fded5cad47bbd52b010d59c80a7/share/top/oplsaa.702

ff/atomtypes.atp703

[9] G. K. Sandve, A. Nekrutenko, J. Taylor, E. Hovig, Ten simple rules for704

reproducible computational research, PLOS Computational Biology 9 (10)705

(2013) 1–4 (10 2013). doi:10.1371/journal.pcbi.1003285.706

[10] M. W. Thompson, R. Matsumoto, R. L. Sacci, N. C. Sanders, P. T. Cum-707

mings, Scalable screening of soft matter: A case study of mixtures of ionic708

liquids and organic solvents, The Journal of Physical Chemistry B ASAP709

(2019). doi:10.1021/acs.jpcb.8b11527.710

[11] B. L. Bush, R. P. Sheridan, PATTY: A Programmable Atom Typer and711

Language for Automatic Classification of Atoms in Molecular Databases,712

Journal of Chemical Information and Computer Sciences 33 (1993) 756–762713

(1993). doi:10.1021/ci00015a015.714

[12] A. W. Schüttelkopf, D. M. F. Van Aalten, PRODRG: A tool for high-715

throughput crystallography of protein-ligand complexes, Acta Crystallo-716

graphica Section D: Biological Crystallography 60 (2004) 1355–1363 (2004).717

doi:10.1107/S0907444904011679.718

[13] J. Wang, W. Wang, P. a. Kollman, D. a. Case, Automatic atom type719

and bond type perception in molecular mechanical calculations., Jour-720

nal of Molecular Graphics & Modelling 25 (2) (2006) 247–60 (oct 2006).721

doi:10.1016/j.jmgm.2005.12.005.722

[14] A. A. S. T. Ribeiro, B. A. C. Horta, R. B. De Alencastro, MKTOP:723

A program for automatic construction of molecular topologies, Jour-724

nal of the Brazilian Chemical Society 19 (7) (2008) 1433–1435 (2008).725

doi:10.1590/S0103-50532008000700031.726

[15] A. K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P. C. Nair, C. Oost-727

enbrink, A. E. Mark, An Automated force field Topology Builder (ATB)728

and repository: Version 1.0, Journal of Chemical Theory and Computation729

7 (2011) 4026–4037 (2011). doi:10.1021/ct200196m.730

[16] K. Vanommeslaeghe, a. D. MacKerell, Automation of the CHARMM Gen-731

eral Force Field (CGenFF) I: bond perception and atom typing., Journal732

of Chemical Information and Modeling 52 (12) (2012) 3144–54 (dec 2012).733

doi:10.1021/ci300363c.734

[17] J. D. Yesselman, D. J. Price, J. L. Knight, C. L. Brooks, MATCH: an atom-735

typing toolset for molecular mechanics force fields., Journal of Computa-736

tional Chemistry 33 (2) (2012) 189–202 (jan 2012). doi:10.1002/jcc.21963.737

26

[18] D. Weininger, Smiles, a chemical language and information system.738

1. introduction to methodology and encoding rules, Journal of Chem-739

ical Information and Computer Sciences 28 (1) (1988) 31–36 (1988).740

doi:10.1021/ci00057a005.741

[19] D. L. Mobley, C. C. Bannan, A. Rizzi, C. I. Bayly, J. D. Chodera, V. T. Lim,742

N. M. Lim, K. A. Beauchamp, D. R. Slochower, M. R. Shirts, M. K. Gilson,743

P. K. Eastman, Escaping atom types in force fields using direct chemical744

perception, Journal of Chemical Theory and Computation 14 (11) (2018)745

6076–6092 (2018). doi:10.1021/acs.jctc.8b00640.746

[20] Daylight Theory: SMARTS - A Language for Describing Molecular Pat-747

terns.748

URL http://www.daylight.com/dayhtml/doc/theory/theory.smarts.749

html750

[21] P. J. in’t Veld. EMC: Enhanced Monte Carlo; A multi-purpose modular and751

easily extendable solution to molecular and mesoscale simulations [online,752

cited 31 July 2018].753

[22] ParmEd [cited 1 Feb 2019].754

URL http://parmed.github.io/ParmEd/html/index.html755

[23] P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns,756

J. P. Ku, K. A. Beauchamp, T. J. Lane, L. P. Wang, D. Shukla, T. Tye,757

M. Houston, T. Stich, C. Klein, M. R. Shirts, V. S. Pande, OpenMM 4:758

A reusable, extensible, hardware independent library for high performance759

molecular simulation, Journal of Chemical Theory and Computation 9 (1)760

(2013) 461–469 (2013). doi:10.1021/ct300857j.761

[24] OpenMM User Guide, Creating Force Fields [cited 1 Feb 2019].762

URL http://docs.openmm.org/7.0.0/userguide/763

[25] mBuild Software Repository on GitHub [cited 1 Feb 2019].764

URL http://github.com/mosdef-hub/mbuild765

[26] J. Sallai, G. Varga, S. Toth, C. Iacovella, C. Klein, C. McCabe, A. Ledeczi,766

