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chemical reactive flows. In this problem, the density and pressure are nonnegative, and
the mass fraction for the ith species, denoted as zj, 1 <i < M, should be between
0 and 1, where M is the total number of species. There are four main difficulties in

Keywords: constructing high-order bound-preserving techniques for multispecies and multireaction

Discontinuous Galerkin method detonations. First of all, most of the bound-preserving techniques available are based on

Bound-preserving Euler forward time integration. Therefore, for problems with stiff source, the time step

Third-order will be significantly limited. Secondly, the mass fraction does not satisfy a maximum-

SDtiff source principle and hence it is not easy to preserve the upper bound 1. Thirdly, in most of
etonation

the previous works for gaseous denotation, the algorithm relies on second-order Strang
splitting methods where the flux and stiff source terms can be solved separately, and the
extension to high-order time discretization seems to be complicated. Finally, most of the
previous ODE solvers for stiff problems cannot preserve the total mass and the positivity
of the numerical approximations at the same time. In this paper, we will construct third-
order conservative sign-preserving Rugne-Kutta and multistep methods to overcome all
these difficulties. The time integrations do not depend on the Strang splitting, i.e. we do
not split the flux and the stiff source terms. Moreover, the time discretization can handle
the stiff source with large time step and preserves the steady-state. Numerical experiments
will be given to demonstrate the good performance of the bound-preserving technique and
the stability of the scheme for problems with stiff source terms.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we develop third-order conservative sign-preserving and steady-state-preserving time integrations and
construct high-order bound-preserving numerical methods for stiff multispecies and multireaction chemical reactive flows.
We investigate the following convection-reaction equation in two space dimensions
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e +my +ny =0, (1.1a)
mg + (mu + p)x + (nu)y =0, (1.1b)
ne + (Mv)x + (v + p), =0, (11c)
Et+ (E+ pu)x+ ((E+p)v)y =0, (1.1d)
(e + (mz1)x + (nz1)y = s1, (1.1e)
(rm—1)¢ + (Mzpy—1)x + M2y 1)y =SM—1, (1.11)

where p, u, v, m=pu, n=pv, E and p are the total density, velocity in x direction, velocity in y direction, momentum
in x direction, momentum in y direction, the total energy, and pressure, respectively. M is the total number of chemical
species. For 1 <i <M, r; = pz; with z; being the mass fraction for the ith species, and Zf‘i] zi = 1. Therefore, we have

M
D _ri=p. (12)
i=1

and hence 0 < z; < 1. The equation of state is given as

1
p= -1 (E— Ep(u2+v2)—,021q1 - —pqum>,

where g; is the enthalpy of formation for the ith species and the temperature is defined as T = p/p. The s; given in the
source term describes the chemical reactions. We consider R reactions of the form

Vi X1y, X+ vy X = V) X vy Xo 4oy Xy, r=1,2,-- R,

where v/ . and v/, are the stoichiometric coefficients of the reactants and products, respective, of the ith species in the rth
reaction. For non-equilibrium chemistry, the rate of production of the ith species can be written as

R M v
ri\ ir .
si=Mi ) 0 = i) kr(T)]_[<M—]j) L i=1.2 M,
r=1 j=1

where M; is the molar mass of the ith species. k;(T), a function of the temperature T, indicates the reaction rate. In this
paper, we take

B, T%, T>T,,
kT(T):ior T<T:

where T, is the ignition temperature for the rth reaction, and B, and «; are pre-exponential factor and index of temperature,
respectively. Moreover, it is easy to check that Zf‘i] s; = 0. Therefore, using the fact Zf‘i] zi = 1, we can subtract (1.1e)-(1.1f)
from (1.1a) to obtain a new equation

(rm)e + (mzy)x + (nzpm)y = Su, (1.3)

which is similar to (1.1e)-(1.1f), and this can help us construct the bound-preserving technique.

Numerical simulations for wave propagation in gaseous detonation are essential for minimizing devastating hazards. It
is well known that correct ignition process of the mixture could not be predicted by single-step models. Therefore, it is
common to use detailed chemical model to reproduce results that agree with the experimental data. Thus, designing an
efficient and accurate numerical method is of practical importance. However, due to the complexity of chemical kinetics,
the construction of the numerical methods is not an easy task. There are three main difficulties. Firstly, the reaction speed
of the chemical species is extremely fast, leading to stiff source terms in the model system, see e.g. [6,18]. Hence, the time
step would be significantly limited if some explicit time integrations, such as Euler forward, are applied. Secondly, due to
the existence of shocks in the exact solutions, direct numerical simulation may be highly oscillatory near the shocks and
send positive density and pressure to be negative. Furthermore, the mass fraction may not be between 0 and 1, either.
The physically irrelevant numerical approximations may yield ill-posedness of the problems leading to the blow-up of the
numerical simulations. This phenomenon is especially significant for high-order numerical schemes. Therefore, it is very
important to develop special bound-preserving techniques to preserve the physical bounds in the numerical simulations.
Finally, direct numerical simulations on coarse meshes may yield nonphysical shock waves due to the stiff source, see e.g.
[18] for the discussion. In this paper, we will focus on the first two problems and construct suitable high-order bound-
preserving numerical schemes. The key step in this technique is to develop suitable high-order time integrations in which
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the time step restriction depends on the convection term only, not the stiff source term. Therefore, the time step can be
large. We will extend the idea to deal with the last problem in the future. For the spacial discretization, we would like to
apply the discontinuous Galerkin (DG) method, as it is high-order accurate and uses piecewise polynomials as the numerical
approximations and hence is easy to apply limiters.

The DG method, first introduced by Reed and Hill [24] in the framework of neutron linear transport, gained even
greater popularity for good stability, high order accuracy, and flexibility on h-p adaptivity and on complex geometry.
There were some previous works discussing DG methods in solving gaseous denotation, see [19,20] as an incomplete list.
However, neither of them focused on the bound-preserving technique. In the last few years, there were several works fo-
cusing on the construction of high-order bound-preserving numerical methods for conservation laws. In [31], genuinely
maximum-principle-preserving high-order DG schemes for scalar conservation laws have been constructed. Subsequently,
positivity-preserving (PP) high-order DG schemes for compressible Euler equations were given in [32,34]. Later, the tech-
nique was applied to other hyperbolic systems, see for example [30,35,23], and the L! stability was demonstrated. In [33],
the authors studied the compressible Euler equations with source terms, and the idea was later extended to gaseous deto-
nation in [28] to preserve the positivity of density, pressure and all the mass fractions except the last one. The PP technique
in [28] is based on Euler forward time discretization. The extension to high-order time discretization is based on the strong-
stability-preserving (SSP) Runge-Kutta (RK)/multistep methods [8,25,26], which can be written as convex combinations of
Euler forwards. It is not easy to extend the idea in [28] to preserve the upper bound 1 for the mass fractions. We will
encounter three main difficulties in designing high-order time integrations.

1. The construction of conservative time integrations.
Most of the previous works that preserve two bounds are based on the maximum-principle-preserving technique,
see for example [31,34]. However, the mass fraction z; does not satisfy a maximum-principle. Therefore, the bound-
preserving technique discussed before cannot be applied directly. Recently, one of the authors studied miscible dis-
placements in porous media and constructed a second-order DG scheme that preserves the two bounds 0 and 1 for the
volumetric percentage in [9] on rectangular meshes, and the extension to triangular meshes has been given in [5]. In
this paper, we follow the ideas given in [9,5] to gaseous detonation to construct high-order DG schemes on general rect-
angular and triangular meshes. The basic idea is to solve (1.1) and (1.3) together, and apply the PP technique to each r;
(or z;),i=1,---, M. By doing so, the total mass conservation (1.2) might be missing. Therefore, to enforce Zf‘il ri=p
(or Zﬁ‘il zi = 1), we need to choose consistent fluxes (see the Definition 3.1) in the convection term and conserva-
tive time integrations that guarantee the total mass conservation. Then with positive z; and total mass conservation
Zf‘il z; = 1, the numerical approximation of z; would be between 0 and 1.

