
Efficient Heap Data Management on Software
Managed Manycore Architectures

1st Jinn-Pean Lin
Computing, Informatics, and Decision Systems Engineering

Arizona State University
Tempe, CA, USA

jlin62@asu.edu

2nd Jing Lu
Computing, Informatics, and Decision Systems Engineering

Arizona State University
Tempe, CA, USA

jinglu1@asu.edu

3rd Jian Cai
Computing, Informatics, and Decision Systems Engineering

Arizona State University
Tempe, CA, USA

jcai19@asu.edu

4th Aviral Shrivastava
Computing, Informatics, and Decision Systems Engineering

Arizona State University
Tempe, CA, USA

Aviral.Shrivastava@asu.edu

Abstract—Software Managed Manycore (SMM) architectures
have been proposed as a solution for scaling the memory archi-
tecture. In a typical SMM architecture, Scratch Pad Memories
(SPM) are used instead of caches, and data must be explicitly
managed in software. While all code and data need to be
managed, heap management on SMMs is especially challenging
due to the highly dynamic nature of heap data access. Existing
techniques spend over 90% of execution time on heap data
management, which largely compromised the power efficiency of
SMM architectures. This paper presents compiler-based efficient
techniques that reduce heap management overhead. Experimen-
tal results on benchmarks from MiBench [1] executing on an
SMM processor modeled in Gem5 demonstrate that our approach
implemented in LLVM 3.8 can improve execution time by an
average of 80%, compared to the state-of-the-art [2].

I. INTRODUCTION

As we scale the number of cores in a processor, cache-

based memory hierarchy poses a serious limitation due to the

rapidly increased demand of area and power for coherence

maintenance. On one hand, caches consume significant amount

of silicon area and energy[3] and the cost of maintaining cache

coherence increases rapidly with the number of cores[4], [5],

[6], [7]. On the other hand, cache-based systems are hard to

use in real-time systems, since the execution time analysis for

cache-based systems is quite complex[8]. For these reasons,

some processor vendors have opted to remove caches and

use only ScratchPad Memories (SPMs), or allow the caches

to be configured as SPMs. An SPM is raw memory that

stores only data, without the complex circuitry in a cache to

implement automatic movement of data between the lower-

level and upper-level memories, replacement policies and

coherence. As a result, SPMs consume about 40% less area

and energy per access [9]. Processors with only SPMs have

been used for high performance computing [10], [11], gaming

and multimedia processing [12], digital signal processing [13],

and networking [14]. There are also academic researches to

design SPM-based processors for various purposes [15].

The trade-off of using SPMs instead of caches is that

data movements in and out of the local SPM on each core

must be managed explicitly by special instructions (i.e., DMA

instruction). For this reason, we refer to such an SPM-

only manycore architecture as Software Managed Manycore

(SMM) architecture. A lot of techniques have been proposed to

mange code [16], [2], stack data [17], [18], and heap data[2],

[19]. Among all these data types, heap data is particularly

difficult to manage, due to its dynamic nature. However, since

heap accesses may account for a significant fraction of all the

memory accesses that the application makes, it is extremely

important not only to manage heap data, but in an efficient

way. This paper only focuses on heap data management,

assuming code, global and stack data have been managed

efficiently.

The state-of-the-art heap data management [2] enables

managing heap data of any task on any SPM size by em-

ulating a 4-way set-associative software cache on an SPM.

However, many optimization can be conducted: i) adjusting
the granularity of management by tuning the software
cache configurations , and ii) reducing management over-
head by not performing management when not absolutely
needed. Experimental results on benchmarks from MiBenc

demonstrate that our approach implemented in LLVM 3.8 can

improve execution time by an average of 80%.

II. BACKGROUND AND STATE-OF-THE-ART

A lot of research has been done on heap data management

on scrachpad memories in software [20], [21], [22], [23],

[23], [24]. Those techniques, however, are orthogonal to our

research, since they are not applicable for SMM cores. In

a traditonal embedded cores, the scratchpad memory is in

addition to the cache hierarchy, which implies that programs

can be executed on the cores without using the scratchpad. On

SMM architectures, however, scratchpad memory is the only

269

2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID)

2380-6923/19/$31.00 ©2019 IEEE
DOI 10.1109/VLSID.2019.00065

Fig. 1. Performance overhead with the state-of-the-art heap management.

memory type on each of the cores, which implies that data

management in software is the only choice.

