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Wormhole propagation, arising in petroleum engineering, is used to describe the distri-
bution of acid and the increase of porosity in carbonate reservoir under dissolution of 
injected acid. The important physical features of porosity and acid concentration include 
their boundedness between 0 and 1, as well as the monotone increasing for porosity. How 
to keep these properties in the simulation is crucial to the robustness of the numerical 
algorithm. In this paper, we propose high-order bound-preserving discontinuous Galerkin 
methods to keep these important physical properties. The main technique is to introduce 
a new variable r to replace the original acid concentration and use a consistent flux pair 
to deduce a ghost equation such that the positive-preserving technique can be applied on 
both original and deduced equations. A high-order slope limiter is used to keep a poly-
nomial upper bound which changes over time for r. Moreover, the high-order accuracy is 
attained by the flux limiter. Numerical examples are given to demonstrate the high-order 
accuracy and bound-preserving property of the numerical technique.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

As an important technique of enhanced oil recovery (EOR), acid treatment has been widely practiced in carbonate reser-
voir to improve the productivity of oil wells. In this technique, acid is injected into wells to dissolve the fines deposed in 
wellbore and the rock near the wellbore. By doing so, the permeability and porosity of the rock close to a well can be 
increased prominently, which facilitates oil flow into production well and thereby improves the production rate of oil.

However, the efficiency of this technique has a strong relevance with the dissolution patterns which depend on the 
injection rate. With a very low injection rate, the acid only dissolves the face of wellbore since it will be consummated all 
before they get into deeper region and this scenario is called face dissolution pattern. In contrast, with a very high injection 
rate, the acid can be pushed uniformly into the wellbore region with certain depth and this result is the so-called uniform 
dissolution pattern. In addition to the above two extreme cases, with an appropriate injection rate, wormhole patterns can 
be formed as the injected acid in the rock tends to flow through the paths with high permeability and porosity, which causes 
the permeability and porosity of these paths to be further increased under the dissolution of acid, and facilitate more acid 
to flow through. Therefore, under optimal injection rate, maximum number of narrow channels with high conductivity will 
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be formed in the rocks after the acidizing process. These highly conducting channels, also known as wormholes because 
of their shape, can build a good connectivity between reservoir and wellbore, and improve the productivity of oil well 
enormously. Because of the important role that wormhole plays in improving productivity, a lot of research works have 
been taken to investigate the formation and propagation of wormholes.

In the early days, researchers investigated the wormhole propagation phenomenon by means of experiments [11,5]. Later, 
several mathematical models, such as dimensionless model, capillary tube model, network model, and continuum models, 
were established to help people understand the process of wormhole propagation. Among these models, the most popular 
one is the two-scale continuum model developed by Panga et al. in [16], where the authors proposed a partial differential 
equations (PDE) system to describe the formation and propagation of wormholes. There were a lot of follow-up works based 
on this model. In [33], the authors analyzed the front instability of wormhole propagation theoretically and numerically. In 
[15], Maheshwari et al. presented a 3D simulation for this model. A parallel simulation was conducted by Wu et al. in 
[21] under a modification of flow equation. In [1], the authors studied the numerical-simulation approach for a modified 
model. Later, Wei et al. extended this model from single phase to two-phase flow in [19] and discussed the simulation 
results. Besides the above, many researchers designed specific numerical schemes for this kind of models as well. In [12], 
the authors constructed a conservative scheme for flow and transport based on mixed finite element method. Later, Li 
et al. applied finite difference methods to this problem in [13,14]. Recently, the discontinuous Galerkin (DG) method was 
applied to this model in [8]. In all the above works, some theoretical works, such as the stability and error estimates, were 
established under different norms. However, to the best of our knowledge, no works has been undertaken to preserve the 
boundedness of porosity and concentration of acid without loss of mass conservative. In fact, the boundedness of these 
variables is essential for the stability of numerical simulations. Firstly, the rate of change of porosity φ in this model 
depends on the concentration of acid c f . If the exact solutions contain large gradients or even discontinuities, the numerical 
approximations of c f can be negative, which further leads to φ < 0 in some regions with low porosity. Secondly, the 
oscillations of φ itself near the wormhole may also result in negative values. Both of the above two cases will bring a 
negative coefficient in the diffusion term of the transport equation, leading to ill-posedness of the problems, and finally 
cause the blow-up of the numerical simulations. We will demonstrate this feasibility by a numerical example in Section 6
and show how bound-preserving technique can prevent the blow-up phenomenon. Moreover, as we will see in the later 
section, many coefficients in the model appear as functions of φ, which require φ to take values in the physically relevant 
range [0, 1] as well. To construct high-order bound-preserving technique, we have to apply suitable limiters to modify the 
numerical approximations. Therefore, we would like to use DG methods.

The DG methods become increasingly popular due to their good stability, high-order accuracy, and flexibility on h-p 
adaptivity. In 2010, the genuinely maximum-principle-satisfying high-order DG schemes were constructed for conservation 
laws on rectangular meshes in [29] by Zhang and Shu. The basic idea is to take the test function to be 1 in each cell to 
yield an equation satisfied by the cell average of the target variable r, and prove the desired boundedness of the cell av-
erage r̄. Then a slope limiter which do not affect accuracy and mass conservation can be used to modify the variable r to 
obtain a new one r̃ = r̄ + θ(r − r̄) such that r̃ has the physically relevant bounds. In the case that the variable r only need 
a lower bound zero, this technique is also called positivity-preserving technique. The physically positivity-preserving and 
bound-preserving numerical schemes have been actively studied since then. In 2012, this technique has been successfully 
extended to triangular meshes in [30], where the general criteria for quadrature rule on triangular elements was proposed. 
After that, this technique was applied to many problems including compressible Euler equations with source terms [31], hy-
perbolic equations involving δ-singularities [26,27], relativistic hydrodynamics [17], extended MHD equations [34], shallow 
water equations [22], etc. For convection-diffusion equations, the genuinely second-order maximum-principle-preserving 
technique were introduced in [32]. Subsequently, the extension to third-order or even higher order bound-preserving tech-
niques for parabolic equations were also developed in [25,2,4]. Besides the above, the flux limiter [24,23,10] can also be 
used to obtain the high-order accuracy and maintain the boundedness. However, with the flux limiters we have to modify 
the numerical fluxes, hence the accuracy is not easy to analyze. Recently, in [9,3], the authors studied miscible displace-
ments in porous media and applied the techniques introduced in [32,10,23,24] to preserve the two bounds, 0 and 1, of the 
volumetric fractions. In this paper, we will construct high-order bound-preserving DG schemes for the porosity of the rocks 
φ and the concentration of the acid c f . However, there are significant differences from most of the previous techniques. First 
of all, most of the problems in [24,29] satisfy maximum-principles while the concentration of acid c f does not. To solve this 
problem, we derive a ghost equation satisfied by c = 1 − c f and apply the positivity-preserving technique to both c f and 
c. Secondly, the high-order positivity-preserving technique in this paper is based on the flux limiter [23,10]. The basic idea 
is to combine higher order and lower order fluxes to construct a new one which can yield positive numerical cell averages. 
However, for triangular meshes, first-order fluxes are not easy to construct. Therefore, we will consider the second-order 
flux as the lower order one. Moreover, to obtain the equation satisfied by the cell averages, we need to numerically ap-
proximate r = φc f instead of c f . By doing so, the upper bound of r is not a constant and the traditional slope limiter may 
fail to work [9]. Therefore, a new bound-preserving limiter will be introduced. A similar obstacle appeared in the design 
of high-order bound-preserving methods for general relativistic hydrodynamics, see [20] for the discussion. Finally, different 
from [9,3], the porosity is increasing and less than 1. Therefore, the upper bound of r is changing during time evolution 
and special techniques will be introduced to make φ to be physically relevant. In summary, the whole algorithm can be 
separated into four parts. We first apply positivity-preserving technique to obtain positive φt and use which as another 
source to find the velocity and pressure. Then apply the positivity-preserving technique again to φ and c f simultaneously 
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to obtain positive numerical cell averages by the flux limiter [23,10]. Subsequently, we choose consistent flux pair [9,3] with 
suitable parameters in the flux limiter in the concentration and pressure equations to obtain the positivity of 1 − c f . Finally, 
we introduce suitable limiters to obtain physically relevant numerical approximations.

