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Abstract. In this paper, we develop high-order bound-preserving discontinuous Galerkin (DG)
methods for multispecies and multireaction chemical reactive flows. In this problem, density and
pressure are nonnegative, and the mass fraction for the ith species, denoted as z;, 1 < ¢ < M,
should be between 0 and 1, where M is the total number of species. In [C. Wang, X. Zhang, C.-W.
Shu, and J. Ning, J. Comput. Phys., 231 (2012), pp. 653-665], the authors have introduced the
positivity-preserving technique that guarantees the positivity of the numerical density, pressure, and
the mass fraction of the first M — 1 species. However, the extension to preserve the upper bound 1
of the mass fraction is not straightforward. There are three main difficulties. First of all, the time
discretization in [C. Wang, X. Zhang, C.-W. Shu, and J. Ning, J. Comput. Phys., 231 (2012), pp.
653-665] was based on Euler forward. Therefore, for problems with stiff source, the time step will
be significantly limited. Secondly, the mass fraction does not satisfy a maximum principle, and most
of the previous techniques cannot be applied. Thirdly, in most of the previous works for gaseous
denotation, the algorithm relies on the second-order Strang splitting methods where the flux and stiff
source terms can be solved separately, and the extension to high-order time discretization seems to
be complicated. In this paper, we will solve all the three problems given above. The high-order time
integration does not depend on the Strang splitting; i.e., we do not split the flux and the stiff source
terms. Moreover, the time discretization is explicit and can handle the stiff source with large time
step. Most importantly, in addition to the positivity-preserving property introduced in [C. Wang,
X. Zhang, C.-W. Shu, and J. Ning, J. Comput. Phys., 231 (2012), pp. 653-665], the algorithm can
preserve the upper bound 1 for each species. Numerical experiments will be given to demonstrate
the good performance of the bound-preserving technique and the stability of the scheme for problems
with stiff source terms.
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1. Introduction. In this paper, we develop high-order bound-preserving dis-
continuous Galerkin (DG) methods for multispecies and multireaction chemical re-
active flows and investigate the following convection-reaction equation in two space
dimensions

(1.1a) pt +my +ny =0,

(1.1b) my + (mu +p), + (nu), =0,

(1.1c) ny + (mv), + (nv + p)y =0,

(1.1d) Ei + ((E +p)u)z + ((E +p)v)y =0,
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(1.1e) (r1)e + (mz1)g + (n21)y = 51

(1.1f) (rar—1)e + (mzay—1)z + (M2ar—1)y = Snm—1,

where p, u, v, m = pu, n = pv, E, and p are the total density, velocity in x direction,
velocity in y direction, momentum in z direction, momentum in gy direction, the
total energy, and pressure, respectively. M is the total number of chemical species.
For 1 < i < M, r; = pz; with z; being the mass fraction for the ith species, and
Zi]\il z; = 1. Therefore, we have Zf\il r; = p and 0 < z; < 1. The equation of state
is given as

1
p=(y—1) <E §P(U2 +0?) = prrqr — - PZMQM) ,

where ¢; is the enthalpy of formation for the ith species, and the temperature is
defined as T'= p/p. The s; given in the source term describes the chemical reactions.
We consider R reactions of the form

/ / / 1 1 1
v Xty Xo+oo vy, Xy = v Xao+vy Xot+- - +viy X, 7=1,2,... R,

where v/, and v}, are the stoichiometric coefficients of the reactants and products,

respectively, of the i¢th species in the rth reaction. For nonequilibrium chemistry, the
rate of production of the ith species can be written as

R M V;YT
si=M Y (v, —vi,) m(ﬂl’[(ﬁ) , i=1,2,...,M,

r=1 j=1 J

where M; is the molar mass of the ith species. k,.(T), a function of the temperature
T, indicates the reaction rate. In this paper, we take

B, T, T >T,,
kT(T):{ 0 T<T,

where 7). is the ignition temperature for the rth reaction, and B, and «, are pre-
exponential factor and index of temperature, respectively. Moreover, it is easy to
check that Zf\il s; = 0. Therefore, using the fact Zf\il z; = 1, we can subtract
(1.1e)—(1.1f) from (1.1a) to obtain a new equation

(1.2) (rar)e + (mznr)e + (n2ar)y = s,

which is similar to (1.1e)—(1.1f), and this can help us construct the bound-preserving
technique.

Numerical simulations of wave propagation in gaseous detonation are essential
for minimizing devastating hazards. However, the single-step model could not predict
the correct ignition process of the mixture. It was argued that using detailed chemi-
cal model would reproduce results that agree with the experimental data. However,
there are some challenges in the simulations of detonation wave using detailed chem-
ical model due to complexity of chemical kinetics. Thus, designing an efficient and
accurate numerical method is of practical importance. However, the construction of
the numerical methods is not an easy task. There are three main difficulties. Firstly,
the reaction speed of the chemical species is extremely fast, leading to stiff source
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terms in the model system; see, e.g., [2, 9]. Hence, the time step would be rather
small if some explicit time integration, such as Euler forward, is applied. Secondly,
the exact solution of the model may contain shocks, and the direct numerical simula-
tion may yield nonphysical numerical approximations; i.e., the density and pressure
can be negative, and the mass fraction may not be between 0 and 1, especially for high-
order numerical schemes, leading to ill-posedness of the problems and the numerical
simulations will blow-up. Therefore, some special techniques should be constructed to
make the numerical approximation to be physically relevant. Finally, due to the stiff
source, direct numerical simulations on coarse meshes may yield nonphysical shock
waves; see, e.g., [9] for the discussion. In this paper, we will focus on the first two
problems and construct suitable high-order numerical schemes with large time steps
that can preserve the physical bounds. We will extend the idea to deal with the last
problem in the future. We would like to apply the DG method, as it is high-order
accurate and uses piecewise polynomials as the numerical approximation and hence
is easy to apply limiters.

The DG method, first introduced by Reed and Hill [14] in the framework of
neutron linear transport, gained even greater popularity for good stability, high order
accuracy, and flexibility on hp-adaptivity and on complex geometry. There were some
previous works discussing DG methods in solving gaseous denotation; see [10, 11] as
an incomplete list. However, none of them focused on the bound-preserving technique.
Physically bound-preserving high-order numerical methods for conservation laws have
been actively studied in the last few years. In [21], genuinely maximum-principle-
preserving high-order DG schemes for scalar conservation laws and two-dimensional
incompressible flows in vorticity-streamfunction formulation have been constructed.
Subsequently, positivity-preserving (PP) high-order DG schemes for compressible Eu-
ler equations on rectangular meshes were given in [22], and the extension to triangular
meshes was given in [24]. Later, the technique was applied to other hyperbolic systems,
such as pressureless Euler equations [20], extended MHD equations [25], relativistic
hydrodynamics [13], etc., and the L' stability was demonstrated. In [23], the authors
studied the compressible Euler equations with source terms, and the idea was later
extended to gaseous detonation in [18] to preserve the positivity of density, pressure,
and all the mass fractions except the last one. The basic idea of the PP technique in
[18] is to apply Euler forward time discretization and take the test function to be 1 in
each cell to obtain an equation of the numerical cell average of the target variable, say
r, and prove that the cell average, 7, is positive. Then we can apply a slope limiter
to the numerical approximation and construct a new one:

F=r40(r—7), 6€l01].