The state of the art heap management [2] emulates a 4-way

set-associative cache on an SPM. The SPM is partitioned into

a data region and a heap management table. The data region

stores the actual heap data in fixed-sized blocks, while the

management table stores a tags, a modified bit, and a valid

bit for each block in the data region, i.e. there is a one-

to-one mapping between each block in the data region and

each entry in the management table. Every 4 entries in the

management table forms a set, with a victim index for round-

robin replacement policy.

The g2l function implemented in the state of the art [2]

takes a main memory address as input, and checks if the

given address is in heap. The input address is immediately

returned if it is not in heap region. Otherwise, the set index

of the input main memory address is calculated. A sequential

search is done to compare the tag of the input address with

the tags saved in the entries of the corresponding set in the

management table. If a match happens and the status of the

matching entry is valid, a hit happens. Otherwise, if a miss

happens, the enclosing data block of the input address will be

copied from the main memory into the SPM.

Although the state of the art [2] correctly manages the heap

data of an application, it incurs high performance overhead.

Figure 1 shows its management overhead on some typical

embedded applications. It is important to note that the heap

management technique not only significantly increases the ex-

ecution time of applications, but also inflicts high overhead on

the benchmarks without any heap accesses, Adpcm Decode,

Adpcm Encode, SHA, and String Search. The high

overhead is caused by two main reasons:

i) Too many calls of heap management function g2l. g2l is

called before each memory address (including those are not to

heap) to filter non-heap accesses at runtime, which introduces

not only overhead at every memory access, but also branch

operations, and potentially more memory operations.

ii) High instruction overhead due to the complexity of g2l.
This is because the state of the art implements g2l in a set

associative manner. The function has to sequentially search all

the entries in the set at every heap access. It also complicates

the calculation of the set index, and the translation of a main

memory address to the corresponding local SPM address. The

set index of the input main memory address is calculated with

Equation (1), where mem addr is the input main memory

address, block size is the size of a data block, and set num

Fig. 2. The previous approach inserts g2l before every memory access, while
ours tries to identify heap accesses statically and skip unnecessary g2ls.

is the number of sets. The SPM address is then calculated

with Equation (2), where spm base is the start address of the

data region, set assoc is the set associativity (4 in this case),

and entry index is the index of the entry in the set specified

by set index. The complexity of the calculations translates

to significant instruction overhead.

set index = ((mem addr >> log(block size))∧
(mem addr >> (log(block size) + 1)))&(set num− 1)(1)

spm addr = (set index ∗ set assoc+ entry index) ∗ block size+

spm base+mem addr%block size(2)

III. OVERVIEW OF OUR APPROACH

To greatly reduce the overhead of heap management on

SMM architectures in the state-of-the-art, a series of optimiza-

tions are proposed:

i) statically detecting heap accesses. This optimization

identifies heap access at compile-time and eliminates heap

management function g2l when the memory is definitely not

a heap accesses, and significantly reduces the number of

unnecessary management calls at runtime. It also eliminates

the runtime checking within the management function, if the

memory access is determined to be a heap data access.

ii) simplifying management framework. A direct-mapped

cache on SPM is implemented, where it is no longer required

to sequentially go through different entries and search for

the requested data block for each heap access. In addition, it

simplifies the calculation of set index and the SPM address

in the management functions. Therefore, this optimization

can effectively reduce the number of instructions in each

management function.

iii) inline and combine management calls. Inserted g2l
functions are inlined and common management instructions

are executed before all management calls. This optimization

is particularly beneficial, when management functions are

called within loop nests, as the common operations are hoisted

outside of the loops.

iv) adjusting block size. All the aforementioned optimizations

are generic, and thus are useful for all applications. How-

ever, in embedded systems, where profiling information can

be useful, heap data management can be further optimized.