2. The construction of high-order time integration for the stiff source term.
The time discretization in the analysis in [28,9,5] was chosen as Euler forward method. However, in gaseous detonation,
k-(T) would be a large constant, leading to an extremely stiff source s;. Therefore, by applying the idea in [28,9,5], the
time step will be significantly limited. One alternative is to consider backward Euler discretization and derive the PP
technique. To the best knowledge of the author, the only work in this direction is given in [22], where the maximum-
principle-preserving technique was investigated for hyperbolic equations. However, by using backward Euler method,
the scheme is only first-order accurate in time and the idea cannot be extended to high-order methods following [28,9,
5] since no high-order SSP RK methods can be written as a convex combination of backward Euler methods [8]. More-
over, due to the time step restriction by the PP technique, any time integration that is the combination of Euler forward
and backward Euler, such as Crank-Nicolson method, cannot be applied. Notice that, the time step constraint of the PP
technique with Euler forward time discretization is due to the stiffness of the source. Some alternative time integra-
tions such as the integration factor RK method [15], implicit-explicit Runge-Kutta (RK) schemes, see, e.g., [1,10,11,21]
and semi-implicit method, where only a portion of the stiff term is implicitly treated, see. e.g. [2-4,36]. However, all the
methods given above cannot preserve the positivity of the numerical approximations and the total mass conservation at
the same time. Hence they cannot be applied to construct bound-preserving technique for gaseous detonation. Besides
the above two methods, in almost all the previous works for gaseous detonation, the splitting methods were applied to
separate the convection and the source terms. By doing so, it is possible to apply Euler forward time discretization for
the convection term and other suitable ODE solvers for the source term. However, the most commonly used splitting
method is the second-order Strang splitting method [27], and the extension to high-order time integration is compli-
cated. Another possible idea to construct the time integration is to apply the modified Patankar-Runge-Kutta scheme
blue [16,17,13,14]. However, high-order schemes contain some defects as the fraction used in the trick may have zero
denominator with nonzero numerator. Therefore, one has to assume the exact solution to be strictly positive. However,
this may not be true as one of the species may not appear initially and will be created during the chemical reaction.
Moreover, it is very difficult to preserve the positivity of pressure by using the modified Patankar-Runge-Kutta scheme.
Recently, there is a new idea introduced in [12] to solve scalar hyperbolic equations with stiff source terms by using the
modified exponential RK/multistep DG methods. The algorithm in [12] is not based on the splitting methods nor the
Patankar-Runge-Kutta method. However, the scheme does not preserve the total mass conservation. Hence, it cannot be
applied to construct bound-preserving technique in the stiff multispecies detonation.

3. The construction of high-order conservative sign-preserving RK method.
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In [7], the authors have constructed high-order multistep methods to preserve the total mass following [12]. It is well
known that the time step in a multistep method is fixed. However, the time step size needed for stability such as
positivity is usually dependent on the wave speed, which can be changing very quickly, or even wildly in detonations.
So in practice, it is significantly difficult to use the multistep method in [7] for detonation.

In this paper, we would like to construct third-order conservative sign-preserving RK methods that are suitable for the
bound-preserving technique given in [7]. We will modify the scheme introduced in [12] to preserve the total mass and
demonstrate the sufficient and necessary conditions for the third-order accuracy. Then we will analyze other properties of
the proposed schemes, such as the steady-state-preserving, sign-preserving, A(Z%)-stability, decay property. Moreover, we
will also prove the same properties for the third-order multistep method discussed in [7]. Then we will use the new time
integrations to construct bound-preserving schemes and apply to stiff multispecies and multireaction detonations. The time
integrations constructed in this paper are explicit and the time step restriction comes from the convection term only and
does not depend on the stiff source. Therefore, the time step can be large. Moreover, it is possible to sufficiently refine the
mesh to capture the correct position of the shocks. In this paper, we only discuss the bound-preserving technique on fine
meshes and the numerical simulations on coarse meshes will be given in the future. Before we finish the introduction, we
would like to summarize the advantages of the proposed scheme. The algorithm

. is third-order accurate in time and high-order accurate in space;

. is explicit and can handle stiff source term with relatively large time steps;

. is not based on the splitting technique nor the Patankar-Runge-Kutta methods;

. has local mass conservation;

. preserves the total mass;

. preserves the bounds, such as the positivity of the density and pressure, and the two bounds 0 and 1 of the mass
fractions;

DU A WN =

The organization of this paper is as follows. In Section 2, we construct third-order conservative sign-preserving Runge-
Kutta and multistep methods, and discuss the properties of the time integrations. In Section 3, we consider DG spatial
discretizations. We will demonstrate the new bound-preserving technique and the full algorithm. Numerical experiments
will be given in Section 4. We will finish in Section 5 with some conclusion remarks.

2. Conservative sign-preserving and steady-state-preserving time integrations

In this section, we proceed to construct and analyze high order time integrations. We consider the following ODE system

1
w; =F(w) + ES(W)’ (21)
where ¢ is a positive real number, w = (w1, --- , w)T is the unknown variable, F= (fy,---, f¢)T is the spatial discretization
of the flux, and s = (s1,---,5s¢)T is the source term. The problem becomes stiff if ¢ is small. Moreover, we make the

following three assumptions:

1. The system is conservative: there exists a constant vector v e R such that v-F=v.s=0. In this case, we can easily
obtain

d

—(w-v)=0, 2.2

7 t( ) (2.2)
and hence v-w(t) =v-w(0) for all t > 0.

2. There exists a sufficiently small Atg such that if w> 0 and At < Atg then

w + AtF(w) > 0. (2.3)

For simplicity, here and below we say a vector is nonnegative if each component in the vector is nonnegative.
3. We write the stiff source term as s = p — d, where p and d are nonnegative vectors, denoting the production and
destruction terms, respectively. Then we assume that

d4
lim — exists,Vi=1,---,¢. (24)

wi—0 Wi

Remark 2.1. In the first assumption, we just consider the most general conservative property. Different problems may
have different constant vectors v. For the gaseous detonation (1.1a)-(1.1f) together with the ghost equation (1.3), w =
(o,m,n, E,r1,---,ry)T and v takes the special form (1,0,0,0, —1,---,—1)T € RM+4, In this case, (2.2) becomes
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d

— ri=—p. 2.5
A= (2.5)
Moreover, for the special case F + %s =0, v can be any constant vector and (2.2) just indicates the steady-state case w; = 0.

From now on, we use the notation w" to denote the numerical solution at the n-th time level. Considering an explicit
numerical scheme that uses w"~P, ... w" to compute w'*! (p > 0), our goal is to construct a suitable high order numerical
scheme that enjoys the following properties:

1. Conservative: v-w" =v-w? for all n > 0. This is an important property for designing bound preserving technique when
applying to the gaseous detonation problem;

2. Sign-preserving: If wo =w(0) >0, then w" > 0 for all n > 0;

3. Steady-state-preserving: If w"=P =... =w" = W satisfies F(W) 4 %S(\/I\V) =0, then w1 =w.

The third-order conservative RK and multistep methods will be discussed in Subsections 2.1 and 2.2, respectively.

