Formalizing Atom-typing and the Dissemination of
Force Fields with Foyer

Christoph Klein®”, Andrew Z. Summers®?, Matthew W. Thompson®®, Justin
Gilmer®P, Clare McCabe®d? Peter T. Cummings®P, Janos Sallai®,
Christopher R. Iacovella®®

% Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville,
Tennessee 87235, United States
b Vanderbilt Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University,
Nashville, Tennessee 37235, USA
¢Interdisciplinary Materials Science Program, Vanderbilt University, Nashuville, Tennessee
87235, United States
4 Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United
States
¢ Institute for Software Integrated Systems, Vanderbilt University, Nashville, Tennessee
37235, United States

Abstract

A key component to enhancing reproducibility in the molecular simulation com-
munity is reducing ambiguity in the parameterization of molecular models used
to perform a study. Ambiguity in molecular models often stems from inadequate
usage documentation of molecular force fields and the fact that force fields are
not typically disseminated in a format that is directly usable by software. Specif-
ically, the lack of a generally applicable scheme for the annotation of the rules
of a particular force field and a general purpose tool for performing automated
parameterization (i.e., atom-typing) based on these rules, may lead to errors in
model parameterization that are not easily identified. Here, we present Foyer,
an open-source Python tool that enables users to define and apply force field
atom-typing rules in a format that is both human- and machine-readable and
provides a framework for force field dissemination, thus eliminating ambiguity in
atom-typing and improving reproducibility. Foyer defines force fields in an XML
format, where SMART'S strings are used to define the chemical context of a par-
ticular atom type and “overrides” are used to set rule precedence, rather than a
rigid hierarchical scheme. Herein we describe the underlying methodology and
force field annotation scheme of the Foyer software, demonstrate its application
in several use-cases, and discuss specific aspects of the Foyer approach that are
designed to improve reproducibility.

Keywords: Molecular simulation; Force fields; Reproducibility; Open-source
software

Preprint submitted to Computational Materials Science May 16, 2019

1

2

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

1. Introduction

Considerable efforts have been undertaken by many research groups to de-
velop accurate classical force fields for a wide range of systems.[1, 2, 3, 4, 5, 6, 7]
Force fields are often expressed as a set of analytical functions with adjustable
fitting parameters that describe the interactions between constituents of a sys-
tem (often discrete atoms but, more generally, interaction sites). Classical force
fields are typically able to achieve high accuracy by creating sets of highly spe-
cific fitting parameters (i.e., atom types), in which each atom type describes
an interaction site within a different chemical context. The chemical context
is typically defined by the bonded environment of an interaction site (e.g., the
number of bonds and the identity of the bonded neighbors) and may also con-
sider, among other factors, the bonded environment of the neighbors, and/or
the specific molecule/structure within which the interaction site is included.
Consequently, a force field may include tens or even hundreds of different atom
types for a given element. For example, there are 347 atom types that apply
to carbon in the OPLS force field parameter set distributed with GROMACS[8]
where each atom type corresponds to a carbon atom within a different chemical
context. Thus, while force field development efforts have reduced — or in some
cases completely eliminated — the need for researchers to generate their own
fitting parameters, determining which parameters (i.e., atom types) to use can
still be a tedious and error prone task. Failure to properly identify the chemical
context and atom type of an interaction site will inevitably lead to the unfaithful
implementation of the force field and thus inconsistent results.

Part of the difficulty in performing atom-typing (i.e., determining which
atom type applies to an interaction site) stems from the fact that there is not
vet a standardized way of unambiguously expressing chemical context and pa-
rameter usage. As such, journal articles that report novel force field parameters
may vary significantly in terms of their clarity. In many cases, parameters are
reported in a tabular format with minimal annotations and few (if any) exam-
ples of how to appropriately assign the atom types. Since this approach does
not allow for automated evaluation, different users of the force field may apply
the atom types differently based on their own interpretation of the information
provided. Journal articles that utilize existing force fields often do not report
the specific fitting parameters and typically do not specify which atom types
were chosen for the interaction sites, instead providing citation(s) to the source
of the force field parameters. Even if the source of the parameters is clearly and
fully specified, usage may again depend on the clarity of the original source(s)
and the interpretation by the end user, hampering reproducibility. Force field
parameter files that aggregate a large number of atom types (often thousands)
into a single source suffer from some of the same issues. Often, they include only
brief, unstructured — and sometimes ambiguous — annotations as to parameter
usage, and may, or may not, provide clear citations of the original source of the
parameters.

To apply force fields, users can perform atom-typing manually (e.g., cre-
ation of an atom-typed template of a molecule or unit cell), although manual

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

assignment of parameters becomes tedious and error prone for large molecules
and/or complex systems, and manual manipulation of files is not considered a
good practice in terms of reproducibility[9]. Furthermore, manual assignment
of parameters does not lend itself well to workflows such as screening[10], where
thousands of unique systems with different chemical constituents and struc-
tures may need to be atom-typed in an automated fashion. To avoid manual
assignment, end-users often develop in-house software to apply force fields in an
automated fashion; however, such software is not typically made freely available
to the community and may be very limited in scope and applicability. Without
access to the same software, the exact atom-typing cannot be reproduced by oth-
ers and if the source code is not made freely available, the logic used to interpret
and apply the force field is unknown and if there are errors in the software/logic,
these cannot be identified. There exist a number of freely available atom-typing
tools that read in a force field parameter file and execute a set of rules to apply
the force field to a chemical topology [11, 12, 13, 14, 15, 16, 17], enabling the
exact atom-typing process to be reproduced. However, many of these atom-
typing tools are either closed-source[12, 15], simulation engine-specific[14, 17],
and/or force field-specific[13, 15, 16], which limits their utility. Furthermore,
these tools almost universally rely on a rigid hierarchy of rules[11], where rules
must be called in a precise order such that more general atom types are only
chosen when more specialized matches do not exist (i.e., the order of rules de-
fines the precedence). Maintaining, let alone constructing, these hierarchies is
challenging, especially for a large number of atom types. In order to add a new
atom type or correct an error in hierarchical schemes, a developer must have
a complete picture of the hierarchy and know exactly where the relevant rule
should be placed such that it does not inadvertently override other rules. This
may impose practical limits on functionality, where, for example, a user is not
able to easily extend the rules to include new atom types, or that such attempts
to extend the rules result in incorrect atom-typing for other systems. For many
tools, this approach is further complicated by the encoding of the hierarchy as
a set of heavily nested if/else statements within the source code of the software.
These heavily nested if/else hierarchies may be difficult to validate and debug,
and any changes or extensions to the rules, no matter how trivial, require mod-
ification of the source code itself. Reproducibility issues may therefore arise if
users make modifications or extensions to a piece of software and these changes
are not made freely available to the larger community and/or incorporated into
the main software distribution. This also creates a situation where there are
effectively two sets of rules since there is no guarantee that the logic statements
in the source code (i.e., the machine readable rules) agree with the textual
annotations in the force field parameter file (i.e., the human readable rules).
Several atom-typing tools have been developed that remove the need to
encode atom type usage rules within the source code itself. A unifying fea-
ture of these tools is the use of the simplified molecular-input line-entry system
(SMILES) [18] language, or variants thereof, for describing chemical structures
associated with an atom type. For example, Yesselman, et al. [17] developed an
atom-typing toolset for the CHARMM simulation engine, termed MATCH, that

92

93

o4

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

relies on assigning parameters by representing a molecule of interest as a graph
and performing subgraph matching against a library of fragments with known
parameters. These fragments are represented as “super smiles”, an extension
of the SMILES language. By using super smiles and storing these fragments
in text files separate from the software, chemical context is expressed without
the need to define a rigid if/else hierarchy within the software and thus new
atom types and rules (i.e., fragments encoded as super smiles) can be added
without modifying the code used to evaluate them. In recent work, Mobley
and coworkers[19] have developed an approach to defining force fields, termed
SMIRNOFF, that effectively eliminates explicit atom types altogether, instead
using SMIRKS (another language related SMILES [20]) to identify chemical
fragments that are associated with a set of force field parameters. Similar to
Yesselman, et al. [17], application of the force field relies on representing the
system as a graph and rules as subgraphs. In other work, the Enhanced Monte
Carlo (EMC) software developed by in’t Veld [21] encodes chemical context of
an atom type using SMILES. In all cases, the use of the SMILES-based ap-
proaches not only removes the need to encode usage within the source code, but
associates parameters with a human and machine readable definition of their
chemical context, although, these approaches all still require rules be specified
in a particular order to enable correct atom-typing.