The rest of the paper is organized as follows. In Section 2, we introduce the mathematical model of wormhole propa-
gation. In Section 3, we establish the DG scheme used in this paper. In Sections 4 and 5, we construct the second-order 
bound-preserving scheme and then extend it to high-order spatial and time discretizations. Some numerical examples are 
given in Section 6. We will end in Section 7 with some concluding remarks.

2. Mathematical model

Let the computational domain � = [0, 2π ] × [0, 2π ] and simulation time J = [0, T ], the mathematical model of the 
wormhole propagation is given as follows:

∂φ

∂t
+ ∇ · u = f , (x, y) ∈ �, 0 < t ≤ T , (2.1)

u = −κ(φ)

μ
∇p, (x, y) ∈ �, 0 < t ≤ T , (2.2)

∂(φc f )

∂t
+ ∇ · (uc f ) = ∇ · (φD∇c f ) + kcav(cs − c f ) + f I cI − f P c f , (2.3)

∂φ

∂t
= αkcav(c f − cs)

ρs
, (x, y) ∈ �, 0 < t ≤ T , (2.4)

where φ is the porosity which is defined as the percentage of the empty space in a rock, κ is the permeability that measures 
the ability for a rock to allow fluid to pass through it, u is the Darcy’s velocity defined as the volume of flow crossing a unit 
across-section per unit time, p is the pressure of fluid in porous media, and μ is the viscosity of fluid. f = f I − f P is the 
external volumetric flow rate with f I = max{ f , 0} being the injection flow rate and f P = − min{ f , 0} being the production 
flow rate. c f , cs and cI are the concentrations of acid in the fluid phase, the fluid-solid interface and in the injected flow, 
respectively. D is the dispersion tensor for the acid in porous media and kc is the local mass-transfer coefficient. av is the 
interfacial area available for reaction, ρs is the density of the rock and α is the dissolving constant of the acid, defined as 
grams of solid dissolved per mole of acid reacted. Moreover, in the case of first order kinetic reaction, the concentration cs
of acid in the fluid-solid interface have a simple relationship with c f :

cs = c f

1+ ks/kc
,

where ks is the kinetic constant for reaction. The coefficients κ and av are functions of φ defined as

κ

κ0
= φ

φ0

(
φ(1− φ0)

φ0(1 − φ)

)2

,
av
a0

= 1− φ

1− φ0
, (2.5)

respectively, where κ0, a0, and φ0 are the initial values for κ, av , φ. Throughout this paper, the values μ, kc, ks, α, ρs are 
positive constants, D, f , f I , f P , cI are known functions independent of time and φ, u, p, c f , are unknown time-dependent 
variables.

We consider impermeable boundary conditions

u · n = 0, (D∇c − cu) · n = 0,

where n is the unit outer normal of the boundary ∂�. The initial concentration and porosity are given as

c f (x, y,0) = c0(x, y), φ(x, y,0) = φ0(x, y), (x, y) ∈ �.

Before we finish this section, we would like to make an important reasonable hypothesis for the initial porosity: 0 <
φ� ≤ φ0(x, y) ≤ φ� < 1.

3. The DG scheme

In this section, we will construct the DG scheme for wormhole propagation on triangular meshes. We first demonstrate 
the notations to be used throughout the paper.

Consider a regular triangulation �h of domain �, i.e. ∃ρ > 0, such that diam(BK ) ≥ ρ diam(K ), ∀K ∈ �h , where BK

is the largest ball contained in K . For any triangle K ∈ �h , we denote the three edges of K to be eiK (i = 1, 2, 3), with 
corresponding lengths �iK (i = 1, 2, 3), unit outer normal vectors ν i

K (i = 1, 2, 3) and neighboring elements Ki(i = 1, 2, 3). We 
denote 
 = ⋃

K∈� {e|e ∈ ∂K } to be the set of all cell interfaces and 
0 = 
 \∂�h as all the interior ones. Set a predetermined 

h



326 Z. Xu et al. / Journal of Computational Physics 390 (2019) 323–341
constant unit vector ν0 which is not parallel to any edge e and define ne as the unit normal vector of each edge e ∈ 
 such 
that ne · ν0 > 0. For any discontinuous function v (scalar or vector) crossing edge e, let v±

e denote its traces on e evaluated 
from K or Ki . The ′±′ for each edge eiK in the cell K is determined by the inner product of ν i

K and ν0 as follows:

v−
e = vK , v+

e = vKi , if ν0 · ν i
K > 0,

v+
e = vK , v−

e = vKi , if ν0 · ν i
K < 0.

Moreover, we define the jump and average of v (either a scalar or a vector) on the cell interface e as

[v]e = v+
e − v−

e , {v}e = 1

2
(v+

e + v−
e ).