Remark 2.2. The conservative RK and multistep methods to be discussed in the following two subsections have the strong
stability preserving structure, i.e. they can be written as convex combinations of several first-order schemes. Therefore, the
properties satisfied by the first-order scheme is also satisfied by the proposed RK and multistep methods. If not otherwise
stated, we only consider the first stage in the proofs.

2.1. Third-order RK method

In this subsection, we construct third-order RK methods. For the RK method, time steps can change in different time
levels. Hence, for practical problems in which the wave speed changes quickly, Runge-Kutta method can be a good choice.
We start with the exponential Runge-Kutta methods constructed in [12], and then make some further modifications to make
them to be conservative and high order accurate. Moreover, we will prove sign-preserving property, steady-state-preserving
property and A(%)—stability of our new schemes.

Following [12], we rewrite (2.1) as

1
w; + uw =F(w) + gs(w) + uw,

where @ > 0 is a constant to be determined in each time step but may depend on the time level n. The above equation
further yields

(e"'w); = e (F(w) + %S(W) + 1w).

Motivated by [12], the general framework of the exponential SSP RK scheme for solving the above equation is
1
w) = e~Pronat [alow” + BroAtF(W™") + ﬁmAt(ES(W”) + ,uw”)] , (2.6)
(2) —ARAt n 1 n
w=e o20W" + B0 AtF(W") +ﬂzoAf(ES(W") + puw’)
1
+ elfro-Anat [Olzlw(]) + B AFW ) + By At(_sw™) + MW“))] : (2.7)
1
witl =g~ HAL [0130W” + B30 AtF(W™) + B30 At(gs(w") + MW"):|
1
+elfro-buat [a31w(” + B3 AW ) + i At(_sw™) + MW(”)]

1
+elAhuat [0532W(2) + B2 AFW®) + B At(_sw'?) + MW(Z))] : (2.8)

where A = 0 + 21810 + P21, all ;5 and B;j; given above are positive constants to be determined by the order conditions
and p is a nonnegative constant to be determined by the bound-preserving technique. Take dot product with v in (2.6)-(2.8)
and define w =v-w to obtain



494 J. Du, Y. Yang / Journal of Computational Physics 395 (2019) 489-510

w) = e PolA [0 + Bropu At]w",
w® = e A g + Bropu At] W + eBro=DRA (g1 1 B At w D),
whtl — p—HAt [030 + Bropt ALl w" + e(Bro—DuAt [o31 + B31 L At] w®
+ e A DEA [g3) 4 B At w®.

It is easy to see that w1 &£ w" for ; # 0 and hence the scheme (2.6)-(2.8) is not conservative. Therefore, we modify
(2.6)-(2.8) and construct

i 1
wl) = OlloW"+l310AtF(Wn)+ﬂ10Af(gS(Wn)+/LW") /A1, (2.9)

I 1
w? = OlzoW“+,320AIF(W”)+,320M(ES(W”)+MW") /A2

i} : i
+ eP1orAt | o w® 4 By AtF(w ™) +ﬂzlAr<gs<w<”) +pw D) | /A, (210)

) _
W = [ a3oW" + B3 AtF(W") + ,330AI(ES(W”) + uw") | /A3

i : ]
+ Pl g wD o+ By AFWD) + B At sw ) + pwD) | /A3

1
+eAnal [(stw(z) + B AFW?) + 3 At(_s(w'®) + MW(Z))] /As, (211)
where

A1 =00+ BroftAt, Ay =[a0 + Baopt At] + ePOHA [aryg 4 Bry AL,
A3 =[030 + Baop At] + ePOPA a3y + Bag AL] + A [asy + BajuAt].

Taking dot product with v, one can check that this new scheme is conservative for any choice of © and we summarize this
property in the following theorem.

Theorem 2.1. Consider the ODE system (2.1), the new exponential Runge-Kutta time discretization (2.9)-(2.11) is conservative in the
sense that

v-w" :V-W(U :V-W(z) =V'Wn+l.
Next, we consider the accuracy issue. After some basic computations, we can rewrite (2.9)-(2.11) into the three-stage SSP
explicit RK scheme in the Shu-Osher form [26] as

M. < < 1
w = | @ow" + B1o AtF(W") + BroAt_s(w")

- ) g . ) o
WP = | G oW" + B AtF(W") + ﬂzoAtgs(w”) +[a21w(1)+ﬂz1AtF(w(”)+ /321Atgs(w(”)],

- ~ ~ 1 B - N 1
witl = G3oW" + B30 ALFW") + fro At _s(W") +[amw(”+ﬁ31AtF(w(”)+/331At25(w<”)]

i _ 1
+ [a32W(2) + B AtF(W®) + 532AtES(W(2))] ,
where
d10=1, @0 = (20 + PookAD) /A2, Qa1 = eP1OHA (apq + B L AL)/ Ag,
@30 = (@30 + B30t At) /A3, 31 = ePIOHA (3y + B3 uAL) /A3, @3y = e A a3y + B3 At)/As,
Bro = Bro/A1, Bao=P2/Az, Po1 =elOHA By /A,
B30 = B30/A3, P31 =ePOPrA By /A3, Bay = e Al B, /A,

Following the derivation steps in [26], the sufficient and necessary conditions for third-order accuracy are
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Q10 = Q20 + @21 = @30 + @31 + a3 =1, (2.12)
@31B10 + @32A + B3o + B31 + B2 = 1+ O(AL), (2.13)
~ o~ ~ ~ 1

Bro(@32821 + B31) + B32A= 5 + O(AL?), (2.14)
o 1 S

Blo@nfr + Ps) + PnA’ = 2 + 0D, frofnfn =2 +0(A0). (215)

It is easy to see that (2.12) is satisfied for all & and S. Without loss of generality, we assume

arp=1, oap+an=1 oz+a3+ap=1 (2.16)

Next, we take o =0, then we have A; = A, = A3 =1 and (2.13)-(2.15) yield

a31P10 +a32A 4 B30+ P31+ B2 =1, (217)
1
Bro(az2B21 + B31) + B32A = 3 (2.18)
2 2 1 1
Blo(@32821 + B31) + B32A° = 3 B10B21P32 = 3 (2.19)

(2.16)-(2.19) are necessary order conditions and can be used to derive the sufficient conditions below. For general © > 0,
we apply Taylor’s expansion to all the exponential functions in & and 8 and use Mathematica for all the computations. For
simplicity, we skip all the complicated and tedious algebra to simplify (2.13)-(2.15), and only demonstrate the results. Under
the conditions (2.16)-(2.19), we can verify (2.14) and (2.15) for general u. Yet (2.13) is not satisfied. To obtain (2.13), we
need a new condition

Boaz1(1 — Bro) + a32A%(1 — A) + Byaa1032(A — B1o) = 2B10B21032(1 — A). (2.20)

Now, we have finished constructing the sufficient and necessary conditions for third-order accuracy and we can demonstrate
the following theorem.

Theorem 2.2. Consider the ODE system (2.1), the exponential Runge-Kutta time discretization (2.9)-(2.11) is third-order accurate if
and only if the conditions (2.16)-(2.20) are satisfied.