Depending on the type of cache misses an application suffers

from, the block can be statically adjusted to avoid these misses.

Given the size and set associativity of a software cache,

adjusting block size will change the mapping between main

memory locations and SPM memory locations.

270

IV. DETAILS OF OUR APPROACH

A. Statically Detecting Heap Accesses

This optimization identifies heap accesses at compile-time,

so that the management function g2l can be avoided at memory

accesses that are definitely not to heap. Figure 2 illustrates

the effect of this optimization. The original program defines

a structure, which consists of two integer pointers a and b. It

then creates a global variable s as an instance of the structure,

and assigns s->a with an heap object created by a call to

the malloc function. The program then points s->b to the

fourth integer element starting from the address in s->a. Later

s->b is used to access the heap object. The program also

defines a pointer p that refers to a stack variable. Even though

only s->a and s->b points to heap data in this program,

the previous heap management technique [2] will insert a g2l
call at every memory access unnecessarily as in Figure 2(b),

including memory accesses via p and s (not s->a or s->b),

which are to stack and global data respectively. On the other

hand, with static detection heap accesses, we only insert g2l
before the memory instructions via these two pointers.

To find out heap accesses, we first identify all the the heap

pointers. Algorithm 1 explains the method we use to identify

heap pointers, which includes both the pointers that directly

points to heap objects created by memory allocators (e.g.,

malloc or calloc), and their aliases. The analysis starts at

getHeapPtr. In this procedure, the analysis first executes

getAlloc procedure, taking main function as a input (line

2). The getAlloc procedure identifies all the invocation of

memory allocators in the input function F, and records the

pointers that are used to store the created heap objects (line

8 and 9). If F calls any other functions F’, getAlloc
recursively accesses and identifies the memory allocations in

F’ (line 11 and 12). Once all the heap pointers that store

the heap objects created by memory allocations are identified,

the analysis continues to identify all the possible alias of these

heap pointers by executing the getAlias procedure on main
function (line 4). The getAlias procedure goes through

each instruction in the input function F, and recognizes any

instruction that performs pointer arithmetic on a heap pointer

and assigns the result to another pointer. The destination

pointer of such an instruction is identified as an alias of the

heap pointer. Similar to the getAlloc procedure, in case

F calls any other function F’, the getAlias procedure

recursively calls itself on F’ to identify aliases created in

F’. Since each iteration of the getAlias procedure may

recognize new aliases, this procedure is repeated until no new

aliases can be recognize (line 3 to 5).

Once all heap pointers are recognized, we can identify heap

accesses and insert g2l function as follow. All the memory

access (i.e. loads ans stores) via any of the heap pointers

identified in Algorithm 1 are considered as potential heap

accesses. A g2l function is inserted right before the memory

instructions to first translate the memory address to an SPM

address. The SPM address is then used to substitute for the

original memory address in the instructions.

Algorithm 1 Identify heap pointers

1: function GETHEAPPTR

2: getAlloc(main)
3: repeat
4: getAlias(main)
5: until cannot find new aliases
6: function GETALLOC(Function F)
7: for each instruction inst in F do
8: if inst is a call to any memory allocator then
9: Record destination pointer P as a heap pointer

10: else
11: if inst is a call to any user function F’ then
12: getAlloc(F’)

13: function GETALIAS(Function F)
14: for each instruction inst in F do
15: if inst is an assignment statement with one operand P be a heap pointer then
16: Record destination pointer P’ as an alias of P
17: else
18: if inst is a call to any user function F’ then
19: getAlias(F’)

Fig. 3. When a memory access may be to heap but is not for certain, we
check at runtime before managing the access.

There are cases when the compiler cannot determine

whether a pointer refers to heap data. In Figure 3(a), the

pointer c can either refer to heap data or stack data, depending

on the outcome of the call to rand function, which returns a

random number. A new management function called g2l_rc
that checks at runtime and sees if the memory address is in

heap, similar to the previous work, is introduced. When an

access is assured to heap, the g2l function is called, which does

not have any runtime checking. If an access may be to heap,

g2l rc is called instead. Otherwise, if an access is determined

definitely not to heap, no heap management function will be

invoked. Figure 3(b) shows the transformed code with heap

management function. g2l is called before accessing the data

referred by the pointer b, because it is in heap. g2l rc is

invoked before accessing c, because it may refer to heap data,

but are not for sure. No heap management function is added

when accessing a due to its access to stack data.