The finite element spaces are chosen as

Vh = {v : v|K ∈ Pk(K ), ∀K ∈ �h} and Wh = Vh × Vh,

where Pk(K ) denotes the space of polynomials of degree at most k in K . Then the semidiscrete DG scheme for (2.1)-(2.4)
can be written as: find φ, r, p ∈ Vh and u ∈ Wh such that for any ζ, ξ, v ∈ Vh and η ∈ Wh , the following equations hold:(

∂φ

∂t
, ζ

)
= (u,∇ζ ) +

∑
e∈
0

∫
e

û · ne[ζ ]ds + ( f , ζ ), (3.1)

(a(φ)u,η) = (p,∇ · η) +
∑
e∈


∫
e

p̂ ne · [η]ds, (3.2)

(
∂r

∂t
, ξ

)
= (uc f − φD∇c f ,∇ξ) +

∑
e∈
0

∫
e

ûc f · ne[ξ ]ds + ( f I cI − f P c f − B1(φ)c f , ξ)

−
∑
e∈
0

∫
e

(
{φD(u)∇c f } · ne[ξ ] + {φD(u)∇ξ} · ne[c f ] + α̃

|e| [c f ][ξ ]
)
ds, (3.3)

(
∂φ

∂t
, v

)
= (B2(φ)c f , v), (3.4)

where

a(φ) = μ

k
, B1(φ) = a0(1 − φ)kskc

(1 − φ0)(ks + kc)
, B2(φ) = αa0(1− φ)kskc

ρs(1− φ0)(ks + kc)
.

Moreover, we use a new variable r instead of φc f on the left hand side of (3.3), and define c f as the L2-projection of r
φ

if 
k ≥ 2, while take c f to be the interpolation of r

φ
at the three vertices in each triangle K if k = 1.

Following the idea in [9,3], we take a consistent flux pair û, ̂uc f in the sense that û = ûc f when c f = 1. The consistent 
flux pair is used in the construction of the bound-preserving techniques. The numerical fluxes û, ̂uc f and p̂ in (3.1)-(3.4)
are chosen as

û|e = {u}e, p̂|e = {p}e, ûc f |e = {uc f }e − α[c f ]ene, if e ∈ 
0,

û|e = 0, p̂|e = pK , ûc f |e = 0, if e ∈ ∂� ∩ ∂K . (3.5)

In the DG schemes, we introduced two penalty parameters α and α̃. These two parameters will be chosen by the 
bound-preserving technique.

4. Second-order bound-preserving schemes

In this section, we will construct second-order bound-preserving scheme with forward Euler time discretization. High-
order time discretizations will be discussed in the next section. At time level n, we assume φ0 < φn < 1 and 0 ≤ rn ≤ φn , 
and would like to construct physically relevant numerical approximations at time level n + 1, i.e. φn ≤ φn+1 < 1 and 
0 ≤ rn+1 ≤ φn+1.

At time level n, we will first solve (3.4) for φn
t , then substitute which to the left-hand side of (3.1). With forward Euler 

time discretization, (3.1), (3.3) and (3.4) can be written as
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Fig. 1. Distribution of quadrature points for k = 1 and k = 2.(
φn+1 − φn

�t
, ζ

)
= (u,∇ζ ) +

∑
e∈
0

∫
e

û · ne[ζ ]ds + ( f , ζ ), (4.1)

(
rn+1 − rn

�t
, ξ

)
= (uc f − φD∇c f ,∇ξ) +

∑
e∈
0

∫
e

ûc f · ne[ξ ]ds + ( f I cI − f P c f − B1(φ)c f , ξ)

−
∑
e∈
0

∫
e

(
{φD(u)∇c f } · ne[ξ ] + {φD(u)∇ξ} · ne[c f ] + α̃

|e| [c f ][ξ ]
)
ds, (4.2)

(
φn+1 − φn

�t
, v

)
= (B2(φ)c f , v), (4.3)

with all the superscript n on the right hand sides being omitted for simplicity.

Remark 4.1. After the time discretization, there are two discrete evolution equations for φ. We use (4.3) to find φn+1, then 
the discrete evolution for φ in (4.1) is treated as another source.

Because of the usage of consistent flux pair û and ûc f , we can get a ghost equation for r2 by subtracting (4.2) from (4.1)
and introducing ghost variables c2 = 1 − c f , c2I = 1 − cI , r2 = φc2,(

rn+1
2 − rn2

�t
, ξ

)
= (uc2 − φD∇c2,∇ξ) +

∑
e∈
0

∫
e

ûc2 · ne[ξ ]ds + ( f I c2I − f P c2 + B1(φ)c f , ξ)

−
∑
e∈
0

∫
e

(
{φD(u)∇c2} · ne[ξ ] + {φD(u)∇ξ} · ne[c2] + α̃

|e| [c2][ξ ]
)
ds. (4.4)

Therefore, though we solve (4.1) and (4.2) in the real computation, we analyze (4.2) and (4.4) instead of the former pair as 
the two forms are equivalent.

The second-order bound-preserving scheme is built and analyzed based on (4.2), (4.4) and (4.3).
In this paper, we use the quadrature rule of order k proposed in [28] to compute the integral in cells, and use the 

corresponding k + 1 points Gaussian quadrature rule to evaluate integration on cell interfaces. The quadrature rule of order 
k has the following crucial properties:

• All of the quadrature points lie in the cells with positive weights,
• The quadrature points contains k + 1 Gaussian quadrature points in each of its edges,
• It is exact for polynomials up to degree 2k − 1,

The distribution of quadrature points in the case of k = 1 and k = 2 are shown in Fig. 1. We denote xi,β , β = 1, 2, · · · , k + 1, 
as the quadrature points on eiK with w̃β being the corresponding weights, and denote xγ , γ = 1, 2, · · · , L, as the quadrature 
points in cell K with ŵγ being the corresponding weights. Moreover, we denote wβ , β = 1, 2, · · · , k + 1, as the k + 1
Gaussian quadrature weights on the reference interval [− 1

2 , 12 ]. Based on the above notations, we define the values of o
(o = r, c, φ, p, · · · ) at the quadrature points as oi,βK = o(xi,β ) along the boundary of K and oγ

K = o(xγ ) in cell K .
In (4.3), we take v = 1 in K to obtain the equation satisfied by the cell average of φ:

φ̄n+1
K = φ̄n

K + �tB2(φn)c f . (4.5)

We will demonstrate how to preserve the monotonicity and the upper bound of φ̄n+1 in the following lemma:
K
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Lemma 4.1. Given 0 ≤ rn ≤ φn (0 ≤ cnf ≤ 1) and φn < 1, we have φ̄n
K ≤ φ̄n+1

K < 1, if the time step satisfies

�t < B−1
30 , (4.6)

where B30 is a constant defined as

B30 = αa0kskc
ρs(1− φ�)(ks + kc)

.

Proof. Define B3(x) = αa0kskc
ρs(1−φ0(x))(ks+kc)

. Then B3(x) is independent of time t and it’s easy to check that B2(x, φ) = B3(x) ·
(1 − φ) ≤ B30 · (1 − φ).