It is easy to check that the following parameters satisfy all the conditions in the above theorem:

AP B SR
g’ 20—127 21—8v 21—27
1 1 1 1 1

1
= -, = —, = -, = —, = -, = —. 2.21
a3 =3 B30 3 W= B31 3 @2=3 B32 > (2.21)

2
=1, Ppro= 3 o0 =

Remark 2.3. In (2.9)-(2.11), we can apply Taylor’s expansion to all the exponential functions following [7], e.g.
ApLAt 1 2 1 3, 1 4 -
e ~ (1 - AuAt+ E(A,U,At) — E(AuAt) + ﬂ(AMAt) . (2.22)

As demonstrated in [12], if w is large, eA*A! would be an extremely large number. Numerical experiments demonstrated
that with the trick (2.22), we can obtain better numerical approximations. Moreover, such a trick keeps the properties to be
discussed below, i.e. the scheme is also sign-preserving, steady-state-preserving and has A(%)—stability. The proofs would
be basically the same, so we skip them.

However, the above choice of the parameters may not be the best one we want. Before we seek the best choice, we
would like to demonstrate the sign-preserving property of the conservative third-order RK scheme. The result is given in
the following theorem.

Theorem 2.3. Consider the ODE system (2.1) with the flux F and the stiff source satisfying (2.3) and (2.4), respectively. The scheme
(2.9)-(2.11) is sign-preserving: If w" > 0, then we have w") > 0 under the conditions

1 S o
uz—max{——’(w"),o} and At < 2O Atg.
& 1<i<l wi 10

In addition to the above conditions, if
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1 Si
>~ max{——wh), -2 w?)}, and At <cAtE,
w

Si
€ 1<i<t wi i
where

Q@10 020 O21 (30 (31 (432

then w1 > 0.

Proof. We only prove w(l) > 0, since the proof for positive w™*! can be obtained following the same lines. The conditions
w' >0 and p > 1 max;<ig {—,fv—"i(w”), 0} imply

1
Es(w") + uw' > 0. (2.23)

Moreover if we choose At < %Af[;, then

0610Wn + ﬂloAtF(Wn) =10 (Wn + g—izAtF(Wn)> >0, (2.24)

where we have used the basic property (2.3) and the fact that all «;; and §;; are positive constants. Combining (2.23) and
(2.24), and using the fact that A; > 0, we have

wl) = [alow” + BroAtF(W™) + ﬁmAt(és(w”) + ,uw”)] /A1=0. O

Notice that if we write s =p — d, where p and d are the production and destruction terms, respectively, then the

: 1 Si
requirement (4 > - MaXo<i<| {—W'i, 0} becomes

1 di — pi

o> —max{l—pl,O}.
& 0<i<l Wi

Since we have assumed that limy,_o 3‘,—"1, exists, we are able to obtain a suitable w. In practice, we can also take u =

% maxp<i<| {“fv—‘[ O}.

Based on the above theorem, we would like the value of ¢ to be large. One can check that ¢ = 0.25 if we choose the
parameters in (2.21). We further solve for nonnegative & and B satisfying the order conditions (2.16)-(2.20) such that ¢ is
maximized. We use the MATLAB function fmincon to solve this optimization problem and take (2.21) as the initial data for
iteration. The optimal coefficients are

a1p=1, B10=0.7071933376925014,

o0 = 0.6686892933074404, Br0=0,

o1 =0.3313107066925596, B1 =0.4178047564915065,

30 = 0.3487419430256090, B30=0,

31 =0.2039576138780898, pB31 =0,

o3y = 0.4473004430963011, B3 =0.5640754637100439, (2.25)
with

o (07 (07 (07 (07 (07
¢ =min{—2, =20 221 780 781 732y 5 7929797388491311.

Bio B2 P21’ B B3 B

The above results may be locally optimal and it is difficult to solve the global optimization problem.
Besides the above, we can also show that the conservative time integration (2.9)-(2.11) is steady-state-preserving.

Theorem 2.4. Consider the ODE system (2.1) and the time integration is given as (2.9)-(2.11). The scheme is steady-state-preserving,
namely, if W" = W satisfies F(W) + L1s(W) = 0, then w1 =W.
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Proof. Take w" =W in (2.9), then

~ - 1 Py
wl = [Ollow + BroAtF(W) + ﬂlOAt(ES(W) + MW)] /A1

~ — 1
= [(Ollo + Brom AW + B1o At <F(W) + ES(W))] /A1
— A1W/A;
=W.

Following the same analysis above, we can use the fact that w" = w) =W to show that w® =W in (2.10), which further
yields w1 = W. So we skip the details here. O

Finally, we discuss the A(%)-stability of the scheme and the result is given below.
Theorem 2.5. Consider the scalar ODE w; = Aw (F =0, %s(w) = Aw), where X € C is a constant with ReA < 0. We can rewrite the
time integration (2.9)-(2.11) as
WTH-] — R(Z)Wn,
where z = AAt and R(z) is a function of z. Then the scheme satisfies
1. A(w)-stability with @ = 7w /4: If u > —ReX and Rez < —|Imz| (i.e. ReA < —|ImA|), then

[R(@)| < 1.
2. Decay property: If we take 1 = —ReX, then R(z) — 0 as Rez — —oo.

Proof. We first consider the A(w)-stability. Since ReA < —|ImA|, then |ReA| = —ReX > |ImA|. From (2.9), we have

w — aowW" + 1o At(Aw" + puw") @ + Bropn At + ﬂlolAtwn
a10 + Bropn At a10 + Bropn At

=RDw",

then
ay _ 10+ Bro(i + Red)At + iBroImrAt
10 + Bropn At

R

which further yields

ROP = (10 + Bro(i + Rer) At)? + (BrolmrAL)?
(ot10 + Brop At)?
(@10 + Bro(i + Rer) At)? + (—BroRerAt)?

= (10 + Bro(u + Rer) At + (—BigRer At))?
<1,

where in the last step we use the fact that both ajg + Bio(1t + Rer)At and —pBigRer At are nonnegative real numbers.
Hence we have proved |w®| < |w"|. Applying the same analysis above to (2.10) and (2.11) we can obtain w® = R@w"
and w™t! = Rw" with
R®@ _ @20t P+ HAL+ ePorA (a1 + Bo1 (1 4 1) ARD
020 + Boo b At + ePOEA (y1 + Boq L AL)
a0+ B3o(i + VAL + PR (aizg + B33 (1 4 2) ADRD 4 A A (a3 + B3y (10 + M) ADRP
030 + B30 AL + ePORAL (031 + B3g W AL) + eARAL (a3 + B3a (L AL) .

’

R

Then

—ImA —ImA
i+v3RD 4 p——iRD,
ReA

R® =y +v
1+ V2 Ren

where

a20 + Bao (U + ReA) At BaoRerAt
U] = . =
Az Ar
s — PronAt o1 + Bar (e + Re)»)At’ B 521ReAAt.

A2 AZ
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It is easy to see that v; >0,i=1,---,4 and Z;; v; = 1. Therefore, R® can be written as a convex combination of points
in the unit circle centered at the origin in the complex plane. Therefore, |R®| < 1. Following the same analysis with some
minor changes, we can also obtain that |R| <1, hence we skip it. Now we finish the proof of part 1.

In part 2, we take ;= —Re), then Rez = —pAt. Since B9 # 0, we have

R _ o0 +iB1olmz
a10 — BroRez

—0 as Rez— —oo.

Similarly, since 8,1 # 0, we can obtain that

o0 + if2olmz + EiﬂmReZ((Xﬂ + 1621 Imz)R(l)

R® —
020 — BooRez + e ProRez(qy; — Br1Rez)

— 0 as Rez— —oo.