In this work, we present Foyer, a Python library for performing atom-typing
based upon first-order logic over graph structures, designed to address many of
the aforementioned issues, with a particular emphasis on reproducibility and
the dissemination of force fields to the community. Foyer relies upon a force-
field-agnostic formalism to express atom-typing and parameterization rules in a
way that is expressive enough for human consumption while simultaneously be-
ing machine readable, allowing a single, unambiguous format to be constructed
for both dissemination and use by software. This logic is implemented via
SMARTS|20] to encode chemical context and “overrides” statements to define
rule precedence. SMARTS extends the SMILES language to support substruc-
ture definitions and allows expression of greater chemical detail and logic opera-
tions within the chemical patterns. In Foyer, SMARTS has been extended such
that it allows user-defined “elements” (not in the periodic table) to be leveraged
within the chemical context definitions, thus enabling both atomistic and non-
atomistic force fields to be used. By using SMARTS to define chemical context,
atom type definitions do not appear in the source code, and thus force fields
can be created and evolved without modification to the code used to evaluate
them. Rule precedence is explicitly defined by the aforementioned overrides
statements, thus atom-typing rules can appear in any order in the file and in-
clude recursive definitions to other atom types, eliminating physical placement
in the file as a source of error and providing increased flexibility. Since this
iterative approach used by Foyer evaluates all rules, automated evaluation can
be used to help ensure that Foyer force field definitions (1) encompass all atom
types in the force field and (2) are sufficiently descriptive without conflicting
rules, both necessary conditions for publishing force fields in a way that is un-
ambiguous and reproducible. The Foyer software provides routines that create

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

syntactically correct input files for a variety of common simulation engines and
is designed to take, as input, chemical topologies from several of other commu-
nity developed tools (e.g., ParmEd[22], OpenMM[23, 24], and mBuild[25, 26, 27]).
The manuscript is organized as follows. Sec. 2 introduces the use of SMARTS
and overrides for encoding force field usage. This section also presents the
XML file format used by Foyer, which builds upon the OpenMM force field file
format[23, 24] extended to support the definition of the associated SMARTS,
and overrides statements, textual descriptions of the parameters, and digital
objective identifiers (DOIs) for the source of each atom type. Sec. 3 provides an
overview of the Foyer software used to evaluate the SMARTS and overrides
statements encoded in the XML file format, including the iterative process —
and its optimizations — used for determining atom types. This section also
discusses force field validation and verification within Foyer. Sec. 4 provides
examples of the use of the Foyer software to perform atom-typing of several
different chemical systems. Sec. 5 discusses best practices for the use of Foyer
and force field annotation scheme in terms of reproducibilit, focusing on the use
of version control and related open-source software development tools to enable
the creation and evolution of force fields in a transparent, testable manner. Sec.
6 provides concluding remarks.

2. Defining chemical context and rule precedence

2.1. XML File Format

Foyer utilizes the OpenMM force field XML format[24] to encode parame-
ters, where this format is extended to allow for the definitions of chemical con-
text and rule precedence (discussed below). To briefly summarize the OpenMM
file format, atom types and forces are encoded as XML tags with various at-
tributes defining the types of elements that they apply to (by name only), as
well as the associated parameters for that interaction (e.g., the equilibrium bond
length and spring constant for a harmonic bond). Listing 1 provides an example
of encoding the OPLS force field parameters for linear alkanes in the OpenMM
XML format (note, this Listing does not include our extensions). As shown in
Listing 1, the XML format provides clear descriptions of each of the parameter-
s/properties defined in the file (e.g., element="C" indicates the entry is defining
a carbon atom), along with additional tags that provide unambiguous descrip-
tions of the types of interactions being used (e.g., the <HarmonicBondForce>
tag is used to define the use of a harmonic force to define bonds). As such,
this file format includes a wealth of metadata that is both human and machine
readable. For more detailed information, we refer the reader to the OpenMM
manual where this force field file format is extensively documented [24].

The flexible nature of XML allows it to be readily extended via the addition
of new tags/attributes without fundamentally changing the original format, as
new tags/attributes can simply be ignored by software that does not require
them. As shown in Table 1, and discussed in detail later, four new attributes
have been added to the atom type entries in the existing OpenMM XML file

182

183

Table 1: Extensions to the atom type definitions in the OpenMM XML format.

Attribute Description Example

def Chemical context of an atom type via SMARTS [C;X4] (H) (H) (H)C
desc Textual description of the atom type Alkane CH3
doi Digital object identifier to the atom type source 10.1021/3ja9621760
overrides Atom type(s) the current rule is given precedence over opls_136

11 format to enable the functionality needed to encode usage rules in Foyer: def,
desc, doi, and overrides. The use of XML additionally allows sanity checks
to be performed by using XML schemas to ensure the expected attributes have

18« been provided in the file.
Listing 1: OpenMM formatted XML file for linear alkanes using the OPLS force field.

<ForceField>

<AtomTypes>
<Type name="opls_135" class="CT" element="C" mass="12.01100"/>

<Type name="opls_136" class="CT" element="C" mass="12.01100"/>
<Type name="opls_140" class="HC" element="H" mass="1.00800"/>
</AtomTypes>

<HarmonicBondForce>
<Bond class1="CT" class2="CT" length="0.1529" k="224262.4"/>

<Bond class1="CT" class2="HC" length="0.1090" k="284512.0"/>
</HarmonicBondForce>
<HarmonicAngleForce>

<Angle class1="CT" class2="CT" class3="CT" angle="1.966986067"\\

k="488.273"/>
<Angle class1="CT" class2="CT" class3="HC" angle="1.932079482"\\

k="313.800"/>
<Angle class1="HC" class2="CT" class3="HC" angle="1.881464934"\\
k="276.144"/>
</HarmonicAngleForce>

<RBTorsionForce>
<Proper class1="CT" class2="CT" class3="CT" class4="CT" c0="2.9288"\\

cl="-1.4644" c2="0.2092" c3="-1.6736" c4="0.0" c5="0.0"/>
<Proper class1="CT" class2="CT" class3="CT" class4="HC" c0="0.6276"\\
c1="1.8828" c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>
<Proper class1="HC" class2="CT" class3="CT" class4="HC" c0="0.6276"\\
c1="1.8828" c2="0.0" c3="-2.5104" c4="0.0" c5="0.0"/>
</RBTorsionForce>
<NonbondedForce coulombl4scale="0.5" 1ljl4scale="0.5">
<Atom type="opls_135" charge="-0.18" sigma="0.35"\\
epsilon="0.276144"/>
<Atom type="opls_136" charge="-0.12" sigma="0.35"\\
epsilon="0.276144"/>
<Atom type="opls_140" charge="0.06" sigma="0.25"\\
epsilon="0.12552"/>
</NonbondedForce>
</ForceField>

185

ws 2.2. Using SMARTS to define chemical context

The chemical context of an interaction site is typically defined by its bonded

187
environment, notably the number of bonds and the identities of bonded neigh-

188

Table 2: 2D depictions of molecular fragments referred to in the text

Alkane Alkene Benzene

C,CH; C, CH; H C, (R2-C=) C, (RH-C=) H C H

H C i N . H .

| | S C C % b 7% \ _7%
HIGH HGH H—c-f ¢ ” - | W

! \ = -

c . c” ¢ ¢~ H o R w

opls_135 opls_136 opls_140 opls_141 opls_142 opls_144 | opls_145 opls_146
Table 3: Currently implemented SMARTS atomic primitives®

Symbol Symbol name Atomic property requirements Default
* wildcard any atom (no default)
A aliphatic aliphatic (no default)
r<n> ring size in smallest SSSR? ring of size <n> any ring atom
X<n> connectivity <n>total connections exactly one
#n atomic number atomic number <n> (no default)

®This table has been adapted from the Daylight SMARTS website.

®Smallest set of smallest rings.

Table 4: Extensions to SMARTS atomic primitives

Symbol Symbol name Atomic property requirements Default

A non-element non-atomistic element (no default)

%<type> atomtype of atomtype <type> (no default)
Table 5: SMARTS Logical Operators®

Symbol Expression Meaning

exclamation lel not el

ampersand el&e2 el and e2 (high precedence)

comma el,e2 el or e2

semicolon el;e2 el and e2 (low precedence)

%This table has been adapted from the Daylight SMARTS

website.