Applying quadrature rule in [28] to (4.5) with enough algebraic order k, we have

φ̄n+1
K = φ̄n

K + �tB2(φn)c f

= φ̄n
K + �t

⎛⎝ 3∑
i=1

k+1∑
β=1

w̃β(B3)
i,β
K (1 − φ

i,β
K )(c f )

i,β
K +

L∑
γ =1

ŵγ (B3)
γ
K (1− φ

γ
K )(c f )

γ
K

⎞⎠
≥ φ̄n

K

under the assumption 0 ≤ cnf ≤ 1 and φn
K < 1. Moreover, we have

φ̄n+1
K = φ̄n

K + �t

⎛⎝ 3∑
i=1

k+1∑
β=1

w̃β(B3)
i,β
K (1 − φ

i,β
K )(c f )

i,β
K +

L∑
γ =1

ŵγ (B3)
γ
K (1− φ

γ
K )(c f )

γ
K

⎞⎠
≤ φ̄n

K + �t

⎛⎝ 3∑
i=1

k+1∑
β=1

w̃β(B3)
i,β
K (1− φ

i,β
K ) +

L∑
γ =1

ŵγ (B3)
γ
K (1 − φ

γ
K )

⎞⎠
≤ φ̄n

K + �t

⎛⎝ 3∑
i=1

k+1∑
β=1

w̃β B30(1− φ
i,β
K ) +

L∑
γ =1

ŵγ B30(1− φ
γ
K )

⎞⎠
= φ̄n

K + �tB30

⎛⎝ 3∑
i=1

k+1∑
β=1

w̃β(1− φ
i,β
K ) +

L∑
γ =1

ŵγ (1− φ
γ
K )

⎞⎠
= φ̄n

K + �tB30(1 − φ̄n
K ).

Thus φ̄n+1
K < 1 under the condition (4.6). �

The bound-preserving property for r̄n+1
K is relatively difficult to derive. Therefore, instead of obtaining 0 ≤ r̄n+1

K ≤ φ̄n+1
K

directly, we apply the positivity-preserving technique to r̄n+1
K and r̄n+1

2K in (4.2) and (4.4), respectively, which further yields 
0 ≤ r̄n+1

K ≤ φ̄n+1
K due to the fact that r̄n+1

K + r̄n+1
2K = φ̄n+1

K . To construct the positivity-preserving technique, in (4.2), we take 
ξ = 1 in K to obtain the equation satisfied by the cell average of r

r̄n+1
K = Hc

K (r, c f ,u) + Hd
K (r, c f ,u, φ) + Hs

K (r, c f , cI , f P , f I , φ), (4.7)

where

Hc
K (r, c f ,u) = 1

3
r̄nK − λ

3∑
i=1

∫
eiK

ûc f · ν i
K ds, (4.8)

Hd
K (r, c f ,u, φ) = 1

3
r̄nK + λ

3∑
i=1

∫
eiK

(
{φD(u)∇c} · ν i

K + α̃

�iK

[c f ]ne · ν i
K

)
ds, (4.9)

Hs
K (r, c f , cI , f P , f I , φ) = 1

3
r̄nK + �t f I cI − f P c f − B1(φ)c f , (4.10)

with λ = �t
|K | being the ratio of time step and area of triangular element K , and f P c f − f I cI − B1(φ)c f being the cell average 

of f P c f − f I cI − B1(φ)c f on K . For simplicity, from now on, we will use D(u) for φD(u) and omit φ. We will demonstrate 
the positivity-preserving property for r̄n+1 by collecting the following three lemmas.
K
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Lemma 4.2. Given rn > 0 (cnf > 0), we have Hs
K (r, c f , cI , f P , f I , φ) > 0, if the time step satisfies

�t ≤ φ�

6 f P M
, �t ≤ φ�

6B1(φ�)
, (4.11)

where

f P M = max
i,β,γ

{( f P )
i,β
K , ( f P )

γ
K }.

Proof. We can split (4.10) as

Hs
K = �t f I cI +

(
1

6
r̄nK − �t f P c f

)
+

(
1

6
r̄nK − �tB1(φ)c f

)
:= L1 + L2 + L3.

It is easy to check that L1 = �t f I cI ≥ 0. We only need to consider L2 and L3. Applying quadrature rule in [28] with enough 
algebraic order k to L2 and L3, respectively, we can get

L2 = 1

6
r̄nK − �t f P c f

= 1

6

⎛⎝ 3∑
i=1

k+1∑
β=1

w̃βr
i,β
K +

L∑
γ =1

ŵγ r
γ
K

⎞⎠ − �t

⎛⎝ 3∑
i=1

k+1∑
β=1

w̃β( f P )
i,β
K (c f )

i,β
K +

L∑
γ =1

ŵγ ( f P )
γ
K (c f )

γ
K

⎞⎠
=

3∑
i=1

k+1∑
β=1

w̃β

(
1

6
ri,βK − �t( f P )

i,β
K (c f )

i,β
K

)
+

L∑
γ =1

ŵγ

(
1

6
rγK − �t( f P )

γ
K (c f )

γ
K

)

≥
3∑

i=1

k+1∑
β=1

w̃β

(
1

6
ri,βK − �t( f P )

i,β
K ri,βK φ−1

�

)
+

L∑
γ =1

ŵγ

(
1

6
rγK − �t( f P )

γ
K r

γ
Kφ−1

�

)

=
3∑

i=1

k+1∑
β=1

w̃β

(
1

6
− �t( f P )

i,β
K φ−1

�

)
ri,βK +

L∑
γ =1

ŵγ

(
1

6
− �t( f P )

γ
Kφ−1

�

)
rγK .

Thus L2 > 0 under the condition (4.11).

L3 = 1

6
r̄nK − �tB1(φ)c f

= 1

6

⎛⎝ 3∑
i=1

k+1∑
β=1

w̃βr
i,β
K +

L∑
γ =1

ŵγ r
γ
K

⎞⎠ − �t

⎛⎝ 3∑
i=1

k+1∑
β=1

w̃β B1(φ
i,β
K )(c f )

i,β
K +

L∑
γ =1

ŵγ B1(φ
γ
K )(c f )

γ
K

⎞⎠
=

3∑
i=1

k+1∑
β=1

w̃β

(
1

6
ri,βK − �tB1(φ

i,β
K )(c f )

i,β
K

)
+

L∑
γ =1

ŵγ

(
1

6
rγK − �tB1(φ

γ
K )(c f )

γ
K

)

≥
3∑

i=1

k+1∑
β=1

w̃β

(
1

6
ri,βK − �tB1(φ

i,β
K )ri,βK φ−1

�

)
+

L∑
γ =1

ŵγ

(
1

6
rγK − �tB1(φ

γ
K )rγKφ−1

�

)

=
3∑

i=1

k+1∑
β=1

w̃β

(
1

6
− �tB1(φ

i,β
K )φ−1

�

)
ri,βK +

L∑
γ =1

ŵγ

(
1

6
− �tB1(φ

γ
K )φ−1

�

)
rγK

≥
3∑

i=1

k+1∑
β=1

w̃β

(
1

6
− �tB1(φ�)φ

−1
�

)
ri,βK +

L∑
γ =1

ŵγ

(
1

6
− �tB1(φ�)φ

−1
�

)
rγK .

