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the primary variable u, and solve them on the same mesh. It is well known that the
maximum-principle-preserving (MPP) LDG method is only available up to second-order
accuracy. Recently, we introduced a new algorithm, and solve u and p on different meshes,
and obtained stability and optimal error estimates. In this paper, we will continue this

Keywords: approach and construct MPP third-order LDG methods for convection-diffusion equations
Convection-diffusion equations on overlapping meshes. The new algorithm is more flexible and does not increase any
Maximum-principle-preserving computational cost. Numerical evidence will be given to demonstrate the accuracy and
Local discontinuous Galerkin method good performance of the third-order MPP LDG method.

Overlapping mesh © 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we aim to construct maximum-principle-preserving (MPP) third-order local discontinuous Galerkin (LDG)
schemes for solving the following convection-diffusion equation
ur + f(Wx=bWxx, (1.1)

or equivalently

ue + fWx = (@ @)y (12)

as well as their two-dimensional versions, where a?(u) = b’(u) > 0. We also assume that a(u) > 0 and periodic bound-
ary conditions. The initial condition is given as u(x, 0) = ug(x). It is well known that the exact solution satisfies a strict
maximum-principle, i.e.,

u(x,t) e [m,M], VxeR, Vt>0,
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where m = miny ug(x) and M = maxy tug(x). In particular, if m = 0, the exact solution will maintain non-negative for all time,
resulting in the positivity-preserving (PP) property.

The discontinuous Galerkin (DG) method was first introduced in 1973 by Reed and Hill [22] in the framework of neutron
linear transport. Subsequently, Cockburn et al. developed Runge-Kutta discontinuous Galerkin (RKDG) methods for hyper-
bolic conservation laws in a series of papers [6,4,5,7]. In [8], Cockburn and Shu introduced the LDG method to solve the
convection-diffusion equations. Their idea was motivated by Bassi and Rebay [1], where the compressible Navier-Stokes
equations were successfully solved. Recently, in [27], genuinely MPP high-order DG schemes for scalar conservation laws
and two-dimensional incompressible flows in vorticity-streamfunction formulation have been constructed. Subsequently,
PP high-order DG schemes for compressible Euler equations were given in [28,29]. Later, the technique was applied to
other hyperbolic systems, such as pressureless Euler equations [26], extended MHD equations [31], relativistic hydrody-
namics [21], etc., and the L' stability was demonstrated. For parabolic equations, the extension was given in [30], where
second-order MPP discontinuous Galerkin methods were demonstrated, and the construction of high-order schemes seem
to be not straightforward. Later another approach based on the flux limiter were discussed in [25,15]. In [2], the third-order
MPP direct DG method was introduced. However, the scheme was not easy to implement and we need to add two penalty
terms. In this paper, we will introduce the modified LDG method on overlapping meshes and construct MPP third-order
LDG methods.

As in traditional LDG methods, we introduce an auxiliary variable p to represent a(u)uy and thus can rewrite (1.2) into
the following system of first order equations

ue+ )= @@p)s,
[ p = A, (13)

where A(u) = fO“ a(t)dr. Usually, u and p are solved on the same mesh. In [11], we introduced a new algorithm and solve
u and p on the primitive and dual meshes, respectively, where the dual mesh is generated from the primitive one. There
are several advantages of the new algorithm.

1. The fluxes for the convection terms are easy to construct.
It is well known that due to the discontinuity of the numerical approximations across the cell interfaces, we need to
introduce the numerical fluxes. For convection-diffusion equations, the fluxes for the diffusion terms seem to be easy
to construct and in most cases we can simply choose the alternating ones [8]. However, the fluxes for the convection
terms are not easy to construct. Especially for some convection-diffusion systems such as the chemotaxis model [17,20]
and miscible displacements in porous media [9,10], where the convection terms are the products of one of the primary
variables and the derivatives of another primary variable. Due to the discontinuity nature of the DG methods, most
of the well established numerical fluxes, such as the upwind fluxes, cannot be applied, since the coefficients of the
convection terms turn out to be discontinuous after the spatial discretization. It is well known that hyperbolic equations
with discontinuous coefficients are in general not well-posed [12,16]. Therefore, the DG schemes may not be stable
when applied to those model equations. To make the numerical solutions to be physically relevant, we have to add very
large penalty terms which depend on the numerical approximations of the derivatives of the primary variables [18,14].
With the new algorithm, the derivatives, solving on the dual mesh, are continuous across the cell interfaces on the
primitive mesh, hence the upwind fluxes can be applied.