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

boring interaction sites, but may also include longer range information, such
as the bonded environment of neighbors. To encode this information, Foyer
utilizes SMARTS[20], a language for defining chemical patterns. SMARTS is
an extension of the more commonly used SMILES[18] notation, providing ad-
ditional tokens that enable users to express greater chemical detail and logic
operations. SMARTS notation is expressed as strings that simultaneously in-
clude arbitrary chemical complexity but are concise and clear enough for human
consumption, in addition to being machine readable. As an example, consider
defining the chemical context of OPLS-AA atom types for carbon and hydrogen
atoms in a linear alkane, as shown in Listing 2 (note, only the <AtomTypes>
section of the file is shown, as this is the only section that differs from Listing
1). The reader is referred to Table 2 for a visual depiction of these atom types.
To encode the chemical context, the def attribute is added to the OpenMM
XML format to encode the corresponding SMARTS string. Here, the atom type
that specifies the terminal methyl group, opls_135 (“-CH3”) can be expressed
as [C;X4]1(C) (H) (HW)H in the SMARTS notation. In this SMARTS notation,
[C;X4] indicates that the element of interest — always the first token in the
SMARTS string — is a carbon atom (i.e., C) and this carbon atom has 4 total
bonds (i.e., ;X4, where ; indicates the logical operator AND). The identities of
the 4 bonded neighbors are 1 carbon atom and 3 hydrogen atoms, expressed as
(C) (1) (H)H. Similarly, the opls_136 atom type, which describes a methylene
group in an alkane, is expressed in SMARTS notation as [C;X4] (C) (C) (H)H.
Here, the only change from the opls_135 definition lies in the identity of the
4 bonded neighbors (2 carbon atoms and 2 hydrogen atoms). Increased chem-
ical complexity can be described by adding details about each of neighboring
interaction sites within SMARTS. For example, the opls_140 atom type, which
describes a generic alkane hydrogen, is defined as H[C;X4] - a hydrogen atom
bonded to a carbon atom with 4 bonds. Multiple valid SMARTS can be defined
for each atom type, where, e.g., opls_140 could be defined simply as def="H"
since there is only a single hydrogen atom type defined in Listing 2. However,
such a definition would not necessarily provide a user of the force field with a
clear understanding of the chemical context for which this atom type applies,
and may limit future evolution of the force field. Our extension of the XML file
format also includes the desc attribute (e.g., shown in Listing 2) that allows for
unstructured comments to be provided for each entry if desired.

We note that the parser in the Foyer libraries does not currently support
the full SMARTS language, instead providing support for the subset that was
found to be relevant to the definition of chemical context for atom types. Table
3 lists the currently supported primitives, Table 4 shows our extensions to the
language, and Table 5 outlines the logical operators supported.

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

Listing 2: Atom type definitions for carbon and hydrogen atoms in a linear alkane using the

OPLS force field. Note, only the section that applies to atom types is shown for clarity.

<ForceField>
<AtomTypes>
<Type name="opls_135" class="CT" element="C" mass="12.01100"\\
def="[C;X4] (C) (H) (H)H" desc="alkane CH3"/>
<Type name="opls_136" class="CT" element="C" mass="12.01100"\\
def="[C;X4] (C) (C) (H)H" desc="alkane CH2"/>
<Type name="opls_140" class="HC" element="H" mass="1.00800"\\
def="H[C;X4]" desc="alkane H"/>
</AtomTypes>
</ForceField>

2.3. Establishing rule precedence

Rule precedence must be established when multiple atom type definitions
can apply to a given interaction site. In typical hierarchical schemes, this is
determined implicitly by the order in which rules are evaluated; in general,
more specific rules are evaluated first and when a match is found, the code
stops evaluating rules altogether. While this approach works, it becomes more
challenging to maintain the correct ordering of rules as the number of atom
types grows and as chemistries become more complex and specific. Users may
find it difficult, if not impossible, to make even small additions to a larger force
field without breaking existing behavior. Foyer allows rule precedence to be
explicitly stated via the use of the overrides attribute added to the XML file
format. This allows atom type usage rules to be encoded in any order within
the file, eliminating incorrectly placed rule order as a source of error. Foyer
iteratively evaluates all rules on all interaction sites in the system, maintaining
for each interaction site a “whitelist” consisting of rules that evaluate to True
and a “blacklist” consisting of rules that have been superseded by another rule
(i.e., those that appear in the overrides attribute). The set difference between
the white- and blacklists of an interaction site yields the correct atom type if
the force field is implemented correctly (incorrect/incomplete definition of force
fields is discussed later). As an example of a system where overrides need to
be defined, consider describing alkenes and benzene in a single force field file,
as shown in Listing 3 (note, only the <AtomTypes> section of the force field file
is shown). The reader is again referred to Table 2 for visual depictions of the
relevant atom types.

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

Listing 3: Atom type definitions for alkenes and benzene using the OPLS force field high-
lighting the overrides syntax and mechanism for referencing other atom types. Note, only the

section that applies to atom types is shown for clarity.

<ForceField>
<AtomTypes>
<Type name="opls_141" class="CM" element="C" mass="12.01100"\\
def="[C;X3](C)(C)C" desc="alkene C (R2-C=)"/>
<Type name="opls_142" class="CM" element="C" mass="12.01100"\\
def="[C;X3] (C) (C)H" desc="alkene C (RH-C=)"/>
<Type name="opls_144" class="HC" element="H" mass="1.00800"\\
def="[H] [C;X3]" desc="alkene H"/>
<Type name="opls_145" class="CA" element="C" mass="12.01100"\\
def="[C;X3;r6]1[C;X3;r6] [C;X3;r6] [C;X3;r6] [C;X3;r6] [C;X3;r6]11"\\
overrides="opls_142"/>
<Type name="opls_146" class="HA" element="H" mass="1.00800"\\
def="[H] [C;%opls_145]" overrides="opls_144" desc="benzene H"/>
</AtomTypes>
</ForceField>

When atom-typing a benzene molecule, the carbon atoms in the ring will
match the SMART'S patterns for both opls_142 (an alkene carbon) and opls_145
(a benzene carbon). Without the overrides attribute, Foyer will find that mul-
tiple atom types apply to each carbon atom. Providing the overrides indicates
that if the opls_145 pattern matches, it will supersede opls_142. Thus, the dif-
ference between the whitelist (containing opls_142 and opls_145) and blacklist
(containing only opls_142) would be opls_145.

Note that multiple atom types can be listed in a single overrides attribute.
The approach taken here also allows atom types to inherit overrides from the
atom types they override. For example, consider a case in which atom types
1, 2 and 3 each evaluate to True for an interaction site. If atom type 3 over-
rides atom type 2 (i.e., adds atom type 2 to the blacklist) and atom type 2
overrides atom type 1 (i.e., adds atom type 1 to the blacklist), then atom type
3 will implicitly override atom type 1. Additionally, in Foyer, the SMARTS
grammar has been modified such that specific atom type names can also be
included within the definition (see Table 4). For example, opls_146, the hy-
drogen atom attached to carbon atoms in a benzene ring, has the SMARTS
definition [H] [C;%opls_145], as shown in Listing 3. This states that the inter-
action site of interest is a hydrogen atom (H) and is bonded to a carbon atom
that has atom type opls_145 (C;%opls_145). Because Foyer evaluates rules
iteratively for each interaction site, such recursive definitions can be utilized
without the need to explicitly define atom types in a chemical topology input
file. For example, in this case, when Foyer identifies the interaction site of a
carbon atom to be opls_145, the next iteration to evaluate the hydrogen atom
will find that opls_146 now evaluates to True. Similar to how an overrides
statement clearly defines precedence, this recursive definition provides a clear
way to identify chemical context and the relationship between different atom
types for highly specific parameters. We note, that one could also replace the
recursive reference to opls_145 with its SMARTS string, although, in this case,
it would result in a more complex, less human readable definition.

