

1 Thermodynamic and dynamic responses to deforestation in the Maritime Continent: A  
2 modeling study

3

4

5

6 Chu-Chun Chen<sup>1</sup>, Min-Hui Lo<sup>1\*</sup>, Eun-Soon Im<sup>2</sup>, Jin-Yi Yu<sup>3</sup>, Yu-Chiao Liang<sup>3</sup>, Wei-  
7 Ting Chen<sup>1</sup>, Iping Tang<sup>1</sup>, Chia-Wei Lan<sup>1</sup>, Ren-Jie Wu<sup>1</sup>, Rong-You Chien<sup>1</sup>

8

9 <sup>1</sup> Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan  
10

11 <sup>2</sup> Department of Civil and Environmental Engineering, Division of Environment and  
12 Sustainability, The Hong Kong University of Science and Technology

13

14 <sup>3</sup> Department of Earth System Sciences, University of California, Irvine, USA  
15

16

17

18

19 \*Correspondence to: Min-Hui Lo (minhuilo@ntu.edu.tw)

20

21

22

23

24

25

## Abstract

26

27       Tropical deforestation can result in substantial changes in local surface energy and  
28       water budgets, and thus in atmospheric stability. These effects may in turn yield  
29       changes in precipitation. The Maritime Continent (MC) has undergone severe  
30       deforestation during the past few decades but it has received less attention than the  
31       deforestation in the Amazon and Congo rainforests. In this study, numerical  
32       deforestation experiments are conducted with global (i.e., Community Earth System  
33       Model) and regional climate models (i.e., Regional Climate Model version 4.6) to  
34       investigate precipitation responses to MC deforestation. The results show that the  
35       deforestation in the MC region leads to increases in both surface temperature and local  
36       precipitation. Atmospheric moisture budget analysis reveals that the enhanced  
37       precipitation is associated more with the dynamic component than with the  
38       thermodynamic component of the vertical moisture advection term. Further analyses  
39       on the vertical profile of moist static energy indicate that the atmospheric instability  
40       over the deforested areas is increased as a result of anomalous moistening at  
41       approximately 800-850 hPa and anomalous warming extending from the surface to 750  
42       hPa. This instability favors ascending air motions, which enhance low-level moisture  
43       convergence. Moreover, the vertical motion increases associated with the MC  
44       deforestation are comparable to those generated by La Niña events. These findings not  
45       only offer mechanisms to explain the local climatic responses to MC deforestation but  
46       also insights into the possible reasons for disagreements among climate models in  
47       simulating the precipitation responses.

48

49 **1. Introduction**

50 Anthropogenic land use and land cover changes, especially deforestation, can have  
51 substantial effects on the local and remote climate. For instance, deforestation can  
52 directly alter the partitioning of local surface energy and the water budget, leading to  
53 changes in precipitation (e.g., Zeng and Neelin 1999; Pielke et al. 2007; Mahmood et  
54 al. 2014; Lawrence and Vandecar 2015). Tropical rainforests have lower albedos, larger  
55 leaf and stem areas for evapotranspiration, and larger heights than other vegetation  
56 types. Therefore, converting rainforest into bare ground or grassland has three major  
57 effects on land surface conditions: (1) a reduction in evapotranspiration, (2) an increase  
58 in surface albedo, and (3) a decrease in surface roughness. The reduction in  
59 evapotranspiration decreases the surface latent heat flux and leads to a surface warming  
60 effect. The decrease in roughness reduces the aerodynamic exchanges between the  
61 surface and the atmosphere. Furthermore, the reduced roughness alone may also  
62 increase surface pressure and subsidence through land-atmosphere interactions.  
63 Although the enhanced wind speed might mitigate this effect, the net effect is a decrease  
64 in evapotranspiration (Maloney 1998). These two non-radiative processes contribute to  
65 changes in the water and energy budgets which result in a positive temperature response.  
66 Conversely, radiative processes reduce the net incoming radiation (through the increase  
67 in surface albedo) to produce a cooling effect. Previous studies have indicated that non-  
68 radiative processes are stronger in the tropics. As a result, warming is the net response  
69 to tropical deforestation. This differs from the temperate and boreal zones, where  
70 radiative processes are more important and the overall result of deforestation is a net  
71 cooling (Davin and de Noblet-Ducoudré 2010; Malyshev et al. 2015).

72 The effects of tropical deforestation are highly dependent on the spatial scales of  
73 deforestation, the nearby environments and the mean climates of the deforested  
74 locations (e.g., Polcher and Laval 1994a; Schneck and Mosbrugger 2011; Lawrence

75 and Vandecar 2015; Spracklen and Garcia-Carreras 2015). The climate impacts of  
76 large-scale (thousands of kilometers, km) tropical deforestation have been studied using  
77 numerical climate models and idealized scenarios, in which the deforestation was  
78 applied in the models throughout all tropical rainforests or within the entire Amazon or  
79 Congo basins (e.g., Sud et al. 1996; Volodire and Royer 2004; Avissar and Werth 2005;  
80 Ramos da Silva et al. 2008; Lawrence and Vandecar 2015; Lejeune et al. 2015;  
81 Spracklen and Garcia-Carreras 2015). These large-scale deforestation experiments  
82 generally show a warmer and drier climate locally over the deforested regions. The  
83 warming effect is caused by a strong reduction in surface latent heat flux that outweighs  
84 a weaker decrease in net surface radiation, while the drying effect is caused by the  
85 reductions in transpiration, which may contribute to the simulated decreases in  
86 precipitation (e.g., Katul et al. 2012; Kumagai et al. 2013). However, there are a few  
87 large-scale deforestation studies that do not show these warmer and drier climate  
88 responses in the Congo basin and Maritime Continent (MC) (Polcher and Laval 1994a;  
89 McGuffie et al. 1995; Zhang et al. 1996a; Findell et al. 2006). The differences may  
90 result from the different vegetation types used to replace forests (e.g., grassland,  
91 scrubland, or bare ground) or broader deforestation regions (that are not confined to the  
92 tropics) used. Besides impacting local and regional climate, large-scale deforestations  
93 can also induce remote climate impacts through changes in the large-scale circulation  
94 (e.g., Hadley circulation or Walker circulation) and Rossby wave propagation in the  
95 atmosphere (e.g., Henderson-Sellers et al 1993; Sud et al. 1996; Zhang et al. 1996b;  
96 Snyder 2010; Lawrence and Vandecar 2015).

97 Mesoscale deforestation (on scales of tens to hundreds of km, up to two thousand  
98 km in scale) in areas surrounded by forest or ocean is a more realistic deforestation  
99 scenario than large-scale deforestation (e.g., Wang et al. 2009; Roy 2009; Hanif et al.  
100 2016). Observational datasets and climate model simulations have been used to

101 investigate the climate impact of mesoscale deforestation. Studies based on satellite  
102 observations and mesoscale climate models in southwestern Brazil have indicated that  
103 a heterogeneous land surface condition, such as a “fish-bone” deforestation pattern, can  
104 induce mesoscale atmospheric circulation under weak synoptic-scale forcing that can  
105 enhance cloudiness and rainfall (Wang et al. 2009; Negri et al. 2004; Roy 2009). A  
106 regional climate modeling study revealed an increase in precipitation at the edge of the  
107 forest in the Amazon basin due to an enhancement of prevailing wind resulting from an  
108 increased land-sea heat contrast after deforestation (Ramos da Silva et al. 2008).  
109 Observational studies have also suggested that mesoscale deforestation tends to  
110 increase local precipitation in western Malaysia; the responsible mechanisms are not  
111 clear (Hanif et al. 2016).

112 The Maritime Continent (MC) region has experienced dramatic forest losses in  
113 recent decades (Gaveau et al. 2014; Austin et al. 2019), but these changes have received  
114 less attention than the deforestation in the Amazon and Congo basins. Based on Landsat  
115 satellite data, the forest clearing rate in Indonesia was higher than that in the Brazilian  
116 Amazon during the period 2000-2012 (Margono et al. 2014; Hansen et al. 2013). The  
117 forest area in Borneo was 55.8 Mha in 1973. By 2015 about 33.4% of it had been  
118 deforested (Gaveau et al. 2016). Deforestation has also occurred in other parts of the  
119 MC, such as Sumatra where the total forest area decreased by about 25.6% during the  
120 period 1990-2000 (Gaveau et al. 2009). Because the MC is located within the joint  
121 ascending region of the Hadley and Walker circulations, the climate response to  
122 deforestation in this region may influence other remote regions via changes in the large-  
123 scale circulations (Mabuchi et al. 2005b; Schneck and Mosbrugger 2011). Furthermore,  
124 van der Molen et al. (2006) have suggested that land use and land cover changes can  
125 have greater impacts on precipitation under maritime conditions than under continental

126 conditions due to the higher sensitivity of the sea breeze responses. It is possible that  
127 the MC deforestation can induce strong atmospheric circulation responses.

128 Modeling studies on the MC deforestation are consistent in finding a local warming  
129 effect of the deforestation but disagree on the precipitation response. Table 2  
130 summarizes these modeling studies. Some of them suggested that deforestation can  
131 reduce precipitation in the MC region by weakening surface latent heat fluxes (Mabuchi  
132 et al. 2005a; Mabuchi et al. 2005b; Avissar and Werth 2005; Werth and Avissar 2005;  
133 Mabuchi 2011; Kumagai et al. 2013). However, the MC deforestation was found to  
134 intensify extreme rainfall events (i.e., the maximum daily precipitation) in a regional  
135 climate model study (Tölle et al. 2017) and enhance convection over the surrounding  
136 oceans in a fully coupled model as a weakening of upwelling causes a warming of ocean  
137 surface, leading to stronger convergence (Schneck and Mosbrugger 2011). Some of  
138 these studies also found increased precipitation under certain circumstances. For  
139 instance, Delire et al. (2001) found increased precipitation over the land regions in the  
140 MC using a model with prescribed sea surface temperatures. In addition, Takahashi et  
141 al. (2017) showed that, in the Weather Research and Forecasting Model, precipitation  
142 increases after decreasing the maximum stomatal conductance to one fifth of its value  
143 in the control run, while the land cover remains the same (broadleaf evergreen).  
144 Moreover, Schneck and Mosbrugger (2011) showed that the changes in precipitation  
145 after deforestation are region-dependent. The precipitation decreases in western Borneo,  
146 northern Sumatra, and some parts in Indochina, but increases in New Guinea.

147 As mentioned, there is not yet a clear consensus on how precipitation responds to  
148 deforestation in the MC region. In this study, we perform MC deforestation experiments  
149 with the National Center for Atmospheric Research (NCAR) Community Earth System  
150 Model version 1.0.3 (CESM) and Abdus Salam International Centre for Theoretical  
151 Physics (ICTP) Regional Climate Model version 4.6 (RegCM4; Giorgi et al. 2012) to

152 uncover the mechanism that controls the precipitation response. The possible factors  
153 that may contribute to the disagreement among models in the precipitation responses  
154 are discussed.

155

156 **2. Methods**

157 *a. CESM setup for deforestation experiment*

158 Two simulations were performed with the CESM: the control run and the  
159 deforestation run. Both simulations were run for 30 years and the last 25 years of the  
160 simulations were used for analyses. The simulations were performed with the  
161 “F\_2000\_CAM5” configuration of the CESM, which features the year 2000  
162 greenhouse gas emission forcing and couples the stand-alone Community Atmosphere  
163 Model (CAM) using the CAM5 physics (Neale et al. 2012) with the Community Land  
164 Model Version 4 (CLM4.0, Oleson et al. 2010; Lawrence et al. 2011). The model has  
165 a horizontal resolution of  $0.9^\circ \times 1.25^\circ$  and is prescribed with climatological (1982-2001)  
166 sea surface temperatures and sea ice concentrations. In CLM4.0, vegetation types are  
167 represented by the plant functional types (PFTs) that describe vegetation properties  
168 such as leaf area index, stem area index, and canopy height, and thus albedo and  
169 evapotranspiration effects are varying throughout PFTs. In the deforestation  
170 experimental run, we replace the broadleaf evergreen tropical trees and broadleaf  
171 deciduous tropical trees in the MC region (between  $10^\circ\text{S}$ - $10^\circ\text{N}$  and  $90^\circ\text{E}$ - $150^\circ\text{E}$ ) by C4  
172 grasses. Figure S1 shows the changes in the spatial distributions of PFT. We replace  
173 trees with C4 grass as a proxy for oil palm, which is one of the major vegetation types  
174 occupying the MC after deforestation (Carlson et al. 2012). Some of the characteristics  
175 of C4 grass and oil palm are similar. For example, the respiration rate of oil palm in the  
176 rainy season is 38 to 75 mg  $\text{H}_2\text{O m}^{-2} \text{s}^{-1}$  (Radersma and de Ridder, 1996), and the  
177 respiration rate for one species of C4 grass is 75.8809 mg  $\text{H}_2\text{O m}^{-2} \text{s}^{-1}$  (Snyman et al.

178 1997). In addition, if the forest was not converted into oil palm, C4 grass would still be  
179 the most probable vegetation type growing in the tropics (Sage et al. 1999).

180

181 *b. RegCM4 setup for deforestation experiment*

182 To further confirm the deforestation response revealed by the coarse-resolution  
183 CESM, we also performed the control and deforestation experiments with the Regional  
184 Climate Model version 4.6 (Giorgi et al. 2012, hereafter referred to as RegCM4). The  
185 domain covers the whole MC region including the regions where land use type for  
186 CESM run was converted from the broadleaf evergreen tropical trees and broadleaf  
187 deciduous tropical trees to warm C4 grasses. The horizontal resolution is 50 km with  
188 60 (North-South direction: 12.0018°S - 12.9781°N) x 160 (East-West direction:  
189 89.9264°E - 160.074°E) grid points (see Figure 1 for the RegCM4 domain used in this  
190 study), while 23 vertical levels are used within the sigma coordinate. A buffer zone of  
191 8 grid points is assigned to each lateral boundary. For the basic configuration of  
192 RegCM4, we use the radiative transfer scheme of the modified NCAR Community  
193 Climate Model version 3 (CCM3), the non-local planetary boundary layer scheme of  
194 Holtslag, the ocean flux scheme of Zeng, and the Subgrid Explicit Moisture (SUBEX)  
195 scheme for the resolved scale precipitation, which are default schemes of RegCM4  
196 (Giorgi et al. 2012) or applied schemes for RegCM4 simulations of Southeast Asia  
197 domain (Chung et al. 2018). We also performed sensitivity experiments with various  
198 cumulus schemes to decide that using the cumulus scheme of Emanuel (1991) for land  
199 grids and the cumulus scheme of Tiedtke (1996) for ocean grids produces the best  
200 model performance. As for the land-surface scheme, CLM4.5 newly incorporated  
201 within RegCM4 is used. Therefore, the land use distributions used for RegCM4 control  
202 and deforestation experiments are exactly the same with those from CESM (in terms of  
203 RegCM4 domain) except for the discrepancy caused by the different resolution. The

204 initial and lateral boundary conditions are obtained from the European Centre for  
205 Medium–Range Weather Forecasts (ECMWF) interim Reanalysis (ERA–Interim) with  
206 a resolution of  $1.5^\circ \times 1.5^\circ$  at 6-hour intervals. The sea surface temperatures (SSTs) are  
207 prescribed by the ERA–interim reanalysis with a resolution of  $1.5^\circ \times 1.5^\circ$  at 6-hour  
208 intervals. Both simulations (deforestation and control experiments) span 23 years from  
209 January 1979 to December 2001. The first 3 years were used as the spin-up period and  
210 were excluded in the analyses. This spin-up time is considered long compared to many  
211 other studies that used regional climate models to investigate impact of land-use change  
212 (e.g., Laux et al. 2017; Zhang et al. 2016; Wang and Cheung 2017). The resulting 20-  
213 year simulations cover the period of 1982-2001, which is the period used to define the  
214 climatological SST prescribed in the CESM experiments.