2. The new algorithm is more flexible without increasing the computational cost.
It is well known that to avoid the numerical fluxes, some modification of DG methods have been introduced, such as the
Central DG (CDG) methods [19] and Staggered DG (SDG) methods [3]. For CDG methods, we have to solve each equation
in (1.3) on both the primitive and dual meshes, which doubles the computational cost. In our new method, we solve
u on the primitive mesh and p on the dual mesh, respectively. Therefore, the computational cost is exactly the same
as the original LDG method. Moreover, different from the SDG methods, we do not require any continuity conditions
across the cell interfaces for u on the primitive cells or p on the dual meshes. Therefore, the new LDG method is more
flexible and it is very convenient to apply limiters.

3. Most importantly, we can construct third-order MPP schemes.
In [30], the authors demonstrated that the original MPP LDG methods are only available up to second-order accuracy.
In the new algorithm, we add a mild penalty, which does not depend on the numerical approximations, in the equation
of u, and construct third-order MPP schemes. Since the dual mesh can be moved arbitrarily, we will show that if the
dual mesh agree with the primitive mesh, the penalty coefficient turns out to be infinity. Therefore, our algorithm does
not violate the results given in [30]. Finally, the new algorithm is stable and easy to understand and construct [11].
It is able to be generated to higher order schemes. For convection-diffusion equations, the rates of accuracy are op-
timal. However, numerical experiments demonstrate a suboptimal rate of convergence if odd order polynomials were
applied to pure diffusion equations. In [11], we have introduced a couple of ways to recover optimal convergence rates.
Therefore, we will not discuss the error estimates in this paper, and focus on the MPP technique only.

The organization of this paper is as follows. In Section 2, we construct the new LDG scheme for one dimensional non-
linear convection-diffusion equations on overlapping meshes. In Section 3, we introduced the MPP technique in one space
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Fig. 2.1. Overlapping meshes.

dimension. Generations of the new LDG scheme and the MPP technique to two space dimensions will be given in Sec-
tion 4. Numerical experiments in one and two space dimensions will be given in Section 5 to demonstrate the accuracy and
good performance of the new third-order MPP LDG scheme. Finally, we will end in Section 6 with concluding remarks and
remarks for future works.

2. LDG scheme on overlapping meshes in one space dimension

In this section, we first illustrate the generation of overlapping meshes in one space dimension as well as some notations
in Section 2.1, and then show how to construct LDG methods on the generated overlapping meshes in Section 2.2. For
simplicity, we consider the periodic boundary condition. The analyses for other boundary conditions will be discussed in
the future.

2.1. Overlapping meshes

Fig. 2.1 is an illustration of the overlapping meshes. The mesh on the top in this figure is the primitive mesh on which
the original variable u is solved, while the one in the bottom is the dual mesh on which the auxiliary variable p is solved.
We first show how to define the primitive mesh. It is just a regular decomposition of the computational domain [0, 1],
which can be non-uniform. We denote the i-th cell as
i=1,---, Ny

I = [X,-,%,XH%],

The cell length and the cell center of I; are denoted as

1
— X1 Xi = — 5
respectively. Based on the primitive mesh, we move each cell center within the corresponding cell to obtain a new mesh
called the P-mesh, which is used to solve the auxiliary variable p, i.e. in each cell I;, we choose a point x; given as

N %ig ey
Xi =Xy

M=

N AX; .
XiZXi-i-Tfio, &igel-1,1], i=1,---, Ny (2.1)

For simplicity, we consider &;, to be a constant independent of i and denoted as & € [—1, 1]. Note that here the subscript 0
is used to describe a constant but not the index of cell. It is easy to check x; € [X,-,% R XH%]. The (i — %)—th cell of the dual

mesh is defined as

Pi_y =XK1, %], i=1,---, Ny,

where we denote ko = Xy, — 1. We further denote the cell length and the cell center of Pi,% as

AX_1 =X —X_1, X_1 ZXM—M,

2 2 2
respectively. Notice that when & = 0, we have X; = x; and Pi+% =[x, Xi+1]. In this case, the cell interfaces of the dual
mesh are exactly the cell centers of the primitive mesh. Due to the periodic boundary condition, we can also define P 1=
[0, X1]1U[XN,, 1]. Therefore, we regard a function on P; as a function on [Xo, X1]. We define the dual mesh to be the P-mesh

2
which consists of all these P cells. This kind of mesh is the most commonly used overlapping mesh, such as in the CDG
method [19]. When & = —1, we have X; = X1 and hence the P-mesh is the same as the primitive mesh.