P. T. Cummings, Web- and Cloud-based Software Infrastructure for Ma-767

terials Design, Procedia Computer Science 29 (2014) 2034–2044 (2014).768

doi:10.1016/j.procs.2014.05.187.769

[27] C. Klein, J. Sallai, T. J. Jones, C. R. Iacovella, C. McCabe, P. T. Cum-770

mings, A Hierarchical, Component Based Approach to Screening Properties771

of Soft Matter, Springer Singapore, Singapore, 2016, pp. 79–92 (2016).772

[28] M. G. Martin, J. I. Siepmann, Transferable Potentials for Phase Equilibria.773

1. United-Atom Description of n-Alkanes, The Journal of Physical Chem-774

istry B 5647 (97) (1998) 2569–2577 (1998). doi:10.1021/jp972543+.775

27

[29] TraPPE Force Fields.776

URL http://www.chem.umn.edu/groups/siepmann/trappe/777

[30] E. K. Watkins, W. L. Jorgensen, Perfluoroalkanes: Conformational Anal-778

ysis and Liquid-State Properties from ab Initio and Monte Carlo Calcula-779

tions, The Journal of Physical Chemistry A 105 (2001) 4118–4125 (2001).780

doi:10.1021/jp004071w.781

[31] T. E. Oliphant, Guide to NumPy, 2nd Edition, CreateSpace Independent782

Publishing Platform, USA, 2015 (2015).783

[32] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific784

tools for Python.785

URL http://www.scipy.org/786

[33] D. A. Schult, P. Swart, Exploring network structure, dynamics, and func-787

tion using networkx, in: Proceedings of the 7th Python in Science Confer-788

ences (SciPy 2008), Vol. 2008, 2008, pp. 11–16 (2008).789

[34] Foyer Software Repository on GitHub [cited 1 Feb 2019].790

URL http://github.com/mosdef-hub/foyer791

[35] Foyer Tutorial Repository on GitHub [cited 1 Feb 2019].792

URL https://github.com/mosdef-hub/foyer_tutorials793

[36] Foyer Website [cited 1 Feb 2019].794

URL http://mosdef-hub.github.io/foyer795

[37] M. R. Shirts, C. Klein, J. M. Swails, J. Yin, M. K. Gilson, D. L. Mobley,796

D. A. Case, E. D. Zhong, Lessons learned from comparing molecular dy-797

namics engines on the sampl5 dataset, Journal of Computer-Aided Molec-798

ular Design 31 (1) (2017) 147–161 (2017). doi:10.1007/s10822-016-9977-1.799

[38] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub) graph isomorphism800

algorithm for matching large graphs, IEEE transactions on pattern analysis801

and machine intelligence 26 (10) (2004) 1367–1372 (2004).802

[39] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, Develop-803

ment and testing of a general amber force field., Journal of Computational804

Chemistry 25 (9) (2004) 1157–74 (jul 2004). doi:10.1002/jcc.20035.805

[40] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher,806

F. Bruhin. pytest [online] (2004).807

[41] FoyerTemplate Repository on GitHub [cited 1 Feb 2019].808

URL github.com/mosdef-hub/foyer_template809

[42] J. E. Black, G. M. Silva, C. Klein, C. R. Iacovella, P. Morgado, L. F.810

Martins, E. J. Filipe, C. McCabe, Perfluoropolyethers: Development of811

an all-atom force field for molecular simulations and validation with new812

experimental vapor pressures and liquid densities, The Journal of Physical813

Chemistry B 121 (27) (2017) 6588–6600 (2017).814

28

[43] Foyer Formatted Perfluoroethers Force Field [cited 1 Feb 2019].815

URL https://github.com/mosdef-hub/forcefield_perfluoroethers816

[44] J. Black, G. Silva, C. Klein, C. Iacovella, P. Morgado, L. Martins,817

E. Filipe, C. McCabe, Opls-aa compatible parameters for perfluoroethers.818

doi:10.5281/zenodo.583310.819

[45] OPLS-AA compatible parameters for perfluoalkanes [cited 25 April 2019].820

URL https://github.com/chrisiacovella/OPLSaa_perfluoroalkanes821

[46] OPLS-AA compatible parameters for alkylsilanes and silica [cited 25 April822

2019].823

URL https://github.com/summeraz/OPLSaa_alkylsilanes824

[47] Zenodo.825

URL https://zenodo.org/826

29