B. Simplifying Management Framework

Whenever a memory access happens, a software-cache

based approach has to first calculate the set index of the

memory address. The software cache will then sequentially

access the entries in the set and compare the tag of the target

address with the tags in the entries. Once the data block that

contains the target address is located, either already in the

SPM in a hit, or first copied from the main memory in a miss,

the final SPM address is generated and used to replace the

original memory address in the memory access.

Since this process happens within each management func-

tion call, it is performance critical to speed up this process.

With a direct-mapped cache on software, this process can

271

Fig. 4. (a) The steps of a management in the previous work (b) The steps of
a management function in our approach The steps of a management function
in the previous work and our approach.

be noticeably simplified to execute much less instructions at

runtime, compared to a set-associative cache. Figure 4(a) and

Figure 4(b) show two examples using the previous approach

and our approach respectively. The edge in both figures specify

dependence between two steps. The previous approach as in

Figure 4(a) calculate set index with Equation (1). The software

cache then searches the corresponding set for the requested

data block. Only after the data block is found (either after a

hit or after a miss), can then the SPM address be generated

Equation (2). Notice this equations required both the index of

the set and the index of the entry in the set, which explains

the dependence of the calculation of the SPM address on the

sequential searching in Figure 4(a). On the other hand, our

approach in Figure 4(b) simplifies the calculation of the set in-

dex of a memory address into set index = global addr >>
log(block size)%set num. Since each set has only one entry,

sequential searching is not necessary. The software can simply

go ahead and calculate the final SPM address as spm addr =
spm base + mem addr%(set num ∗ block size). In addi-

tion, the calculation of SPM does not depend on any previous

steps. Elimination of such dependence may allow the compiler

to have more parallelism when generating and scheduling the

machine instructions for the management functions.

C. Inlining and Combining Management Calls

Once g2l function is inserted after identifying heap accesses

statically, we can reduce the management overhead by inlining

the management functions, which enables further optimization.

In Section II we explained the previous approach divided

SPM into two memory regions for heap management table

and data region. Our approach makes similar usage of SPM

space. Every g2l thus has to load the start address of the

heap management table and data region at the beginning of its

execution, before executing any other call-specific instructions.

Therefore, we can move these common instructions outside of

the g2l function and execute it once before any g2l calls, so

that all the subsequent g2l calls can reuse the results, similar

to common subexpression elimination.

Figure 5 illustrates the idea. Figure 5(a) shows the original

code. Figure 5(b) is the transformed code before inlining.

Each g2l call first executes the common instructions redun-

dantly, and then execute specific instructions for that call. We

represent the common instructions and specific instructions

in a g2l with function calls g2l common and g2l specific
respective in the example, but they are plain instructions in the

actual implementation. In Figure 5(c), we inline the g2l calls,

move and execute the common instructions at the beginning of

Fig. 5. Inlining management calls and move common operations to the
beginning of the caller function.

the caller function. After the optimization, only call-specific

instructions are executed at where a g2l was called. While this

optimization should definitely improve performance, its im-

portance is maximized when g2l was originally called within

loop nests, as this example shows —instead of repeatedly and

excessively executing the common steps in a loop nest, moving

these common instructions to be outside can significantly

reduce such overhead.

In addition, at compile time, the modified compiler goes

through every function in the program, inlines g2l calls with

call-specific instructions, and moves the common instructions

to the beginning of the function.

V. ADJUSTING BLOCK SIZE FOR EMBEDDED

APPLICATIONS

When the capacity and associativity of a cache are given,

the size of block size decides the number of sets. Different

choices of block size may end up causing drastically different

performance. We can therefore analyze the access pattern

and find a block size that can achieve good performance.