215

216 *c. Observational data: precipitation, near surface air temperature, outgoing  
217 longwave radiation*

218 We used four observation-based precipitation datasets to evaluate the land  
219 precipitation over the MC region in the simulations: the Global Precipitation  
220 Climatology Centre (GPCC) (Schneider et al. 2011) with a horizontal resolution of  $0.5^\circ$   
221  $\times 0.5^\circ$ ; the National Oceanic and Atmospheric Administration’s Precipitation  
222 Reconstruction over Land (PREC/L) (Chen et al. 2002) with a horizontal resolution of  
223  $0.5^\circ \times 0.5^\circ$ ; Asian Precipitation – Highly-Resolved Observational Data Integration  
224 Towards Evaluation of the Water Resources (APHRODITE, Yatagai et al. 2012) with  
225 a horizontal resolution of  $0.25^\circ \times 0.25^\circ$ ; Global Precipitation Climatology Project  
226 (GPCP 1dd) (Huffman et al. 2001) with a horizontal resolution of  $1^\circ \times 1^\circ$ . All datasets  
227 were constructed from gauge-based precipitation, and GPCP has also incorporated the  
228 information from the satellite data. We used two observational near Surface Air  
229 Temperature (SAT) global land gridded products from CRU TS v. 4.01 (Harris et al.

230 2014) and from the University of Delaware (UoD) Surface Air Temperature (Willmott  
231 and Matsuura, 2001). The gridded monthly NOAA Interpolated Outgoing Longwave  
232 Radiation (OLR) from NCAR with temporal interpolation (Liebmann and Smith 1996)  
233 was also used in this study.

234

235 *d. Surface energy balance equation*

236 We analyze the surface energy balance following the equation (1) of Chen and  
237 Dirmeyer (2016):

$$R_{net} = S_{net} + LW_{in} - \varepsilon\sigma T_s^4 = H + LE + G, \quad (1)$$

238 where the  $R_{net}$  is the net radiation at the surface,  $S_{net}$  is the net shortwave flux at the  
239 surface,  $LW_{in}$  is the downward longwave flux at the surface, and  $\varepsilon\sigma T_s^4$  is the upward  
240 longwave flux at the surface based on Stefan-Boltzmann law (the value of emissivity  
241  $\varepsilon$  depends on surface cover type). For  $R_{net}$ ,  $S_{net}$ , and  $LW_{in}$ , the downward direction  
242 is positive. The net radiation at the surface is also equal to the net surface heat flux,  
243 where  $H$  is surface sensible heat flux,  $LE$  is surface latent heat flux, and  $G$  is ground  
244 heat flux. For  $H$  and  $LE$ , the upward direction is positive, and for  $G$ , the downward  
245 direction is positive.

246

247 *e. Moisture budget equation*

248 To understand the mechanism that determines the precipitation response to the MC  
249 deforestation, we diagnosed the moisture budget using the following vertically-  
250 integrated moisture budget equation:

$$\left\langle \frac{\partial q}{\partial t} \right\rangle = ET - P - \langle \nabla \cdot (vq) \rangle, \quad (2)$$

251 where  $q$  is the specific humidity,  $ET$  is evapotranspiration,  $P$  is precipitation, and  
 252  $v$  is the three-dimensional velocity. Angle brackets  $\langle \rangle$  denote mass integration  
 253 through the troposphere:

$$\langle X \rangle = \frac{1}{g} \int_{p_s}^{p_t} X dp, \quad (3)$$

254 where  $g$  is the gravitational acceleration,  $p_t$  is the pressure at the tropopause (set to  
 255 100 hPa in this study), and  $p_s$  is surface pressure. Since the vertical velocity  $\omega$  is near  
 256 zero at the surface and tropopause (Tan et al. 2008), the divergence of moisture flux  
 257 can be estimated as

$$\langle \nabla \cdot (vq) \rangle \approx \langle v \cdot \nabla q \rangle + \left\langle \omega \frac{\partial q}{\partial p} \right\rangle, \quad (4)$$

258 where  $\langle v \cdot \nabla q \rangle$  is the vertically integrated horizontal moisture advection and  $\left\langle \omega \frac{\partial q}{\partial p} \right\rangle$   
 259 is the vertically integrated vertical moisture advection. Since the long-term averaged  
 260  $\left\langle \frac{\partial q}{\partial t} \right\rangle$  is negligible, the anomalies of vertically integrated moisture budget equation can  
 261 be written as (Chou and Neelin 2004; Chou et al. 2006):

$$P' \approx ET' - \langle v \cdot \nabla q \rangle' - \left\langle \omega \frac{\partial q}{\partial p} \right\rangle', \quad (5)$$

262 where the apostrophe ' represents the differences between control simulation and  
 263 deforestation experimental simulation. The changes in vertically integrated vertical  
 264 moisture advection can be further divided into two components:

$$- \left\langle \omega \frac{\partial q}{\partial p} \right\rangle' \approx - \left\langle \bar{\omega} \frac{\partial q'}{\partial p} \right\rangle - \left\langle \omega' \frac{\partial \bar{q}}{\partial p} \right\rangle, \quad (6)$$

265 where  $(-)$  denotes the value from the control simulation and  $( )'$  denotes the  
 266 difference between control simulation and deforestation experimental simulation. The  
 267 first term  $- \left\langle \bar{\omega} \frac{\partial q'}{\partial p} \right\rangle$  is referred to the thermodynamic component, which is associated  
 268 with changes in water vapor. The second term  $- \left\langle \omega' \frac{\partial \bar{q}}{\partial p} \right\rangle$  is the dynamic component,

269 which is associated with changes in convection. Notice that we use  $\text{W/m}^2$  as the unit  
270 for the terms in the water budget equations, including precipitation, which, divided by  
271 28, is  $\text{mm/day}$ .

272

273 *f. Moist static energy*

274 To understand mechanisms that induce changes in convection, we analyzed the  
275 vertical profile of moist static energy (MSE) anomalies. The MSE is the sum of sensible,  
276 latent, and potential energy and is defined as:

$$\text{MSE} = C_p T + Lq + gz, \quad (7)$$

277 where  $C_p$  is the specific heat of air at constant pressure and  $T$  is the temperature,  $L$   
278 is the latent heat of vaporization,  $q$  is the specific humidity,  $g$  is the acceleration of  
279 gravity, and  $z$  is height.

280

281 **3. Results**

282 *a. Validations of precipitation, near surface air temperature, and OLR*

283 Figures 2a-c show the annual mean precipitation from a 25-year CESM control  
284 simulation, a 20-year (1982-2001) RegCM4 control simulation, and four observational  
285 datasets (GPCC: 1982-2001; PREC/L: 1982-2001; GPCP: 1997-2012; APHRODITE:  
286 1982-2001). The pattern correlation coefficients ( $r$ ) and root mean square errors  
287 (RMSEs) are also displayed in the title of each panel; note that the  $r$  and RMSE are  
288 calculated at the CESM model spatial resolution ( $0.9^\circ \times 1.25^\circ$ ). The seasonal  
289 comparisons are provided in the supplementary information (Figure S2A for both the  
290 CESM and RegCM4). Figures 2a-c show that the simulated land precipitation over the  
291 MC region is reasonably close to the observations, though the values are overestimated  
292 over New Guinea in both the CESM and RegCM4. The CESM underestimates the

293 precipitation over central Borneo, while the RegCM4 does capture the local maximum  
294 values over central Borneo.

295 However, the pattern correlation coefficient between the precipitation in  
296 observation ensemble and in RegCM4 is actually lower (0.14) than that between  
297 observation ensemble and CESM (0.39). The RMSE of precipitation in RegCM4 is also  
298 higher when compared to the results in the CESM (12.27 mm/day for RegCM4 and  
299 3.15 mm/day for CESM). This may be partly due to the high spatial variation in the  
300 RegCM4 simulations and the dry biases exhibited by the model in the coastal regions  
301 of Borneo and eastern Sumatra. We also examine the spatial patterns of the four  
302 observational datasets for the annual and seasonal means (Figure S2B). In general,  
303 GPCC, GPCP, and PREC/L show similar spatial patterns (see Table S1, for annual  
304 means;  $r$  between GPCC and GPCP is 0.68;  $r$  between GPCC and PREC/L is 0.8;  $r$   
305 between GPCP and PREC/L is 0.74). APHRODITE shows different spatial patterns  
306 from the others due to its higher spatial resolution ( $0.25^\circ \times 0.25^\circ$ ), which leads to higher  
307 spatial maxima in precipitation. GPCP has a relatively lower spatial resolution ( $1^\circ \times$   
308  $1^\circ$ ); thus, its pattern correlation coefficients with the other three datasets are usually low  
309 (see Table S1, for the annual means,  $r$  between GPCP and GPCC is 0.68;  $r$  between  
310 GPCP and PREC/L is 0.74;  $r$  between GPCP and APHRODITE is 0.55).

311 The near surface air temperatures are reasonably well simulated in both models. In  
312 particular, the RegCM4 can capture a number of topographic effects very clearly in  
313 central Borneo and New Guinea (Figure 2d-f). Therefore, the simulated SAT in  
314 RegCM4 has a relatively higher pattern correlation coefficient and lower RMSE (0.78  
315 and  $1.6^\circ\text{C}$ ) than those in CESM (0.52 and  $2.2^\circ\text{C}$ ). In comparison to the observed OLR,  
316 the CESM not only captures the spatial pattern with high pattern correlation coefficients  
317 (0.74) but also produces a similar magnitude (Figure 2g-h). Note that the OLR is not  
318 available from the RegCM4 model at present so only the CESM result is shown. The

319 seasonal simulations (Figures S2C and S2D) have biases that are similar to those in the  
320 annual-mean simulations despite having different magnitudes and spatial patterns.

321

322 *b. Local hydroclimate response to MC deforestation*

323 To examine the local climate responses to the MC deforestation, we compared the  
324 deforestation run to the control run in CESM as well in RegCM4 on an annual mean  
325 basis. The local climate responses during different seasons usually have the same signs  
326 as that in the annual mean response (except for: the precipitable water in SON and DJF,  
327 cloud cover in CESM, and the net surface longwave radiation and sensible heat fluxes  
328 in RegCM4) despite having different magnitudes and spatial patterns. Therefore, we  
329 only show and discuss the annual mean changes in Figures 3 (from the CESM  
330 experiments) and 4 (from the RegCM4 experiments) and Table 1. The seasonal changes  
331 are provided in the supplementary information (Figures S3A-S3J and Tables S2 and  
332 S3).

333 The land surface temperatures in the deforestation run are warmer than the control  
334 run by about 1K (with p-value < 0.05) when averaged over the entire MC land in the  
335 CESM simulations (Figure 3a). To understand the temperature response to  
336 deforestation, we analyzed the changes in surface radiation and surface heat flux in  
337 Equation (1). For the non-radiative fluxes, we find an increase in the surface sensible  
338 heat flux (Figure 3b) and a significant decrease in the surface latent heat flux (Figure  
339 3c) over the deforested area of the MC in the deforestation run. It is clear from Figures  
340 3b and 3c that the decrease in the latent heat flux (-9.6 W/m<sup>2</sup>, with p-value < 0.05) is  
341 larger than the increase in the sensible heat flux (5.08 W/m<sup>2</sup>, with p-value < 0.05) in  
342 terms of absolute changes. Deforestation leads to lower evapotranspiration and reduced  
343 roughness which weakens the aerodynamic exchanges. These two effects result in a  
344 larger magnitude of latent heat flux reduction, and the latter can also reduce the

345 magnitude of the sensible heat flux increase. Note that the increase in surface latent  
346 heat flux in coastal regions is due to the larger near surface wind speeds (induced by  
347 the warmer land surface and reduced roughness) there after deforestation.

348 Furthermore, there are increases in mid (2.02%, with p-value < 0.05) and high  
349 (0.86%, with p-value < 0.05) level cloud cover but decreases in low level cloud cover  
350 (-1.02%, with p-value < 0.05) as revealed by the vertical changes in cloud cover over  
351 the MC land regions (Figure 3g-3i and Table 1). The decrease in low cloud cover is  
352 consistent with the more stable environment in the low atmosphere due to decreases in  
353 near surface water vapor after deforestation. The decreased low clouds also correspond  
354 to more incoming downward solar radiation but also less downward longwave radiation  
355 at the surface. The increased mid and high clouds are associated with less incoming  
356 downward solar radiation but more downward longwave radiation. Therefore, the  
357 changes in net cloud forcing at the land surface are minimal.

358 Regarding the surface radiation budget, the increase in surface albedo (1.38%, with  
359 p-value < 0.05) from the deforestation and the increase in total cloud cover (0.38%,  
360 with p-value < 0.05) would together reduce the net shortwave radiation at the surface  
361 (Figure 3d, -1.88 W/m<sup>2</sup>, with p-value < 0.05). As for the surface longwave radiative  
362 flux, we find an increase in the net longwave (Figure 3e, 3.8 W/m<sup>2</sup>, with p-value < 0.05).  
363 The enhanced net longwave may be a result of the increases in surface temperature. To  
364 compensate for the reduced surface flux, which was mainly due to a decrease in the  
365 latent heat flux, the upward longwave flux at the surface must increase (Figure 3f, 6.3  
366 W/m<sup>2</sup>, with p-value < 0.05), accompanied by a rise in surface temperature according to  
367 the Stefan-Boltzmann Law (Figure 3a). Our results on these local near surface  
368 responses are consistent with previous studies suggesting that the non-radiative  
369 processes usually have a stronger influence than radiative processes in determining the

370 deforestation impacts on surface temperature in the tropics (Davin and de Noblet-  
371 Ducoudré 2010; Malyshev et al. 2015).

372 The responses in the RegCM4 are in general similar to those in the CESM (except  
373 the net shortwave radiation), but with a higher spatial heterogeneity (Figure 4), which  
374 is expected because of the higher spatial resolution of the regional model. For example,  
375 changes in surface temperature are similar to those in the CESM, with an increase of  
376 approximately 1K on average for the MC land region, but the magnitude of the changes  
377 in the RegCM4 is larger in some regions (central Borneo and New Guinea coastal  
378 regions). A similar tendency can be found in the responses of outgoing longwave  
379 radiation at the surface (Figures 3f and 4f, and Table 1). The sensible heat flux response  
380 in the RegCM4 is heterogeneous (Figure 4b) and does not always increase as in the  
381 CESM. For example, the RegCM4 deforestation experiments show significant  
382 decreases in northern Borneo and eastern Sumatra. The sensible heat flux response  
383 averaged over the entire MC land regions is close to zero in the RegCM4. The responses  
384 in latent heat fluxes of the RegCM4 and CESM simulations are mostly similar  
385 (significant decreases after deforestation,  $-7.28 \text{ W/m}^2$ , with p-value  $< 0.05$ ), but there  
386 are increased latent heat fluxes in northern Sumatra and parts of northern Borneo in the  
387 RegCM4.

388 Moreover, the decrease in low cloud cover in the RegCM4 simulations is much  
389 larger (-4.8%, with p-value  $< 0.05$ ) than that in CESM so the total cloud cover also  
390 decreases in the RegCM4 (-0.78%, with p-value  $< 0.05$ ). The total cloud cover changes  
391 are different in the CESM and RegCM4. However, the tendency of changes in the  
392 vertical structure (increase in mid to high cloud and decrease in low clouds) is the same  
393 in CESM and RegCM4 (Figure 3, Figure 4, and Table 1). Because of the decrease in  
394 total cloud cover in the RegCM4, the net surface shortwave radiation flux increases

395 significantly ( $5.56 \text{ W/m}^2$ , with p-value  $< 0.05$ ), which is opposite to the results obtained  
396 with CESM.