Following the same analysis with some minor changes, we can prove R — 0 as Rez —> —oco. O

Remark 2.4. In the above theorem, we require ;> —ReX which is exactly the same as that given in Theorem 2.3. In the
decay property, though we assume p = —ReA, the conclusion is still valid if we take u = O(—ReA). However, if 1 > —Rea,
the conclusion may not be true.

Remark 2.5. In this paper, we consider third-order RK scheme only, and the fourth-order scheme will be discussed in
the future. There are two main difficulties. The first one is how to find the sufficient and necessary conditions for the
fourth-order accuracy. The second one is to find the parameters «j; and B;; based on the accuracy condition.

In this subsection, we proved several properties of the proposed time integration. However, due to the conservative re-
quirement of the system, it is very difficulty to obtain the asymptotic-preserving (AP) property for general systems. However,
following the analysis in [12], we can obtain the weak AP property. So we skip the proof and only demonstrate the result
in the following statement.

Proposition 2.1. Consider the scalar ODE u; = %s(u) with s(0)=0 and s’ (u) < 0. Assuming that s(u) # 0 for u # 0 and B3¢ > 0, then
the new RK3 scheme (2.9)-(2.11) with modification (2.22) is AP in the weak sense: for any & > 0 and any initial value ug, and At > &,
there exists an integer Ng > 1 (independent of At), such that

s@™ =0(e),n> Ng.

We can see that (2.21) satisfies the condition given in the proposition but (2.25) does not. However, B39 > 0 is only
a sufficient condition. Numerical experiments also demonstrate convergence of the numerical approximations in the stiff
regime by using (2.25).

2.2. Multistep method
In this subsection, we proceed to analyze the multistep method. For problems in which the wave speed changes slowly,
multistep method can be used as an alternative to the RK method.

In [7], we have used the SSP exponential multistep methods with some modifications to discretize (2.1). The scheme is
given as

1
wl = Al [w” + 3AtF(W") + 3At (ES(W”) + uw”)]

12 12 /1
+ A3 [w”—3 + ﬁArF(w"—3) + A (Es(w"—% + Mw”—3>] , (2.26)

where
16 1— pAt+ 2uan? — Luan® + Lwan?
27 1—2(uan? + 2 (uar

1_
3=

’

g2 111-dpacs 8(uAb? — 2 (uan® + 2 uant
gl — Juant + B uans '

It is easy to verify the following facts via direct computation:

12
Al>0, AZ>o0, A;(1+3MAt)+A§(1+ﬁMAt)=1. (2.27)
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In [7], we have proved that this scheme is conservative and third-order accurate. In this paper, we will continue to prove
that the scheme is also sign-preserving and steady state-preserving. We state these properties in the following theorems.

Theorem 2.6. Consider the ODE system (2.1), the multistep time integration (2.26) is third-order accurate and conservative. Moreover,
the scheme is sign-preserving. If w" > 0 and w"=3 > 0, then we have w™t! > 0 under the conditions

1 Si Si 1
p> = sup {———(W"), ———W"3)} and At < At
1<i<t Wi Wi 3

Proof. We only need to prove the sign-preserving property. Following the proof of Theorem 2.3, we have

%s(w") +puw" >0, %s(w“) + w3 > 0. (2.28)
Moreover if we choose At < %AtE, then

w' +3AtFwWh) >0, w4 %ArF(w’H) >0, (2.29)
where we have used the basic property (2.3). Combining the above equations, we have

wn+l

Al [w” + 3AtF(W") + 3At (és(w”) + uw")]
2 -3 12 n—3 12 1 -3 -3
+ A2 w3 17 AFW' ) 4 S AL gs(w” )+ pw" >0. O (2.30)

Next, we will show that the scheme (2.26) is steady-state-preserving.

Theorem 2.7. Consider the ODE system (2.1), the multistep time integration (2.26) is steady-state-preserving, namely, if w'—> =
W' = W satisfies F(W) + 1s(W) =0, then w™! = W.

Proof. Taking w3 = w" =W, we have
n+1 1] & o 1~ &
w = A3 | W+ 3AtF(w) + 3At gs(w) + uw
+ A2 W+ 12AtF(\Tv) + 12At 1s(\Tv) + uw
3 11 11 £ °
115y & 2|, 12 &
= A3 [W+3Atuw]+ A5 |W+ ﬁAtuw
1 2 12 =~
=|A3(1 +3uAt) + Az(1+ ﬁ,uAt) w=w. O
Finally, we will investigate the region of absolute stability of the multistep method (2.26).

Theorem 2.8. Consider the scalar ODE w; = Aw (F =0, %s(w) = Aw), where A € C is a constant with Re) < 0. Define w" to be the
numerical approximation at time level n. Then, the time integration (2.26) satisfies

1. A(%)-stability: If n > —ReA then the region of absolute stability contains {z : |Rez < —|Imz|}, where z= A At.
2. Decay property: If we take . = —ReX, then |w"| — 0 as Rez — —o0.

Proof. It is easy to check that
n+1 1 n 2 12 n-3
w' = A3 [143At(n+ ) ]w" + A3 l—i—ﬁAt(M—l—k) who.

The characteristic equation is

= A1 +3At(u+ 1)) + A2 []—i—%At(M—FA)] (2.31)
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We assume Rez < —|Imz| (i.e. ReA < —|ImA|) and first show that all the roots of (2.31) are <1 in modulus. If false, there
exists n with || > 1 to be a solution to (2.31), then

)

173 < In*] < |AL[1 4+ 3At( + )] 3 +

, 12
AT 1+ T ARGL+2)

which further implies

1< AL|143At( + )| + A2

12
T4 TALGL+ )

12 12
< AL(1 4 3At(1 + Re) + |3AIMA]) + A2 (1 AL+ Rep) + ﬁAt|1mk|)

12 12
< A} (1+3At(u + Rer) — 3AtRer) + A3 <1 + 7 AL+ Red) — ﬁArRe,\)

. 5 12
= A} (1+3A00) + A3 (14 At
:],

which is a contradiction.
Next, we will show that if n is a solution to (2.31) with || =1, then 7 is a single solution. If false, suppose n with
In| =1 is not a single solution to (2.31). Take derivative of (2.31) with respect to £ to obtain

483 =3A1[1 +3At(n + 1)) &2 (2.32)

Then 7 is a solution to (2.32). Hence

4n =3A1[1+3At(u+ V)],

which further yields

4=3A143At( + )]
<3A}(1+3At(1 + Rekr) 4+ 3At|ImA])
<3A}(1+3At(1 + Rer) — 3AtRed)
=3A1(1 4+ 3Atw)
<3.

Now, we find a contradiction. Therefore, if 1 is a solution to (2.31), then || < 1. Moreover, if || =1, then 7 is a single
solution. We finish the proof of part 1.
Assume [ = —ReA, then (2.31) can be written as

12
g1 = AL[1+43iAtImr) &3 + A2 [1 + ﬁiAtlmk] )
It is easy to see that A% — 0 and A% — 0 as Rez — —o0. Hence & — 0 as Rez — —oo and we finish the proof. O

3. Applications in non-equilibrium stiff multispecies and multireaction detonations

In this section, we aim to solve the multispecies and multireaction detonations problem (1.1). We will simply review
the DG method for spacial discretization in Section 3.1 and use the new ODE solvers constructed in this paper for the time
discretizations. For simplicity, we only discuss RK methods in this section. Moreover, we will also construct the bound-
preserving technique in Section 3.2. We will demonstrate that the conservative property of the new time integrations is
essential for the bound-preserving technique. For simplicity, we define v=(—1,0,0,0,1,---,1)T € RM* throughout this
section.
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3.1. DG methods coupled with the conservative RK methods

We rewrite (1.1) into the form of

we + f(W)y + g(w), =s(w), (3.1)
where
w=(p,m,n,E,pzi1,---, pzm-1)",
f(w) = (m,mu + p,mv, (E + p)u,mzy, - ,mzy_1)",

gw) = (n,nu,nv +p, (E+p)v,nz1,--- ,nzm-1)",

s(w) = (0,0,0,0,s1,---,sm-1)".