Thus L3 > 0 under the condition (4.11). To sum up, Hs
K (r, c f , cI , f P , f I , φ) = L1 + L2 + L3 > 0 under the condition (4.11). �

In the following two lemmas, we only consider second order scheme, i.e. we use P1 element, and apply quadrature rule 
in [28] with k = 1 in cell and the corresponding 2 point Gaussian quadrature rule on cell interface. Note that in this case, 
w̃β = 1wβ .
3
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Lemma 4.3. Given rn > 0 (cnf > 0), we have Hc
K (r, c f , u) > 0, if α satisfies

α ≥ max
i,β,K

{|ui,β
K |}, (4.12)

and the time step satisfies

�t ≤ min
i,β,m

{ |K |φ(Vm)

9�iK (|ui,β
K | + α)

}, (4.13)

where φ(Vm), m = 1, 2, 3 are the values of φ at vertices Vm ∈ K at time level n.

Proof. Applying quadrature rule for k = 1, we can rewrite (4.8) as

Hc
K = 1

3
r̄nK − λ

3∑
i=1

∫
eiK

ûc f · ν i
K ds

= 1

9

⎛⎝ 3∑
i=1

2∑
β=1

wβr
i,β
K

⎞⎠ − λ

3∑
i=1

2∑
β=1

wβ�iK (ûc f )
i,β

eiK
· ν i

K

=
3∑

i=1

2∑
β=1

wβ

(
1

9
ri,βK − λ�iK (ûc f )

i,β

eiK
· ν i

K

)

=
3∑

i=1

2∑
β=1

wβ

(
1

9
ri,βK − λ�iK

(
1

2
ui,β
Ki

· ν i
K (c f )

i,β
Ki

+ 1

2
ui,β
K · ν i

K (c f )
i,β
K − α(c f )

i,β
Ki

+ α(c f )
i,β
K

))

=
3∑

i=1

2∑
β=1

wβ

{(
1

18
ri,βK − 1

2
λ�iK

(
ui,β
Ki

· ν i
K (c f )

i,β
Ki

− α(c f )
i,β
Ki

+ α(c f )
i,β
K

))

+
(

1

18
ri,βK − 1

2
λ�iK

(
ui,β
K · ν i

K (c f )
i,β
K − α(c f )

i,β
Ki

+ α(c f )
i,β
K

))}

:=
3∑

i=1

2∑
β=1

wβ

(
Li,β1 + Li,β2

)
.

Since c f and r are both approximated by linear functions, they can be represented as a linear combination of their values 
on three vertices {V1, V2, V3} of K , i.e. for any point xρK ∈ K ,

(c f )
ρ
K =

3∑
m=1

μ
ρ
mc f (Vm), rρK =

3∑
m=1

μ
ρ
mr(Vm) =

3∑
m=1

μ
ρ
mφ(Vm)c f (Vm), (4.14)

where 0 ≤ μ
ρ
1 , μρ

2 , μρ
3 ≤ 1 and μρ

1 + μ
ρ
2 + μ

ρ
3 = 1 are the barycentric coordinates of xρK in K . Then we have

Li,β1 = 1

18
ri,βK − 1

2
λ�iK

(
ui,β
Ki

· ν i
K (c f )

i,β
Ki

− α(c f )
i,β
Ki

+ α(c f )
i,β
K

)
=

3∑
m=1

1

18
μ

i,β
m φ(Vm)c f (Vm) − 1

2
λ�iK

(
ui,β
Ki

· ν i
K (c f )

i,β
Ki

− α(c f )
i,β
Ki

+ α

3∑
m=1

μ
i,β
m c f (Vm)

)

=
3∑

m=1

μ
i,β
m

(
1

18
φ(Vm) − 1

2
λ�iKα

)
c f (Vm) + 1

2
λ�iK (α − ui,β

Ki
· ν i

K )(c f )
i,β
Ki

,

and

Li,β2 = 1

18
ri,βK − 1

2
λ�iK

(
ui,β
K · ν i

K (c f )
i,β
K − α(c f )

i,β
Ki

+ α(c f )
i,β
K

)
=

3∑ 1

18
μ

i,β
m φ(Vm)c f (Vm) − 1

2
λ�iK

(
ui,β
K · ν i

K

3∑
μ

i,β
m c f (Vm) − α(c f )

i,β
Ki

+ α

3∑
μ

i,β
m c f (Vm)

)

m=1 m=1 m=1
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Fig. 2. The points chosen to evaluate directional derivative in the diffusion part.

=
3∑

m=1

μ
i,β
m

(
1

18
φ(Vm) − 1

2
λ�iK (ui,β

K · ν i
K + α)

)
c f (Vm) + 1

2
λ�iKα(c f )

i,β
Ki

.

Therefore Li,β1 , Li,β2 > 0 under the conditions (4.12) and (4.13), respectively, which further yields Hc
K > 0. �

Lemma 4.4. Given rn > 0 (cnf > 0), we have Hd
K (r, c f , u, φ) > 0, if α̃ satisfies

α̃ ≥ (3 + √
3)�

2ρ
, (4.15)

and the time step satisfies

�t ≤ min
m

{ |K |φ(Vm)

18α̃
}, �t ≤ min

m
{ ρ|K |φ(Vm)

27(3+ √
3)�

}, (4.16)

where φ(Vm), m = 1, 2, 3 are the values of φ at the vertices Vm ∈ K at time level n, ρ is the parameter used in the definition of 
regularity of �h, and � is the largest spectral radius of D in K ’s.

Proof. For the diffusion part

Hd
K (r, c f ,u, φ) = 1

3
r̄nK + λ

3∑
i=1

∫
eiK

(
{D(u)∇c f } · ν i

K + α̃

�iK

[c f ]ne · ν i
K

)
ds.

Since D is symmetric, following [32], we can rewrite the diffusion term as a directional derivative

D∇c f · ν i
K = Dν i

K · ∇c f = Si
∂c f

∂li
,

where Si = ‖Dν i
K ‖ ≤ � and li = Dν i

K /‖Dν i
K ‖. Define SiK = Si |K , SiKi

= Si |Ki and liK = li |K , liKi
= li |Ki . For each quadrature 

point xi,βK on the edge eiK , we can find the corresponding points x̃i,βK ∈ ∂K and x̃i,βKi
∈ ∂Ki such that 

−−−−→
x̃i,βK xi,βK and 

−−−−→
xi,βK x̃i,βKi

are 
the same direction with liK and liKi

, respectively. See Fig. 2 for an illustration. At the quadrature point x = xi,βK , we have

{D(u)∇c f }i,βeiK · ν i
K = 1

2
D(ui,β

K )(∇c f )
i,β
K · ν i

K + 1

2
D(ui,β

Ki
)(∇c f )

i,β
Ki

· ν i
K

= 1

2
Si,βK

(c f )
i,β
K − c f (x̃

i,β
K )