397

398 *c. Precipitation response to MC deforestation in CESM*

399 We next examine the precipitation response to the MC deforestation by calculating  
400 the precipitation changes between the control run and the deforestation run (Figure 5a)  
401 in the CESM. The figure shows that simulated precipitation increases over the land and  
402 coastal areas of the MC. Over the deforested areas, the precipitation increased by about  
403  $16.5 \text{ W/m}^2$  (i.e.,  $0.6 \text{ mm/day}$ , with p-value  $< 0.05$ ), which was 6.6% of the mean  
404 precipitation in the control run. Our result differs from those of some previous studies  
405 that find precipitation decreases in response to deforestation in the MC (Mabuchi et al.  
406 2005a; Mabuchi et al. 2005b; Avissar and Werth 2005; Werth and Avissar 2005;  
407 Mabuchi 2011; and Kumagai et al. 2013).

408 Equation (5) indicates that the precipitation response to the MC deforestation is a  
409 combined result of the response from the surface evapotranspiration ( $ET'$ ), horizontal  
410 moisture advection ( $-(\nu \cdot \nabla q)'$ ), and vertical moisture advection ( $-\left(\omega \frac{\partial q}{\partial p}\right)'$ ). We show  
411 in Figures 5b-5d the changes in the three right-hand side terms in equation (5) between  
412 the control run and the deforestation run. The figure indicates that the horizontal  
413 moisture advection (Figure 5c) changes little after the deforestation, whereas the latent  
414 heat flux term (Figure 5b, same as Figure 3c but in different color scales), which  
415 represents the surface evapotranspiration effect, decreases after the deforestation.  
416 Neither terms can explain the precipitation increase in the deforestation run (Figure 5a),  
417 which can only be explained by the large increase in the vertical moisture advection  
418 term (Figure 5d with the MC's land average of  $25.5 \text{ W/m}^2$  and the difference is  
419 significant with p-value  $< 0.05$ ). Our results suggest that the local precipitation response

420 to deforestation in the MC region is not determined directly by changes in surface  
421 evapotranspiration but indirectly via the vertical advection of moisture.

422 Deforestation can affect the vertical moisture advection term by changing the  
423 amount of moisture ( $q$ ) or the intensity of the vertical velocity ( $\omega$ ). To further  
424 understand how the deforestation affects the vertical moisture advection, we divide this  
425 term into its dynamic ( $-\left\langle \omega' \frac{\partial \bar{q}}{\partial p} \right\rangle$ ) and thermodynamic components ( $-\left\langle \bar{\omega} \frac{\partial q'}{\partial p} \right\rangle$ ). We  
426 find that the MC deforestation affects the vertical advection term primarily through the  
427 dynamic component (Figure 5e) but not the thermodynamic component (Figure 5f).  
428 The considerable increase in the dynamic component of vertically integrated vertical  
429 moisture advection ( $\langle \omega' dq \rangle$ , 27.5 W/m<sup>2</sup>, with p-value <0.05) compensates for a  
430 decrease in the latent heat flux term (-9.6 W/m<sup>2</sup>, with p-value < 0.05) and is most  
431 responsible for the precipitation increase in the deforestation run (cf. Figure 5a and 5e).  
432 The results reveal that the dynamic component, which is related to the anomalous  
433 ascending motion, played a crucial role in the increase in local precipitation.

434

435 *d. Precipitation response to MC deforestation in RegCM4*

436 The precipitation changes and the corresponding vertically-integrated water budget  
437 in the RegCM4 simulations are also examined (Figure 6) and found to be consistent  
438 with the results found in the CESM simulations. The dynamic component of the  
439 vertically-integrated vertical moisture advection ( $\langle \omega' dq \rangle$  (38.9 W/m<sup>2</sup>, with p-value  
440 <0.05; Figure 6e) also plays a major role in the precipitation increase (36.4 W/m<sup>2</sup>, i.e.,  
441 1.3 mm/day, with p-value < 0.05). The horizontal moisture advection ( $-(\nu \cdot \nabla q)'$ )  
442 (Figure 6c) in the RegCM4 decreases in central Borneo and western Sumatra, which is  
443 not found in the CESM (Figure 5c). Moreover, similar to the local hydroclimate  
444 response, the responses to deforestation in the water budget terms (Figure 5c-f) have a

445 smoother spatial structure in the CESM simulations than in the RegCM4 simulations  
446 (Figure 6c-f).

447

448 *e. The dynamic effect of the MC deforestation*

449 In order to understand the mechanism that induces the precipitation changes, we  
450 examine the changes in the vertical profile of the dynamic component of the moisture  
451 advection term (i.e., the ascending motion changes weighted by specific humidity) over  
452 the land area of the MC between the control run and the deforestation run (Figure 7a  
453 for CESM and Figure 7b for RegCM4). The most obvious feature in the figure is that  
454 the ascending motion is intensified by the deforestation in both models, which is  
455 consistent with the increased precipitation mentioned earlier. The vertical profiles  
456 indicate that the largest increase in the ascending motion occurs around 850 hPa.

457 Next the relationships among the vertical moist static stability, convection, and  
458 precipitation are further explored in the theoretical framework of Neelin and Held  
459 (1987), in which they showed that an increase in the MSE in the lower to middle  
460 troposphere has a tendency to increase the precipitation. In the deforestation  
461 simulations, the land surface forcing is prescribed, which leads to higher surface  
462 temperatures and provides a thermodynamic source to trigger the instability in the  
463 atmosphere. The convection also leads to vertical mixing of the MSE. Thus, we  
464 examine the vertical profile of the differences in MSE between the control run and the  
465 deforestation run (Figure 7c for CESM and Figure 7d for RegCM4). The lapse rate of  
466 the MSE difference becomes more negative at approximately 850 hPa in CESM  
467 experiments (Figure 7c) and 950 hPa to 850 hPa as well as above 600 hPa in the  
468 RegCM4 experiments (Figure 7d) in the deforestation simulations than in the control  
469 simulations. The more unstable atmosphere is consistent with the vertical profile of  
470 anomalous ascending motions shown in Figures 7a and 7b.

471 We also examine the changes in the vertical profiles of the three terms of the MSE,  
472 namely the sensible, latent, and potential energy in Equation (7). As shown in Figures  
473 7c and 7d, deforestation induces two competing effects in the MSE at low levels (below  
474 850 hPa in the CESM experiments and below 800 hPa in the RegCM4 experiments).  
475 These two effects are related to the sensible energy ( $CpT'$ ) and the latent energy ( $Lq'$ )  
476 components of the MSE. Deforestation reduces the specific humidity near the surface  
477 resulting in a positive lapse rate of the latent energy in the lower atmosphere. This latent  
478 energy part of the MSE makes the lower atmosphere more stable. The lower atmosphere  
479 is less stable in the RegCM4 due to the reduced drying effects near the surface (Figure  
480 7d) compared to the CESM (Figure 7c), but such a stable tendency in the RegCM4 is  
481 up to 600 hPa (Figure 7d). At the same time, deforestation warms the surface and  
482 induces a negative lapse rate of the sensible energy. This sensible energy component of  
483 the MSE tends to make the lower atmosphere more unstable. However, above 800 hPa  
484 (700 hPa) for the CESM (RegCM4), the sensible energy component of the MSE  
485 becomes minor, and the MSE is dominated by the latent energy component, whose  
486 lapse rate becomes negative. It is this latent energy component of the MSE that tends  
487 to make the atmosphere more unstable and leads to the intensified ascending motion in  
488 the deforestation run. The long-term average MSE gradient between 850 hPa and 1000  
489 hPa (600 hPa and 1000 hPa) is approximately 0.7 kJ/kg (0.5 kJ/kg) for the CESM  
490 (RegCM4). Such relatively small gradients indicate strong MSE mixing by convection.  
491 Thus, we conclude that convection tends to release the instability generated by  
492 deforestation so there is a tendency to have more convection, and therefore,  
493 precipitation tends to be higher.

494 The latent energy term, which is the change of specific humidity induced by  
495 deforestation multiplied by the latent heat of vaporization, is shown in Figures 7c and  
496 7d. The profile indicates that the deforestation decreases the water vapor amount over

497 the land areas of the MC in the lower atmosphere (from the surface to 900 hPa) but  
498 increases the water vapor amount above 900 hPa. The moisture increase above the  
499 lower atmosphere is likely a result of the increased low-level moisture convergence  
500 induced by deforestation (Figure 8a for CESM and Figure 8b for RegCM4). We further  
501 look into the vertical cross-section (averaged between 10°S to 10°N) of water vapor  
502 and meridional wind over the MC region to study how they change from the control  
503 run to the deforestation run only in CESM. The result shown in Figure 8c confirms that  
504 the intensified ascending motion over the MC above 900 hPa is located right over the  
505 region where the moisture convergence from the Indian Ocean and the Pacific Ocean  
506 is enhanced. Such an anomalous circulation caused by deforestation over the MC may  
507 contribute to changes in the large-scale circulation and trigger remote climate impacts.

508

509 *f. Possible mechanisms for the different precipitation responses among models*

510 Figure 9 illustrates the key physical processes controlling the changes in  
511 precipitation due to deforestation. Potential processes that contribute to a reduction in  
512 rainfall are indicated by black arrows while mechanisms leading to an enhancement of  
513 precipitation are indicated by green arrows. As shown in Table 2, evapotranspiration  
514 and roughness decrease in the deforested region and are accompanied by increases in  
515 surface albedo. To strike a balance in the surface energy budget, the deduction in latent  
516 heat flux results in the increases in the other components (i.e., sensible heat flux and  
517 upward longwave radiation, which is also consistent with higher surface temperature).  
518 This repartition in the surface energy budget is also suggested in Takahashi et al. (2017)  
519 and Tölle et al. (2017). Our study shows that an increase in the surface sensible heat  
520 flux induces low-level heating and destabilization through its impact on the MSE. The  
521 moisture convergence and convection triggered by this bring moisture into the  
522 deforested region from the surrounding ocean. This moisture convergence further

523 destabilizes the atmosphere and results in an anomalously wet condition in the mid-to-  
524 high levels. The combined effect of increased surface temperatures and low-level  
525 moisture convergence further destabilizes the atmosphere, intensifying ascending  
526 motions over the MC. Therefore, the low-level moisture supply and strengthened  
527 ascending motions constitute a positive feedback and precipitation tends to increase in  
528 spite of the reduction in evapotranspiration.

529 This mechanism is consistent with the results found in the coupled ocean climate  
530 model simulations of Schneck and Mosbrugger (2011) and the non-coupled ocean  
531 simulations of Delire et al. (2001). Both of the studies show an enhancement in the  
532 convergent winds over the adjacent ocean which leads to an increase in latent heat flux  
533 and moisture transport and, as a result, precipitation increases in the deforested region.  
534 The wet anomaly is accompanied by an increase in cloud cover and reduction in net  
535 surface solar radiation, but the effect of cloud cover is rarely discussed in the previous  
536 studies. Nevertheless, it is implied in Takahashi et al. (2017) that the impact of cloud  
537 cover is not strong enough to lead to a reduction in energy received by the surface. They  
538 employed the Weather Research and Forecasting (WRF) Model to explore the change  
539 in the diurnal cycle of precipitation. However, Kumagai et al. (2013) argued that there  
540 is a higher ratio of recycling from terrestrial evapotranspiration into the precipitation  
541 over Borneo and that deforestation can decrease this recycling process, leading to less  
542 precipitation.

543 The competition between the processes controlling the precipitation impacts in  
544 Figure 9 provides a clue for the inconsistency between different studies. One of the  
545 components crucial in determining the tendency in precipitation is the change in net  
546 radiation. The balance in the energy budget is the factor leading to low-level warming  
547 and instability. Albedo and cloud cover play a critical role in this balance. Previous  
548 studies did not emphasize the impact of cloud cover, but several of them mentioned the

549 importance of surface albedo. In tropical regions, for example, the response to  
550 deforestation is manifested mostly through the changes in evapotranspiration, yielding  
551 warmer and drier conditions near the surface. If the albedo becomes much higher, the  
552 warming effect of the reduced latent heat flux can be compensated for the cooling  
553 associated with the reduction in absorbed solar radiation. As a consequence, outgoing  
554 longwave radiation and surface temperature may increase slightly, which implies a  
555 weaker warming effect compared to that in the absence of albedo changes. For example,  
556 the albedo reduction is larger in the experiment of converting forest to bare ground  
557 compared to that in the experiment of changing the maximum stomatal conductance  
558 (Takahashi et al., 2017). The available radiation energy decreases more in the bare  
559 ground experiment leading to smaller surface temperature increases, leading to a  
560 decreased convective available potential energy. In the end, the bare ground experiment  
561 with more substantial albedo decrease shows a decrease in precipitation, while the  
562 stomatal conductance experiment with no change in albedo shows an increase in  
563 precipitation.

564 Since the decrease in latent heat flux from the canopy is a direct effect of  
565 deforestation, an increase in moisture convergence from the surrounding regions is a  
566 key component leading to a wet anomaly (the black arrows in Figure 9). Two situations,  
567 which could contribute to each other, might lead to this condition: either there is not  
568 enough convergence to bring in the moisture, or the convergent anomaly exists without  
569 moisture provided.

570 If the local evaporation rate and the influx of moisture from the surrounding  
571 deforested area do not increase, the precipitation decreases in the deforested regions  
572 (Delire et al., 2001; Werth and Avissar, 2005; Takahashi et al., 2017). On the other  
573 hand, in the areas with anomalous low-level convergence but without moisture supply,  
574 a dry anomaly may be present, resulting in anomalous divergence and weaker

575 convection. Deforestation throughout the Amazonian basin instead of deforestation  
576 with “fish-bone” patterns could be one of the examples (Pitman et al., 1993; McGuffie  
577 et al., 1995; Sud et al., 1996; Zhang et al., 1996a; Lean and Rountree, 1997) that  
578 whether the environment near deforested areas can provide sufficient moisture from the  
579 canopy breezes. Katul et al. (2012) indicated that the rainfall rate increases or decreases  
580 depending on whether the vertical motion reaches the lifting condensation level (LCL).  
581 Deforestation on small scales is generally accompanied by moist canopy breezes,  
582 leading to a lower LCL. Hence, deforestation on small scales could lead to wet  
583 anomalies. Large-scale deforestation, on the other hand, which brings dry breezes to  
584 the adjacent deforested region, results in a dry anomaly. To summarize, the warming  
585 effect of deforestation initially induces low-level convergence. If the deforested area is  
586 surrounded by ocean (e.g., the MC) or forest (e.g., deforestation with “fish-bone”  
587 patterns in the Amazon), the moisture supply offsets the drying effect of deforestation  
588 (Schneck and Mosbrugger 2011; Takahashi et al. 2017).

589 Furthermore, if the roughness is reduced and the aerodynamic exchanges after  
590 deforestation are consequently lower, surface sensible and latent heat fluxes are reduced,  
591 resulting in an enhanced drying effect. In the studies of Mabuchi et al. (2005a and  
592 2005b), the roughness significantly decreases in the deforestation experiment  
593 (vegetation was changed into C4 grass). Consequently, the surface latent heat flux and  
594 sensible heat flux are reduced. The surface latent heat flux decreases by  $4.28 \text{ W/m}^2$  in  
595 Mabuchi et al. (2005a) and by  $3.59 \text{ W/m}^2$  in Mabuchi et al. (2005b), which is smaller  
596 in magnitude than the decrease in the present study (decreases by  $9.6 \text{ W/m}^2$  in CESM  
597 experiments and by  $7.28 \text{ W/m}^2$  in RegCM4 experiments). The surface sensible heat  
598 fluxes in Mabuchi et al. (2005a and 2005b) both decrease by  $8.79 \text{ W/m}^2$ . As shown in  
599 Figure 9, the reduced latent heat flux enhances the drying effect and the reduced  
600 sensible heat flux weakens the warming effect, both of which contribute to a decrease

601 in precipitation. In general, once the drying effect has suppressed the warming effect,  
602 precipitation can decrease in response to deforestation (grey double arrow in Figure 9).