We first consider the spacial discretization. Let Q, = {K} be a quasi-uniform partition of the computational domain
with rectangular or triangular elements. We define the finite element space V,’j as

vk = {z 2|, € PK(K), VK € Qh} ,

where P¥(K) denotes the set of polynomials of degree up to k in cell K. For simplicity, we also use the notation w as the
numerical approximations. The DG scheme is to find w eV, = [V,’j]"’“r3 such that for any test functions & € V, and K €
we have

/wt-ijdx:/F(w)-Vij dx—fﬂ(w""f,wexf,v) -$ds+/s(w) - & dx, (3.2)
K

K K K

where F = (f, g) and v is the unit outer normal of K in cell K. Here, w™ and w* are the values of w on the edge 9K
obtained from the interior and the exterior of K, respectively, and H(w'™ we* v) is the numerical flux. In this paper, we
consider Lax-Friedrichs flux and

1
H(wy, Wy, v) = _ [F(W1) - v + F(W2) - v —a(wy —wp)], = [l[{1, V)| + Cllco (33)

where ¢ = /% is the sound speed.

Definition 3.1. We say the elements in the numerical flux H= (hy, hm, hy, hg, hy, - - ,hm—1)T are consistent if hy = h; if we take
zi=1foralll<i<M—1.

The elements in the numerical flux H in (3.3) are consistent and
hp(wy,wa,v) = % [Fo(wq) - v+Fp(wa) - v —a(p2 — p1)].
hi(wq, wa, v) = % [Fi(w1) - v +Fi(wp) - v —a(rip —rip], i=1,2,--- ,M—1,
where F, = (m,n) and F; = (mz;, nz;). Define hyy =h, — Z?i]l h;, and we can obtain
hy (w1, wp, v) = % [Fm(w1) - v +Fy(W2) - v —a(rmz —m1)],
with
Fy = (mzy, nzy).
Moreover, we can define
H=H"hw)', F=F Fy', s=6"sm", w=w' ",

then it is easy to see that v-H=v-F=v-§=v.W =0 Then (3.2) together with the “hidden” condition that v-W =0 due
to the total mass conservation is equivalent to

[\va-gdx=/l~=(v~v) - VE dx—/ﬁ(wi“f,wm,v) -éds+/§(m - dx, (3.4)
K

K K K
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where é € [V,’;]M+4. We can see that (3.4) is in the weak form of (2.1). Then instead of forcing the total mass conservation
explicitly by letting ryy = p — Zf‘i}l ri, we analyze the equivalent system (3.4). In fact, the last equation in (3.4) is used for
solving ry; and it is a numerical scheme for the hidden equation (1.3). The total mass conservation can be obtained by using
the conservative time integration introduced in Section 2.

3.2. Bound-preserving technique

In this subsection, we develop the bound-preserving technique for the gaseous detonation. We consider the new equiv-
alent DG scheme (3.4). For simplicity, we omit the tilde in the scheme, and use o for 0 with o = w, F, H,&,s in this
subsection.

The convex admissible set of solutions in [7] is defined as

0
m

n M
G={w=| E |.p>0p>02>0,.2y>0) z=1
L5} i=1

M-1

We aim to obtain the numerical approximations that lie in G.
We first introduce some notations. For each cell K € @5, we need to define a set of quadrature points, denoted as
Sk, which will be used in the bound-preserving technique. We first consider the rectangular cell. Let Kjj = [x;_ 1%, 1 x

[yj_%,yj+%] be the (i, j)-th cell. For simplicity, we assume uniform meshes and denote Ax and Ay as the mesh sizes
in the x and y directions, respectively. However, this assumption is not essential. We choose L >k + 1 and use p} =

{xf :B=1,--- ,L} and pj( = {yﬁ3 B=1,--- ,L} to denote the Gauss quadrature points on [xii%,xw%] and [yji%,y]ur%].
respectively. Moreover, we use p} = X :a =0, --- ,i} and f)j.' = {jf‘;‘ =0, ,i} to denote the Gauss-Lobatto quadra-
ture points on [xii%,x”%] and [yji%,y]#%], respectively, with 2L — 1> k. Also, we denote Wg as the corresponding
Gauss-Lobatto quadrature weights on the interval [—% %] As in [28], we denote Sk, ; as

Sk, = (p} ® b)) U (B} ® ) U (p} ® pY). (35)
Next, we consider the triangular cell K. We use ZiK (i=1,2,3) to denote the length of its three edges e’k (i=1,2,3). We

consult the quadrature introduced in [34], where the quadrature points are given in the barycentric coordinates as

1 1 1 1 1
B I R A . N - N
SK—{( +z,(2+z)(2 Z),(2 Z)(2 2)>,

2
1 1 1 1 1
— ==, -+, (= +2= -7,
((2 )(2 ) 3 + (2 + )(2 )
1,01 g 1 sy 1 g 1 P
-4+ (=-2"), (= -Z%)(=-2"), =+ 2" ),
((2 + )(2 ) (2 )(2 ) 3 +
@=0, L p=1,,L}, (3.6)
where 2% (@ =0,---,[) and z* (B=1,---,L) are the Gauss-Lobatto and Gaussian quadrature points on the reference

interval [—%, %], respectively.
For the time discretization, we adopt the new conservative three-stage RK method designed in (2.9)-(2.11). Specially, if
we take the test function as 1 in each component of the DG scheme (3.4), then we get

d

; 1

—wg =—— [ HW™, w® p)ds+ — [ s(w)dx, 3.7

Ll K] ( ) +|I<| (w) (3.7)
oK K

where wg = “17‘ f K wdx is the cell average of w in cell K. We further denote

K|

1 : 1
Gw)=—— | HW™ w® p)ds and sw)= m/s(w)dx,
oK Kk

then we obtain the following formulations to compute the cell averages in each stage of RK:



J. Du, Y. Yang / Journal of Computational Physics 395 (2019) 489-510 503

W = [10W" + B1o ALGW") + B1o AL(S(W") + uW™) ] /A1, (3.8)
W® = [a20W" + B20 ALG(W") + B2o ALB(W") + puW")] /A2
+ ePronAt [a21w<1> + B AGW™D) + By At(w) + uv‘v“b] /A2, (39)

W = [a30W" + B30 AtG(W") + B3 At(S(W") + puW")] /A3
+ePonA a3 WD 4y ALGWD) + a1 AGWD) + V)] /43
4 eAnat [0[32\I_V(2) + B ALGW?) + B3 AtGW?®) + ,uv_v(z))] /As. (3.10)

Before we state the main theorem, we would like to demonstrate the following lemma whose proof has been given in
Theorem 3.3 and Lemma 4.1 in [7].

Lemma 3.1. Consider the DG scheme (3.4) (or the equivalent scheme (3.2)). If w € G for all (x, y) € S, where S is defined in (3.5) and
(3.6) for rectangular and triangular meshes, respectively. Then we have W + AtG(w) € G under the condition At < At, where At
satisfies

A=+ 2y <H 3.11
(Ax + Ay) =% (3.11)
for rectangular meshes, and satisfies
AES, . 2
a— Y "l < Zn (3.12)

for triangular meshes. Moreover, if we take

M
Si > j=15idj 0
o o

MU > max [— (3.13)

1<i<M

then ﬁ(E(w) + uw) € G.