The extension to high-order time discretization is based on the strong-stability-
preserving (SSP) Runge-Kutta (RK)/multistep methods [4, 15, 16], which can be
written as convex combinations of Euler forwards. It is not easy to extend the idea
in [18] to preserve the upper bound 1 for the mass fraction. First of all, most of the
previous works that preserve two bounds (see, for example, [21, 24]), are based on
the maximum-principle-preserving technique. However, the mass fraction z; does not
satisfy a maximum-principle. Recently, one of the authors studied miscible displace-
ments in porous media and constructed a second-order DG scheme that preserves the
two bounds 0 and 1 for the volumetric percentage in [5] on rectangular meshes, and
the extension to triangular meshes has been given in [1]. In this paper, we follow the
ideas given in [5, 1] to gaseous detonation to construct high-order DG schemes on gen-
eral rectangular and triangular meshes. The basic idea is to apply the PP technique
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to each r; (or z;) and enforce Zf\il r; = p (or Zf\il z; = 1) by choosing consistent
fluxes (see Definition 3.1). Then each z; would be between 0 and 1. The second diffi-
culty is the construction of high-order time integration for the stiff source term. The
time discretization in the analysis in [18, 5, 1] was chosen as Euler forward method.
However, in gaseous detonation, k,.(T) would be a large constant, leading to an ex-
tremely stiff source s;. Therefore, by applying the idea in [18, 5, 1], the time step will
be significantly limited. One alternative is to consider backward Euler discretization
and derive the PP technique. To the best knowledge of the author, the only work in
this direction is given in [12], where the maximum-principle-preserving technique was
investigated for hyperbolic equations. However, by using backward Euler method,
the scheme is only first-order accurate in time, and the idea cannot be extended to
high-order methods following [18, 5, 1] since no high-order SSP RK methods can be
written as a convex combination of backward Euler methods [4]. Moreover, due to
the time step restriction by the PP technique, any time integration that is the combi-
nation of Euler forward and backward Euler, such as Crank—Nicolson method, cannot
be applied. Notice that the time constraint of the PP technique with Euler forward
time discretization is due to the stiffness of the source. Hence, one may consult the
splitting method and separate the flux and the source terms. By doing so, we can
apply Euler forward time discretization for the convection term and use other suitable
ODE solvers for the source term. However, the most commonly used splitting method
is the second-order Strang splitting method [17], and the extension to high-order time
integration is complicated. Another possible idea to construct the time integration is
to apply the modified Patankar-RK scheme [7, 8]. However, the high-order schemes
contain some defects as the fraction used in the trick may has zero denominator with
nonzero numerator. Therefore, one has to assume the exact solution to be strictly
positive. However, this may not true as one species may not appear initially and will
be created during the chemical reaction. Recently, there is a new idea introduced
in [6] to solve scalar hyperbolic equations with stiff source terms by using the modi-
fied exponential RK/multistep DG methods. The algorithm in [6] is not based on the
splitting methods nor the Patankar-RK method. However, the idea cannot to applied
to construct bound-preserving technique in the stiff multispecies detonation, since it
does not preserve the total mass. Therefore, one of the necessary conditions in the
bound-preserving technique, Zf\il z; = 1, is not satisfied.

In this paper, we will modify the scheme introduced in [6] to preserve the total
mass. Then we can apply the ideas in [5, 1] to construct the bound-preserving tech-
nique. Since the time step is not too small, it is possible to sufficiently refine the
mesh to capture the correct position of the shocks. In this paper, we only discuss the
bound-preserving technique on fine meshes and the numerical simulations on coarse
meshes will be given in the future. Before we finish the introduction, we would like
to summarize the advantages of the proposed scheme. The algorithm

1. is high-order accurate in both space and time (at least third-order accurate
for multistep method);
is explicit and can handle stiff source term with relatively large time step;
is not based on the splitting technique nor the Patankar-RK methods;
has local mass conservation;
preserves the total mass;
preserves the bounds, such as the positivity of the density and pressure, and
the two bounds 0 and 1 of the mass fraction.

The organization of this paper is as follows. In section 2, we construct the DG

scheme. In section 3, we consider the flux terms only. We apply Euler forward

S Gl LN
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time integration and demonstrate the new bound-preserving technique to preserve
the upper bound 1 of the mass fraction. The high-order multistep time integrations
and the full algorithm will be given in section 4. The second-order RK method will
be constructed in section 5. Numerical experiments will be given in section 6. We
will finish in section 7 with some conclusion remarks.

2. DG methods. In this section, we will construct the DG scheme for (1.1).
We rewrite (1.1) into the form of

(2.1) wi + f(w)x + g(w)y = s(w),
where
w = (p,m,n, E,pz1,...,pzar—1)",
f(w) = (m, mu+ p,mv, (E 4 p)u,mz1,...,mzy—1)7,
g(w) = (n,nu,nv +p, (E +p)v,nz1, ..., nzp—1)7,
W) (OOOOSl,...,SMfl) .
Let Q, = {K} be a quasiuniform partition of the computational domain 2 with

rectangular or triangular elements. Denote hy to be the diameter of element K, with
h = maxy h and |K| to be the area of K. We define the finite element space V¥ as

ik = {z: z’K € P*(K),VK ¢ 0},

where P*(K) denotes the set of polynomials of degree up to k in cell K.

In this paper, we also use w as the numerical approximations. The DG scheme
is to find w € Vj, = [VF]M+3 guch that for any test functions £ € Vi, and K €
we have

/ w;-§dx = / F(w) V€ dx — H(w™ wt v) - &ds —|—/ s(w) - € dx,
K K oK K

where F = (f, g) and v is the unit outer normal of K in cell K. Here, w'™ and w®®!
are the values of w on the edge 0K obtained from the interior and the exterior of K,
respectively, and H(w™ w*®! v) is the numerical flux. In this paper, we consider

Lax—Friedrichs flux and

(2.3)
H(w, wy,v) = % [F(wi) v+F(w2) v—aws—wi)], a=|[{u,v)]+ |,

where ¢ = , /% is the sound speed.

3. Bound-preserving technique for the convection term. In this section,
we take the source to be zero, i.e., s(w) =01in (2.1) or s =--- = sp7—1 = 0 in (1.1),
and construct the bound-preserving technique.

3.1. Preliminaries. In this subsection, we introduce some preliminaries that to
be used for the bound-preserving technique.
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We first demonstrate the PP technique introduced in [18]. We use Euler forward
time discretization and take & = 1; then the equation satisfied by the numerical cell
averages can be written as

At ;
(3.1) Wittt =W — — H(w"™, w v)ds,
K] Jox
where Wi = ﬁ [ wdx is the cell average of the numerical solution w in cell K

at time level n and At is the time step size. In [18], the authors defined the convex
admissible set as

H3S 3

,p>0p>0,20>0,...,20p7-1>0
1

TM—-1

and constructed the numerical approximations that lie in G. In this paper, we would
like to define another admissible set

~ M—1
G:{wea,zzi<1}.

i=1

The only diﬂprence between G and G is one more condition that z1t+ -1 <1
is added in G. If we introduce a new variable zpy =1 — 21 — -+ — zp7_1, then G can

be rewritten as
M
GZ{WEGZZM>0,ZZi:1}.

i=1

In the rest part of this paper, we will use the form of G given above as the admissible
set. Following [18], it is easy to check that G is a convex set as p is a concave function
of w. Before we finish this subsection, we would like to demonstrate the following
lemma whose proof is straightforward.