When a program is susceptible to cache thrashing, we can

decreases block size to lower the chance of such undesirable

situation. Cache thrashing refers to excessive conflict cache

misses that happen when multiple main memory locations

competing for the same cache blocks. It may happen when

more than two heap objects with aggregate types (e.g., arrays)

are accessed within the same loop. On the other hand, we can

increasing block size to improve spatial locality under certain

circumstances.

We proposed a heuristic that goes through all innermost

loops in a program and adjusts block size based on profiling.

Whenever it identifies more than two heap objects are accessed

within the loop, it reduces the block size to increase the

number of sets for avoiding cache thrashing; otherwise, it

increases the block size to increase spatial locality. This

analysis is statically done. Therefore, this optimization is the

most effective for embedded applications using representative

input.

VI. EXPERIMENTS

A. Experimental Setup

Both the state-of-the-art [2] and our technique are imple-

mented as intermediate representation (IR) passes on LLVM

272

TABLE I
MAXIMUM HEAP USAGE OF BENCHMARKS

Benchmark Heap Size (KB) Benchmark Heap Size (KB)

Adpcm Decode 0 SHA 0
Adpcm Encode 0 String Search 0
Dijkstra 6.43 Susan Corner 92.16
FFT 32 Susan Edge 42.81
iFFT 32 Susan Smoothing 17.35
Patricia 766 Typeset 32

Fig. 6. The execution time of our approach normalized to the previous work
with optimizations incrementally added.

3.8 [25] respectively. The same benchmarks are compiled with

different heap management techniques, and the executable

code is ran on Gem5 [26]. The block size in the software

cache is set to 64 bytes in both techniques by default, and is

only varied in the fourth optimization to reduce cache misses.

SMM architecture is emulated on Gem5, by modifying the

linker script and reserving part of the memory address space

as the SPM. A DMA instruction is implemented to copy

data between the SPM and the main memory. DMA cost is

modeled as a constant startup time and the time for actual

data movement. The startup time is set to 291 cycles, and the

rate for transferring data is set to 0.24 cycles/byte. The CPU

frequency is set to 3.2 GHz. All these parameters are based

on the IBM Cell processor [27].

The proposed technique is evaluated on Mibench benchmark

suite [1]. Table I lists the maximum usage of heap data in the

benchmarks, i.e., the maximum sum of sizes of heap objects

at any moment. The benchmarks that have zero heap usage do

not have any heap accesses.

B. Significantly Reduces Execution Time

Figure 6 shows the execution time of our approach nor-

malized to the previous work, when each of the optimization

is incrementally introduced. Overall, our approach reduces

execution time by 80% on average with the first three generic

optimizations, i.e., without adjusting block size. When we

TABLE II
NUMBER OF g2l CALLS CALLED BEFORE AND AFTER IDENTIFYING HEAP

ACCESS STATICALLY WITH THE PREVIOUS TECHNIQUE

Benchmark Unoptimized Optimized

Adpcm Decode 116702082 0
Adpcm Encode 10211280 0
Dijkstra 149209166 19077784
FFT 336608 90188
iFFT 336671 90204
Patricia 3114668 893184
SHA 8350153 0
String Search 2198090 0
Susan Corner 1238553 273717
Susan Edge 2628207 579221
Susan Smoothing 37252034 4891730
Typeset 274118 3826

TABLE III
INSTRUCTIONS EXECUTED PER g2l UNDER DIFFERENT CASES

Case Previous Statically Detect Simplify Inline and
Work Heap Accesses g2l Combine g2l

read hit 52 46 19 8
write hit 59 53 23 10
read miss w/o WB 145 139 41 36
write miss w/o WB 145 139 44 37
read miss w/ WB 172 166 58 45
write miss w/ WB 172 166 58 45

note: WB means write-back.

apply all four optimizations, the execution time is reduced

by 83% on average.

As shown in Figure 6, statically detecting heap accesses

contributes the largest reduction of execution time, especially

in benchmarks that do not have any heap accesses, i.e., Adpcm
Decode, Adpcm Encode, SHA, and String Search.

Overall, it reduces the execution time by 57% on average, due

to reduced management calls and less executed instructions

in each call. Table II shows the number of calls to the g2l
function before and after statically detecting heap accesses

in the previous work. The calls are significantly reduced in

all the benchmarks, and they are completed eliminated if the

benchmarks do not have any heap access.