‖xi,βK − x̃i,βK ‖
+ 1

2
Si,βKi

c f (x̃
i,β
Ki

) − (c f )
i,β
Ki

‖x̃i,βKi
− xi,βK ‖

= Si,βK

2‖xi,βK − x̃i,βK ‖
(c f )

i,β
K − Si,βKi

2‖x̃i,βKi
− xi,βK ‖

(c f )
i,β
Ki

− Si,βK

2‖xi,βK − x̃i,βK ‖
c f (x̃

i,β
K )

+ Si,βKi

2‖x̃i,βKi
− xi,βK ‖

c f (x̃
i,β
Ki

).
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Therefore, we can rewrite Hd
K (r, c f , u, φ) as

Hd
K = 1

6
r̄nK + 1

6
r̄nK + λ

3∑
i=1

∫
eiK

(
{D(u)∇c f } · ν i

K + α̃

�iK

[c f ]ne · ν i
K

)
ds

= 1

6
r̄nK + 1

18

3∑
i=1

2∑
β=1

wβr
i,β
K + λ

3∑
i=1

2∑
β=1

wβ�iK

(
{D(u)∇c f }i,βeiK · ν i

K + α̃

�iK

(c f )
i,β
Ki

− α̃

�iK

(c f )
i,β
K

)

= 1

6
r̄nK + 1

18

3∑
i=1

2∑
β=1

3∑
m=1

wβμ
i,β
m φ(Vm)c f (Vm)

+ λ

3∑
i=1

2∑
β=1

wβ�iK

(
{D(u)∇c f }i,βeiK · ν i

K + α̃

�iK

(c f )
i,β
Ki

− α̃

�iK

(c f )
i,β
K

)

= 1

6
r̄nK +

3∑
i=1

2∑
β=1

wβ

(
1

18

3∑
m=1

μ
i,β
m φ(Vm)c f (Vm) + λ�iK

(
{D(u)∇c f }i,βeiK · ν i

K + α̃

�iK

(c f )
i,β
Ki

− α̃

�iK

(c f )
i,β
K

))

:=
3∑

i=1

2∑
β=1

wβ L
i,β
1 + L2,

where

Li,β1 = 1

18

3∑
m=1

μ
i,β
m φ(Vm)c f (Vm) + λ�iK

⎡⎣(
Si,βK

2‖xi,βK − x̃i,βK ‖
− α̃

�iK

)
(c f )

i,β
K +

⎛⎝ α̃

�iK

− Si,βKi

2‖x̃i,βKi
− xi,βK ‖

⎞⎠ (c f )
i,β
Ki

+ Si,βKi

2‖x̃i,βKi
− xi,βK ‖

c f (x̃
i,β
Ki

)

⎤⎦ ,

L2 = 1

6
r̄nK − λ�iK

3∑
i=1

2∑
β=1

wβ S
i,β
K

2‖xi,βK − x̃i,βK ‖
c f (x̃

i,β
K ).

We need to make Li,β1 , L2 > 0. In fact

Li,β1 = 1

18

3∑
m=1

μ
i,β
m φ(Vm)c f (Vm) + λ�iK

(
Si,βK

2‖xi,βK − x̃i,βK ‖
− α̃

�iK

)
(c f )

i,β
K

+ λ�iK

⎛⎝ α̃

�iK

− Si,βKi

2‖x̃i,βKi
− xi,βK ‖

⎞⎠ (c f )
i,β
Ki

+ λ�iK

Si,βKi

2‖x̃i,βKi
− xi,βK ‖

c f (x̃
i,β
Ki

)

=
3∑

m=1

μ
i,β
m

(
1

18
φ(Vm) + λ�iK

(
Si,βK

2‖xi,βK − x̃i,βK ‖
− α̃

�iK

))
c f (Vm)

+ λ�iK

⎛⎝ α̃

�iK

− Si,βKi

2‖x̃i,βKi
− xi,βK ‖

⎞⎠ (c f )
i,β
Ki

+ λ�iK

Si,βKi

2‖x̃i,βKi
− xi,βK ‖

c f (x̃
i,β
Ki

).

Since Si,βK , Si,βKi
≤ �, to make Li,β1 > 0, we need

α̃ ≥ �iK�

2‖x̃i,βKi
− xi,βK ‖

, λ�iK

(
α̃

�iK

− Si,βK

2‖xi,βK − x̃i,βK ‖

)
≤ 1

18
φ(Vm).

It’s easy to compute that

�iK

‖x̃i,βKi
− xi,βK ‖

≤ 3+ √
3

min j sin
(
θ
j
K

) ,
i
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Fig. 3. Triangle Ki and its sine.

where the θ j
Ki

is the angle in triangle Ki which is opposite to the edge e j
Ki
. From Fig. 3 and regularity assumption of �h , for 

all angle θ j
Ki

in Ki , we have

sin θ
j
Ki

= h

s
≥ diam(BKi )

diam(Ki)
≥ ρ.

Therefore Li,β1 > 0 under the conditions (4.15) and (4.16). As for L2, similar to (4.14), we write

c f (x̃
i,β
K ) =

3∑
m=1

μ̃
i,β
m c f (Vm),

with 0 ≤ μ̃
i,β
m ≤ 1 and 

3∑
m=1

μ̃
i,β
m = 1, and use the fact that w1 = w2 = 1

2 . Then

L2 =1

6
r̄nK − λ�iK

3∑
i=1

2∑
β=1

3∑
m=1

μ̃
i,β
m Si,βK

4‖xi,βK − x̃i,βK ‖
c f (Vm)

=
3∑

m=1

⎛⎝ 1

18
φ(Vm) − λ�iK

3∑
i=1

2∑
β=1

μ̃
i,β
m Si,βK

4‖xi,βK − x̃i,βK ‖

⎞⎠ c f (Vm)

≥
3∑

m=1

⎛⎝ 1

18
φ(Vm) − λ

3∑
i=1

2∑
β=1

(3+ √
3)�

4ρ

⎞⎠ c f (Vm)

=
3∑

m=1

(
1

18
φ(Vm) − λ

3(3+ √
3)�

2ρ

)
c f (Vm).

Thus, L2 > 0 under the condition (4.16). Therefore we have Hd
K (r, c f , u, φ) > 0 under the conditions (4.15) and (4.16). �

Collecting the three lemmas above, we have the following Lemma:

Lemma 4.5. Given rn > 0, and the parameters α and α̃ satisfy (4.12) and (4.15), respectively. Then r̄n+1
K > 0 under the conditions 

(4.11), (4.13) and (4.16).

Compare the equation (4.4) with (4.2), we can observe that the equation for r2 is almost the same as that for r, except 
that its source term contains a positive term +B1(φ)c f instead of −B1(φ)c f , which will benefit its positivity. Therefore, we 
can get a similar lemma for r2:

Lemma 4.6. Given rn2 > 0, and the parameters α and α̃ satisfy (4.12) and (4.15), respectively. Then r̄n+1
2K > 0 under the conditions 

(4.11), (4.13) and (4.16).