LEMMA 3.1. Suppose w € G; then for any T > 0, we have 7w € G.

3.2. Rectangular meshes. Denote 2 = [a,b] X [¢,d] to be the computational
domain. Let a = r1 < - < Ty 4L = b and ¢ = yp < < ynygL = d be
the grid points in x and y directions, respectively. Define I; = (xi_%,xiJr%) and
J; = (yj_%,yj+%). Let K;; =1; x J;,i=1,...,N;, j=1,...,N,, be a partition
of © and denote Q) = {K,;}. For simplicity, if not otherwise stated, we always
use K to denote the cell. The mesh sizes in the z and y directions are given as
Ax; = Tyl — T and Ay; = Yirl — Y1, respectively. For simplicity, we assume
uniform meshes and denote Az = Ax; and Ay = Ay;. However, this assumption is
not essential.

For accuracy, we use L-point Gaussian quadratures with L > k+1 to approximate
the line integrals in (3.1). More details of this requirement can be found in [3]. The
Gaussian quadrature points on [mi_%,xﬂ_%] and [yj_%,yj+%] are denoted by

pf:{x?ﬂ:l,,L} andpj:{yf:5=1,~o~,L}a
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respectively. Also, we denote wg as the corresponding weights on the interval [—1, 1] .
Moreover, we use

pf:{@g:a:o,...,L} andﬁg:{g};‘:azo,...7L}

as the Gauss—Lobatto points on [:EF% , xH%] and [yj;% , ijr%], respectively, with 21 —
1 > k. Also, we denote w0, as the corresponding weights on the interval [—%, %] . Then
we can state the following theorem [18].

THEOREM 3.1. If the DG solution wk (x,y) € G for all (x,y) € S, where
(3.2) S=(pi ®@p%) U (p; @py) U (v} ®@pj),
then the scheme (3.1) is PP, namely, v‘v}?‘l € G under the time step restriction

(3.3) a(Ar +A2) <@,

where A1 = % and Ay = ﬁ—;.

Proof. In Theorem 2.1 in [18], the authors considered system (2.1) with M = 2.
The time step restriction for the PP technique is

a(A1 + A2) < aq@q, Tglgﬁ{At s1/p} < ag,
HETH
where a; and a9 are two arbitrary nonnegative numbers satisfying a; + a3 = 1. In
this section, we take the source term s; = 0. Hence, we can take ao = 0, a1 = 1 to
obtain (3.3). For general M, since the equation satisfied by r;, i = 1,...,M — 1 are
exactly the same, the time step restriction for the PP technique for r; also works for
ri, 4 = 2,...,M — 1. Finally, to preserve the positivity of pressure p, we would like to
define £ = E — Zf\if r;q;; then it is easy to check that the scheme satisfied by Eis
exactly the same as that by E and p = ('y—l)(E— %p(u2+v2) —PZM—1qM—1—PZMAM )-
Hence we can use E as the total energy in the proof of Theorem 2.1 in [18] and follow
the same derivations. Now we finish the proof. 0

3.3. Triangular meshes. For each triangle K we denote by (% (i = 1,2,3)
as the length of its three edges e’ (i = 1,2,3). Assume the line integrals in (3.1)
are solved by L-point Gaussian quadrature where L > k + 1. Different from the
quadrature applied in the previous subsection, we consult the quadrature introduced
in [24], where the quadrature points are given in the polycentric coordinates as

{3 37) () () ()
(G-) ()30 Go)G-)
()6 66 3)

(3.4) a=0,...,L,8=1,...,L},

where 2% (a = 0,..., i/) and 2” (8 =1,...,L) are the Gauss-Lobatto and Gaussian
quadrature points on the reference interval [—%, %], respectively. Now we can state
the following theorem [18] and whose proof is basically the same as given in Theorem
3.1, and we skip it here.
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THEOREM 3.2. If the numerical solution Wi (z,y) € G for any (x,y) € S, then
the scheme (3.1) is PP, i.e., V_V%-H € G under the time step restriction

2
. < =@
(3.5) lK‘Ze < S

3.4. The upper bound of the mass fraction. In [18], the authors did not
demonstrate how to preserve the upper bound 1 of the mass fraction, and we will
demonstrate the technique in this subsection.

Instead of analyzing (1.1), we would like to study (1.1b)—(1.1f) and (1.2), which is
equivalent to (1.1). Following the same discussion in this section, we will not consider
the contribution from the source and take sy = --- = sj; = 0. Theorems 3.1 and 3.2
have the following corollary directly.

THEOREM 3.3. Suppose the conditions of Theorems 3.1 and 3.2 are satisfied for
rectangular and triangular meshes, respectively. If wi € G and Zﬁl zi = 1 for all
(z,y) € S, then wit'* € G.

Proof. We only need to show that F"MH =ptl - wal ! _;”rl > 0. Denote

H = (hy, hiny hoy Ry bty oo har—1) T

n (2.3). Then we have

[Fo(wi) v+ Fy(we) v —alp2 —p1)],

[Fi(w1)~u+Fi(w2)~V704(7"i277"i1)], Z.Zl,Q,...,M*l,

N — N~

where

F,=(m,n) and F;= (mz;,nz).

Using the fact that Zf\il z; = 1, we can subtract the DG scheme for (1.1e)—(1.1f)
from that for (1.1a) to obtain the DG scheme for (1.2), and the equation satisfied by
the numerical cell average 7, is

=n+1 =N At

T =Ty — T B (W Wt v)ds,
K| Jox

where the numerical flux is given as

hM(W17W2, ) [F]V[(Wl) V—i—FM(WQ)-V—Oé(’I"MQ—TMl)]

l\’)\)—l

with
F]W = (sz,nzM).

We can observe that hj; is similar to h;, and the only difference is that we replace
i by M. Therefore, the equation satisfied by 7;, i = 1,..., M, are exactly the same.
In Theorems 3.1 and 3.2, we have constructed the time step restrictions to obtain
positive 7' ntl i =1,...,M — 1. Therefore, the same time step constraints also work

for 7. Moreover since Zl (P = pnFl then W € G d
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Remark 3.1. In the above proof, we have used the condition that r14---+7y = p
(z1 4+ -+2zp = 1) at all time levels and thus obtain an extra ghost equation satisfied
by ras, which is the same as the equations satisfied by r;, ¢ = 1,..., M — 1. In other
words, if we solve rj; by using the same ghost equation, the condition r1+---+7ry = p
should be true at the next time level. This is crucial to obtain the positivity of r,; and
the upper bound of z;, i = 1,..., M at the next time level. Hence, the new high-order
time integration which will be constructed in the next section should maintain the
total mass conservation condition r; + - -+ + s = p at the next time level.

Before we finish this section, we would like to demonstrate the following definition.

DEFINITION 3.1. We say the elements in the numerical flux H are consistent if
hy, = hy if we take z; =1 for all1 <¢ < M — 1.

The elements in the numerical flux H in (2.3) are consistent, and we have used
this fact to construct ha; and preserve the upper bound 1 of the mass fraction.