603 In conclusion, precipitation variations after deforestation are the result of a  
604 competition between low-level heating and drying. The drying prevents low-level MSE  
605 from increasing and suppresses the increase in convection through the processes  
606 represented by the black arrows in Figure 9. The heating might lead to instability in the  
607 deforested region and lead to local convergence and convection. Once the moisture  
608 convergence compensates for the decrease in water vapor by deforestation, the  
609 convection and convergence would lead to a wet anomaly through the mechanisms  
610 represented by the green arrows in Figure 9. Another example supporting this theory is  
611 the green-less experiments of Mabuchi et al. (2005a and 2005b). These experiments  
612 show a reduction in latent heat flux but an increase in sensible heat flux, resulting in a  
613 wet anomaly over the MC.

614

#### 615 **4. Discussion**

616 The results from the CESM deforestation experiments presented here indicate that  
617 changes in vertical motion are key factors in determining the precipitation response to  
618 MC deforestation. To confirm that this result is not model dependent and is not sensitive  
619 to different physical parametrizations among models, such as the specific cumulus  
620 schemes, we also performed control and deforestation simulations using a regional  
621 climate model, the RegCM4. The RegCM4 experiments produce similar climate  
622 responses to MC deforestation as those in the CESM experiments. This result supports  
623 the robustness of the climate response to deforestation over the MC region, as there is  
624 a consistent pattern in both the regional and global models. Note that CESM uses CLM  
625 version 4 (Lawrence et al., 2011) and RegCM4 uses CLM version 4.5 (Oleson et al.,  
626 2013), and the major change in CLM4.5 compared to CLM4 is the biogeochemical

cycle component of the model. In particular, we note that the local responses in near surface temperatures (considered the most critical response in this study since it can induce the low level lateral convergence) to the deforestation are very similar. Specifically the RegCM4 deforestation run produces a reduction in surface latent heat flux of  $-7.2 \text{ W/m}^2$  (averaged for all land regions in MC) and increases in surface temperature of 1 K and precipitation of 1.3 mm/day, which are in line with the results from CESM:  $-9.6 \text{ W/m}^2$ , 1 K, 0.59 mm/day for the surface latent heat flux, surface temperature, and precipitation, respectively. In contrast to the agreement of the sign of changes in precipitation, the spatial distributions with a stronger response and statistical significance are different. The RegCM4 shows very strong enhancement along the high mountainous regions (e.g. western Sumatra Island, central of Borneo Island), which are not shown in the CESM responses due to its coarse resolution. However, the RegCM4 experiments still produce similar climate responses to MC deforestation as those in the CESM experiments.

It is interesting to note that the deforestation-induced increase in annual mean upward motions in the MC region is comparable to that associated with La Niña events. It is well-known that La Niña events can intensify the Walker circulation, increasing upward motions over the Western Pacific including the MC region (e.g., Chang et al. 2004; Qian et al. 2010). We demonstrate the comparable impact of MC deforestation and La Niña (including the 1983/1984, 1984/1985, 1988/1989, 1995/1996, 1998/1999, 1999/2000, 2000/2001, and 2007/2008 La Niña events) by analyzing changes in the 500 hPa omega in the ERA-I reanalysis dataset. We used ONI (Oceanic Niño Index, based on the 3-month-running mean of Niño 3.4 SST) as the threshold to identify La Niña events listed above. Figure 10 shows the anomalies in 500 hPa omega from the climatology averaged for all these La Niña from July of the La Niña developing year to June of the following year. The results show that the annual mean anomaly in 500 hPa

653 omega over the MC is approximate -0.0032 Pa/s (average for the whole MC domain,  
654 including ocean and land) during the La Niña years. The magnitude of the omega  
655 change is about the same order as that produced in the MC deforestation experiments,  
656 which is about -0.0016 Pa/s and -0.0024 Pa/s for the CESM and RegCM4, respectively.  
657 Therefore, MC deforestation impacts the strength of the Walker circulation to the same  
658 degree as La Niña events. This circulation change may enable the MC deforestation to  
659 impact the climate in the central-to-eastern Pacific. For example, the trade winds in the  
660 central equatorial Pacific may be enhanced because of the stronger Walker Circulation.

661 Finally, we review the local responses to the replacement of original rainforest with  
662 oil palm plantations. Oil palm plantations usually have lower and less dense canopies  
663 than forests. Thus, the surface temperature can increase from 1 to 6 °C accompanied by  
664 drier conditions (Hardwick et al. 2015; Drescher et al. 2016; Sabajo et al. 2017; Meijide  
665 et al. 2018; McAlpine et al. 2018). Replacing forests with C4 grass as in this study  
666 results in similar responses: higher surface temperature and drier conditions. However,  
667 Manoli et al. (2018) found that young oil palm trees can decrease ET (compared to  
668 forests) but older oil palm trees (age > 8–9 yrs) may transpire more than the forests do.  
669 Increased surface temperature is also observed in young oil palm plantations in both  
670 model and satellite data. However, the annual average surface temperature in mature  
671 oil palms is similar to that in the original forests (Dr. Yuanchao Fan, personal  
672 communication). Therefore, it will be critical to further explore the age-dependent  
673 responses in oil palm plantations using the CLM-Palm (Fan et al. 2015), including more  
674 precise PFT phenology and associated water and energy cycles for modeling oil palm  
675 in the MC.

676

677 **5. Conclusions**

678 In this study, we used both a global (CESM) and a regional climate model (RegCM4)  
679 to study the impacts of deforestation in the MC region. By comparing the experimental  
680 runs that replace forest with grassland with control runs, we find that deforestation tends  
681 to increase surface temperatures and precipitation over the land regions in the MC. The  
682 surface warming effect resulted from decreases in evapotranspiration and roughness  
683 that result in more low-level moisture that can lead to stronger convection and increased  
684 precipitation. This process can be analyzed via the vertically integrated moisture budget.  
685 This analysis revealed that the dynamic component (i.e., convection term) dominates.  
686 By analyzing the MSE profile, we find that the combined effect of higher mid-level  
687 specific humidities and temperatures rendered the atmosphere in the deforested areas  
688 more unstable than in the control run. The induced intensification of ascending motion  
689 leads to an increase in precipitation. The accompanying low-level moisture  
690 convergence from the surrounding warm oceans further increases specific humidities.  
691 Through these positive feedback processes, the MC deforestation results in greater  
692 precipitation over the deforested areas. Moreover, the similar results shown in both  
693 CESM and RegCM4 simulations enhance our confidence in using the CESM to explore  
694 the remote impacts of MC deforestation in future studies.

695 In this study, we presented a possible climate response to deforestation in the MC  
696 and explored several processes that may have resulted in inconsistency in the  
697 precipitation responses in previous studies. One of the major factors is the competition  
698 between the warming effect and the drying effect after deforestation in the simulations  
699 as shown in Figure 9. The different ways in which deforestation is achieved and/or the  
700 differing parameterizations used in the models, such as larger albedo and roughness  
701 changes, may strengthen the drying effect and further reduce the precipitation. For  
702 deforestation modeling studies in other regions, the differing environments adjacent to

703 the deforested areas (e.g., ocean, forest, or deforested continent) influence the low-level  
704 moisture supply and can result in different precipitation responses to deforestation.

705 The main focus of this study was to explore the interactions between land and  
706 atmosphere after deforestation in the MC, so we have not included the ocean responses  
707 in the current experiments. However, these responses can alter the local effects in more  
708 important ways and warrant further investigation in future work on this topic.  
709 Furthermore, an uncertainty in this study is that our deforestation simulations might  
710 overestimate the deforestation response in ocean evaporation as it uses prescribed  
711 climatological sea surface temperatures and sea ice concentrations. Delire et al. (2001)  
712 used the coupled Fast Ocean Atmosphere Model (Jacob 1997) and showed ocean  
713 upwelling induced by deforestation would cool the sea surface and reduce ocean  
714 evaporation. In addition, Schneck and Mosbrugger (2011) also suggested weakened  
715 upwelling of cold ocean water, leading to an increase in sea surface temperature as a  
716 consequence of deforestation. Ma et al. (2013) also demonstrated that a significant  
717 change in the hydroclimatological response to afforestation in China when including  
718 the ocean feedbacks. Coupled atmosphere-land-ocean model experiments could be used  
719 to address this issue in future studies.

720

721

722

723

724

725

726

## 727 **Acknowledgments**

728 We thank the three anonymous reviewers for their constructive comments. We benefit  
729 greatly from the fruitful discussion with Dr. Yuanchao Fan on the CLM-Palm issues.  
730 This study was supported by the grant of MOST 106-2111-M-002-010-MY4 to

731 National Taiwan University. GPCC and PREC/L precipitation data were provided by  
732 the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at  
733 <https://www.esrl.noaa.gov/psd/>. The GPCP combined precipitation data were  
734 developed and computed by the NASA Goddard Space Flight Center's Mesoscale  
735 Atmospheric Processes Laboratory as a contribution to the GEWEX Global  
736 Precipitation Climatology Project, and can be downloaded from  
737 <https://precip.gsfc.nasa.gov/>. APHRODITE data are downloaded from  
738 [https://climatedataguide.ucar.edu/climate-data/aphrodite-asian-precipitation-highly-  
resolved-observational-data-integration-towards](https://climatedataguide.ucar.edu/climate-data/aphrodite-asian-precipitation-highly-resolved-observational-data-integration-towards). Interpolated OLR data are provided  
739 by the NOAA/OAR/ESRL PSD, Boulder, Colorado, from their website at  
740 <https://www.esrl.noaa.gov/psd/>. The surface air temperature climatology used are CRU  
741 TS v4.01 data (<https://crudata.uea.ac.uk/cru/data/hrg/>) and UDel land-only SAT data  
742 ([https://www.esrl.noaa.gov/psd/data/gridded/data.UDel\\_AirT\\_Precip.html](https://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html)). The  
743 European Centre for Medium-Range Weather Forecasts (ECMWF) provided the ERA-  
744 Interim data (<http://apps.ecmwf.int/datasets/>). J.-Y. Yu was supported by NSF Grants  
745 AGS-1505145 and AGS-1833075.

747

748

749

750

751

752

753

754

755

756

757 **References**

758 Austin, K. G., A. Schwantes, Y. Gu, and P. S. Kasibhatla, 2018: What causes  
759 deforestation in Indonesia? *Environ. Res. Lett.*, **14**, 024007, doi:10.1088/1748-  
760 9326/aaf6db.

761 Avissar, R., and D. Werth, 2005: Global hydroclimatological teleconnections resulting  
762 from tropical deforestation. *J. Hydrometeor.*, **6**, 134–145, doi:10.1175/JHM406.1.

763 Carlson, K. M., and Coauthors, 2012: Committed carbon emissions, deforestation, and  
764 community land conversion from oil palm plantation expansion in West  
765 Kalimantan, Indonesia. *Proc. Natl. Acad. Sci. USA*, **109**, 7559–7564,  
766 doi:10.1073/pnas.1200452109.

767 Chang, C.-P., Z. Wang, J. Ju, and T. Li, 2004: On the Relationship between Western  
768 Maritime Continent Monsoon Rainfall and ENSO during Northern Winter. *J.  
769 Climate*, **17**, 665–672, doi:10.1175/1520-  
770 0442(2004)017<0665:OTRBWM>2.0.CO;2.

771 Chen, L., and P. A. Dirmeyer, 2016: Adapting observationally based metrics of  
772 biogeophysical feedbacks from land cover/land use change to climate modeling.  
773 *Environ. Res. Lett.*, **11**, 34002, doi:10.1088/1748-9326/11/3/034002.

774 Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A  
775 50-yr monthly analysis based on gauge observations. *J. Hydrometeor.*, **3**, 249–266,  
776 doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

777 Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional  
778 tropical precipitation. *J. Climate*, **17**, 2688–2701, doi:10.1175/1520-  
779 0442(2004)017<2688:MOGWIO>2.0.CO;2.

780 Chou, C., J. D. Neelin, J.-Y. Tu, and C.-T. Chen, 2006: Regional tropical precipitation  
781 change mechanisms in ECHAM4/OPYC3 under global warming. *J. Climate*, **19**,  
782 4207–4223, doi:10.1175/JCLI3858.1.

783 Chung, J. X., L. Juneng, F. Tangang, and A. F. Jamaluddin, 2018: Performances of  
784 BATS and CLM land-surface schemes in RegCM4 in simulating precipitation  
785 over CORDEX Southeast Asia domain. *Int. J. Climatol.*, **38**, 794–810,  
786 doi:10.1002/joc.5211.

787 Davin, E. L., and N. de Noblet-Ducoudré, 2010: Climatic impact of global-scale  
788 deforestation: Radiative versus nonradiative processes. *J. Climate*, **23**, 97–112,  
789 doi:10.1175/2009JCLI3102.1.

790 Delire, C., P. Behling, M. T. Coe, J. A. Foley, R. Jacob, J. Kutzbach, Z. Liu, and S.  
791 Vavrus, 2001: Simulated response of the atmosphere-ocean system to  
792 deforestation in the Indonesian Archipelago. *Geophys. Res. Lett.*, **28**, 2081–2084,  
793 doi:10.1029/2000GL011947.

794 Drescher J., and Coauthors, 2016: Ecological and socio-economic functions across  
795 tropical land use systems after rainforest conversion. *Phil. Trans. Roy. Soc. B*, **371**,  
796 20150275, doi:10.1098/rstb.2015.0275.

797 Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale  
798 models. *J. Atmos. Sci.*, **48**, 2313–2335, doi:10.1175/1520-  
799 0469(1991)048<2313:ASFRCC>2.0.CO;2.

800 Fan, Y., O. Rouspard, M. Bernoux, G. Le Maire, O. Panferov, M. M. Kotowska, and  
801 A. Knohl, 2015: A sub-canopy structure for simulating oil palm in the Community  
802 Land Model (CLM-Palm): phenology, allocation and yield. *Geosci. Model Dev.*,  
803 **8**, 3785–3800, doi:10.5194/gmd-8-3785-2015.

804 Findell, K. L., T. R. Knutson, and P. C. D. Milly, 2006: Weak simulated extratropical  
805 responses to complete tropical deforestation. *J. Climate*, **19**, 2835–2850,  
806 doi:10.1175/JCLI3737.1.

807 Gaveau, D. L. A., and Coauthors, 2014: Four decades of forest persistence, clearance  
808 and logging on Borneo. *PLoS ONE*, **9**, e101654,  
809 doi:10.1371/journal.pone.0101654.

810 Gaveau, D. L. A., J. Epting, O. Lyne, M. Linkie, I. Kumara, M. Kanninen, and N.  
811 Leader-Williams, 2009: Evaluating whether protected areas reduce tropical  
812 deforestation in Sumatra. *J. Biogeogr.*, **36**, 2165–2175, doi:10.1111/j.1365-  
813 2699.2009.02147.x.

814 Gaveau, D. L. A., D. Sheil, M. A. Salim, S. Arjasakusuma, M. Ancrenaz, P. Pacheco,  
815 and E. Meijaard, 2016: Rapid conversions and avoided deforestation: examining  
816 four decades of industrial plantation expansion in Borneo. *Sci. Rep.*, **6**, 32017,  
817 doi:10.1038/srep32017.

818 Giorgi, F., and Coauthors, 2012: RegCM4: model description and preliminary tests  
819 over multiple CORDEX domains. *Climate Res.*, **52**, 7–29, doi:10.3354/cr01018.

820 Hanif, M. F., M. R. Mustafa, A. M. Hashim, and K. W. Yusof, 2016: Deforestation  
821 alters rainfall: a myth or reality. *IOP Conf. Ser. Earth Environ. Sci.*, **37**, 12029,  
822 doi:10.1088/1755-1315/37/1/012029.

823 Hansen, M. C. C., and Coauthors, 2013: High-resolution global maps of 21st-century  
824 forest cover change. *Science*, **342**, 850–853, doi:10.1126/science.1244693.