2.2. LDG method on overlapping meshes

Base on the previous defined overlapping meshes, we are ready to construct the LDG method for (1.3). The finite element
space on each mesh consists of piecewise polynomials:
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. . k :
Vi = {up:uply, € PP(Iy), i=1,---, Ny},
. . k :
Phi={pn:pnlp_, € PP(P;_1), i=1,--- Ny},
2

where P¥(I;) and P"(Pi_%) are the sets of all polynomials of degree up to k defined on the cell I; and Pi_%, respectively.

We multiply the first equation in (1.3) with a test function v € Vj, and integrate this equation on the primitive mesh.
Similarly, we multiply the second equation with a test function w € P, and integrate it on the dual mesh. By using integra-
tion by parts, our new LDG method on overlapping meshes is defined as follows: to find (up, pp) € Vi, x Py, such that for
any test functions (v, w) € Vy x Py, and any i, we have

/(uh)tVdX = f (a(up)pn — f(up)) vxdx
i i

~ ~

PN - PN +
a. 1p.,1—f_ 1)v. ; —(@_1p,_1—f._1)v 2.2
+ @y 1P~ fiy) i+l @_1pi 1= fiip) i1 (2.2)
/ phwdx = — / A wydx + Aun ()i — AupGi-))wiy, (23)
Pii% Pii%
where V,-:u = v‘(xi+%) and w; = w~(;). Likewise for LA and Wi+_1. For simplicity, we denote v, = v;] L and
2 2 2 s
vt | =v7. The numerical flux d at the point x. 1 is taken as
Nx+3 2 iI+3
A(up)l.
. _[ (Un)liy1
3T Ul
(unliy

where [slip1:= S;:_] —si_+] denotes the jump of a function s across the cell interface x = X 1. Similarly, we can also denote
2 2 2 2

the jump of w across x = x; on the P-mesh as [w]; = w,.+ — w; . For simplicity, if [up] =0, we define a =a(up). The flux

for the convection term f; 1 = f(u_ ;. u’
2

i+ Vi
for the suitable numerical fluxes can be found in [27]. py, is defined as a piecewise polynomial on the dual mesh and it is
continuous at the cell interfaces of the primitive mesh, hence py(x;, 1 ) is well-defined. We take

1) is the usual monotone flux used in the traditional DG methods. More details
2

%yl

AX

Piv1=pn(xi 1)+ . [Aun)l;y 1, (2.4)
+3

where the parameter «; 1 is chosen by the MPP technique.
2

4
3. MPP third-order LDG scheme in one space dimension
In this section, we proceed to demonstrate the MPP technique and consider the third-order scheme only, i.e. k = 2.

3.1. Analysis for the spacial discretization

In this subsection, we apply Euler forward time discretization and analyze the spacial discretization. We use uj} as the
numerical solution at time level n and use uj to denote the cell average of uj on I;. For simplicity, if we consider the
numerical approximation at time level n, then the superscript will be omitted. Taking v =1 in (2.2), we obtain the equation
satisfied by the numerical cell average u;

1 At A - 1 At 1 1
“n+1 _ den 20 : _ % Zsn = 5 _a. o — ’n.
Ut = <2u, Ax; (fiyy f,,%)> + <2u, + Ax; @ 1Pi11 a,,%p,,%)) : 2C1 + ZDI, (3.1)
where
2At A 2At
. — . __=n N A A~ A~
Ci=u; — —AX,‘ (fi+% - fi_%)v and D;=u; + —AX,' (ai_,_%p,'_,_% - ai_%pi_%) (32)

are the convection and diffusion terms, respectively. In this section, we assume uﬁ € [m, M] and aim to find sufficient

conditions to make Cj, D; € [m, M], and thus ﬂ?‘” € [m, M]. The technique for C; has been discussed in [27] and we recall
the result for the frequently used Lax-Friedrichs flux here.
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Lemma 3.1. Consider the global Lax—Friedrichs flux

A

1 _ — ’
f,'_;,_% = E[f(ui+%)+f(u;%)_a(u;:-% _ui+%)]a a:mlil)qf (wl,

where the maximum is taken over the whole region where u vary. Suppose m < ug < M, then we have m < C; < M, under the condition

ming w
At < #
4a

where wjgs are the quadrature weights for the 3-point Legendre Gauss-Lobatto quadrature for the interval [—1, 1].

min Ax;, (3.3)
1

The rest of this section will focus on the MPP technique for the diffusion term D;. We divide the whole algorithm into
five steps and demonstrate the implementation of the technique in the end.