4. Bound-preserving technique for the full algorithm. In this section, we
proceed to demonstrate the bound-preserving technique for the full algorithm. We
first construct the high-order time integration and then demonstrate the full algorithm
and the bound-preserving technique.

4.1. High-order time discretization. Consider the ODE
(4.1) w; = F(w) + s(w),

where F(w) represents the DG discretization of the convection term in this section.
We rewrite (4.1) as

w; + pw = F(w) + s(w) + puw,

where 1 > 0 is a constant in each time step but may depend on n. The above equation
further yields
(e''w); = e! (F(w) + s(w) + uw).

We use the SSP multistep methods to discretize the above ODE to obtain the expo-
nential multistep methods. In [6], the authors introduced second-, third-, and fourth-
order schemes. For simplicity, we only discuss the second- and third-order schemes
in this paper. The extension to fourth-order schemes is straightforward following the
same lines. The second- and third-order schemes given in [6] are

1
(4.2) wntl = Ze’”m [W" + 2AtF(wW™) 4 2At(s(w") + pw™)] + Ze*’““w”’z,

and
n+1 16 —pAt n n n n
Wi = ooe [Ww" 4+ 3AtF(w™) + 3At (s(w") + uw™)]
11 12 12
(4.3) +ﬁe_4”m w3 4 ﬁAtF(W”_3) + ﬁAt (s(w"_g) + ,uw"_g) ,

respectively. However, it is impossible to construct the bound-preserving technique
by using the time integration given above. Before we demonstrate the reasons, we
would like to give the following definition

DEFINITION 4.1. Consider a multistep method containing w"t?, i = —£,1 — 1,
...,0,1 for (4.1). We say the scheme is globally conservative if w"+t! = 1 under the
following two conditions:
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n—t _ ... —w"=1:

1. w ;

2. F(w) =s(w)=0.

It is easy to check that the globally conservative time integration implies total mass
conservation, i.e., z; +---+ 2y =1 (11 + - - + a0 = p) at the next time level. Also,
as we will see later in Theorem 4.1, the globally conservative condition ensures us to
rewrite the solution at the next time level as a convex combination of several terms
and thus we only need to preserve the bounds of each term. However, (4.2) and (4.3)
are not globally conservative for p # 0, and the necessary condition, Ef\il zi=1,1in
the bound-preserving technique may not be satisfied. We will modify the schemes and
make them to be globally conservative. To do that, we consider Taylor’s expansion of
the exponential functions. For (4.2), we approximate

1
e HAL w1 — uAt + 5(MAt)2 >0
to obtain

1
wtl = % <1 — uAt + Z(MAt)2> [W" 4+ 2AtF(w") + 2At(s(wW") + pw'™)]
1
(4.4) +Z (1 — 3uAt + 2(uAt)2> w2,

Since we expanded the exponential function to the second-order term (the error is
third-order in time), then (4.4) is also second-order accurate. Now, we are ready
to construct the globally conservative scheme. We simply take s = F = 0 and let
w2 = w" = 1 to obtain w"™' = (14 2(uAt)®)1. Therefore, the second-order
globally conservative scheme is

(4.5) wt = AL [w™ + 2AtF(W™) + 2At(s(W") + pw™)] + AZw" 2,

where

Al = 31— pAt + 3(uAt)? e 11— 3uAt + S(uAt)’
4 14 3(uAt)? 4 1+ 3(uAt)3

It is easy to check A} and A2 are both positive for all At. The scheme is globally
conservative since it is easy to check that

(4.6) AL 4 2uAtAL + A2 = AL(1 4 2uAt) + A2 = 1.

Now, we proceed to construct the third-order globally conservative scheme. We also
apply the Taylor’s expansion of the exponential functions and approximate

1 1
e_MAt ~1 —/LAt"‘ i(MAt)Q _ E(MAt>3+ i(uAt)‘l > 0.

Then (4.3) can be written as

16 1 1 1
nt1 _ 29 (4 : 2 _ 1 3, & 4
(4.7 W= o (1 JIANES 2(,uAt) 6(,uAt) +51 (nAt) >
x [w" 4+ 3AtF(w") + 3At (s(w™) + pw™)]

11 2 . 32
+5- <1 — 4pAt + 8(pAt)? — %(Mm)& + 33(uAt)4>

12 12
. [w"_g + ﬁAtF(Wn_S) + ﬁAt (s(w"™?) + pw”_?’)} .
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We take s = F = 0 and let w"™% = w" = 1 to obtain w"™! = (1 — Z(pAt)* +

29 (uAt)®)1. Therefore, the third-order globally conservative scheme is

w'Th = AL [w™ + 3AtF(w™) + 3At (s(W") + pw™)]

12 12
(4.8) +AZ w3 4 ﬁAtF(W"_B) + ﬁAt (s(W"?) + pw"?) |,
where
16 1— pAt + L(pAt)? — 2(uAt)® + & (pAt)*
3797 1= 2(uAt)t + 29 (uAt)s ’
11— ApAt + 8(pAt)? — 32 (uAt) + 32 (uAt)t
27 1= 2(uAt)* + B2 (uany?

It is easy to check A} and A% are both positive for all At. The scheme is globally
conservative and

AL+ 3uAtAL + A3 = 1.

Remark 4.1. To construct the third-order scheme, we cannot expand the expo-
nential function to the third-order term, i.e.,

1 1
e HA 1 — pAt + §(uAt)2 - 6(MAt)f‘,
since the approximation above may not be positive and the PP technique will fail to
work. Especially, if p is large, the time step At would be extremely small to make the
approximation to be positive. More details about this requirement will be discussed
in the next subsection.

4.2. Full algorithm. In this subsection, we will demonstrate the bound-
preserving technique for the full scheme and the construction of the physically relevant
numerical approximations. We first present the following lemma.

LEMMA 4.1. Let w € C;'; then

provided
M
Si 2.i—15i4
(4.9) {4 > max {—Z,““,O},
0<i<M T P
M—1 M—-1 .

where sy = —Y .21 Si, M = p— 2 iy Ti, and p is the pressure computed by
USING W.

Proof. Denote § = (35, Sm, SnsSE,51,---,5m—1)7. It is easy to check 3, = po

for o = p,m,n,E and §; = pr; +s; fori = 1,..., M — 1. We further denote §); =
- MZ>1 .
5, — Y i1 % and hence

M-1 M-1 ~1
SM = pp — Z(/ﬁ“rf-si):/l(ﬂ— Zﬁ) - Z S = pury +SM-

i=1 i=1 i=1
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Therefore, 5, > 0, and

- _ 1. _ _
p=(y-1) (SE - §sp(u2 +v?) = &g — - — 3MQM>
1
— (v 1) (uE — e ) — sy o (s sM>qM)
1 2 2
=(v—-1)(n E—ép(u +0%) =1 — - —TrMQM ) — S11— o — SMAM
=(y=1)(up—s1q1 — - — smaqm) > 0,

with (u,v) = (ng’ é—" = (3, %). Moreover, we choose p as (4.9) to obtain §; =
P P

si + pr; > 0 for all 1 <14 < M. Notice that

~—

i=1
then
M Mo
i=1 =1
and we finish the proof. 0

Now, we can state the main theorem for second-order scheme. For simplicity, we
omit the subscript K of each wg.