825 Hardwick, S. R., R. Toumi, M. Pfeifer, E. C. Turner, R. Nilus, R. M. Ewers, 2015: The  
826 relationship between leaf area index and microclimate in tropical forest and oil  
827 palm plantation: Forest disturbance drives changes in microclimate. *Agric. Forest  
828 Meteor.*, **201**, 187–195, doi:10.1016/j.agrformet.2014.11.010.

829 Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution  
830 grids of monthly climatic observations—the CRU TS3.10 Dataset. *Int. J. Climatol.*,  
831 **34**, 623–642, doi:10.1002/joc.3711.

832 Henderson-Sellers, A., R. E. Dickinson, T. B. Durbidge, P. J. Kennedy, K. McGuffie,  
833 and A. J. Pitman, 1993: Tropical deforestation: Modeling local- to regional-scale  
834 climate change. *J. Geophys. Res. Atmos.*, **98**, 7289–7315, doi:10.1029/92JD02830.

835 Huffman, G. J., R. F. Adler, M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B.  
836 McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily  
837 resolution from multi-satellite observations. *J. Hydrometeor.*, **2**, 36–50,  
838 doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

839 Jacob, R. L., 1997: Low frequency variability in a simulated atmosphere ocean system,  
840 PhD Dissertation, University of Wisconsin, Madison.

841 Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. *J. Appl.  
842 Meteor.*, **43**, 170–181, doi:10.1175/1520-  
843 0450(2004)043<0170:TKCPAU>2.0.CO;2.

844 Katul, G. G., R. Oren, S. Manzoni, C. Higgins, and M. B. Parlange, 2012:  
845 Evapotranspiration: A process driving mass transport and energy exchange in the  
846 soil-plant-atmosphere-climate system. *Rev. Geophys.*, **50**, RG3002,  
847 doi:10.1029/2011RG000366.

848 Kumagai, T., H. Kanamori, and T. Yasunari, 2013: Deforestation-induced reduction in  
849 rainfall. *Hydrol. Process.*, **27**, 3811–3814, doi:10.1002/hyp.10060.

850 Kuo, H. L. (1974). Further studies of the parameterization of the influence of cumulus  
851 convection on large-scale flow. *J. Atmospheric Sci.*, **31**, 1232–1240,  
852 doi:10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.

853 Laux, P., P. N. Nguyen, J. Cullmann, T. P. Van, and H. Kunstmann, 2017: How many  
854 RCM ensemble members provide confidence in the impact of land-use land cover  
855 change? *Int. J. Climatol.*, **37**, 2080–2100, doi:10.1002/joc.4836.

856 Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional  
857 and structural advances in Version 4 of the Community Land Model. *J. Adv. Model.  
858 Earth Syst.*, **3**, M03001, doi:10.1029/2011MS000045.

859 Lawrence, D., and K. Vandecar, 2015: Effects of tropical deforestation on climate and  
860 agriculture. *Nat. Climate Change*, **5**, 27–36, doi:10.1038/nclimate2430.

861 Lean, J., and P. R. Rountree, 1997: Understanding the sensitivity of a GCM simulation  
862 of Amazonian deforestation to the specification of vegetation and soil  
863 characteristics. *J. Climate*, **10**, 1216–1235, doi:10.1175/1520-  
864 0442(1997)010<1216:UTSOAG>2.0.CO;2.

865 Lejeune, Q., E. L. Davin, B. P. Guillod, and S. I. Seneviratne, 2015: Influence of  
866 Amazonian deforestation on the future evolution of regional surface fluxes,  
867 circulation, surface temperature and precipitation. *Climate Dyn.*, **44**, 2769–2786,  
868 doi:10.1007/s00382-014-2203-8.

869 Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing  
870 longwave radiation dataset. *Bull. Amer. Meteor. Soc.*, **77**, 1275–1277.

871 Ma, D., M. Notaro, Z. Liu, G. Chen, and Y. Liu, 2013: Simulated impacts of  
872 afforestation in East China monsoon region as modulated by ocean variability.  
873 *Climate Dyn.*, **41**, 2439–2450, doi:10.1007/s00382-012-1592-9.

874 Mabuchi, K., 2011: A numerical investigation of changes in energy and carbon cycle  
875 balances under vegetation transition due to deforestation in the Asian tropical  
876 region. *J. Meteor. Soc. Japan*, **89**, 47–65, doi:10.2151/jmsj.2011-104.

877 Mabuchi, K., Y. Sato, and H. Kida, 2005a: Climatic impact of vegetation change in the  
878 Asian tropical region. Part I: Case of the Northern Hemisphere summer. *J. Climate*,  
879 **18**, 410–428, doi:10.1175/JCLI-3273.1.

880 Mabuchi, K., Y. Sato, and H. Kida, 2005b: Climatic impact of vegetation change in the  
881 Asian tropical region. Part II: Case of the Northern Hemisphere winter and impact  
882 on the extratropical circulation. *J. Climate*, **18**, 429–446, doi:10.1175/JCLI-3274.1.

883 Mahmood, R., and Coauthors, 2014: Land cover changes and their biogeophysical  
884 effects on climate. *Int. J. Climatol.*, **34**, 929–953, doi:10.1002/joc.3736.

885 Maloney, B. K. (Ed.), 1998: Human activities and the tropical rainforest: past, present  
886 and possible future. Netherlands: Kluwer Academic Publishers.

887 Malyshev, S., E. Shevliakova, R. J. Stouffer, and S. W. Pacala, 2015: Contrasting local  
888 versus regional effects of land-use-change-induced heterogeneity on historical  
889 climate: Analysis with the GFDL Earth System Model. *J. Climate*, **28**, 5448–5469,  
890 doi:10.1175/JCLI-D-14-00586.1.

891 Manoli, G., A. Meijide, N. Huth, A. Knohl, Y. Kosugi, P. Burlando, J. Ghazoul, and S.  
892 Fatichi, 2018: Ecohydrological changes after tropical forest conversion to oil palm.  
893 *Environ. Res. Lett.*, **13**, 064035, doi:10.1088/1748-9326/aac54e.

894 Margono, B. A., P. V. Potapov, S. Turubanova, F. Stolle, and M. C. Hansen, 2014:  
895 Primary forest cover loss in Indonesia over 2000–2012. *Nat. Climate Chang.*, **4**,  
896 730–735, doi:10.1038/nclimate2277.

897 McAlpine, C. A., and Coauthors, 2018: Forest loss and Borneo’s climate. *Environ. Res.*  
898 *Lett.*, **13**, 044009, doi:10.1088/1748-9326/aaa4ff.

899 McGuffie, K., A. Henderson-Sellers, H. Zhang, T. B. Durbidge, and A. J. Pitman, 1995:  
900 Global climate sensitivity to tropical deforestation. *Glob. Planet. Change*, **10**, 97–  
901 128, doi:10.1016/0921-8181(94)00022-6.

902 Meijide, A., C. S. Badu, F. Moyano, N. Tiralla, D. Gunawan, and A. Knohl, 2018:  
903 Impact of forest conversion to oil palm and rubber plantations on microclimate  
904 and the role of the 2015 enso event. *Agric. Forest Meteorol.*, **252**, 208–19,  
905 doi:10.1016/j.agrformet.2018.01.013.

906 Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere  
907 Model (CAM 5.0). NCAR Tech. Note TN-486, 274 pp.

908 Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist  
909 static energy budget. *Mon. Wea. Rev.*, **115**, 3–12, doi:10.1175/1520-  
910 0493(1987)115<0003:MTCBOT>2.0.CO;2.

911 Negri, A. J., R. F. Adler, L. Xu, and J. Surratt, 2004: The impact of Amazonian  
912 deforestation on dry-season rainfall. *J. Climate*, **17**, 1306–1319,  
913 doi:10.1175/1520-0442(2004)017<1306:TIOADO>2.0.CO;2.

914 Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the  
915 Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257  
916 pp. [Available online at  
917 [http://www.cesm.ucar.edu/models/ccsm4.0/clm/CLM4\\_Tech\\_Note.pdf.\]](http://www.cesm.ucar.edu/models/ccsm4.0/clm/CLM4_Tech_Note.pdf.)

918 Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the  
919 Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420  
920 pp., doi:10.5065/D6RR1W7M.

921 Pielke, R. A., J. Adegoke, A. Beltraán-Przekurat, C. A. Hiemstra, J. Lin, U. S. Nair, D.  
922 Niyogi, and T. E. Nobis, 2007: An overview of regional land-use and land-cover  
923 impacts on rainfall. *Tellus B Chem. Phys. Meteor.*, **59**, 587–601,  
924 doi:10.1111/j.1600-0889.2007.00251.x.

925 Pitman, A. J., T. B. Durbidge, A. Henderson-Sellers, and K. McGuffie, 1993: Assessing  
926 climate model sensitivity to prescribed deforested landscapes. *Int. J. Climatol.*, **13**,  
927 879–898, doi:10.1002/joc.3370130806.

928 Polcher, J., and K. Laval, 1994: The impact of African and Amazonian deforestation  
929 on tropical climate. *J. Hydrol.*, **155**, 389–405, doi:10.1016/0022-1694(94)90179-  
930 1.

931 Qian, J.-H., A. W. Robertson, and V. Moron, 2010: Interactions among ENSO, the  
932 Monsoon, and Diurnal Cycle in Rainfall Variability over Java, Indonesia. *J. Atmos.*  
933 *Sci.*, **67**, 3509–3524, doi:10.1175/2010JAS3348.1.

934 Radersma, S. and N. de Ridder, 1996: Computed evapotranspiration of annual and  
935 perennial crops at different temporal and spatial scales using published parameter  
936 values. *Agr. Water Manage.*, **31**, 17–34, doi:10.1016/0378-3774(95)01235-4.

937 Ramos da Silva, R., D. Werth, and R. Avissar, 2008: Regional impacts of future land-  
938 cover changes on the Amazon basin wet-season climate. *J. Climate*, **21**, 1153–  
939 1170, doi:10.1175/2007JCLI1304.1.

940 Roy, S. B., 2009: Mesoscale vegetation-atmosphere feedbacks in Amazonia. *J.*  
941 *Geophys. Res.*, **114**, D20111, doi:10.1029/2009JD012001.

942 Sabajo, C. R., G. le Maire, T. June, A. Meijide, O. Roupsard, and A. Knohl, 2017:  
943 Expansion of oil palm and other cash crops causes an increase of the land surface  
944 temperature in the Jambi province in Indonesia. *Biogeosciences*, **14**, 4619–4635,  
945 doi:10.5194/bg-14-4619-2017.

946 Sage, R. F., D. A. Wedin, and M. Li, 1999: The biogeography of C4 photosynthesis:  
947 patterns and controlling factors. *C4 plant biology*, 313-373.

948 Schneck, R., and V. Mosbrugger, 2011: Simulated climate effects of Southeast Asian  
949 deforestation: Regional processes and teleconnection mechanisms. *J. Geophys.*  
950 *Res.*, **116**, D11116, doi:10.1029/2010JD015450.

951 Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese,  
952 2011: GPCC full data reanalysis version 6.0 at 0.5: Monthly land-surface  
953 precipitation from rain-gauges built on GTS-based and historic data,  
954 doi:10.5676/DWD\_GPCC.FD\_M\_V6\_050.

955 Snyder, P. K., 2010: The influence of tropical deforestation on the Northern  
956 Hemisphere climate by atmospheric teleconnections. *Earth Interact.*, **14**, 1–34,  
957 doi:10.1175/2010EI280.1.

958 Snyman, H. A., W. L. J. van Rensburg, and W. D. Venter, 1997: Transpiration and  
959 water-use efficiency in response to water stress in *Themeda triandra* and  
960 *Eragrostis lehmanniana*. *S. Afr. J. Bot.*, **63**, 55–59, doi:10.1016/S0254-  
961 6299(15)30693-1.

962 Spracklen, D. V., and L. Garcia-Carreras, 2015: The impact of Amazonian  
963 deforestation on Amazon basin rainfall. *Geophys. Res. Lett.*, **42**, 9546–9552,  
964 doi:10.1002/2015GL066063.

965 Sud, Y. C., W. K.-M. Lau, G. K. Walker, J.-H. Kim, G. E. Liston, and P. J. Sellers,  
966 1996: Biogeophysical consequences of a tropical deforestation scenario: A GCM

967 simulation study. *J. Climate*, **9**, 3225–3247, doi:10.1175/1520-  
968 0442(1996)009<3225:BCOATD>2.0.CO;2.

969 Takahashi, A., T. Kumagai, H. Kanamori, H. Fujinami, T. Hiyama, and M. Hara, 2017:  
970 Impact of tropical deforestation and forest degradation on precipitation over  
971 Borneo island. *J. Hydrometeor.*, **18**, 2907–2922, doi:10.1175/JHM-D-17-0008.1.

972 Tan, P.-H., C. Chou, and J.-Y. Tu, 2008: Mechanisms of global warming impacts on  
973 robustness of tropical precipitation asymmetry. *J. Climate*, **21**, 5585–5602,  
974 doi:10.1175/2008JCLI2154.1.

975 Tiedtke, M., 1996: An extension of cloud-radiation parameterization in the ECMWF  
976 model: The representation of subgrid-scale variations of optical depth. *Mon. Wea.  
977 Rev.*, **124**, 745–750, doi:10.1175/1520-0493(1996)124<0745:AEOCR>2.0.CO;2.

978 Tölle, M. H., S. Engler, and H.-J. Panitz, 2017: Impact of abrupt land cover changes by  
979 tropical deforestation on Southeast Asian climate and agriculture. *J. Climate*, **30**,  
980 2587–2600, doi:10.1175/JCLI-D-16-0131.1.

981 van der Molen, M. K., A. J. Dolman, M. J. Waterloo, and L. A. Bruijnzeel, 2006:  
982 Climate is affected more by maritime than by continental land use change: A  
983 multiple scale analysis. *Global Planet. Change*, **54**, 128–149,  
984 doi:10.1016/j.gloplacha.2006.05.005.

985 Voldoire, A., and J. F. Royer, 2004: Tropical deforestation and climate variability.  
986 *Climate Dyn.*, **22**, 857–874, doi:10.1007/s00382-004-0423-z.

987 Wang, J., and Coauthors, 2009: Impact of deforestation in the Amazon basin on cloud  
988 climatology. *Proc. Natl. Acad. Sci. USA*, **106**, 3670–3674,  
989 doi:10.1073/pnas.0810156106.

990 Wang, L., and K. K. W. Cheung, 2017: Potential impact of reforestation programmes  
991 and uncertainties in land cover effects over the loess plateau: a regional climate  
992 modeling study. *Climate Change*, **144**, 475–490, doi:10.1007/s10584-016-1848-1.

993 Werth, D., and R. Avissar, 2005: The local and global effects of Southeast Asian  
994 deforestation. *Geophys. Res. Lett.*, **32**, L20702, doi:10.1029/2005GL022970.

995 Willmott, C. J., and K. Matsuura, 2001: Terrestrial Air Temperature and Precipitation:  
996 Monthly and Annual Time Series (1950 - 1999). [Available online at  
997 [http://climate.geog.udel.edu/~climate/html\\_pages/README.ghcn\\_ts2.html](http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html).].

998 Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012:  
999 APHRODITE: Constructing a long-term daily gridded precipitation dataset for  
1000 Asia based on a dense network of rain gauges. *Bull. Amer. Meteor. Soc.*, **93**, 1401–  
1001 1415, doi:10.1175/BAMS-D-11-00122.1.

1002 Zeng, N., and J. D. Neelin, 1999: A land-atmosphere interaction theory for the tropical  
1003 deforestation problem. *J. Climate*, **12**, 857–872, doi:10.1175/1520-  
1004 0442(1999)012<0857:ALAITF>2.0.CO;2.

1005 Zhang, H., A. Henderson-Sellers, and K. McGuffie, 1996a: Impacts of tropical  
1006 deforestation. Part I: Process analysis of local climatic change. *J. Climate*, **9**,  
1007 1497–1517, doi:10.1175/1520-0442(1996)009<1497:IOTDPI>2.0.CO;2.