Statically detecting heap accesses also eliminates runtime

checking at g2ls, and thus reduces the number of instructions

executed in each g2l. Table III shows the average number

of instructions each g2l executes under different cases, after

we incrementally introduce the optimizations. There are 3

possible cases when a g2l function is called: a cache hit, a

cache miss with an unmodified data block is chosen to be

evicted, and a cache miss with a dirty data block is chosen to

be evicted. The memory access may either be a read access

or a write access, so there are 6 different cases overall that

may happen when calling a g2l function. The table clearly

shows there is a constant difference of 6 instructions between

the Previous Work column and the Statically Detecting Heap

Accesses column in any case.

Simplifying management framework, by implementing

a direct-mapped software cache instead of a 4-way set-

associative cache, reduces execution time by 42% on average

(on top of statically detecting heap accesses). This is because

average dynamic instruction count of g2l calls in all the cases

of Table III is significant reduced. For example, the average

instructions executed in the sixth case is reduced from 166 to

58 after simplifying management framework. Since a direct-

mapped cache causes more cache misses compared to a 4-way

set-associative cache, we also compare the benefit (reduced

cycles) due to less management instructions to the penalty

(increased cycles) due to increases cache misses. Figure 7

shows the reduced CPU cycles thanks to less management

instructions normalized to the increased CPU cycles because

of more cache misses. The simplification of management

framework improves the performance of a benchmark, as

long as the quotient of that benchmark is greater than 1. For

example, in Patricia, the reduced cycles are more than

10000000 times than the increased cycles. The figure shows

that the increased cycles almost are ignorable compared to the

reduced cycles, in all the benchmarks.

Inlining and combing management calls can further reduce

273

Fig. 7. Implementing a direct-mapped cache other than a 4-way set-associative
cache reduces more execution time thanks to simplified management func-
tions, compared to the extra time introduced due to increased cache misses.

execution time by 21% (on top of statically detecting heap

accesses and simplifying management framework), thanks to

the removed function calls and redundant operations. For

example, as Table III shows, the average instructions executed

in the sixth case is reduced from 166 to 58 after simplifying

management framework, and is further reduced from 58 to

45 after inlining and combing management calls. Notice we

apply this optimization after statically detecting heap accesses.

So if heap management calls are all eliminated after that step,

inlining and combining management calls will not improve

performance. For example, the management calls of Adpcm
Decode, Adpcm Encode, SHA, and String Search are

reduced to 0 after the compiler statically finds out there are

no heap accesses in these benchmarks. The performance is

therefore not further improved after the first optimization.

The block size was set to 64 bytes by default. When

analyzing the effectiveness of optimization by adjusting block

size, we analyzed programs and adjusted the block size to

16 bytes when it needed to be decreased, and to 1024 bytes

when it needed to be increased. The decision on block size

was based on profiling information. Adjusting block size could

further reduce execution time by 11% (on top of the previous

three optimizations).

VII. ACKNOWLEDGEMENT

This work was partially supported by funding from NIST

Award 70NANB16H305, and by National Science Founda-

tion grants, CAREER CCF-0916652, CNS 1525855, CPS

1645578, and CCF 172346 - the NSF/Intel joint research

center for Computer Assisted Programming for Heterogeneous

Architectures (CAPA).

VIII. CONCLUSION

Due to the expense of caches, SPM-based processors have

been widely used in various areas. However, the data man-

agement must be explicitly done on SPM. This paper presents

an efficient heap management that consists of three generic

optimizations (statically detecting heap accesses, simplifying

management framework, and inlining and combining manage-

ment calls). The experimental results show that the execution

time is reduced by 80% on average with the three general

optimizations compared to the state of the art, while it can be

reduced by 83% on average with all four optimizations.

REFERENCES

[1] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, Commercially Representative
Embedded Benchmark Suite,” in International Workshop on Workload
Characterization, 2001.

[2] K. Bai and A. Shrivastava, “Automatic and Efficient Heap Data Man-
agement for Limited Local Memory Multicore Architectures,” in Proc.
of DATE, 2013.