THEOREM 4.1. Consider the DG scheme (2.2) with time integration (4.5), where
u satisfies (4.9). If w™,w" =2 € G for all (z,y) € S, where S is defined in (3.2) and
(3.4) for rectangular and triangular meshes, respectively. Then we have W"T1 € G
under the condition At < $At, where At is the time step given in (3.3) and (3.5) for
rectangular and triangular meshes, respectively.

Proof. By Theorem 3.3, we have

Ry = w" + 2AtF(wn) € G.
Moreover, by Lemmas 3.1 and 4.1, we can show that

Ry, = i(s(w) +uw) € G.

Finally, denote R3 = W" 2 € G. Notice the fact that G is a convex set; then take cell
average in (4.5) to obtain

Wt = Alwn 4 2AtF(wn) + AL2At(s(w) + pw) + ASw" 2
= ALR) + 2uAtALRy + A2Rs € G,
where in the last step, we applied the globally conservative condition (4.6) and the
fact that A3 > 0 and A3 > 0. a

Following the same analysis given above with some minor changes, we can obtain
the theorem for the third-order scheme. Therefore, we only demonstrate the theorem
without proof.
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THEOREM 4.2. Consider the DG scheme (2.2) with time integration (4.8), where
1 satisfies (4.9). If w™, w™3 € G for all (z,y) € S, where S is defined in (3.2) and
(3.4) for rectangular and triangular meshes, respectively. Then we have W™t € G
under the condition At < AL, where At is the time step given in (3.3) and (3.5) for
rectangular and triangular meshes, respectively.

Based on the above two theorems, we can construct physically relevant numerical
cell averages w. However, the numerical approximations w may be out of the bounds.
Hence, we need to apply suitable limiters and construct physically relevant numerical
approximations. The full algorithm on each fixed element K is given as follows:

1. Set a small number € = 10713,

2. If p > €, then we proceed to the next step. Otherwise, w is identified as the
approximation to vacuum; then we take w = W and skip the following steps.

3. We modify the density p first. Compute

Prmin = Iin p(x,y).

If pimin < 0, then take
ﬁ:p+9(pfp)a 727;:?1‘4’0(7"1‘*71'), izla"wM*la
with _
p—¢

ﬁ — Pmin ’

Here we implicitly modify 7a; =7ar 4+ 0 (rar — Tar) to keep Zf\il 7y = p.
4. Modify the mass fraction. For 1 < i < M, define S; = {(z,y) € S :

7;(z,y) < 0}. Take

0 —

(4.10) fifi+6<mﬁf*i>,1§i§M1,
P
0 = max max < — _Ti(L?)p ,0}-
1<iSM (z,y)eS; Tip(xv y) - Ti(xv y)p
5. Modify the pressure. Denote w = (p,m,n, E,7,...,7ar—1)%. For each
x € 8, it w(x) € G, then take x = 1. Otherwise, take
0. — p(W)

p(W) — p(W(x))
Then, we use

W'Y =W+ 0(W—W), 6=minby,
x€S

as the new DG approximation. The proof for p(w"*”) > 0 can be found
in [18].

Remark 4.2. In step 3, we can simply take 7; = r;, ¢ = 1,..., M —1 and implicitly
modify 7y = p — Zf\i;l r;. Therefore, one may not need to apply the limiter to r;,
i =1,...,M — 1. In the numerical experiments, we only compute p and keep 7;
unchanged for 1 <i < M — 1.

Remark 4.3. In step 4, it is easy to check that 7;(z,y) > 0 for all (z,y) € S,
i=1...,M — 1. If we further define

f]v[ZfM-f—e(?ﬁ_fM)»
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then 7ps(x,y) > 0 for all (x,y) € S. Since Zf\il 7; = p, then

M
T . P . ~ ~
Z’/’z ZT1+9<Z ! Z’/‘1>: (pp—p):p
i=1
Therefore, we have 0 < 7;(x,y) < p(z,y),V(z,y) € S;i = 1,..., M, which further

indicates that the mass fraction of each species is within the range [0,1].

5. Second-order globally conservative RK method. In this section, we
proceed to construct a second-order globally conservative RK method, and the third-
order one will be discussed in the future. For the RK method, time steps can change
in different time levels. Hence, for practical problems in which the wave speed changes
quickly or even widely, the RK method can be an alternative to the multistep method.

Following the analysis in section 4.2, (4.1) yields

(e'w), = e (F(w) +s(w) + pw).
The second-order RK scheme given in [6] is
()l =m0 o B+ B1(sw) )

(5.2) wntl= ;e HALw™ 4 5 [ @ 4 AtF(wh) + At(s(wD) +uw(1))] .

Similar to the multistep method, the above scheme is not globally conservative for
1 # 0. We consider Taylor’s expansion of the exponential functions and approximate

eTFA 1 — uAt+ = (,uAt)

Following the same idea in section 4.2, we take s = F = 0 and let w"” =1 in (5.1) to
obtain w(!) = (1 — £ (uAt)? + L(uAt)®)1, then take w™ = w(l) = 1 in (5.2) to obtain
w T = (1+ $(uAt)?)1. Therefore, the second-order globally conservative scheme is
(5.3) w) = Bl [w" + AtF(w") + At(s(w") + pw™)]

(5.4)  w"! = Blw" + B2 [w<1> + AF(wD) + At(s(w?) + uw(l))} ,

where
1: 1 — pAt + 3 (pAt)? 1:11—uAt+%(uAt)2 o1 1
! —LuAt)2+ Lpand’ TP T2 14 iuAan? T TP 214 LuAn?

It is easy to check Bf, Bi, and B3 are positive for all At, and the scheme is globally
conservative:

(5.5) (1+ pAt)Bf = By + (1 + pAt)B3 = 1.

Then following the analyses in Theorem 4.1, we can easily obtain the following one.

THEOREM 5.1. Consider the DG scheme (2.2) with time integration (5.3) and
(5.4), where p satisfies (4.9) for w = w™. If w" € G for all (z,y) € S, where S is
defined in (3.2) and (3.4) for rectangular and triangular meshes, respectively. Then
we have W) € G under the condition At < At, where A% is the time step given in
(3.3) and (3.5) for rectangular and triangular meshes, respectively. In addition to the
above conditions, if y satisfies (4.9) for w = =w and w) € G for all (x,y) € S,
then we have W”+1 € G under the condition At < Af.
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Remark 5.1. In the above theorem, p satisfies (4.9) for w = w(!)| hence it is not
easy to find out p in (5.3). In practice, we choose two different x in (5.3) and (5.4),
say p" and p(, satisfying (4.9) for w = w" and w = w1 respectively. Numerical
experiments in section 6 demonstrate that the scheme is also second-order accurate
in time.

Based on the above theorem, we can construct physically relevant numerical cell
averages w(1) and w"*t!. However, we still need the bound-preserving limiter dis-
cussed in section 4.2 to modify the numerical approximations w(!) and w”t!.

Finally, different from the multistep method, it is not easy to observe the accuracy
for (5.3)—(5.4) as we introduced second-order errors in the denominators in B’s. Before
we state the accuracy of the scheme, we would like to demonstrate the following
lemma, whose proof follows from direct computation, hence we omit it here.