Combine Lemmas 4.5, 4.6 and 4.1, and use the fact that rn + rn2 = φn, rn+1 + rn+1
2 = φn+1, we finally reach our main 

theorem:

Theorem 4.7. Given 0 ≤ rn ≤ φn < 1, if we chose consistent flux pair û, ̂uc f and the penalty parameters α and α̃ satisfying (4.12) and 
(4.15), respectively, then φ̄n

K ≤ φ̄n+1
K < 1 and 0 ≤ r̄n+1

K ≤ φ̄n+1
K under the conditions (4.6), (4.11), (4.13), and (4.16).
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5. Bound-preserving technique for high-order schemes

In this section, we proceed to discuss the high-order bound-preserving technique.

5.1. High-order spatial discretization

In Lemmas 4.3 and 4.4, our proofs are based on P1 elements. To attain high-order accuracy, we use Pk(k ≥ 2) polynomials 
and apply the flux limiters following [10,23].

We write (4.7) as

r̄n+1
K = r̄nK + λ

3∑
i=1

(
θeiK

F̂eiK
+ (1 − θeiK

) f̂eiK

)
+ �ts̄,

where

F̂eiK
= −

∫
eiK

ûc f · ν i
K ds +

∫
eiK

(
{D(u)∇c f } · ν i

K + α̃

�iK

[c f ]ne · ν i
K

)
ds, s̄ = f I cI − f P c f − B1(φ)c f (5.1)

are high-order flux and source, respectively, and f̂eiK is the second-order bound-preserving flux analyzed in Section 4. In 
Lemma 4.2, we considered high-order approximations of the source term. Therefore, we only discuss the modification of the 
high-order fluxes in this section, which is implemented by choosing an appropriate parameter θeiK . The cell average can be 
written as

r̄n+1
K = r̄nK + λ

3∑
i=1

f̂eiK
+ λ

3∑
i=1

θeiK
( F̂eiK

− f̂eiK
) + �ts̄ = r̄n+1

L + λ

3∑
i=1

θeiK
( F̂eiK

− f̂eiK
),

where

r̄n+1
L = r̄nK + λ

3∑
i=1

f̂eiK
+ �ts̄

is the second-order cell average which was proved to be physically relevant if �t is sufficiently small. To compute f̂eiK
, 

we replace the high-order c f in F̂ei by a second-order approximation č f ∈ [0, 1]. To construct it, we can simply apply the 
second-order L2 projection to the high-order rn to get řnK and high-order φn to get φ̌n

K , and then apply the limiter discussed 
at the end of this section with k = 1 to obtain 0 ≤ řnK ≤ φ̌n

K . The č f can be obtained as the linear interpolation of řn

φ̌n
at the 

three vertices in each cell K . We choose the parameter θeiK as follows:

1. For any K ∈ �h , set β1
K , β2

K = 0.

2. For each edge eiK , if F̂eiK − f̂eiK
≤ 0, set β1

K = β1
K + F̂eiK

− f̂eiK
, otherwise set β2

K = β2
K + F̂eiK

− f̂eiK
.

3. Take θK ,eiK
= min

{
− r̄n+1

L

λβ1
K

,
φ̄n+1
K − r̄n+1

L

λβ2
K

,1

}
.

4. For any e ∈ 
0, we can find K1, K2 ∈ �h such that K1 ∩ K2 = e. We take θe = min{θK1,eiK
, θK2,eiK

}.

The above algorithm can guarantee the monotone increasing and bound-preserving properties for the cell averages of 
φ and r: if 0 ≤ rn ≤ φn < 1, then φ̄n

K ≤ φ̄n+1
K < 1 and 0 ≤ r̄n+1

K ≤ φ̄n+1
K , under the appropriate penalty parameters α, α̃ and 

sufficiently small time step �t . It remains to use proper slope limiter to modify φn+1
K and rn+1

K such that φn
K ≤ φn+1

K < 1
and 0 ≤ rn+1

K ≤ φn+1
K without loss of cell average and accuracy. As discussed in [9], the traditional slope limiter [29] cannot 

be applied since the bounds of φn+1
K , rn+1

K are not constants but polynomials changing overtime. In this paper, we extend 
the limiter introduced in [3] and the algorithm can be described as follows: For polynomials u(x), U (x) ∈ Pk(K ) such that 
0 ≤ ū ≤ Ū and U� ≤ U (x) ≤ U � , where U�, U � are two positive constants. We obtain a modified ũ(x) in the following way:

1. Define Ŝ = {x ∈ K : u(x) < 0}. Take

û = u + θ

(
ū

Ū
U − u

)
, θ = max

y∈ Ŝ

{ −u(y)Ū

ūU (y) − u(y)Ū
,0

}
. (5.2)

2. Set v = U − û, and repeat the above step for v to get v̂ .
3. Take ũ = U − v̂ as the new approximation for u(x).
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Fig. 4. Triangular mesh (N = 8).

Table 1
Example 6.1: Accuracy test for c f and φ with and without bound-preserving technique.

c f φ

no limiter with limiter no limiter with limiter

N L2 error order L2 error order L2 error order L2 error order

4 2.90e-1 – 9.48e-2 – 1.82e-1 – 1.11e-1 –
8 2.46e-2 3.56 1.21e-2 2.97 2.50e-2 2.87 1.50e-2 2.89
16 1.83e-3 3.74 1.16e-3 3.39 3.18e-3 2.97 1.91e-3 2.97
32 1.40e-4 3.71 1.47e-4 2.98 4.00e-4 2.99 2.39e-4 2.99
64 1.29e-5 3.47 1.53e-5 3.26 5.00e-5 3.00 2.99e-5 3.00

N L∞ error order L∞ error order L∞ error order L∞ error order

4 1.52e-1 – 2.45e-2 – 5.01e-2 – 2.64e-2 –
8 7.08e-3 4.42 3.61e-3 2.76 7.11e-3 2.82 3.98e-3 2.73
16 7.21e-4 3.29 6.21e-4 2.54 9.16e-4 2.96 5.20e-4 2.94
32 1.12e-4 2.69 1.33e-4 2.22 1.15e-4 2.99 6.56e-5 2.99
64 9.66e-6 3.53 1.53e-5 3.13 1.44e-5 3.00 8.22e-6 3.00

This limiter is proved in [3] to have the following three necessary properties:

• boundness: 0 ≤ ũ(x) ≤ U (x), ∀x ∈ K ,
• average: 

∫
K ũdx = ∫

K udx,
• accuracy: ‖u(x) − ũ(x)‖∞ ≤ Chk+1, h = diam(K ).

We use such a slope limiter in the following way: To obtain φn
K ≤ φ̃n+1

K < 1, we take u = φn+1
K − φn

K and U = 1 − φn
K in the 

limiter, and then φ̃n+1
K = ũ + φn

K ; To obtain 0 ≤ r̃n+1
K ≤ φ̃n+1

K , we take u = rn+1
K and U = φ̃n+1

K to apply this limiter directly.