Remark 3.1. The sufficient condition for © in Theorem 2.3 is different from that in Lemma 3.1 because we only consider the
positivity-preserving of w in Theorem 2.3. In Lemma 3.1, we also include the positivity-preserving of the pressure following
the analysis in [7].

Now, we can state the main theorem for bound-preserving technique.

Theorem 3.1. Consider the DG scheme (3.4) (or the equivalent scheme (3.2)) coupled with the three-stage RK method (2.9)-(2.11),
where u satisfies (3.13) for w = w", w), w®_ [fw"(x), wD (x), w (x) € G for all x € Sk on each K € Qp,, where S is defined in
(3.5) and (3.6) for rectangular and triangular meshes, respectively. Then we have W'*! € G under the condition

. 010 020 O21 O30 031 (32, -
At <min{—, —, —, —, —, —}At,

where At satisfies (3.11) and (3.12) for rectangular and triangular meshes, respectively.

Proof. For simplicity, we consider the first stage of the RK method only and prove w(!) e G. After simple computations, we
get

WD =[a10Ry + Bron AtRy] /A1,

where

1 _ _
R =wW"+ @Atc(w") and Ry = —(S(W") + puw").
Q10 128

In Lemma 3.1, we have proved R; € G under the condition At < ‘;}%Af and Ry € G under the condition (3.13). Recall that
the time integration is conservative and A1 = o1o + Bio At, then w is a convex combination of Ry and Ry. Since G is a
convex set, we have w) € G.

Following the same analysis above, we can also prove that w® w™1eG. O
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Remark 3.2. In the theorem above, the value of w is not easy to compute. In practice, at time level n, we want u satisfies
(3.13) for w=w" and choose a suitably small At. We monitor w(", w® and w"*!. If one of the above three values is not
in G, we will double the value of ;& and halve the value of At, then restart the time integration at time level n. After we
have reached the next time level, we reset the values of y and At.

Based on the above theorem, we can construct physically relevant numerical cell averages w. However, the numerical
approximations w may be out of the bounds. Hence, we need to apply suitable limiters to w‘V, w® and w™*!, and
construct physically relevant numerical approximations in each RK stage. The full algorithm on each fixed element K is
given below:

1. Set a small number € = 10713,

2. If p > €, then we proceed to the next step. Otherwise, w is identified as the approximation to vacuum, then we take
w =w, and skip the following steps.

3. We modify the density p first. Compute

in = min X, ¥).
Pmin (x,y)eSKp( y)

If pmin <0, then take

o=p+06(p—p), fi=ri+60(ri—7r), i=1,---,M—1,
with
p—¢&
p=_L—"°
£ — Pmin

Here we implicitly modify #y =7y + 6 (rm — M) to keep Zg\i] ;i = p. For simplicity, we can also take 7; =r, i =
1,---,M —1 and implicitly modify f); = p — Zfi}l ri.
4. Modify the mass fraction. For 1 <i < M, define Si={(x, y) € Sk : Ti(x, y) <0}. Take

.. fi o . . —Ti(x, y)p
fi=fi+0|=p—Fi),1<i<M-1, 6= max max |- = —,0 (3.14)
P 1<i<M (x,y)e§; LTiP(X, y) —Ti(X, ¥) 0
5. Modify the pressure. Denote W = (p,m,n, E, 71, ---,7m—_1)T. For each x € S, if W(x) € G, then take 6y = 1. Otherwise,

take
_ p(w)
T pW) — p(Wx)
Then, we use

W =W+ 0(W—Ww), 6= minby,
XeSk
as the new DG approximation. The proof for p(w"") > 0 can be found in [28].

4. Numerical examples

We use the third-order conservative Runge-Kutta method with the choice of optimal coefficients. Also, we expand the
exponential terms by (2.22) as demonstrated in Remark 2.3.

Example 4.1 (Accuracy test for the ODE solver). We first test the stability and accuracy of the ODE solver, and study the
following problem:

u'(t)y=—cu’,  u(0)=uo,
where c is a parameter that we can adjust. The problem becomes stiff as ¢ increases. The exact solution is

u(t) = ug(6etu + 1)~ 18,

We take the final time to be t = 0.5 and denote the total number of time steps as N;.
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Table 4.1

Accuracy test for the new RK method with

up =0.1 and ¢ = 10000.

N¢ L*° norm Order
2 5.90E-11 -
4 7.36E-12 3.00
8 9.18E-13 3.00
16 1.15E-13 3.00
32 1.44E-14 2.99
64 1.78E-15 3.02
Table 4.2
Accuracy test for the new RK method with ug=1.
N¢ c=1 c=100 ¢ =10000
L* norm Order L* norm Order L*° norm Order
Without expansion (2.22)
20 2.04E-06 - 2.67E-02 - 1.74E-01 -
40 2.51E-07 3.02 1.27E-03 439 1.68E-01 0.05
80 3.08E-08 3.03 1.00E-04 3.67 1.57E-01 0.10
160 3.85E-09 3.00 2.00E-05 232 1.36E-01 0.21
320 4.82E-10 3.00 3.32E-06 2.59 9.65E-02 0.49
With expansion (2.22)
20 2.04E-06 - 1.79E-02 - 8.20E-01 -
40 2.51E-07 3.02 1.25E-03 3.84 8.16E-01 0.01
80 3.08E-08 3.03 9.99E-05 3.65 3.91E-02 438
160 3.85E-09 3.00 2.00E-05 232 1.19E-03 5.04
320 4.82E-10 3.00 3.32E-06 2.59 2.18E-04 2.45
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We first take ug = 0.1 with ¢ = 10000. Numerical results for the 3rd order conservative RK method are listed in Table 4.1.
The initial condition is well-prepared, and we can observe optimal convergence rates. Next, we take ug = 1, the results are
given in Table 4.2. For this problem, the initial condition is not well-prepared, and we can observe optimal convergence rate
if the problem is not stiff, e.g. ¢ = 1. If the problem is stiff, e.g. c = 10000, with the exact exponential term, the method may
not converge at the expected rate. However, by applying the Taylor expansion (2.22), we can observe better convergence

rates.

Example 4.2 (Steady-state-preserving test for the ODE solver). We consider the following scalar ODE:

v (t)=1—klulu,

where k is a positive real number. This problem has one equilibrium point u* = 1/«/%, and its exact solution is given by

ﬁcoth(ﬁt + coth~'(vku(0))), u(0) > u*,

ut) = { Lean(vkt + tan=1 (Vku(0))),

7k

ﬁtanh(\/ﬁt + tanh~1(vku(0))), otherwise.

_tan”! (Vku(0))
u(0) <O0andt < —

We take the final time as t = 0.05 and also denote the total number of time steps as N;.

We take k = 10, 000, which corresponds to the equilibrium point u* = 0.01. We consider three different initial values,

(@ u(0) =u",

(b) u(0) = 0.9u*,

(¢) u(0) =1.1u*.

The numerical results computed with different N; are plotted in Fig. 4.1. As one can see, when u is initially at the equilib-
rium (case (a)), our method preserves the steady state exactly as expected. In cases (b) and (c), our method also accurately

captures and preserves the exact equilibrium as the time increases.