10

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Because the logic used to define chemical context is separated from the
source code used to evaluate it, one can construct a force field file that contains
only the relevant subset of atom types need for a given application area. Using
the above example of benzene and alkenes, if a system only contained benzene
molecules, one could avoid specifying the overrides attributes altogether by
simply creating a force field file containing only atom types relevant to ben-
zene and eliminating those associated with alkenes. In many cases, considering
smaller subsets is beneficial as the amount of effort required to differentiate and
set rule precedence between atom types is reduced. Additionally, using smaller
files will reduce the likelihood of errors related to defining chemical context and
rule precedence, reduce the number of test molecules with known atom types
required to fully validate the rules, and increase the readability of the force field
files by limiting the number of entries.

2.4. Extension of SMARTS for non-atomistic systems

Foyer is able to atom-type systems in which an interaction site does not
represent a single atom with a standard element, but instead may represent a
group of atoms (relevant to united-atom and coarse-grained force fields) or a
generic site (relevant to simplified models). Standard SMARTS notation does
not support non-atomic species due to its reliance on the presence of an element
specification for each interaction site. To circumvent this limitation, the Foyer
SMARTS parser allows users to define custom “elements” by prefixing their
string representation with an underscore (see Table 4). For example, _CCC
could represent a coarse-grained interaction site intended to model three carbon
atoms. In its current implementation, Foyer makes a first pass through force
field files to detect any custom element definitions. These are injected into
the grammar that parses SMARTS strings and are given priority over standard
elements. This allows non-atomistic and atomistic atom types to be used either
separately or together.

In practice, united-atom and coarse-grained force fields can be defined in an
almost identical fashion to all-atom force fields, where the only difference is that
“elements” are user-defined strings prepended with an underscore. As an exam-
ple, consider an alkane modeled with the united-atom TraPPE force field[28, 29].
An interaction site in this force field represents both carbon and the hydrogen
atoms bonded to it. Thus, this force field contains two distinct atom types, one
that represents CHs (_CH3) and one that represents CHz (_CH2). These can
be encoded as shown in Listing 4. Focusing on atom type CH3_sp3, usage is
encoded with the definition [_CH3;X1] [_CH3,_CH2] which states that the base
“element” is _CH3 with one bond (i.e., ;X1) to either a _CH3 or a _CH2 group.
In SMARTS, a comma indicates an “OR” logic statement and a semicolon is
used to denote an “AND” logical statement (see Table 5 for a complete list
of SMARTS logical operators). In this example, [_CH3;X1] states the element
must be _CH3 “AND” have only a single bond. Atom-type _CH2_sp3, which rep-
resents a “middle” alkane carbon and its 2 associated hydrogen atoms, is defined
similarly as [_CH2;X2] ([_CH3,_CH2]) [_CH3,_CH2]. Here, the base “element”
is a _CH2 with two bonds (i.e., ;X2), each of which may be either “element”

11

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

_CH3 or _CH2. Note, the interaction sites defined in the input chemical topology
would need to follow the same naming convention as the force field file, namely
they would need to be labeled as _CH3 and _CH2.

Listing 4: Atom:type definitions for united atom alkanes using TraPPE.

<ForceField>
<AtomTypes>
<Type name="CH3_sp3" class="CH3" element="_CH3" mass="15.03500"\\
def="[_CH3;X1] [_CH3,_CH2]" desc="Alkane CH3, united atom"/>
<Type name="CH2_sp3" class="CH2" element="_CH2" mass="14.02700"\\

def="[_CH2;X2] ([_CH3, _CH2]) [_CH3, _CH2] "\\
desc="Alkane CH2, united atom"/>

</AtomTypes>

</ForceField

2.5. Determining bonded parameters

Once a chemical topology is atom-typed, bonded interactions can be deter-
mined by simply searching for the matching pairs, triplets, and quartets (bonds,
angles, and torsions, respectively). In many force fields, the bonded parameters
are not as specific as the non-bonded interactions, and thus are not defined di-
rectly based on atom types. Thus, rather than atom types, a more general class
identifier (sometimes referred to as the “bond family”) is used to identify these
interactions. In Listing 5, both opls_136 and opls_962 are part of the same
class “CT”. Thus a bond between opls_136-opls_962 would have the same
parameters (defined as class1="CT" class2="CT" in Listing 5) as a bond be-
tween opls_136-opls_136 (also defined as class1="CT" class2="CT"). How-
ever, this general approach breaks down for certain chemical topologies. For ex-
ample, while the atom types for carbon atoms in alkanes[3] and perfluoralkanes|[30]
are both of class “CT” and share the same bond and angle parameters for car-
bon atoms, they differ in terms of torsional parameters. In order to handle
this conflict, many codes require users to comment out the more general set
of parameters or include statements within the code that accomplish the same
task. However, in this approach, one would not be able to atom-type a system
composed of a mixture of alkane and perfluoroalkane molecules, since only one
set of parameters can be included simultaneously. Note that while one could
define a new class to differentiate between alkanes and perfluoroalkanes, this
wouldresult in a force field file with many duplicate parameters sets that simply
have different labels.

The OpenMM format allows bonded parameters to be defined using the
type attribute in place of the class attribute, where type refers directly to
the name attribute that stores the atom type, allowing for bonded interactions
to be defined with increased specificity. Additionally, mixed use of type and
class in the definition of these bonded interactions is supported. Referring
to Listing 5, to provide the necessary distinction between torsional parameters
for perfluoroalkanes and alkanes, one could define perfluoroalkane torsions using
type attributes (i.e., typel="opls_962" type2="opls_962" type3="opls_962"

12

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

typed="opls_962", where opls_962 is defined in the <AtomTypes> XML sec-
tion), and alkane torsions with the more general quartet for alkanes of class1="CT"
class2="CT" class3="CT" class4="CT" that uses class attributes. However,
when iterating through bonded parameter definitions, OpenMM assigns pa-
rameters based on the first match found. In the example described above,
perfluoroalkane torsional parameters would therefore need to be defined be-
fore alkane parameters in the torsional section, and thus the ordering shown in
Listing 5 would result in the incorrect assignment of torsional parameters for
perfluoroalkanes. Several approaches can be taken to address this. overrides
statements could be used to set rule precedence for bonded topologies and thus
eliminate the need to specify order in the file, however additional modification to
the force field file format would be required because bonded parameters do not
have a “name” attribute like atom types. In the approach taken by SMIRNOFF
[19], bonded parameters are defined directly using their chemical context (i.e.,
via SMIRKS), eliminating this issue altogether; however, taking a similar ap-
proach would result in the duplication of many parameters in the same was as
defining a new class attribute. A more simple approach taken by Foyer is
to perform a preprocessing step on the bonded parameters. This step orders
bonded parameters such that the most specific cases are sorted to the top of
the list to set precedence. This accomplished by assigning a weight to each
entry proportional to the number of type attributes included (as these are the
most specific). For example, a torsion that explicitly defines the atom types for
which it applies (i.e., has 4 type attributes) would be given the highest weight,
and sorted to the top of the list, whereas an entry that specifies only class
attributes would be given the lowest. Thus, for the force field XML shown in
Listing 5 Foyer would reverse the order of the two defined dihedrals during
preprocessing.

13

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

Listing 5: Force field XML snippet showing atom types defined for carbon in CH2 and CFq
substructures, a bonded definition between carbons, and C-C-C-C dihedral definitions for

hydrogenated and perfluorinated alkanes.

<ForceField>
<AtomTypes>

<Type name="opls_136" class="CT" element="C" mass="12.01100"\\
def="[C;X4] (C) (C) (H)H" desc="alkane CH2" />

<Type name="opls_962" class="CT" element="C" mass="12.01100"\\
def="[C;X4] (C) (C) (F)F" desc="perfluoroalkane CF2" />

</AtomTypes>
<HarmonicBondForce>

<Bond class1="CT" class2="CT" length="0.1529" k="224262.4"/>
</HarmonicBondForce>
<RBTorsionForce>
<Proper class1="CT" class2="CT" class3="CT" class4="CT" c0="2.9288"\\
cl="-1.4644" c2="0.2092" c3="-1.6736" c4="0.0" c5="0.0"/>
<Proper typel="opls_962" type2="opls_962" type3="opls_962"\\
type4="opls_962" c0="14.91596" c1="-22.564312" c2="-39.41328"\\
c3="11.614784" c4="35.446848" c5="0.0"/>

</RBTorsionForce>

</ForceField>

3. Foyer software

In order to read the force field usage specification discussed above and per-
form atom-typing, the Foyer software has been developed as an open-source
Python library. Python allows for portability between platforms and provides a
wealth of freely available modules (e.g., NumPy[31], SciPy[32], NetworkX[33])
to facilitate many of the underlying operations. The source, documentation,
tutorials, and examples of Foyer are freely available and can be found on the
GitHub project repository[34], tutorial repository[35], and website[36]. Figure
1 provides an overview of the general software workflow, which we will discuss
here.