5.2. High-order time discretization

In the previous subsection, we only discussed the bound-preserving technique based on Euler forward time discretization. 
The technique can be extended to high-order time integrations that are convex combinations of Euler forwards. In this paper, 
we use third-order strong stability preserving (SSP) time discretization to solve the ODE system ut = L(u):

u(1) =un + �tL(u, tn),

u(2) =3

4
un + 1

4

(
u(1) + �tL(u(1), tn+1)

)
,

un+1 =1

3
un + 2

3

(
u(2) + �tL(u(2), tn + �t

2
)

)
.

Another choice is to use third-order SSP multi-step method which is also a convex combination of forward Euler:

un+1 = 16

27
(un + 3�tL(un, tn)) + 11

27
(un−3 + 12

11
�tL(un−3, tn−3)).

More details can be found in [6,7,18].
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Fig. 5. Evolution of c f without limiter.

Fig. 6. Evolution of c f with limiter.
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Fig. 7. Evolution of extreme value of c f and φ in �.

6. Numerical experiments

In this section, we provide numerical experiments to show the performance of the high-order bound-preserving DG 
scheme. In all the examples, we use third-order SSP Runge-Kutta discretization in time and P2 element in space unless 
otherwise stated. To construct �h , for simplicity, we first equally divide � into N × N rectangles and then obtain a uniform 
triangular mesh by equally dividing every rectangle into two. See Fig. 4 for an illustration. However, the algorithms can be 
applied for any unstructured triangular meshes.

Example 6.1. We first test the accuracy of the high-order bound-preserving DG scheme. Because of the restriction 0 ≤ cI ≤ 1, 
f = f I − f P and f I , f P ≥ 0 of right hand side, it’s difficult to find a suitable exact solution. Therefore, we use periodic 
boundary condition and predetermine the Darcy’s velocity u = (1, 1)T in order to use spectral method to give a reference 
solution. Initial conditions are given as

c f (x, y,0) = 0.5+ 0.5cos(x) cos(y) φ(x, y,0) = 0.5+ 0.4 sin(x) sin(y).

The source functions are taken as

f I = 2φt, f P = −φt, cI = 1,

where φt is obtained in the computation. The parameters are taken as:
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Fig. 8. Concentration of acid with time evolution.

D = 0.1‖u‖, kc = ks = a0 = α

ρs
= 1

We use the uniform triangular meshes with N = 4, 8, 16, 32, 64, respectively, over the computational domain � =
[0, 2π ] × [0, 2π ] and set �t = 0.001h2 to reduce the time error. Moreover, the reference solution is obtained by spectral 
method on 64 × 64 equispaced grid points with fourth-order Runge–Kutta time discretization. The computational results 
at T = 0.01 are shown in Table 1, illustrating the error and convergence order of c f and φ, with and without bound-
preserving technique respectively. From the table, we can observe optimal convergence rates. Therefore, the flux limiter and 
slope limiter do not degenerate the convergence order.

Example 6.2. We take the initial conditions with large gradients

c f (x, y,0) = sign(sin(2x) sin(2y)) + 1

2
, φ(x, y,0) = 0.9

sign(sin(x) sin(y)) + 1

2
+ 0.05.

The source functions are taken as

f I = (1+ π2

2
φ̄t)max{sin(2x) sin(2y),0}, f P = −min{sin(2x) sin(2y),0}, cI = 0,

where φ̄t is the average of φt over the whole computational domain. Other parameters are chosen as

μ = k0 = ks = kc = 1, a0 = 0.5, D(u) = 0.01.
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Fig. 9. Porosity of rock with time evolution.

This example is used to demonstrate the necessity of the bound-preserving technique. The simulation will blow up 
without the technique due to the negativity of φ in some region while the bound-preserving scheme performs well.

We take N = 40 over the computational domain � = [0, 2π ] × [0, 2π ]. Moreover, we use P1 element in this example 
since it is more suitable to demonstrate the stability than higher order ones, and set the time-step as small as �t = 0.001h2. 
All these effort is made to prevent the simulation without limiter from blowing up.

However, numerical simulation shows that the simulation without bound-preserving technique blows up at about T =
0.0155. The distributions of c f before blow-up is shown in Fig. 5. While with the settings exactly the same, the simulation 
with bound-preserving technique is stable. The distribution of c f with time evolution in this case is given in Fig. 6. We can 
see that the numerical approximations are high oscillatory. This is because the bound-preserving technique only preserves 
the bound but cannot suppress the oscillations. Some suitable limiters such as TVD, TVB and WENO limiters can suitably 
smooth the numerical approximations. Though oscillatory, the numerical simulation did not blow up. Therefore, with the 
bound-preserving technique, the numerical scheme is quite stable. What’s more, we plot the evolution of extreme value of 
c f and φ in � along simulation time in Fig. 7 to illustrate the effectiveness of bound-preserving technique more clearly. We 
can observe that without the bound-preserving limiter, the concentration of acid c f can be negative and greater than 1, and 
the porosity φ can also be negative, leading to ill-posed problems. With the bound-preserving technique, all the numerical 
approximations are within the physical bounds.

Example 6.3. We simulate a single wormhole propagation experiment in rectangular rock tube, from which we can observe 
the formation and propagation of a wormhole starting from a singular point. The parameters are taken as

D = 0, K0 = 10−9 m2, T = 15 s,
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α = 100 kg/mol, kc = 1 m/s, ks = 10 m/s,

μ = 10−2 Pa s, f I = f p = 0, c f 0 = 0,

a0 = 2 m−1, ρs = 2500 kg/m2, φ0 = 0.2.

Moreover, the computational domain is � = [0, 0.2 m] × [0, 0.2 m]. To investigate the phenomenon of wormhole propaga-
tion, we set a singular area with high porosity φ = 0.4 and corresponding permeability determined by (2.5) which is about 
10−8 m2 on the middle of the left boundary with size 0.01 m × 0.01 m. The left and right boundary of the domain are 
Dirichlet conditions with pressure pd = 10000 Pa and pd = −10000 Pa, respectively. The upper and lower boundaries of 
the domain are impermeable, i.e. u · n = 0. The acid flows into the rock from the left boundary with a concentration of 
cI = 1 mol/m2 and drained out of it from the right boundary.

The contour plots of the concentration of acid and porosity of the rock at different time are shown in Figs. 8-9, from 
which we can observe c f , φ ∈ [0, 1] and the phenomenon of wormhole propagation along the whole simulation.

7. Concluding remarks

In this paper, we constructed high-order bound-preserving DG methods for wormhole propagation on triangular meshes. 
We have obtained the bound-preserving and monotone-increasing properties for concentration and porosity, respectively, 
with high-order accuracy. Numerical experiments have shown the accuracy and effectiveness of the bound-preserving tech-
nique.
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