[3] S. Niar, S. Meftali, and J. L. Dekeyser, “Power Consumption Awareness
in Cache Memory Design with SystemC,” in Proc. of ICM, 2004.

[4] G. Bournoutian and A. Orailoglu, “Dynamic, Multi-core Cache Coher-
ence Architecture for Power-sensitive Mobile Processors,” in Proc. of
CODES+ISSS, 2011.

[5] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the Memory Hierarchy for Disciplined Parallelism,” in Proc. of PACT,
2011.

[6] A. Garcia-Guirado, R. Fernandez-Pascual, A. Ros, and J. Garcia,
“Energy-Efficient Cache Coherence Protocols in Chip-Multiprocessors
for Server Consolidation,” in Proc. of ICPP, 2011, pp. 51–62.

[7] Y. Xu, Y. Du, Y. Zhang, and J. Yang, “A Composite and Scalable Cache
Coherence Protocol for Large Scale CMPs,” in Proc. of ICS, 2011.

[8] R. Wilhelm and et al., “The Worst-case Execution-time Prob-
lem&Mdash;Overview of Methods and Survey of Tools,” ACM Trans.
Embed. Comput. Syst., 2008.

[9] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad Memory: Design Alternative for Cache On-chip Memory
in Embedded Systems,” in Proc. of CODES, 2002.

[10] N. P. Carter and et al., “Runnemede: An Architecture for Ubiquitous
High-Performance Computing,” in Proc. of HPCA, 2013.

[11] REX Computing, Inc., “THE NEO CHIP,” http://rexcomputing.com/,
2014.

[12] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and
T. Yamazaki, “Synergistic Processing in Cell’s Multicore Architecture,”
IEEE Micro, vol. 26, 2006.

[13] Texas Instrument, “TMS320C6678 Multicore Fixed and Floating-Point
Digital Signal Processor (Rev. E),” http://www.ti.com, 2014.

[14] A. Olofsson, “Epiphany-V: A 1024 processor 64-bit RISC System-On-
Chip,” CoRR, 2016.

[15] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner, “SODA: A Low-power Architecture For Software
Radio,” SIGARCH Comput. Archit. News, 2006.

[16] S. C. Jung, A. Shrivastava, and K. Bai, “Dynamic Code Mapping for
Limited Local Memory Systems,” in Proc. of ASAP, 2010, pp. 13–20.

[17] J. Lu, K. Bai, and A. Shrivastava, “SSDM: Smart Stack Data Man-
agement for Software Managed Multicores (SMMs),” in Proc. of DAC,
2013, pp. 149–156.

[18] K. Bai, A. Shrivastava, and S. Kudchadker, “Stack Data Management
for Limited Local Memory (LLM) Multi-core Processors,” in Proc. of
ASAP, Sept 2011, pp. 231–234.

[19] K. Bai and A. Shrivastava, “Heap Data Management for Limited Local
Memory (LLM) Multi-core Processors,” in Proc. of CODES+ISSS, 2010,
pp. 317–326.

[20] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, Dynamic Storage
Allocation: A Survey and Critical Review, 1995.

[21] R. McIlroy, P. Dickman, and J. Sventek, “Efficient Dynamic Heap
Allocation of Scratch-pad Memory,” in Proc. of ISMM, 2008.

[22] A. Dominguez, S. Udayakumaran, and R. Barua, “Heap data allocation
to scratch-pad memory in embedded systems,” J. Embedded Comput.,
2005.

[23] E. G. Hallnor and S. K. Reinhardt, “A Fully Associative Software-
managed Cache Design,” in Proc. of ISCA, 2000.

[24] P. Chakraborty and P. R. Panda, “Integrating Software Caches with
Scratch Pad Memory,” in Proc. of CASES, 2012.

[25] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proc. of CGO, 2004.

[26] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” SIGARCH Comput. Archit. News, 2011.

[27] M. Kistler, M. Perrone, and F. Petrini, “Cell Multiprocessor Communi-
cation Network: Built for Speed,” IEEE Micro, 2006.

274