3.1. Inputs and Preprocessing

Foyer accepts, as input, the XML force field file and an input chemical topol-
ogy for which to apply the force field. In addition to sorting bonded parameters
by specificity as described in the previous section, the XML force field file un-
dergoes a preprocessing and validation step via application of an XML schema
definition. Here Foyer enforces which elements (e.g. HarmonicBondForce) are
valid and how their attributes should be formatted. While this does not test
the accuracy of the parameters, it does ensure that all of the expected pa-
rameters are defined. Additionally, the schema ensures that atom types are

14

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

(Load chemical topology) (Load force field XML)

Convert to OpenMM Preprocessing, validation,
Topology update elements
[|
13

I Perform atom-typing I

Determine
unique
Perform residue-based residues in
atom-typing? Topology,
generate
residue map
No

I Find atom types I.—l
1 Unique
Convert to OpenMM System, residues,

assign force field parameters

}

Convert to ParmEd Structure,
validate parameterization

Write to simulation engine data format
using mBuild or ParmEd

Figure 1: Flowchart of the Foyer software from chemical topology and force field XML inputs
to a simulation data file output.

not defined more than once and that atom types referenced in other sections
(e.g., <HarmonicBondForce>) are actually defined in the <AtomTypes> section.
Next, the SMARTS strings defined by the def attribute for all atom types are
parsed and checked for validity. This does not validate whether a SMARTS
string is correctly defined for a given interaction site but simply ensures that
the SMARTS string can be interpreted by Foyer and does not contain any
erroneous characters. Parsing errors are captured and re-raised with error mes-
sages that allow a user to pin point the location of the problem in the XML file
and within the SMARTS string. Wherever possible, Foyer attempts to provide
helpful suggestions for fixing detected errors.

Input chemical topologies can be passed to Foyer through various data struc-
tures; the current version supports the OpenMM Topology object[23, 24], the
ParmEd Structure object[22, 37], and the mBuild Compound object[26, 25, 27].
Each of OpenMM, ParmEd, and mBuild topologies support inputs from a variety
of common molecular file formats, such as PDB and MOL2, and thus it is typi-
cally straightforward to convert a given system into a data structure that Foyer
can accept. Regardless of the input format, once read into Foyer the chemical
topology is converted to an OpenMM Topology object. The OpenMM Topology
object provides a standardized data container to store the necessary system in-
formation and allows for leveraging of routines already defined within OpenMM’s
library.

15

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

8.2. Atom-typing

A flowchart of Foyer’s atom-typing procedure is shown in Fig. 3. To per-
form atom-typing, Foyer constructs a graph of the complete system defined by
the chemical topology (or alternatively a graph of each unique residue, see the
Residue-based Atom-typing section below) and iteratively searches for SMARTS
matches via subgraph isomorphism (where subgraphs are generated for each
SMARTS definition). Graph construction and matching are performed using
the NetworkX package[33], an open-source Python project that provides an in-
tuitive interface for a multitude of graph-based algorithms and is the de facto
standard network analysis library in Python. During this step, the iterative
process of determining the atom type is undertaken, adding rules to the white
and back lists for each interaction site in the system.

The implementation of the SMARTS based atom-typing scheme is com-
prised of several steps and internally relies on a subgraph isomorphism to de-
tect matches as highlighted in Figure 2. First, a SMARTS string is parsed into
an abstract syntax tree (AST) from which we populate a SMARTSGraph object.
This class inherits from the Graph class in the NetworkX package. Elements in
this SMARTSGraph are represented as nodes and chemical bonds as edges. Inher-
iting from NetworkX is convenient in that it allows us to leverage most of the
algorithms and visualization methods already implemented there. The primary
distinguishing feature of the SMARTSGraph is the set of methods that encode the
logic for matching the more complex SMARTS tokens. These methods can be
directly used by NetworkX’s implementation of the VF2 subgraph isomorphism
algorithm[38]. A thin wrapper provided by the find_matches method allows
a SMARTSGraph instance to search for all subgraph isomorphisms within a bare
chemical topology (an non-atom-typed graph of just elements and bonds). This
method returns the indices of all elements that match the first token in the
SMARTS string, which defines the atom type that we are looking for. Success-
fully matching elements have the atom type definition added to their whitelist
and any overridden types added to their blacklist. The appropriate atom type
for an interaction site is determined by examining the difference between white-
and blacklists, where a sufficiently descriptive force field should yield only a
single atom type as the difference between the two lists.

The use of white- and blacklists provides users with a means to validate the
completeness of the chemical contexts defined by the set of SMARTS strings
and overrides. For example, when considering a test molecule, if multiple
valid atom types are found as the difference between white- and blacklists,
this indicates the rules are not sufficiently unique and likely have incomplete
information provided to the override attributes. Foyer provides the list of
conflicting types to aid in resolving such issues. If no atom types exist as the
difference, the interaction site of interest cannot be described by the force field
rules as implemented. Typically, this will require adding a new atom type or
amending an existing atom type’s definition. This may also indicate, that there
is an error in how rule precedence has been defined, such as, all the rules on
the whitelist “overriding” each other. The efficacy of this type of validation in
Foyer will depend on providing a sufficient range of systems to fully explore the

16

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

SMARTS definition

ﬂ
;W
[CXANCHH(HH @—*@*
/

SMARTSGraph* == === === < SMARTSGraph.find matches(topology)
I
@7@ yield matching

| atom indices

(© [0, 1]

the two carbons
in this example

Figure 2: Schematic of the workflow to apply SMARTS patterns to chemical topologies. The
SMARTS strings used to define atomtypes are read into a SMARTSGraph class which inherits
from NetworkX’s core data structure. Using the find matches method, a SMARTSGraph instance
can search for subgraph isomorphisms of itself within a provided chemical topology and will
yield all atoms that match the first token in the original SMART'S string - the atom type that
we are looking for.

combinations of atom types that can be applied, where, as a general rule, the
set of systems chosen to perform validation tests should collectively utilize all
atom types defined in the force field. Note, these validation tests can be done
to identify conflicts and under-defined systems, but do not necessarily indicate
that the force field has been implemented corrected; separate verification tests
are needed to ensure proper implementation, whereby the atom types identified
by Foyer are compared to that of molecules with known, validated atom types,
as discussed later.

8.2.1. Residue-based Atom-typing

Many systems of interest to molecular simulation contain topologies that
consist of duplicates of smaller molecules or repeat units, each with identical
topologies. A brute-force implementation of the atom-typing process wastes
time by repeating subgraph isomorphism computation on each repeat unit and
thus would not scale well with system size. To eliminate unnecessary calcu-
lations, a map of atom-typed residues is saved after each unique residue is
atom-typed the first time. Then, when an identical residue is found, it copies

17

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

(OpenMM Topology and validated XML)

Convert SMARTS (i.e., rules) into graphs,
filter rules

!

Choose next rule, search for matches
using subgraph isomorphism

Does rule match any atoms
in Topology?

Add overrides to matching atoms’
blacklist

Determine atom type from set Atoms in
difference of white- and blacklist Topology,

Figure 3: Flowchart of Foyer’s atom-typing process.

the atom-typed information from the residue map instead of repeating the sub-
graph isomorphism. This feature is enabled by default but can optionally be
turned off.

As an example, consider a box of N hexane molecules. After the subgraph
isomorphism is called on the first molecule, the result is copied and saved into
a map. Then, when molecules 2 to N are encountered, those results are copied
into the running topology. The time it takes for the apply function to finish is
timed for each case and plotted in Figure 4 relative to the brute force approach,
where significant speed improvements are observed for common system sizes.