1008 Zhang, H., A. Henderson-Sellers, and K. McGuffie, 1996b: Impacts of tropical  
1009 deforestation. Part II: The role of large-scale dynamics. *J. Climate*, **9**, 2498–2521,  
1010 doi:10.1175/1520-0442(1996)009<2498:IOTDPI>2.0.CO;2.

1011 Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the  
1012 parameterization of cumulus convection in the Canadian Climate Centre general  
1013 circulation model. *Atmos.–Ocean*, **33**, 407–446,  
1014 doi:10.1080/07055900.1995.9649539.

1015 Zhang, X., Z. Xiong, X. Zhang, Y. Shi, J. Liu, Q. Shao, and X. Yan, 2016: Using multi-  
1016 model ensembles to improve the simulated effects of land use/cover change on  
1017 temperature: A case study over northeast China. *Climate Dyn.*, **46**, 765–778,  
1018 doi:10.1007/s00382-015-2611-4.

1019 **Table 1.** Effects of Maritime Continent deforestation in the CESM and RegCM4 at  
 1020 annual basis (DEF minus CTR) with bold values indicating statistically significant  
 1021 differences at  $p < 0.05$ . Percentage changes are also shown below each anomaly.  
 1022

| Variable                             | Units                  | ANN-CESM                     | ANN-RegCM4                   |
|--------------------------------------|------------------------|------------------------------|------------------------------|
| net surface shortwave radiation flux | W/m <sup>2</sup><br>%  | <b>-1.88</b><br><b>-1.36</b> | <b>5.56</b><br><b>13.57</b>  |
| net surface longwave radiation flux  | W/m <sup>2</sup><br>%  | <b>3.81</b><br><b>13.91</b>  | 0.07<br>0.03                 |
| surface sensible heat flux (H)       | W/m <sup>2</sup><br>%  | <b>5.08</b><br><b>41.50</b>  | 0.17<br>0.67                 |
| surface latent heat flux (LE)        | W/m <sup>2</sup><br>%  | <b>-9.60</b><br><b>-9.99</b> | <b>-7.28</b><br><b>-5.62</b> |
| surface temperature (Ts)             | °C<br>%                | <b>1.04</b><br><b>0.35</b>   | <b>1.07</b><br><b>0.36</b>   |
| precipitation                        | mm/day<br>%            | <b>0.59</b><br><b>6.64</b>   | <b>1.30</b><br><b>13.74</b>  |
|                                      | W/m <sup>2</sup><br>%  | <b>16.5</b><br><b>6.64</b>   | <b>36.4</b><br><b>13.74</b>  |
| precipitable water                   | kg/m <sup>2</sup><br>% | <b>0.23</b><br><b>0.49</b>   | <b>0.19</b><br><b>0.42</b>   |
| outgoing longwave radiation (OLR)    | W/m <sup>2</sup><br>%  | <b>-2.06</b><br><b>-0.97</b> | <b>-0.34</b><br><b>-0.13</b> |
| high-level cloud cover               | %                      | <b>0.86</b><br><b>1.22</b>   | <b>1.09</b><br><b>2.34</b>   |
| med-level cloud cover                | %                      | <b>2.02</b><br><b>4.46</b>   | <b>1.40</b><br><b>7.62</b>   |
| low cloud cover                      | %                      | <b>-1.02</b><br><b>-2.13</b> | <b>-3.79</b><br><b>-7.34</b> |
| total cloud cover                    | %                      | <b>0.38</b><br><b>0.45</b>   | <b>-0.78</b><br><b>-1.54</b> |
| upward longwave flux at the surface  | W/m <sup>2</sup><br>%  | <b>6.32</b><br><b>1.41</b>   | <b>5.31</b><br><b>12.72</b>  |
| surface albedo                       | %                      | <b>1.38</b><br><b>11.63</b>  | <b>5.52</b><br><b>48.90</b>  |

1023

**Table 2.** Comparisons of model experiments in the literature on Maritime Continent deforestation. “NA” indicates Not applicable.

| Reference                           | Model                                                 | Resolution                              | SST     | Atmosphere convection scheme                                 | Land type converting method                           |
|-------------------------------------|-------------------------------------------------------|-----------------------------------------|---------|--------------------------------------------------------------|-------------------------------------------------------|
| <b>Present study</b>                | CESM                                                  | 0.9°x1.25°                              | fixed   | Zhang-McFarlane (Zhang and McFarlane 1995)                   | to C4 grass                                           |
|                                     | RegCM4                                                | 50 km                                   | fixed   | over land is Emanuel (1991), over ocean is Tiedtke (1996)    | to C4 grass                                           |
| <b>Delire et al., 2001</b>          | Fast Ocean Atmosphere Model (FOAM)                    | atmosphere: 4.7°x7.5°                   | fixed   | NA                                                           | to tall/ medium grassland                             |
|                                     |                                                       | atmosphere: 4.7°x7.5°, ocean: 1.4°x2.8° | coupled | NA                                                           |                                                       |
| <b>Avissar and Werth, 2005</b>      | NASA-GISS Model II GCM                                | 4°x5°                                   | fixed   | NA                                                           | to mixture of shrubs and grassland                    |
| <b>Werth and Avissar, 2005</b>      | NASA-GISS Model II GCM                                | 5°x4°                                   | fixed   | NA                                                           | to mixture of shrubs and grassland (33%, 66%, 100%)   |
| <b>Mabuchi et al., 2005a</b>        | JMA’s GCM + BAIM                                      | 1.875°                                  | fixed   | convective precipitation calculated by the Kuo (1974) scheme | to C4 grass roughness significantly decreases (-3.53) |
| <b>Mabuchi et al., 2005b</b>        | JMA’s GCM + BAIM                                      | 1.875°                                  | fixed   | convective precipitation calculated by the Kuo (1974) scheme | to C4 grass roughness significantly decreases (-3.56) |
| <b>Mabuchi et al., 2011</b>         | JMA’s GCM + BAIM                                      | 1.875°                                  | fixed   | convective precipitation calculated by the Kuo (1974) scheme | to C4 grass/ bare soil                                |
| <b>Schneck and Mosbrugger, 2011</b> | COSMOS (ECHAM as atmosphere and MPIOM as ocean model) | atmosphere: 3.75°, ocean: 3°            | coupled | NA                                                           | to warm grass                                         |
| <b>Tölle et al., 2017</b>           | COSMO-CLM                                             | 0.125°                                  | NA      | Tiedtke                                                      | to grassland                                          |
| <b>Takahashi et al., 2017</b>       | WRF                                                   | d01: 17.5 km, d02: 3.5 km               | fixed   | Kain–Fritsch convective scheme (Kain 2014)                   | to bare ground (coastal, total)                       |
|                                     |                                                       |                                         |         |                                                              | change the maximum stomatal conductance               |

**Table 2.** (continued)

| Reference                               | Net surface radiation<br>(W/m <sup>2</sup> )               | S + LWin<br>(W/m <sup>2</sup> )                          | Latent heat flux<br>(W/m <sup>2</sup> )                             | Sensible heat<br>flux (W/m <sup>2</sup> ) | Surface temperature<br>(K)                                                  |
|-----------------------------------------|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|
| <b>Present study</b>                    | decrease                                                   | ~0                                                       | -9.6 (-9.99%)                                                       | +5.08 (+41.5%)                            | +1.04                                                                       |
|                                         | NA                                                         | NA                                                       | -8.78 (-6.75%)                                                      | +2.47 (+14.59%)                           | +0.81                                                                       |
| <b>Delire et al., 2001</b>              | decrease 8.8                                               | NA                                                       | -7.6                                                                | -1.2                                      | NA                                                                          |
|                                         | decrease 9.3                                               | NA                                                       | -16.1                                                               | +6.8                                      | warmer over land,<br>cooler over ocean                                      |
| <b>Avissar and Werth, 2005</b>          | NA                                                         | NA                                                       | NA                                                                  | NA                                        | NA                                                                          |
| <b>Werth and Avissar, 2005</b>          | NA                                                         | NA                                                       | NA                                                                  | NA                                        | NA                                                                          |
| <b>Mabuchi et al., 2005a</b>            | net radiation decreases                                    | radiation absorbed by the<br>soil surface increases      | -4.28                                                               | -8.79                                     | +0.44                                                                       |
| <b>Mabuchi et al., 2005b</b>            | net radiation decreases                                    | radiation absorbed by the<br>soil surface increases      | -3.59                                                               | -8.79                                     | +0.4                                                                        |
| <b>Mabuchi et al., 2011</b>             | net radiation decreases                                    | NA                                                       | increased transpiration                                             | decrease                                  | +0.5                                                                        |
| <b>Schneck and<br/>Mosbrugger, 2011</b> | -12 over the deforested grids/<br>-2 over the whole region | +9 over the deforested grids/<br>0 over the whole region | -28.15 over the<br>deforested grids/ -1.00<br>over the whole region | increase                                  | +0.95 over the<br>deforested grids/ +0.23<br>over the whole region          |
| <b>Tölle et al., 2017</b>               | decrease                                                   | NA                                                       | decrease                                                            | increase                                  | increase                                                                    |
| <b>Takahashi et al., 2017</b>           | NA                                                         | depressed available radiative<br>energy                  | decrease                                                            | increase (~0)                             | increase (the lower z <sub>0</sub><br>increased the surface<br>temperature) |
|                                         | NA                                                         | minimal change in available<br>energy                    | decrease                                                            | increase                                  | NA                                                                          |

**Table 2.** (continued)

| Reference                           | Precipitation (mm/day)                                                           | Omega                                                                              | Convection                                  | Low-level convergence anomaly       | Offset decrease in ET                      |
|-------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|--------------------------------------------|
| <b>Present study</b>                | +0.59 (+6.64%)                                                                   | ascending                                                                          | stronger                                    | convergence                         | yes                                        |
|                                     | +1.11 (+13.41%)                                                                  | ascending                                                                          | stronger                                    | convergence                         | yes                                        |
| <b>Delire et al., 2001</b>          | +0.27 (+4%)                                                                      | NA                                                                                 | stronger                                    | NA                                  | compensated by increased ocean evaporation |
|                                     | -0.55                                                                            | general decrease (10 to 15 %) in upward vertical velocity averaged from 9°N to 9°S | weaker                                      | divergence                          | NA                                         |
| <b>Avissar and Werth, 2005</b>      | decrease                                                                         | NA                                                                                 | NA                                          | NA                                  | NA                                         |
| <b>Werth and Avissar, 2005</b>      | decrease                                                                         | NA                                                                                 | NA                                          | ~0                                  | NA                                         |
| <b>Mabuchi et al., 2005a</b>        | -1.42 over part of deforested areas                                              | NA                                                                                 | NA                                          | divergence                          | NA                                         |
| <b>Mabuchi et al., 2005b</b>        | -1.38 over part of deforested areas                                              | NA                                                                                 | NA                                          | divergence                          | NA                                         |
| <b>Mabuchi et al., 2011</b>         | decrease                                                                         | NA                                                                                 | NA                                          | NA                                  | NA                                         |
| <b>Schneck and Mosbrugger, 2011</b> | -0.42 over the deforested grids/<br>+0.36 over the whole region                  | ascending (over the whole region)                                                  | stronger convection between 110°E and 150°E | convergence (over the whole region) | yes                                        |
| <b>Tölle et al., 2017</b>           | NDJFM mean rainfall decreases/<br>NDJFM and JJA maximum daily rainfall increases | NA                                                                                 | NA                                          | NA                                  | NA                                         |
| <b>Takahashi et al., 2017</b>       | decrease                                                                         | NA                                                                                 | weaker                                      | divergence                          | NA                                         |
|                                     | increase                                                                         | NA                                                                                 | stronger                                    | convergence                         | yes                                        |

## Figure captions

**Figure 1.** The geographic domain for the RegCM4 model simulations. The dashed line is the buffer zone of 8 grid points assigned to each lateral boundary.

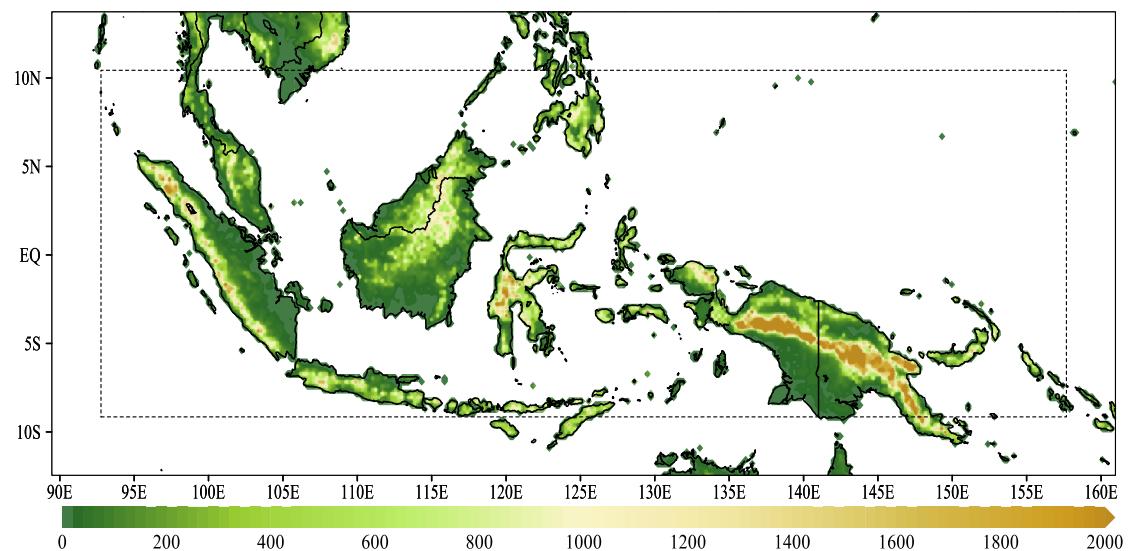
**Figure 2.** Annual mean precipitation (mm/day) from (a) the average of four observed precipitation datasets, (b) CESM control run (25-year average), and (c) RegCM4 (20-year average). Annual mean near surface temperature ( $^{\circ}$ C) from (d) the average of two observed datasets, (e) CESM control run (25-year average), and (f) RegCM4 (20-year average). Annual mean top of atmosphere outgoing longwave radiation ( $\text{W}/\text{m}^2$ ) from (g) the observation and (h) CESM control run (25-year average).

**Figure 3.** Difference between deforestation experimental run and control run (DEF minus CTR) in annual mean (a) surface temperature (K), (b) surface sensible heat flux ( $\text{W}/\text{m}^2$ ), (c) surface latent heat flux ( $\text{W}/\text{m}^2$ ), (d) net shortwave flux at surface ( $\text{W}/\text{m}^2$ ), (e) incoming longwave flux at surface ( $\text{W}/\text{m}^2$ ), (f) outgoing longwave flux at surface ( $\text{W}/\text{m}^2$ ), (g) vertically integrated low cloud cover, (h) vertically integrated mid cloud cover, (i) vertically integrated high cloud cover, and (j) top of atmosphere outgoing longwave flux ( $\text{W}/\text{m}^2$ ). Dotted areas indicate  $p < 0.05$ .