LEMMA 5.1.
1 — 1(pAt)? + O(A)

Bi 4+ BZBl(1 + uAt)? = =1+0(A
1+ O(At?)
2 1 _ _ 3
B2At[(1 + pAt)B} +1] = At71+O(At2) At + O(A),
1
B} = - + O(A#).

2

We will prove that the scheme is indeed second-order accurate in the following
theorem.

THEOREM 5.2. Consider the ordinary differential system w, = L(w), with L(u) =
F(u) + s(u). The globally conservative RK scheme (5.3)—(5.4) is second-order accu-
rate.

Proof. We can rewrite (5.3)-(5.4) as
(5.6) wl) = Bl [w" + AtL(w") + pAtw"],
(5.7) w = Biw" + B2 |lwV + AtL(wV) + pAtw D |
By using (5.5), we have
(5.8) wl) = w" 4 (1 + O(A)ALL(W") = w" + AtL(w") + O(At?).
Substitute (5.6) into (5.7) to obtain

w'tt = Blw" 4+ B2(1 + pAt)wH + BZAtL(wD)
= [By + B3Bi (1 + pAt)*Iw™ + BIAt[(1 + pAt)B] + 1]L(w™)
+B2AHL(wY) — L(w"))

= w" + AtL(w") + %At(L(w(l)) —L(w")) + O(A#?)

= w" + AtL(w") + %At(L(w" + AtL(W") + O(At2)) — L(w™)) + O(A#)

=w" + AtL(w") + %AtQVL(W")L(w") +0(At%),

where in the third step we use Lemma 5.1 and (5.5), and the fourth step requires

(5.8). Substitute w” and w"*! with the exact solutions, we obtain that the local
truncation error is O(At?). d
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Remark 5.2. The construction of third-order globally conservative RK scheme is
highly nontrivial. We will discuss this in the future.

6. Numerical examples. In this section, we will use numerical experiments to
demonstrate the effect of the bound-preserving DG method. We refine the meshes
to match the positions of the shocks with those given in [19]. Therefore, we only
plot the numerical approximations in this section. Moreover, the numerical results
obtained by using RK method and multistep method are similar. If not otherwise
stated, the figures in this section are obtained by using DG method with piecewise
P! polynomials and second-order time integration given in (4.5).

6.1. Test of the ODE solver.

Ezample 6.1 (accuracy test for the ODE solver). We first test the stability and
accuracy of the ODE solver, and study the following problem,

u/'(t) = —cu”, u(0) = ug,

where c¢ is a parameter that we can adjust. The problem becomes stiff as ¢ increases.
The exact solution is
u(t) = uo(6etul +1)71/6.

We take the final time to be ¢ = 0.5 and denote the total number of time steps as N;.

We first take ug = 0.1 with ¢ = 10000. Numerical results for all ODE solvers
proposed in this paper are listed in Table 6.1. The initial condition is well prepared,
and we can observe optimal convergence rates. Next, we take ug = 1; the results are
given in Table 6.2. For this problem, the initial condition is not well prepared, and
we can only observe optimal convergence rate for all time integrations if the problem
is not stiff, e.g., ¢ = 1. However, if the problem is stiff, e.g., ¢ = 100 or 100,000, we
can hardly observe the expected accuracy.

TABLE 6.1
Accuracy test for ODE solvers with ug = 0.1 with ¢ = 10,000.

N: | L norm Order | L* norm Order L norm Order
2nd order RK 2nd order multistep | 3rd order multistep
2 1.30E-08 - 5.24E-08 - 3.20E-09 -

4 3.25E-09 2.00 1.17E-08 2.16 2.13E-10 3.90
8 8.10E-10 2.00 3.62E-09 1.70 3.52E-11 2.60
16 | 2.02E-10 2.00 1.01E-09 1.84 5.21E-12 2.76
32 | 5.06E-11 2.00 2.65E-10 1.93 6.97E-13 2.90
64 | 1.26E-11 2.00 6.80E-11 1.96 9.00E-14 2.95

6.2. One space dimension.

Ezample 6.2 (accuracy test for one-dimensional (1D) system). In this example,
we consider periodic boundary condition and take u = 1 and p = 0 in the exact

solution. We choose M = 2 and the source term is given as s; = —cr]. Hence, we
need to solve the following system
Pt + Pz = 07
{ (r1)e + (r1)s = _0(701)77 x € [0, 27].
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TABLE 6.2
Accuracy test for ODE solvers with ug = 1.

c=1 c=100 ¢=10,000

N L norm  Order [ L>® norm  Order [ L norm  Order
2nd order RK

20 7.07E-05 - 7.96E-04 - 1.93E-03 -
40 1.74E-05 2.02 4.59E-04 0.79 8.92E-04 1.11
80 4.28E-06 2.02 2.33E-04 0.98 4.24E-04 1.07
160 | 1.07E-06 2.00 8.65E-05 1.43 1.89E-04 1.17
320 | 2.68E-07 2.00 2.45E-05 1.82 7.13E-05 1.40
2nd order multistep
20 3.07E-04 - 2.92E-03 - 2.84E-04 -
40 8.47E-05 1.86 1.25E-03 1.22 6.02E-05 2.24
80 2.22E-05 1.94 4.99E-04 1.33 1.56E-04 —1.37
160 | 5.71E-06 1.96 1.90E-04 1.39 1.51E-04 0.05
320 | 1.45E-06 1.97 6.71E-05 1.50 9.35E-05 0.69
3rd order multistep
20 6.68E-05 - 3.90E-02 - 7.06E-02 -
40 1.02E-05 2.71 6.96E-03 2.49 5.82E-02 0.28
80 1.41E-06 2.86 3.19E-04 4.45 4.23E-02 0.46
160 | 1.87E-07 2.91 1.19E-04 1.43 2.62E-02 0.69
320 | 2.42E-08 2.95 3.76E-05 1.66 1.23E-02 1.10

The initial conditions are given as r1(z,0) = 0.1(1 + sin(z)) and p(z,0) = 0.1(2 +
sin(x) 4 cos(z)). The parameter ¢ can be used to adjust the stiffness of the equation.
For this problem, the total density p should be nonnegative and the mass fraction
r1/p should be between 0 and 1.

We apply DG method with piecewise P! (P?) polynomials coupled with second-
order multistep and RK (third-order multistep) time discretizations with and without
bound-preserving limiter. The final time is taken as ¢ = 0.5. Both stiff and nonstiff
cases are calculated. The errors are listed in Table 6.3, and the last column shows the
percentage of cells that have been modified by the limiter. We can observe optimal
orders of accuracy with and without limiter.

Ezample 6.3 (a 1D detonation wave with 3 species and 1 reaction). In this case,
we solve a reacting model with three species and one reaction,

2H2 + 02 — 2H20

The parameters are taken as 77 = 2.0, B; = 500,17 = 1,¢q; = 1000,¢92 = 0,93 = 0,
My = 2,My = 32, M3 = 18. The computational domain is [0,50], and the initial
condition is given as piecewise constants

( (. 0) = (2.0,10.0,40.0,0.325,0.0,0.625), = < 2.5,
Pyt Py 21522, Z3)80 5= 11,0, 0.0, 1.0, 0.4, 0.6, 0.0), x> 2.5.

We take the final time to be t = 3. This is a simple one-step chemical model for
hydrogen-oxygen mixtures. The fuel rich hydrogen-oxygen mixture is on the right-
hand side. And the mixture is totally burnt on the left-hand side.