3.8. Force field assignment and output

Once atom-typed, the OpenMM Topology, now containing atom types for all
particles in the system, is used to create an OpenMM System object and bonded
parameters of systems determined. This step can be accomplished by simply
searching the list of bonded parameters for the appropriate pair, triplet, quartet
of atom types for bonds, angles, and dihedrals, respectively; such routines exist
within OpenMM and are utilized in this context, where again we note these
interactions undergo a sorting to ensure more specific definitions appear first in
the file. Additionally, validation checks are performed at this time to ensure all
triplets and quartets of interaction sites have had angle and dihedral (proper

18

514

515

516

517

518

519

520

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

103

Y —— No map
S With map :
O
g 10 i 20x
g i
£ i
=1
o)
£ 10?4
[=%
=
1

é : 5x

1009 o —&

1 10 100 1000

Number of hexane molecules

Figure 4: Comparison of atom-typing cost with and without the use of a residue templates.
Without a residue template map, the scaling is approximately linear with system size. With a
map, the scaling is independent of system size for small systems and becomes approximately
linear at larger system sizes due to operations other than the subgraph isomorphism. The
speedup approaches a factor of approximately 30 as the system size becomes large. The times
to atom type each system were obtained with a 2013 MacBook Pro, 3GHz Core i7, 8 GB
RAM.

and improper) parameters assigned (checks for bond parameterization of inter-
action site pairs are performed by OpenMM in the prior step). These validation
checks provide the user with an error (that can optionally be overridden) to
help prevent the return of incorrectly parameterized Structures. To output
the atom-typed system into a usable format for a simulation engine, the fully
atom-typed and parameterized system is returned as a ParmEd Structure ob-
ject. Through the use of the ParmEd Structure, Foyer has access to various
additional functionality, such as I/O routines that properly parse the ParmEd
Structure into common chemical file formats (MOL2, PDB, NAMD and GRO-
MACS formats, among others[22]). For file formats not natively supported by
ParmEd, custom I/O routines for outputting to these formats (e.g., the LAMMPS
data file format) have been developed within the mBuild package.

It should be noted that by utilizing ParmEd to take advantage of the exten-
sive I/O routines, the force fields that Foyer currently supports must match
functional forms supported by the internals of the ParmEd Structure object.
For example, non-bonded interactions are currently limited to a 12-6 Lennard-
Jones functional form. However, due to the large amount of force fields that uti-
lize this functional form (e.g., Amber[1], GAFF[39], OPLS|3], TraPPE[28, 29],
CHARMM]2]), the current version of Foyer is still widely applicable; planned
future development will include support additional functional forms to better
accommodate the diverse force field landscape that exists.

3.4. Validating/verifying output

Foyer provides scripts to validate its output files by comparing against
systems with known atom types (e.g., those determined by hand or reference
molecules provided by a force field developer). Output validation requires (1)
system(s) with known, validated atom types and (2) the force field XML file.

19

540

541

542

543

544

545

546

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

The known systems are read into Foyer and atom types are determined using
the rules in the XML file. The atom types generated by Foyer are then com-
pared against the known atom-typed system(s). The pytest[40] library is used
to provide a clear, descriptive output of the results of these validation tests. Im-
plementing output validation tests is particularly useful to force field developers
as they ensure that the desired output is retained if a force field file is evolved
through the addition of new atom types definitions or merged with a separate
force field file. The utility of these validation checks relies not only upon pro-
viding accurate reference systems, but also a sufficient variety of test systems
that encompass all defined atom types, as discussed previously. An example of
such a validation test suite is provided as part of the Foyer template repository
freely available on GitHub[41] .

4. Usage Examples

At the time of publication, Foyer includes example force field XML files with
def, overrides, and doi statements for 110 OPLS atom types as well as param-
eters and atom types for the simulation of alkanes and primary alcohols using
the TraPPE force field. As discussed later in Sec. 5, separate repositories have
been created to demonstrate how to reproducibility distribute force fields. These
include OPLS compatible sets of parameters for perfluoropolyethers[42, 43, 44],
perfluoroalkanes[45], and alkylsilanes grafted silica substrates [46]. Implemen-
tation of additional atom types for OPLS and TraPPE force fields and the
implementation of other ParmEd compatible force fields is an active area of
work.

Here, a basic overview of the usage of Foyer is provided, although we di-
rect readers to the GitHub project repository[34] and tutorial repository [35]
for additional usage examples. Consider constructing a bulk system of ethane
molecules and applying the OPLS force field. Listing 6 shows a simple mBuild
script to load an ethane molecule and fill a 2nm x 2nm x 2nm box with 100
molecules. This defines the system’s chemical topology to which the force field
will be applied. As input, the force field file is identical to Listing 1 but with
the <AtomType> information from Listing 2, as Listing 2 includes the usage rule
definitions. Listing 6 demonstrates two different syntaxes for applying a force
field using Foyer and saving the output, in this case to the file format required
by GROMACS. The second option allows different forcefields to be applied to
different topologies in the system. Listing 7 shows an example of creating two
separate chemical topologies in the system, and applying two different force field
files to each. The two atom-typed structures that result (ethane_fluid and
silica_substrate) are then combined using a simple + operator and saved
to any format supported by ParmEd (this assumes that cross interactions be-
tween ethane and silica are defined using standard mixing rules). Note that if
the surface and polymers were bonded together (e.g., to create a surface-bound
monolayer), the force field files would need to be combined into a single XML
document.

20

583

584

585

586

587

Listing 6: Script to fill a box with ethane and apply the OPLS-AA force field to the system.

import mbuild as mb

from mbuild.examples import Ethane
from foyer.test.utils import get_fn
from foyer import Forcefield

Approach 1

Create the chemical topology

ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=100, box=[2, 2, 2])

Apply and save the topology

ethane_fluid.save(’ethane-box.top’, forcefield_files=get_fn(’oplsaa_alkane.xml’))
ethane_fluid.save(’ethane-box.gro’)

Approach 2

Create the chemical topology

ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=100, box=[2, 2, 2])
Load the forcefield

opls_alkane = Forcefield(forcefield files=get_fn(’oplsaa_alkane.xml’))

Apply the forcefield to atom-type

ethane_fluid = opls_alkane.apply(ethane_fluid)

Save the atom-typed system
ethane_fluid.save(’ethane-box.top’, overwrite=True)
ethane_fluid.save(’ethane-box.gro’, overwrite=True)

Listing 7: Script to build a system with an amorphous silica substrate in contact with a bulk
ethane system and apply a different force field to the substrate and fluid respectively.

from foyer import Forcefield

from foyer.test.utils import get_fn

import mbuild as mb

from mbuild.examples import Ethane

from mbuild.lib.atoms import H

from mbuild.lib.bulk_materials import AmorphousSilica

Create a silica substrate, capping surface oxygens with hydrogen

silica = mb.SilicaInterface(bulk_silica=AmorphousSilica())

silica_substrate = mb.Monolayer(surface=silica, chains=H(), guest_port_name=’up’)
Determine the box dimensions dictated by the silica substrate

box = mb.Box(mins=[0, 0, max(silica.xyz[:,2])], maxs=silica.periodicity + [0, 0, 4])
Fill the box with ethane

ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=200, box=box)

Load the forcefields

opls_silica = Forcefield(forcefield_files=get_fn(’opls-silica.xml’))
opls_alkane = Forcefield(forcefield files=get_fn(’oplsaa_alkane.xml’))

Apply the forcefields

silica_substrate = opls_silica.apply(silica_substrate)

ethane_fluid = opls_alkane.apply(ethane_fluid)

Merge the two topologies

system = silica_substrate + ethane_fluid

Save the atom-typed system

system.save(’ethane-silica.top’)

system.save(’ethane-silica.gro’)

Promoting Reproducible Force Field Dissemination

Force field files and associated documentation, examples, and validation

tests, can be readily developed and distributed using standard software de-

21

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

velopment approaches to improve quality and reproducibility. For example,
the common git + GitHub/Bitbucket based distribution process allows force
field creators to disseminate their force field files and associated content to the
public via a version controlled repository that can be referenced from relevant
publications. In this approach, a specific version of the force field used in a
publication can be tagged in the git repository and a reference to this tagged
version provided in the manuscript, allowing for a clear reference to the ex-
act parameters and usage rules employed in the work. Other services, such as
Zenodo [47], can additionally provide a digital object identifier (DOI) for the
tagged record and a snapshot of the content of the archive. A variety of other
features of this standard software development process translate well to force
field development. Version control systems like git are designed to facilitate dis-
tributed, collaborative software development and allow for changes to the files
in the repository to be easily tracked in a transparent manner. For example, as
a force field is evolved or corrected, revisions can be easily tracked, including the
author(s) responsible for the changes, and the specific differences between force
field versions clearly identified using standard tools such as DIFF and through
the use of descriptive “commit” statements as the content of the repository is
changed. The support for tracking issues in services such as GitHub/Bitbucket
additionally allow the community to provide feedback, request clarification, or
identify errors in a file in a transparent manner. Whenever the developers wish
to they can create a new release of the force field that, as noted above, can be
tagged or provided with a citable DOI. Verification and validation of a force field
can also be simplified by using this software design approach, by implementing
automated testing tools that can perform checks on every new iteration (i.e.,
commit) of the force field content, to ensure errors are not introduced as the
force field is changed.