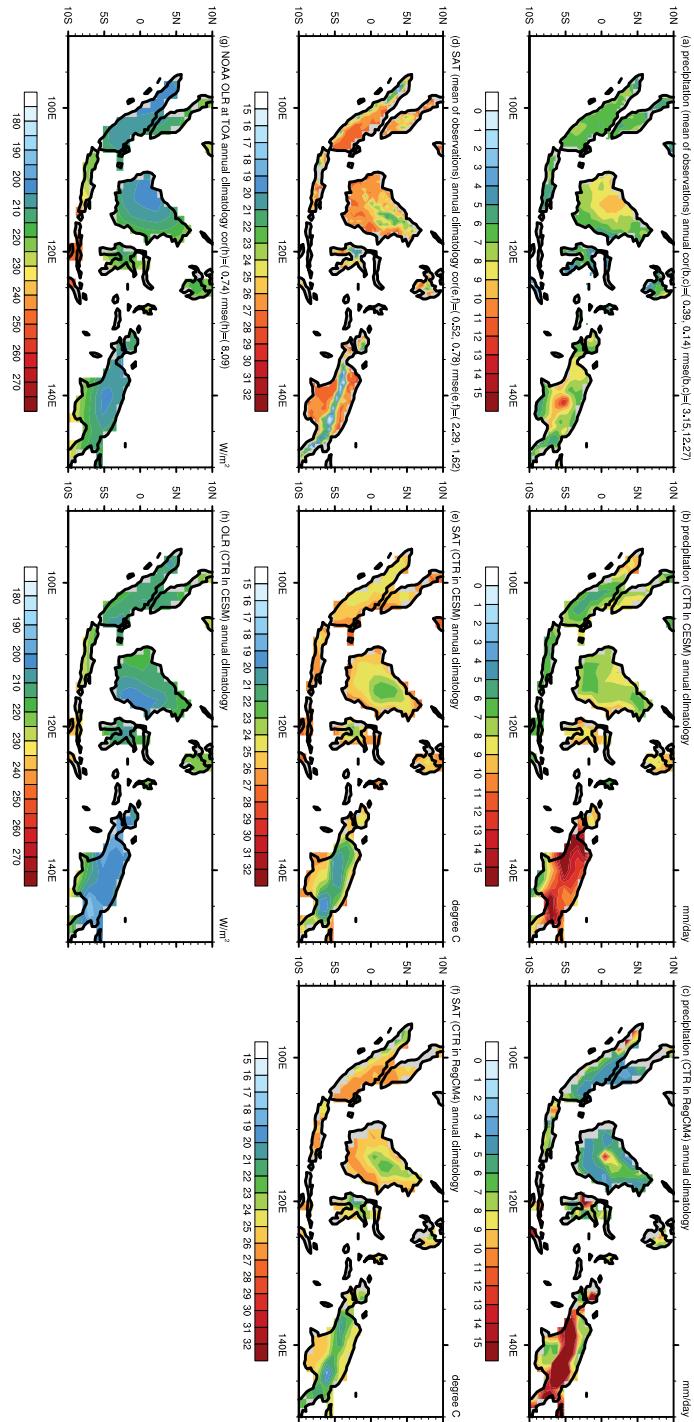
**Figure 4.** Same as Figure 3 but for the results in RegCM4. Note that the top of atmosphere outgoing longwave flux is not available in RegCM4.

**Figure 5.** Same as Figure 3 but for annual mean (a) precipitation, (b) surface latent heat flux, (c) vertically integrated horizontal moisture advection, (d) vertically integrated vertical moisture advection, and (e) dynamic component and (f) thermodynamic component of

vertically integrated vertical moisture advection. All the units are in  $\text{W/m}^2$ . Note that all the values in (f) are multiplied by 10.

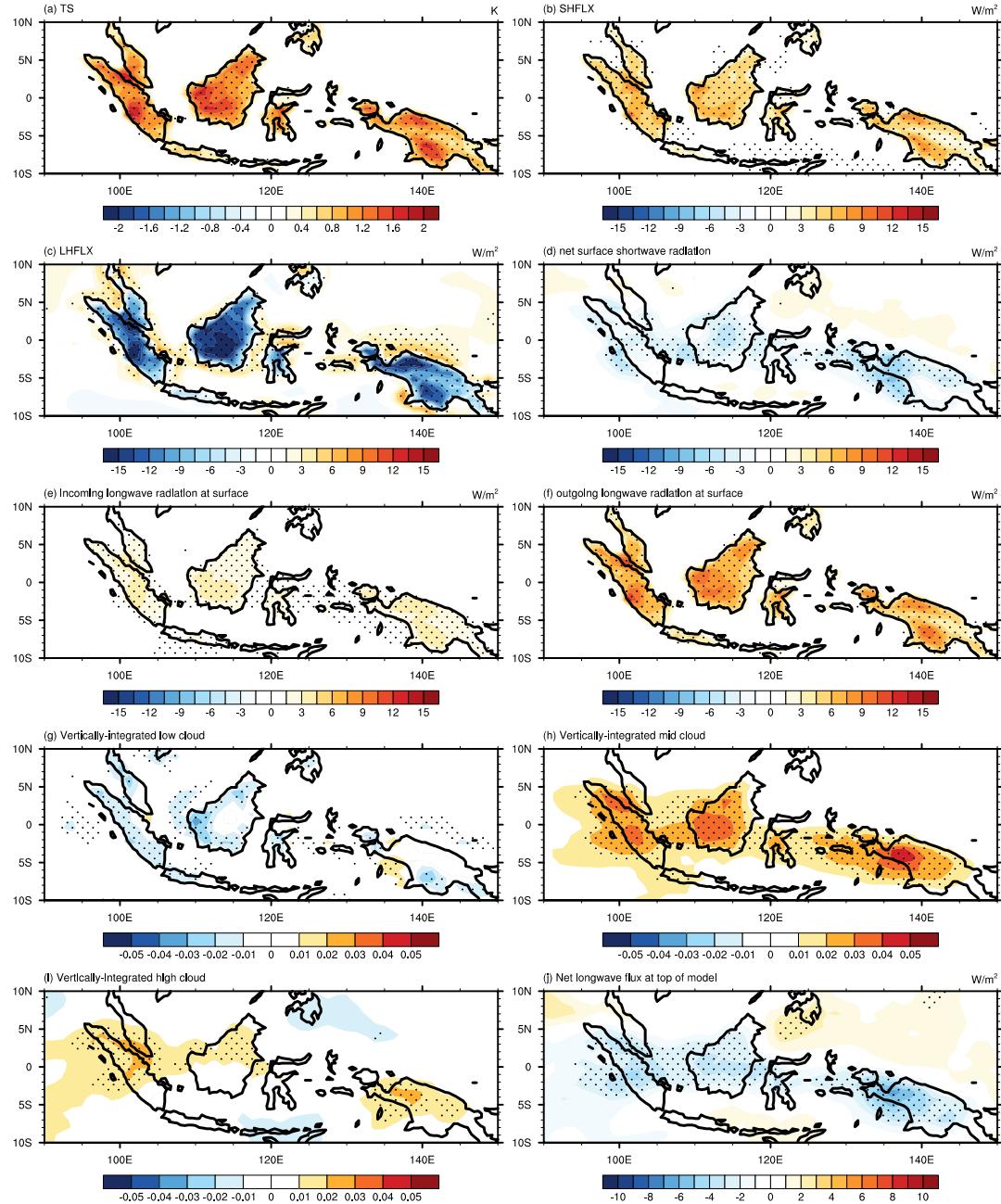

**Figure 6.** Same as Figure 5 but for the results in RegCM4. Note that all the values in (f) are multiplied by 10.

**Figure 7.** Profile of difference between deforestation simulation and control simulation (DEF minus CTR) in dynamic component of vertical moisture advection ( $\text{J/kg/s}$ ) over land for (a) CESM (b) RegCM4; in MSE ( $\text{kJ/kg}$ ) for (c) CESM (d) RegCM4. The shaded area represents the region within 95% confidence intervals for annual mean.

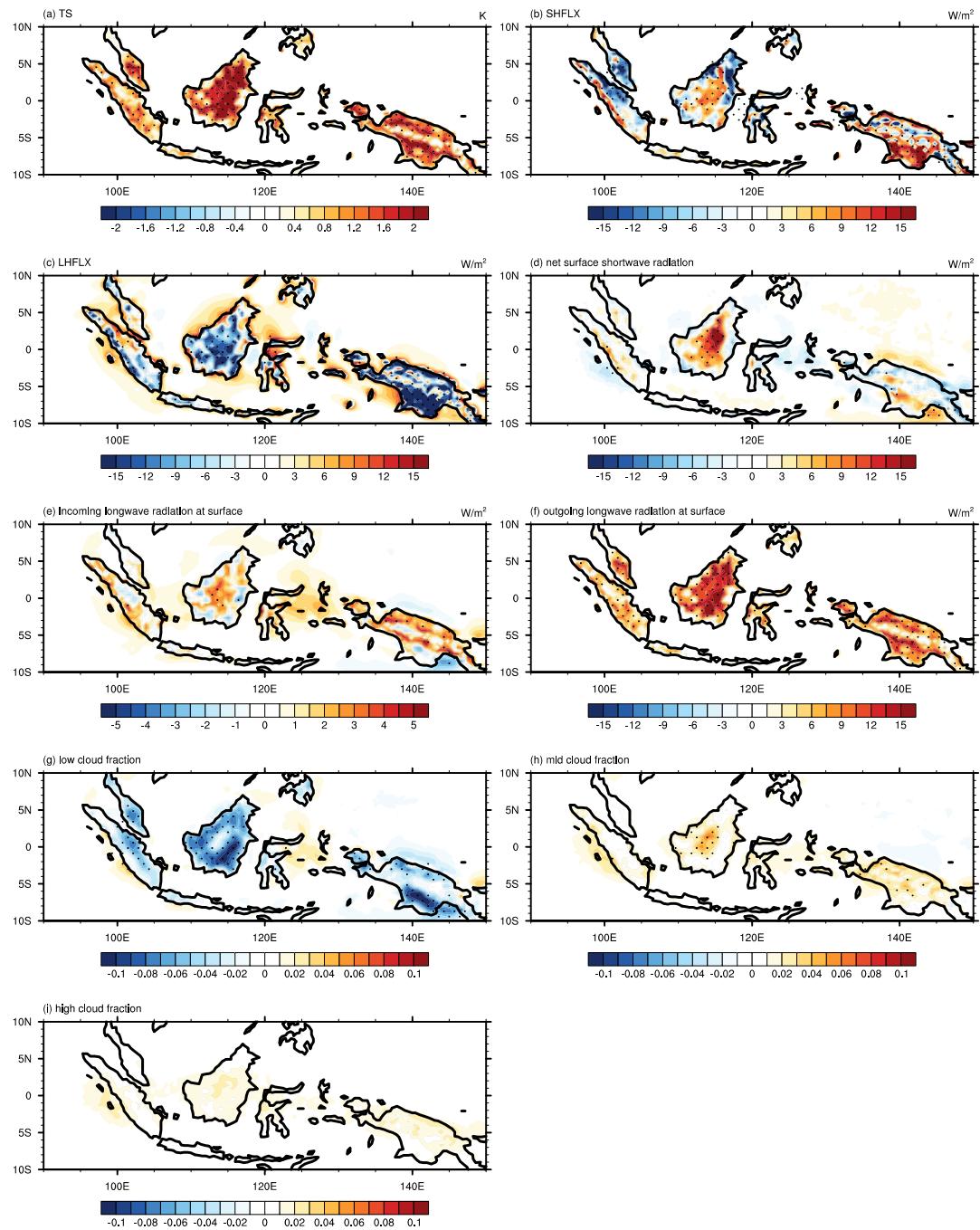

**Figure 8.** Annual mean low-level moisture convergence ( $\text{W/m}^2$ ) with 950 hPa wind ( $\text{m/s}$ ) anomalies (DEF minus CTR) for (a) CESM integrated from 950 to 850 hPa and (b) RegCM4 integrated from 925 to 850 hPa. (c) Cross-section along the equator for CESM annual mean water vapor (shaded,  $\text{g/kg}$ ) and wind (arrow,  $\text{m/s}$ ) anomalies (DEF minus CTR) averaged between  $10^\circ\text{S}$  and  $10^\circ\text{N}$  (the area of the blue box in the above map).

**Figure 9.** Schematic diagram of how deforestation can influence local precipitation. The detailed description of Equation (1) is in the methodology. The numbers and references within the orange box correspond to the references in Table 2. The green arrows indicate the results of the present study.

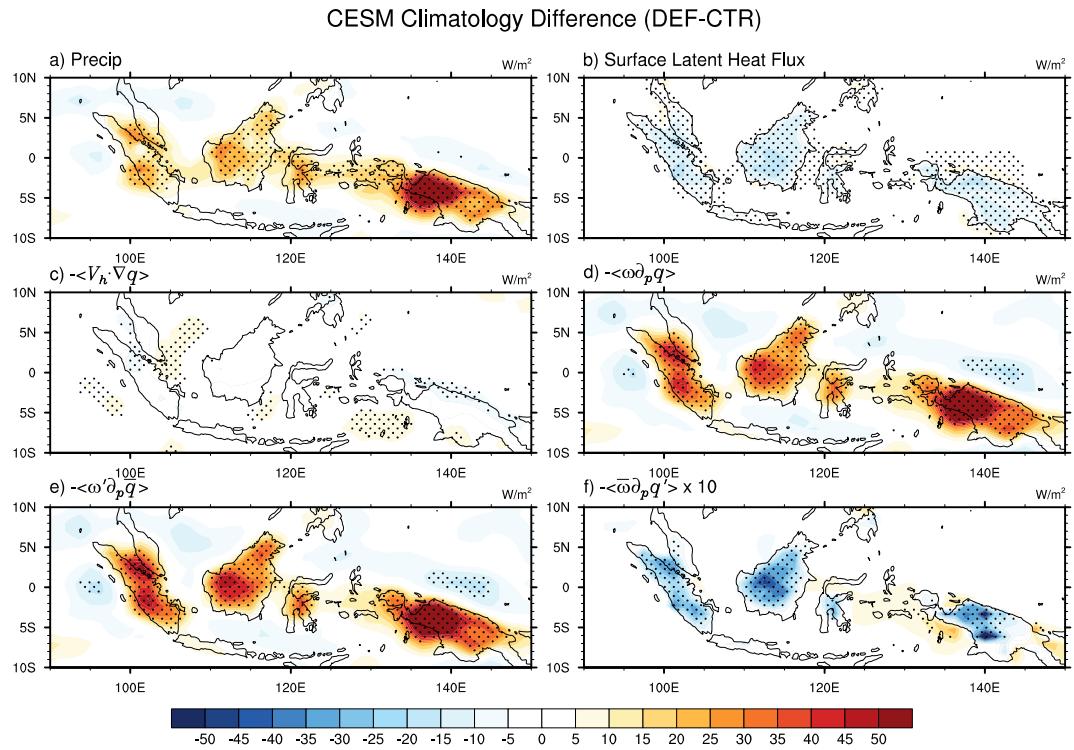
**Figure 10.** (a) 500 hPa omega difference between La Niña composite and climatology averaged between July of the developing year and June of the decaying year from ERA-I reanalysis dataset; 500 hPa omega difference between control and deforestation simulations (DEF minus CTR) for (b) CESM (c) RegCM4. All the units are in  $\text{Pa/s}$ .