To resolve the thin reaction zone, we take Az = 0.01 and CFL = 0.05. The profiles
of density, pressure, and mass fraction for each species are shown in Figure 6.1. From
the figure, we can see that the shocks are captured well and the shock positions are
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TABLE 6.3
Accuracy test for the one dimensional problem.

B267

Without limiter With limiter
N |L*> norm Order L? norm Order ‘ L% norm Order L% norm Order Percentage
2nd order multistep method, cfl=0.1, ¢c=100
10 | 1.19E-02 - 9.86E-03 - 1.33E-02 - 1.03E-02 - 20.00%
20 | 3.16E-03 1.91 2.55E-03 1.95 | 3.78E-03 1.81 2.63E-03 1.97 20.00%
40 | 8.04E-04 198 6.41E-04 1.99 | 9.83E-04 194 6.66E-04 1.98 12.50%
80 | 2.02E-04 1.99 1.60E-04 2.00 | 2.78E-04 1.82 1.65E-04 2.02 10.00%
160 | 5.07E-05 2.00 4.01E-05 2.00 | 7.05E-05 1.98 4.10E-05 2.01 9.38%
2nd order multistep method, cfl=0.1, ¢=10,000
10 | 1.21E-02 -  9.85E-03 - 1.34E-02 - 1.01E-02 - 20.00%
20 | 3.20E-03 1.91 2.56E-03 1.94 | 3.82E-03 1.80 2.58E-03 1.97 20.00%
40 | 8.13E-04 1.97 6.55E-04 1.97 | 9.93E-04 1.94 6.58E-04 1.97 12.50%
80 | 2.056E-04 1.99 1.65E-04 1.98 | 2.81E-04 1.82 1.63E-04 2.01 10.00%
160 | 5.15E-05 1.99 4.16E-05 1.99 | 7.13E-05 1.98 4.05E-05 2.01 9.37%
2nd order RK method, cfl=0.1, ¢c=100
10 | 1.18E-02 - 9.89E-03 - 1.59E-02 - 1.11E-02 - 50.00 %
20 | 3.15E-03 1.91 254E-03 196 | 4.38E-03 1.86 2.77E-03 2.00 40.00 %
40 | 8.04E-04 1.97 6.40E-04 1.99 | 1.13E-03 1.95 6.89E-04 2.00 25.00 %
80 | 2.02E-04 1.99 1.60E-04 2.00 | 3.17E-04 1.82 1.68E-04 2.03 20.00 %
160 | 5.07E-05 2.00 4.01E-05 2.00 | 8.10E-05 1.97 4.15E-05 2.02 18.75 %
2nd order RK method, ¢fl=0.1, ¢=10,000
10 | 1.18E-02 - 9.62E-03 - 1.65E-02 - 1.10E-02 - 50.00 %
20 | 3.15E-03 1.90 249E-03 195 | 4.37E-03 1.91 2.69E-03 2.04 40.00 %
40 | 8.03E-04 197 6.31E-04 1.98 | 1.12E-03 195 6.58E-04 2.03 22.50 %
80 | 2.02E-04 1.99 1.58E-04 1.99 | 3.17E-04 1.83 1.62E-04 2.02 13.75 %
160 | 5.07E-05 2.00 3.96E-05 2.00 | 8.10E-05 1.97 4.04E-05 2.01 10.63 %
3rd order multistep method, cfl=0.05, c=100
10 | 1.78E-04 -  3.08E-04 - 2.20E-04 -  3.35E-04 - 10.00%
20 | 2.13E-05 3.06 3.77E-05 3.03 | 2.13E-05 3.37 3.80E-05 3.14 15.00%
40 | 3.08E-06 2.79 5.38E-06 2.81 | 3.08E-06 2.79 5.38E-06 2.82 12.50%
80 | 3.77TE-07 3.03 6.61E-07 3.02 | 3.77E-07 3.03 6.61E-07 3.02 10.00%
160 | 4.73E-08 2.99 &8.31E-08 2.99 | 4.73E-08 2.99 8&.31E-08 2.99 8.75%
3rd order multistep method, cfl=0.05, c=10,000
10 | 3.36E-04 - 4.78E-04 - 3.36E-04 - 4.89E-04 - 10.00%
20 | 4.35E-05 2.95 546E-05 3.13 | 4.35E-05 2.95 b5.47E-05 3.16 15.00%
40 | 5.86E-06 2.89 6.83E-06 3.00 | 5.86E-06 2.89 6.83E-06 3.00 12.50%
80 | 7.00E-07 3.06 8.41E-07 3.02 | 7.00E-07 3.06 8.41E-07 3.02 10.00%
160 | 8.63E-08 3.02 1.05E-07 3.00 | 8.63E-07 3.02 1.05E-07 3.00 8.75%

correct. Moreover, the density and pressure are positive, and all mass fractions are
in the interval [0, 1]. Since we only implemented the bound-preserving limiter, there

are some oscillations in the density and mass fractions.
In addition, we also compared the results obtained using PP technique in [18] with

the one achieved by using bound-preserving technique demonstrated in this paper.
Figure 6.2 shows the profile of mass fraction of H2O (the last species that not solved
explicitly in the DG scheme) with different techniques at time t=0.055. We can
observe some negative values in the left panel, where we used the PP technique in
[18]. As expected, the bound-preserving technique given in this paper yields positive
value of the mass fraction in the right panel.
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Fiac. 6.2. Numerical solutions of Example 6.3 at t = 0.055.
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We also investigate the influence of the denominators of A} and A3 in the time
integral scheme (4.5). We take the denominators to be 1, the numerical scheme is not
stable until we reduce the CFL to 0.001. This is because the lack of mass conservation
will lead to the “add mass” effect, especially for u is large. Therefore, a sufficiently
small At is necessary to suppress this effect.

Moreover, we applied the second-order RK method and the observations are
similar.

Ezample 6.4 (a 1D detonation wave with 5 species and 2 reaction). In this
example, we would resolve a two-step chemical reaction model with 4 species for
hydrogen-oxygen-nitrogen mixture.

Hy + 0y — QOH, 20H + Hy — 2H50.
Here nitrogen is considered as a catalyst. The parameters are 77 = 2.0, = 10, By =

By =10% a1 = ay = 0,q1 = g2 = 0,43 = —20,q4 = —100,¢5 = 0, M, = 2, M, = 32,
M3z =17, My = 18, M5 = 28. The initial data are as follows:

( (. 0) = (2.0,10.0,40.0,0.0,0.0,0.17,0.63,0.2), z < 2.5,
Py Us Dy 215 225 235 245 )18 0) = (1.0,0.0,1.0,0.08,0.72,0.0,0.0,0.2), 2 > 2.5.

The computational domain is [0, 10], and final time is t = 0.5.

In this example, we take Az = 0.005 and CFL = 0.01. Figure 6.3 shows the
numerical density, pressure, and mass fractions. All shock waves are captured ac-
curately, as well as the mass fraction of the intermediate component OH. Also,
Figure 6.3 shows that all bounds are preserved.