To promote these practices, we have created a template git repository on
GitHub which contains the basic framework needed to create, test, and publish a
new force field as well as a guided tutorial that introduces users to the SMARTS
based atom-typing scheme[41]. This process was successfully used in recent work
that derived force field parameters for perfluoropolyethers[42], a novel lubricant
class. The force field was published in conjunction with the manuscript and
made freely available on GitHub[43]. The specific version of the force field
at time of publication is citable via a separate DOI[44]. Any adjustments or
improvements to the force field could now be released under a new DOI while
the old one would still exist and point to the originally published force field in
order to maintain provenance.

5.1. Atom type DOI labels

While automated atom-typing and the containment of atom types and force
field parameters within a single file helps reduce user error and promotes repro-
ducibility, users also require knowledge of the original source of parameters, in
order to ensure proper citation and validation that the parameters are appro-
priate for their system of interest. Foyer achieves this goal by adding a doi
attribute to each Type definition within the AtomTypes block of a force field

22

633

634

635

636

637

638

639

640

641

642

643

644

645

XML. Listing 8 shows the same atom-type definition for the OPLS-AA methyl
carbon as in Listing 2 with the additional doi attribute providing the DOI to
the original source where parameters for this atom type were derived.

Listing 8: Atom type definition for a methyl carbon tagged with the source DOI

<ForceField>
<AtomTypes>
<Type name="opls_135" class="CT" element="C" mass="12.01100"\\
def="[C;X4] (C) (H) (H)H" desc="alkane CH3" \\
doi="10.1021/ja9621760"/>
</AtomTypes>
</ForceField>

This feature eliminates ambiguity concerning the origin of parameters for
a particular atom type. Furthermore, Foyer automatically logs associations
between DOIs and atom types during the atom-typing process, providing a
BibTeX file featuring the full citation for the sources of all parameters applied
to a particular system, along with additional notes detailing precisely which
atom types are contained within each source. For example, Listing 9 shows the
BibTeX file generated for a nitropropane molecule using the OPLS-AA force
field, which includes all reference information as well as notes describing which
atom type parameters were obtained from each reference.

23

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

Listing 9: BibTeX file generated during atom-typing of nitropropane using the OPLS-AA

force field (modified with line breaks for readability).

@article{Price_2001,
doi = {10.1002/jcc.1092},
url = {https://doi.org/10.1002%2Fjcc.1092},
year = 2001,
publisher = {Wiley-Blackwelll},
volume = {22},
number = {13},
pages = {1340--1352},

compounds with the {0OPLS}-{AA} force field},
journal = {Journal of Computational Chemistry},
note = {Parameters for atom types: opls_761, opls_760, opls_764, opls_763}
¥
Qarticle{Jorgensen_1996,
doi = {10.1021/ja9621760},
url = {https://doi.org/10.1021%2Fja9621760%},
year = 1996,
month = {jan},
publisher = {American Chemical Society ({ACS})},
volume = {118},
number = {45},
pages = {11225--11236},

title = {Development and Testing of the {0OPLS} All-Atom Force Field
on Conformational Energetics and Properties of Organic Liquids},

journal = {Journal of the American Chemical Society},

note = {Parameters for atom types: opls_135, opls_140, opls_136}

author = {Melissa L. P. Price and Dennis Ostrovsky and William L. Jorgensen},
title = {Gas-phase and liquid-state properties of esters, nitriles, and nitro

author = {William L. Jorgensen and David S. Maxwell and Julian Tirado-Rives},

6. Conclusions

The Foyer Python library and annotation scheme for defining force field us-
age has been presented in this work. Foyer defines a general applicable approach
for the specification of classical force fields in a format that is both human and
machine readable and provides tools for automated atom-typing and validation.
The force field annotation scheme used in Foyer defines parameters and their
usage within an XML formatted force field, allowing force fields to be devel-
oped and evolved without the need to modify the source code used to evaluate
them. This annotation scheme uses SMARTS to define the chemical context
of an atom type and defines rule precedence via explicit override statements,
allowing rules to appear in any order in a force field file. The Foyer software
treats chemical topologies as graphs and rules as subgraphs, to identify atom
types, using an iterative approach. This iterative approach allows force fields to
be automatically evaluated for completeness and identify under specified force
fields, helping to prevent the dissemination and usage of ambiguously defined
force fields. Foyer is designed to be compatible with several common simulation
engines and utilizes/extends several existing open-source Python tools and file

24

664

665

666

667

668

669

670

671

672

673

674

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

formats, in order to maximize flexibility and general applicability. Collectively,
the approach utilized by Foyer can used to improve the clarity of force field us-
age and dissemination within the molecular simulation community. The Foyer
software is open-source and freely available via GitHub[34].

7. Acknowledgments

This material is based upon work supported by the National Science Founda-
tion under Grant Nos. 1535150 and 1835874. We also acknowledge the National
Energy Research Supercomputing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

References

[1] S.J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona,
S. Profeta, P. Weinerl, A New Force Field for Molecular Mechanical Sim-
ulation of Nucleic Acids and Proteins, Journal of the American Chemical
Society 106 (1984) 765-784 (1984). do0i:10.1021/ja00315a051.

[2] A. D. MacKerell, N. Banavali, N. Foloppe, Development and cur-
rent status of the CHARMM force field for nucleic acids., Biopolymers
56 (4) (2000) 257-65 (2000). doi:10.1002/1097-0282(2000)56:4;257:: AID-
BIP10029;3.0.CO;2-W.

[3] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Development and Test-
ing of the OPLS All-Atom Force Field on Conformational Energetics and
Properties of Organic Liquids, Journal of the American Chemical Society
118 (45) (1996) 11225-11236 (jan 1996). doi:10.1021/ja9621760.

[4] J. L. Siepmann, S. Karaborni, B. Smit, Simulating the critical behaviour of
complex fluids, Nature 365 (6444) (1993) 330 (1993). doi:10.1038/365330a0.

[5] J. J. Potoff, J. I. Siepmann, Vapor-liquid equilibria of mixtures containing
alkanes, carbon dioxide, and nitrogen, AIChE Journal 47 (2001) 1676-1682
(2001). doi:10.1002/aic.690470719.

[6] H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-
Phase Applications s Overview with Details on Alkane and Benzene Com-
pounds, Journal of Physical Chemistry 5647 (1998) 7338-7364 (1998).
doi:10.1021/jp980939v.

[7] C. Oostenbrink, A. Villa, A. E. Mark, W. F. Van Guusteren, A biomolec-
ular force field based on the free enthalpy of hydration and solvation: The
GROMOS force-field parameter sets 53A5 and 53A6, Journal of Computa-
tional Chemistry 25 (2004) 1656-1676 (2004). doi:10.1002/jcc.20090.

25

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

718

719

720

721

722

723

724

725

726

727

728

729

730

732

733

734

735

736

737

8]

[10]

[11]

[13]

[15]

Gromacs OPLS Atom Types.

URL https://github.com/gromacs/gromacs/blob/
e131e1d16c589fded5cad47bbd52b010d59¢80a7/share/top/oplsaa.
ff/atomtypes.atp

G. K. Sandve, A. Nekrutenko, J. Taylor, E. Hovig, Ten simple rules for
reproducible computational research, PLOS Computational Biology 9 (10)
(2013) 1-4 (10 2013). doi:10.1371/journal.pcbi.1003285.

M. W. Thompson, R. Matsumoto, R. L. Sacci, N. C. Sanders, P. T. Cum-
mings, Scalable screening of soft matter: A case study of mixtures of ionic
liquids and organic solvents, The Journal of Physical Chemistry B ASAP
(2019). doi:10.1021/acs.jpcb.8b11527.