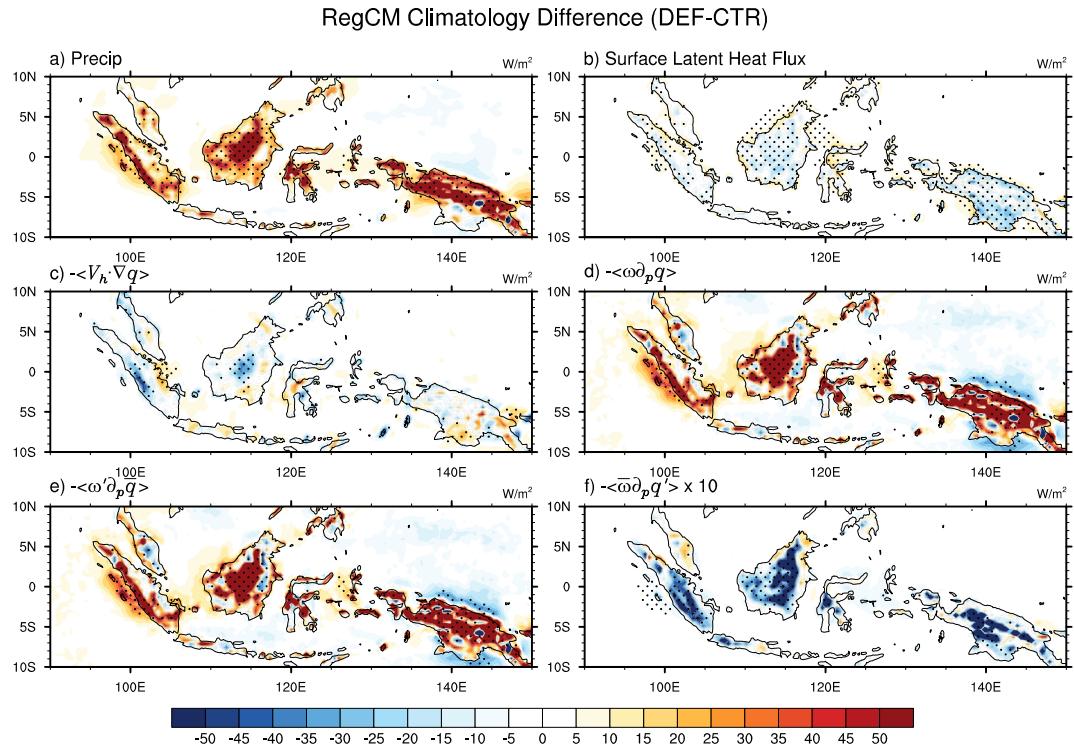

**Figure 1.** The geographic domain for the RegCM4 model simulations. The dashed line is the buffer zone of 8 grid points assigned to each lateral boundary.



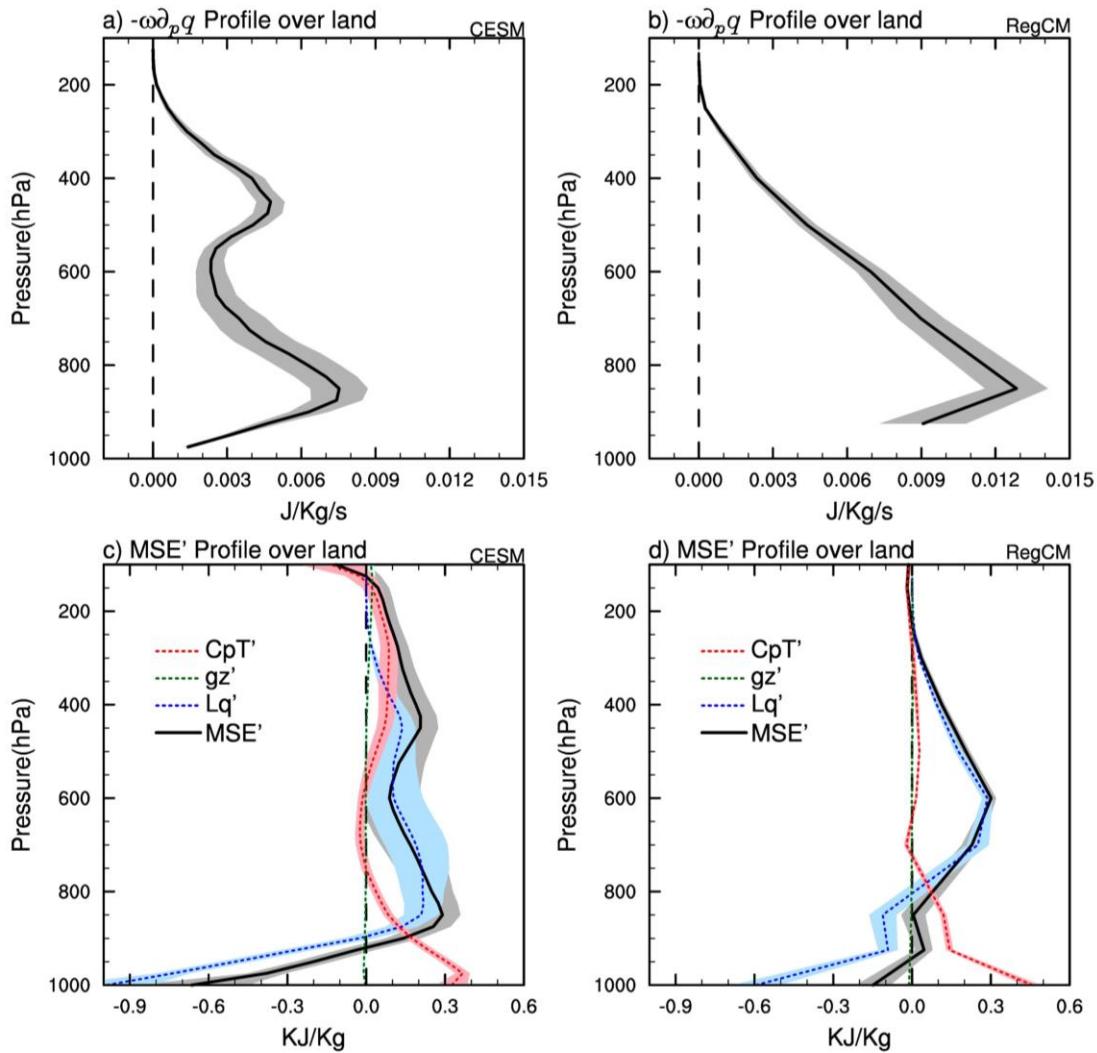

**Figure 2.** Annual mean precipitation (mm/day) from (a) the average of four observed precipitation datasets, (b) CESM control run (25-year average), and (c) RegCM4 (20-year average). Annual mean near surface temperature ( $^{\circ}$ C) from (d) the average of two observed datasets, (e) CESM control run (25-year average), and (f) RegCM4 (20-year average). Annual


mean top of atmosphere outgoing longwave radiation ( $\text{W/m}^2$ ) from (g) the observation and (h) CESM control run (25-year average).

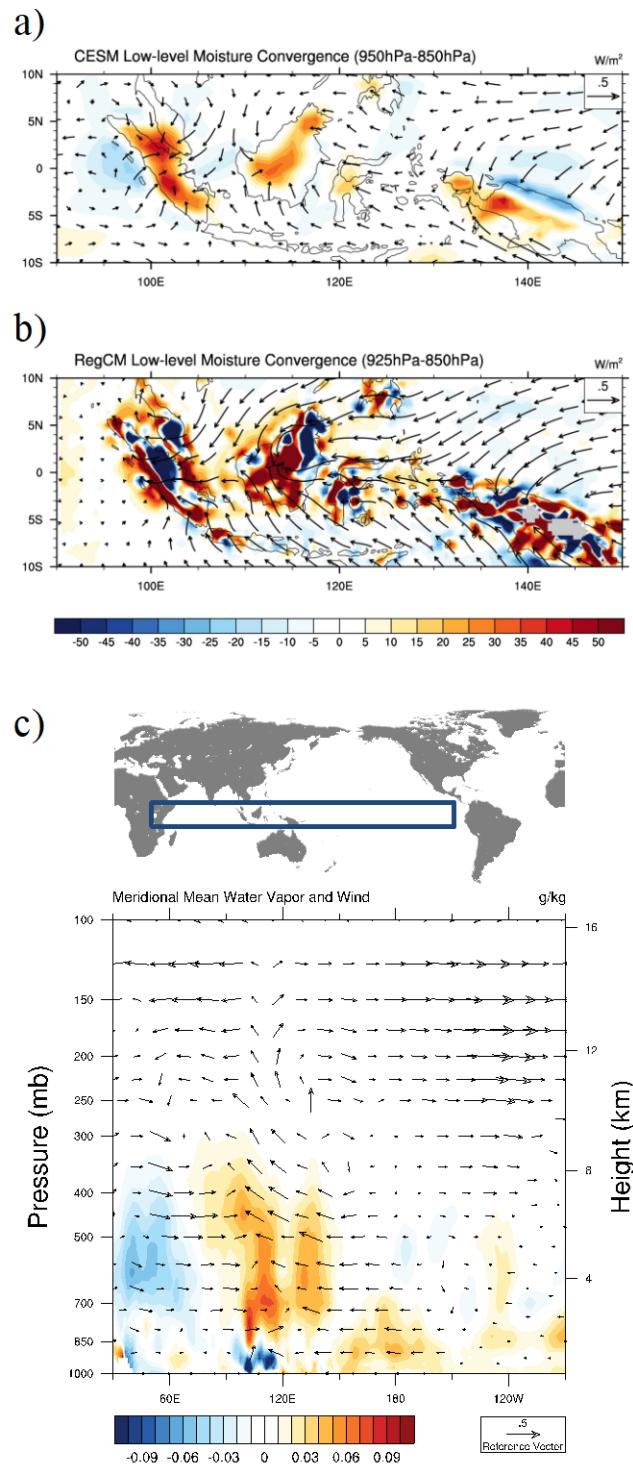



**Figure 3.** Difference between deforestation experimental run and control run (DEF minus CTR) in annual mean (a) surface temperature (K), (b) surface sensible heat flux ( $\text{W/m}^2$ ), (c) surface latent heat flux ( $\text{W/m}^2$ ), (d) net shortwave flux at surface ( $\text{W/m}^2$ ), (e) incoming longwave flux at surface ( $\text{W/m}^2$ ), (f) outgoing longwave flux at surface ( $\text{W/m}^2$ ), (g) vertically integrated low cloud cover, (h) vertically integrated mid cloud cover, (i) vertically integrated high cloud cover, and (j) top of atmosphere outgoing longwave flux ( $\text{W/m}^2$ ). Dotted areas indicate  $p < 0.05$ .

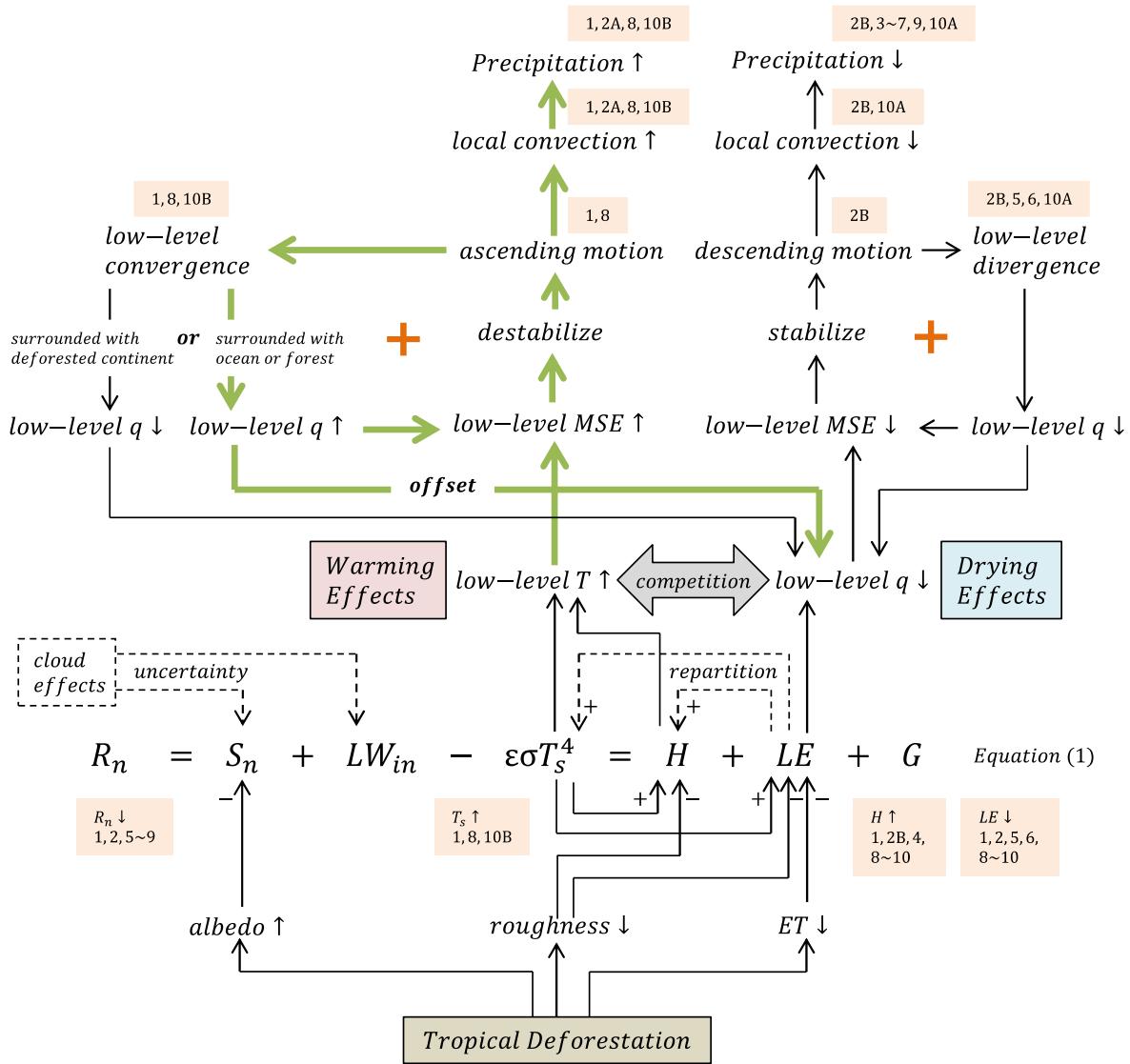



**Figure 4.** Same as Figure 3 but for the results in RegCM4. Note that the top of atmosphere outgoing longwave flux is not available in RegCM4.




**Figure 5.** Same as Figure 3 but for annual mean (a) precipitation, (b) surface latent heat flux, (c) vertically integrated horizontal moisture advection, (d) vertically integrated vertical moisture advection, and (e) dynamic component and (f) thermodynamic component of vertically integrated vertical moisture advection. All the units are in  $\text{W/m}^2$ . Note that all the values in (f) are multiplied by 10.




**Figure 6.** Same as Figure 5 but for the results in RegCM4. Note that all the values in (f) are multiplied by 10.



**Figure 7.** Profile of difference between deforestation simulation and control simulation (DEF minus CTR) in dynamic component of vertical moisture advection (J/kg/s) over land for (a) CESM (b) RegCM4; in MSE (kJ/kg) for (c) CESM (d) RegCM4. The shaded area represents the region within 95% confidence intervals for annual mean.




**Figure 8.** Annual mean low-level moisture convergence ( $\text{W/m}^2$ ) with 950 hPa wind (m/s) anomalies (DEF minus CTR) for (a) CESM integrated from 950 to 850 hPa and (b) RegCM4 integrated from 925 to 850 hPa. (c) Cross-section along the equator for CESM annual mean water vapor (shaded, g/kg) and wind (arrow, m/s) anomalies (DEF minus CTR) averaged between  $10^\circ\text{S}$  and  $10^\circ\text{N}$  (the area of the blue box in the above map).



1. Present study (A: CESM, B: RegCM4)
2. Delire et al., 2001 (A: fixed SST, B: coupled)
3. Avissar and Werth, 2005
4. Werth and Avissar, 2005
5. Mabuchi et al., 2005a
6. Mabuchi et al., 2005b
7. Mabuchi et al., 2011
8. Schneck and Mosbrugger, 2011 (precipitation increases in the whole region while decreases in parts of the deforested grids)
9. Tolle et al., 2017
10. Takahashi et al., 2017 (A: change to bare ground, B: change the maximum stomatal conductance)

**Figure 9.** Schematic diagram of how deforestation can influence local precipitation. The detailed description of Equation (1) is in the methodology. The numbers and references within the orange box correspond to the references in Table 2. The green arrows indicate the results of the present study.



**Figure 10.** (a) 500 hPa omega difference between La Niña composite and climatology averaged between July of the developing year and June of the decaying year from ERA-I reanalysis dataset; 500 hPa omega difference between control and deforestation simulations (DEF minus CTR) for (b) CESM (c) RegCM4. All the units are in Pa/s.