Example 4.3 (Accuracy test for 2D system). From now on, we consider the two dimensional reactive Euler equations. In this
example, we consider periodic boundary condition and take u =v =1 and p =0 in the exact solution. We choose M =2
and the source is given as s; = —crg. Hence, we need to solve the following system

{pt+ﬂx+)0y:0a

r)e+ TDx+ )y =

ey, BV L0271,
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0.011
----- Nt=10
e Nt=20 0.01 0.011
Nt=40
Q01051 .. Equilibrium
Nt=10 | Nt=10
0.01 0.0095 e Nt=20 0.0105 Nt=20
I Nt=40 Nt=40
- Equilibrium - Equilibrium
0.0095 |
0.009 0.01
0.009——6.61 0.6 A 603 004 005 0 oo 002 P 605 004 005 0001 002 " 605 004 005
(a) w(0) =u” (b) u(0) = 0.9u" (c) u(0) =1.1u"
Fig. 4.1. Convergence toward the equilibrium.
Table 4.3
Accuracy test for the two dimensional problem.
N Without limiter With limiter
L? norm Order L norm Order L? norm Order L norm Order Percentage
¢ =100, CFL=0.05
10 6.41E-04 - 3.45E-03 - 1.34E-03 - 6.21E-03 - 19.38%
20 8.07E-05 2.99 4.33E-04 2.99 8.50E-05 3.98 4.65E-04 3.74 5.36%
40 1.01E-05 3.00 5.41E-05 3.00 1.02E-05 3.06 5.63E-05 3.05 2.38%
80 1.26E-06 3.00 6.75E-06 3.00 1.27E-06 3.00 7.02E-06 3.00 0.85%
160 1.58E-07 3.00 8.44E-07 3.00 1.62E-07 2.97 8.79E-07 3.00 0.30%
¢ = 10000, CFL = 0.06
10 7.20E-04 - 4.15E-03 - 1.35E-03 - 6.76E-03 - 22.14%
20 9.32E-05 295 6.07E-04 2.77 9.53E-05 3.82 6.11E-04 3.47 4.57%
40 1.17E-05 2.99 7.67E-05 2.98 1.18E-05 3.01 7.67E-05 2.99 2.01%
80 1.47E-06 3.00 9.63E-06 2.99 1.49E-06 2.99 9.63E-06 2.99 0.71%
160 1.84E-07 3.00 1.20E-06 3.00 1.91E-07 2.97 1.20E-06 3.00 0.29%

The initial conditions are given as p(x, y,0) = 0.1(2 + sin(x + y) + cos(x + y)) and r1(x,y,0) = 0.1(1 + sin(x + y)), re-
spectively. For this problem, the total density p should be non-negative and the mass fraction r;/p should be between 0
and 1.

We use piecewise P2 polynomials coupled with third-order Runge-Kutta discretization and take the final time to be
t =0.5. Numerical errors with different ¢ are given in the left column of Table 4.3. We can again observe the expected high
order of accuracy of our scheme. We further add the limiter to preserve the lower bound of p and the two bounds of r1/p,
and show the results in the right part of the error table. The percentage of cells that have been modified by the limiter is
listed in the last column. By comparing the results with and without limiter, we can see that the limiter does not harm the
original high order of accuracy.

Example 4.4 (A 2D detonation wave with 4 species and 1 reaction). In this example, we test a 2D reacting model with four
species and one reaction. A prototype reaction for this model is

CH4 + 20, — COy + 2H;0.

The parameters are T1 =2, B| = 108, oy =0, q1 =200, g, =0, q3=0, g4 =0, M1 =16, My =32, M3 =44, M4 = 18. The
initial values consist of totally burnt gas inside of a circle with radius 10 and totally unburnt gas everywhere outside this
circle. The set up is as follows

[ (2.10x/r, 10y/r,40,0,0.2,0.475,0.325), r< 10,
(0, u, v, P, 21,2,23,24) (%, ¥, 0) = { (1,0,0,1,0.1,0.6,0.2,0.1), r> 10,

where r = /x2 + y2. The computational domain is [0, 50] x [0, 50]. This is a radially symmetric problem and the detonation
front is circular. The boundary conditions are solid-wall boundary conditions on the left and lower boundaries and outflow
boundary conditions on the right and upper boundaries.

We test the 3rd order conservative Runge-Kutta method with piecewise P? polynomials. We first take CFL = 0.1 and
refine the meshes to match the correct positions of the shocks with those given in [29]. Fig. 4.2 shows the one dimensional
cuts of pressure, density and mass fractions along the line x =y at t =2 by taking Ny = Ny, = 600. We can see that our
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Fig. 4.2. Numerical solutions of Example 4.4 along the line x=y at t =2 with Ny =N, =600 and CFL=0.1.
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Fig. 4.3. Example 4.4. Comparison of different RK methods. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

scheme captures the detonations well and preserves the positivity of the density and pressure, and the two bounds 0 and 1
of each mass fraction.

Next, we treat the above numerical solutions as reference solutions and compare our method with the traditional SSP-
RK3 method [26]. To avoid the technique of subcell resolution [28], we also take Ny = N, = 600. As we can see in Figs. 4.3(a)
and 4.3(b), CFL =0.2 is already enough for our scheme to obtain the correct solutions. However, the traditional SSP-RK3
method will blow up when CFL = 0.2. In this case, if we restart the time integration by halving the time step each time
when we detect solutions outside the physical bounds, we can obtain the green curves in Figs. 4.3(a) and 4.3(b). We observe
that the majority time steps will be restarted and the computational cost increases. However, there are still some spurious
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Fig. 4.4. Numerical solutions of Example 4.5 at t = 2.

waves and an even denser mesh is needed. Hence, the computational cost is bigger than our method in order to reach
correct shock locations.

Example 4.5 (A 2D detonation wave with 5 species and 2 reactions). The third 2D example is the 2D reacting model with 5
species and 2 reactions. Consider

Hy + 0, — 20H, 20H + H; — 2H;0,

where N, appearing as a catalyst. The parameters are T; =2, To =10, By =B, =108, ay =02 =0, g1 =0, g2 =0, g3 = —20,
g4 =—100, g5 =0, M1 =2, My =32, M3 =17, M4 =18, M5 = 28. The initial values are given by

_[(,10,0,40,0,0,0.17,0.63,0.2), x<&(y),
(p,u,v,p,21,22,23,24,25) (X, y,0) = { (1.0.,0,1,0.08,0.72.0,0.0.2). x> E().

where
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Fig. 4.5. Density plots of Example 4.5 at different times.

[125—|y—125|, |y—12.5/<75,
§)= [ 5, ly —12.5| > 7.5.

The computational domain is [0, 100] x [0, 25]. The inflow boundary conditions are used on the left boundary and the
outflow boundary conditions are used on the right boundary. The top and bottom boundaries are solid walls. One important
feature of this solution is the appearance of triple points, which travel along the detonation front in the transverse direction
and reflect from the upper and lower walls, forming a cellular pattern. Behind the detonation front, there is a strong shock.

We take Ny = 1000, Ny =251 and CFL =0.1. We first show the solutions at the 1D cross section y =12.5 at t =2
in Fig. 4.4. Since at t =2 the flow has not touched x = 40, the results are computed on the cutoff computational domain
[0, 40] x [0, 25]. We can see that there are some oscillations, but the main purpose of our work is not to control oscillations.
It is easy to see from the pressure, temperature and mass fraction results that there are no spurious waves and our scheme
preserves the bounds. The density contours at different times are shown in Fig. 4.5.

5. Conclusion
In this paper, we have introduced the high-order conservative bound-preserving DG methods for stiff multispecies det-
onation. A new explicit Runge-Kutta time integration has been constructed. Numerical experiments demonstrated the good

performance of the scheme.
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