B. L. Bush, R. P. Sheridan, PATTY: A Programmable Atom Typer and
Language for Automatic Classification of Atoms in Molecular Databases,
Journal of Chemical Information and Computer Sciences 33 (1993) 756-762
(1993). doi:10.1021/¢i00015a015.

A. W. Schiittelkopf, D. M. F. Van Aalten, PRODRG: A tool for high-
throughput crystallography of protein-ligand complexes, Acta Crystallo-
graphica Section D: Biological Crystallography 60 (2004) 1355-1363 (2004).
doi:10.1107/50907444904011679.

J. Wang, W. Wang, P. a. Kollman, D. a. Case, Automatic atom type
and bond type perception in molecular mechanical calculations., Jour-
nal of Molecular Graphics & Modelling 25 (2) (2006) 247-60 (oct 2006).
doi:10.1016/j.jmgm.2005.12.005.

A. A. S. T. Ribeiro, B. A. C. Horta, R. B. De Alencastro, MKTOP:
A program for automatic construction of molecular topologies, Jour-
nal of the Brazilian Chemical Society 19 (7) (2008) 1433-1435 (2008).
doi:10.1590/S0103-50532008000700031.

A. K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P. C. Nair, C. Qost-
enbrink, A. E. Mark, An Automated force field Topology Builder (ATB)
and repository: Version 1.0, Journal of Chemical Theory and Computation
7 (2011) 4026-4037 (2011). doi:10.1021/ct200196m.

K. Vanommeslaeghe, a. D. MacKerell, Automation of the CHARMM Gen-
eral Force Field (CGenFF) I: bond perception and atom typing., Journal
of Chemical Information and Modeling 52 (12) (2012) 3144-54 (dec 2012).
doi:10.1021/¢i300363c.

J. D. Yesselman, D. J. Price, J. L. Knight, C. L. Brooks, MATCH: an atom-
typing toolset for molecular mechanics force fields., Journal of Computa-
tional Chemistry 33 (2) (2012) 189-202 (jan 2012). doi:10.1002/jcc.21963.

26

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

762

763

764

765

766

767

768

769

770

771

772

773

774

775

[18]

[19]

[20]

D. Weininger, Smiles, a chemical language and information system.
1. introduction to methodology and encoding rules, Journal of Chem-
ical Information and Computer Sciences 28 (1) (1988) 31-36 (1988).
doi:10.1021/¢i00057a005.

D. L. Mobley, C. C. Bannan, A. Rizzi, C. I. Bayly, J. D. Chodera, V. T. Lim,
N. M. Lim, K. A. Beauchamp, D. R. Slochower, M. R. Shirts, M. K. Gilson,
P. K. Eastman, Escaping atom types in force fields using direct chemical
perception, Journal of Chemical Theory and Computation 14 (11) (2018)
6076-6092 (2018). doi:10.1021/acs.jctc.8b00640.

Daylight Theory: SMARTS - A Language for Describing Molecular Pat-
terns.
URL http://www.daylight.com/dayhtml/doc/theory/theory.smarts.
html

P. J.in’t Veld. EMC: Enhanced Monte Carlo; A multi-purpose modular and
easily extendable solution to molecular and mesoscale simulations [online,
cited 31 July 2018].

ParmEd [cited 1 Feb 2019].
URL http://parmed.github.io/ParmEd/html/index.html

P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer, C. M. Bruns,
J. P. Ku, K. A. Beauchamp, T. J. Lane, L. P. Wang, D. Shukla, T. Tye,
M. Houston, T. Stich, C. Klein, M. R. Shirts, V. S. Pande, OpenMM 4:
A reusable, extensible, hardware independent library for high performance

molecular simulation, Journal of Chemical Theory and Computation 9 (1)
(2013) 461-469 (2013). doi:10.1021/ct300857j.

OpenMM User Guide, Creating Force Fields [cited 1 Feb 2019].
URL http://docs.openmm.org/7.0.0/userguide/

mBuild Software Repository on GitHub [cited 1 Feb 2019].
URL http://github. com/mosdef-hub/mbuild

J. Sallai, G. Varga, S. Toth, C. Iacovella, C. Klein, C. McCabe, A. Ledeczi,
P. T. Cummings, Web- and Cloud-based Software Infrastructure for Ma-
terials Design, Procedia Computer Science 29 (2014) 2034-2044 (2014).
d0i:10.1016/j.procs.2014.05.187.

C. Klein, J. Sallai, T. J. Jones, C. R. Iacovella, C. McCabe, P. T. Cum-
mings, A Hierarchical, Component Based Approach to Screening Properties
of Soft Matter, Springer Singapore, Singapore, 2016, pp. 79-92 (2016).

M. G. Martin, J. I. Siepmann, Transferable Potentials for Phase Equilibria.
1. United-Atom Description of n-Alkanes, The Journal of Physical Chem-
istry B 5647 (97) (1998) 2569-2577 (1998). d0i:10.1021/jp972543+.

27

776

T

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

[29]

[30]

[38]

[39]

TraPPE Force Fields.
URL http://www.chem.umn.edu/groups/siepmann/trappe/

E. K. Watkins, W. L. Jorgensen, Perfluoroalkanes: Conformational Anal-
ysis and Liquid-State Properties from ab Initio and Monte Carlo Calcula-
tions, The Journal of Physical Chemistry A 105 (2001) 4118-4125 (2001).
d0i:10.1021/jp004071w.

T. E. Oliphant, Guide to NumPy, 2nd Edition, CreateSpace Independent
Publishing Platform, USA, 2015 (2015).

E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific
tools for Python.
URL http://www.scipy.org/

D. A. Schult, P. Swart, Exploring network structure, dynamics, and func-
tion using networkx, in: Proceedings of the 7th Python in Science Confer-
ences (SciPy 2008), Vol. 2008, 2008, pp. 11-16 (2008).

Foyer Software Repository on GitHub [cited 1 Feb 2019].
URL http://github.com/mosdef-hub/foyer

Foyer Tutorial Repository on GitHub [cited 1 Feb 2019).
URL https://github.com/mosdef-hub/foyer_tutorials

Foyer Website [cited 1 Feb 2019].
URL http://mosdef-hub.github.io/foyer

M. R. Shirts, C. Klein, J. M. Swails, J. Yin, M. K. Gilson, D. L. Mobley,
D. A. Case, E. D. Zhong, Lessons learned from comparing molecular dy-
namics engines on the sampl5 dataset, Journal of Computer-Aided Molec-
ular Design 31 (1) (2017) 147-161 (2017). doi:10.1007/s10822-016-9977-1.

L. P. Cordella, P. Foggia, C. Sansone, M. Vento, A (sub) graph isomorphism
algorithm for matching large graphs, IEEE transactions on pattern analysis
and machine intelligence 26 (10) (2004) 13671372 (2004).

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, Develop-
ment and testing of a general amber force field., Journal of Computational
Chemistry 25 (9) (2004) 1157-74 (jul 2004). doi:10.1002/jcc.20035.

H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher,
F. Bruhin. pytest [online] (2004).

FoyerTemplate Repository on GitHub [cited 1 Feb 2019].
URL github.com/mosdef-hub/foyer_template

J. E. Black, G. M. Silva, C. Klein, C. R. Iacovella, P. Morgado, L. F.
Martins, E. J. Filipe, C. McCabe, Perfluoropolyethers: Development of
an all-atom force field for molecular simulations and validation with new

experimental vapor pressures and liquid densities, The Journal of Physical
Chemistry B 121 (27) (2017) 6588-6600 (2017).

28

815

816

817

818

819

820

821

822

823

824

825

826

[43] Foyer Formatted Perfluoroethers Force Field [cited 1 Feb 2019].
URL https://github.com/mosdef-hub/forcefield_perfluoroethers

[44] J. Black, G. Silva, C. Klein, C. Iacovella, P. Morgado, L. Martins,
E. Filipe, C. McCabe, Opls-aa compatible parameters for perfluoroethers.
doi:10.5281/zenodo.583310.

[45] OPLS-AA compatible parameters for perfluoalkanes [cited 25 April 2019].
URL https://github.com/chrisiacovella/0PLSaa_perfluoroalkanes

[46] OPLS-AA compatible parameters for alkylsilanes and silica [cited 25 April
2019).
URL https://github.com/summeraz/0PLSaa_alkylsilanes

[47] Zenodo.
URL https://zenodo.org/

29