6.3. Two space dimensions.

Ezample 6.5 (accuracy test for two-dimensional (2D) system). From now on, we
consider the 2D problem. In this example, we consider periodic boundary condition
and take u = v = 1 and p = 0 in the exact solution. We choose M = 2 and the source

is given as s; = —cr]. Hence, we need to solve the following system
pt+pe+py =0, 2
L0 Gy = ey, € 0201

The initial conditions are given as p(z,y,0) = 0.1(2 + sin(z + y) + cos(z + y)) and
ri(z,y,0) = 0.1(1 + sin(z + y))7 respectively. For this problem, the total density p
should be nonnegative and the mass fraction r1/p should be between 0 and 1.

We use piecewise P!(P?) polynomials coupled with second-order (third-order)
time discretizations and take the final time to be ¢ = 0.5. Numerical errors for
different time discretizations with different ¢ are given in the left column of Table
6.4. From the left column of Table 6.4 we can again observe the expected high order
of accuracy of our scheme. We further add the limiter to preserve the lower bound
of p and the two bounds of r1/p and show the results in the right part of the error
table. The percentage of cells that have been modified by the limiter is listed in the
last column. By comparing the results with and without limiter, we can see that the
limiter dose not harm the original high order of accuracy.

Ezample 6.6 (a 2D detonation wave with 4 species and 1 reaction). In this
example, we test a 2D reacting model with four species and one reaction. A prototype
reaction for this model is

CHy + 209 — CO9 + 2H50.
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F1G. 6.3. Numerical solutions of Example 6.4 att = 0.5.

The parameters are T} = 2, By = 10%, oy =0, ¢1 =200, g2 =0, g3 =0, g4 = 0,
My =16, My = 32, M3 = 44, M4 = 18. The initial values consist of totally burnt
gas inside of a circle with radius 10 and totally unburnt gas everywhere outside this
circle. The set up is as follows

(2,10x /7, 10y/r,40,0,0.2,0.475,0.325),
(1,0,0,1,0.1,0.6,0.2,0.1),

r < 10,

(,0, U, vV, P, 21,2’2,23,2’4)(33,3;,0) = { r > 10.

The computational domain is [0, 50] x [0, 50].
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TABLE 6.4
Accuracy test for the two dimensional system.
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Without limiter With limiter
N |L? norm Order L*> norm Order ‘ L? norm Order L* norm Order Percentage
2nd order RK, cfl=0.1, ¢c=100
10 | 5.23E-03 - 1.28E-02 - 5.99E-03 - 1.71E-02 - 28.00%
20 |1.31E-03 2.00 3.76E-03 1.76 |1.49E-03 2.01 5.25E-03 1.70 13.75%
40 | 3.26E-04 2.00 1.01E-03 1.90 |3.63E-04 2.04 1.42E-03 1.89 5.88%
80 |8.14E-05 2.00 2.60E-04 1.95 |8.85E-05 2.04 3.74E-04 1.92 2.48%
160 | 2.03E-05 2.00 6.60E-05 1.98 |2.16E-05 2.03 1.00E-04 1.90 1.05%
2nd order RK, cfl=0.1, ¢c=10,000
10 | 5.12E-03 - 1.33E-02 - 5.91E-03 - 1.74E-02 - 30.00%
20 |1.29E-03 1.99 3.88E-03 1.77 |1.46E-03 2.02 5.10E-03 1.78 14.00%
40 | 3.22E-04 2.00 1.03E-03 1.91 |3.49E-04 2.07 1.44E-03 1.82 5.31%
80 |8.04E-05 2.00 2.66E-04 1.96 |8.43E-05 2.05 3.80E-04 1.92 1.80%
160 | 2.01E-05 2.00 6.73E-05 1.98 |2.08E-05 2.02 1.02E-04 1.90 0.63%
2nd order multistep, cfl=0.1, ¢c=100
10 | 5.13E-03 - 1.30E-02 - 5.78E-03 - 1.70E-02 - 34.00%
20 |1.31E-03 1.97 3.77E-03 1.79 |1.48E-03 1.97 5.22E-03 1.70 21.50%
40 | 3.27E-04 2.00 1.01E-03 1.90 |3.61E-04 2.03 1.41E-03 1.89 8.81%
80 |8.18E-05 2.00 2.60E-04 1.95 |8.83E-05 2.03 3.73E-04 1.92 3.84%
160 | 2.05E-05 2.00 6.61E-05 1.98 |2.16E-05 2.03 9.96E-05 1.90 1.59%
2nd order multistep, cfl=0.1, ¢=10,000
10 | 5.01E-03 - 1.36E-02 - 5.66E-03  — 1.65E-02 - 37.00%
20 [1.29E-03 1.96 3.92E-03 1.79 |1.44E-03 197 5.07E-03 1.71 22.00%
40 [ 3.23E-04 1.99 1.05E-03 1.91 |3.47E-04 2.05 1.45E-03 1.80 7.88%
80 |8.11E-05 2.00 2.70E-04 1.95 |8.46E-05 2.04 3.85E-04 1.92 2.53%
160 | 2.03E-05 2.00 6.97E-05 1.96 |2.10E-05 2.01 1.03E-04 1.90 0.89%
3rd order multistep, c¢fl=0.03, ¢c=100
10 | 6.42E-04 - 3.45E-03 - 1.26E-03 - 5.58E-03 - 14.00%
20 |8.07TE-05 2.99 4.33E-04 299 |847E-05 3.90 4.96E-04 3.49 3.00%
40 | 1.01E-05 3.00 5.41E-05 3.00 |1.01E-05 3.07 5.45E-05 3.19 0.56%
80 | 1.26E-06 3.00 6.75E-06 3.00 |1.26E-06 3.00 6.75E-06 3.01 0.11%
160 | 1.58E-07 3.00 8.44E-07 3.00 |1.58E-07 3.00 8.44E-07 3.00 0.04%
3rd order multistep, cfl=0.03, ¢=10,000
10 | 7.22E-04 - 4.19E-03 - 1.27E-03 - 6.09E-03 - 15.00%
20 |9.34E-05 295 6.11E-04 2.78 |9.55E-05 3.74 6.11E-04 3.32 1.25%
40 | 1.17E-05 2.99 7.65E-05 3.00 |1.18E-05 3.02 7.65E-05 3.00 0.38%
80 | 1.47E-06 3.00 9.65E-06 2.99 |1.47E-06 3.00 9.65E-06 2.99 0.11%
160 | 1.84E-07 3.00 1.20E-06 3.00 |1.84E-07 3.00 1.20E-06 3.00 0.04%

This is a radially symmetric problem, and the detonation front is circular. We
take N, = N, = 600 and CFL = 0.01. We test both the second-order RK method and
the second-order multistep method with piecewise P! polynomials. Figure 6.4 shows
the one dimensional cuts of pressure, density, and mass fractions along the line z = y
at t = 2 by using RK method. We can see that our scheme preserve the positivity of
the density and pressure, and the two bounds 0 and 1 of each mass fraction. Also, we
can see that our schemes can capture the detonations well. The results obtained by
using second-order multistep method is exactly the same, so we skip them here.
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Fi1c. 6.4. Numerical solutions of Example 6.6 along the line x =y at t = 2. The 2nd order RK
method with piecewise P! polynomials.

7. Conclusion. In this paper, we have introduced the high-order conservative
bound-preserving DG methods for stiff multispecies detonation. A new explicit time
integration has been constructed. Numerical experiments demonstrated the good
performance of the scheme.
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