Step 1: Computation of p(x; 1) and pp(x;_1)
2 2
We need to solve ph(xH%) and ph(xif%) by (2.3) and thus can rewrite D; as a function of uj. For simplicity, we map

Xe Pi+% = [Xi, X;+1] onto the standard element & € [-1, 1] as

AX; | 1 2X—2)~(i+1 )

iI+3 _ 7 . it
wpt e E=———t g, (3.4)

where in the second equation we can view & as a function of x and denote this function as &'*2 (x). Moreover, we denote
Legendre polynomial functions on [—1, 1] as

1
Lo=1, Li(§)=¢, Lz($)=5<asz—1>, (3.5)

and represent ph|pi+1 on the standard element as

Pr(x(§)) = po(§) =aplo +a1L1(§) +azLlz(8), Eel[-1,1].

Here the subscript in pg is not the index of cell. We just use it to describe a function defined on [—1, 1]. Notice that
Xiy1 € [Xi, Xi+1], by simple computations, we know that

AXi 1
X1 =X,14+—2E 1
l+7 l+i 2 l+7 ’
where
§,1= . . e[-1,1], (3.6)
T2 b —dxy )+ (dx 1)
and dxi+% = %. Hence, we have
az 2
Ph(X; 1) =po(§;y 1) =do + 1§ 1+ 7(3§i+% - 1. (3.7)
By using the orthogonal property of Legendre polynomial basis functions, we can get
1 1 1
1 3 5
@ =7 poLodé, a1 = 3 pol1d§, ay= 3 polodg. (3.8)
-1 -1 -1

Substituting (3.8) into the (3.7), we obtain

1

1 )
Pr(xi 1) = 5/170(5)5‘*%(5)615, (3.9)

-1

. 1 . .
where s'72 is a function of £ defined as

stiE) =1 +36,16+ %(3551.1% —-1DBE2-1), Etel-1,1] (3.10)
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We then revert back to the physical element P, 11 By using (2.3), we get

1

1 i+l 1
Prltiyy) =5 [ Po@s s =

/ Pr(0s' ™3 (673 (0)) dx

1
1 l+7 i+%
1 i i1
- - / A (§47(0) dx+ Aunign)s ™3 (1) = Ay G (1)
XH% J X
gl
1 ; . ;
- - / An)s™3 (6%3(0) dx— Aup))s ™7 (—1)
XH—% J X
; _)?i+1
L1 | 01
+ /z‘\(uh)XS'+7 (S‘*f(X))dx+A(uh+(xi+%))5’+7(§i+%) . (311)
i+5 x"
Lit2

where the integration by part is used in the last step. Similarly, we can compute py (xif% ) as

Xif%
1 . . A
Pr%-p) = 25 [ A (e300 dx - Ay (x_psHe
2 &
+¢ - / A(uh)si’%(gi’%(x))xdx—i-A(uh(fc,-))s"’%(l) . (312)
2 X, 1
L 2

Step 2: Decomposition of D;

We consider the decomposition of D;. Substituting (3.11) and (3.12) into (3.2), we can decompose D; as

b 2&i+%At ()ti+% (Al 2ai_%At O[l-_% Al
i=u; + Ax; ph(x"+%)+A5<,-+1 i3 | T Ay ph(><,-_%)+m~c'_l i1
2 2
IAL 2At&i+1 ZAtai_l
1 I il § 2 . —2 U;_4, 313
i AX; I+AX1‘AX1»+% lJrl—i_AX,'A i1 i1 ( )
where
. i ird
G, 1 L .
U=—2|— f Ans™3 (73(0) dx— AURG)STE (1) = a1 AWy (4 1)
AXH_% J X 2 2
i, | ®
i1 . . .
- =% |- / Ans ™ (87500) det A @S () + ey A () | (3.14)
Xl_% . X 2 2
Xit1
il il il
Uip1 = / Atun)s™ (877 00) dx+ A (k) [572 6y ey | (3.15)
Xipd
Xf,l
2
.1 21 i1
Uiqj=— / Aup)xs ™2 (gl—i(x)) dx+ Ay (1) [s"i(gii%) +ai7%]. (3.16)
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Step 3: PP technique for linear case

123

Now we proceed to discuss the PP technique for linear diffusion terms, i.e. A(u) =u, m =0 and M = oo. Then

(3.14)-(3.16) can be written as

B i+
1 il (il < ixd _
Ui= = | - / uhs‘+z(s”z(x))xdx—uh(x,»)s'ﬂ(—l)—al+1uh C)
i+3 H
X
1 i—1 (gi-1 SNd—1 +
|- [ s z(g 2(x))xdx~|—uh(xi)s P+ ) |
i3 x"1
. 2
Xig1
201 1 |
Uip1 = [ (a2 (84700 ) dx+ ui (o, ) [ 6 p + ey |
X, 1
I+5
X,',l
2
i1 ;1 i—1
Uit =~ / (s’ (87200 ) dx+up () [s3 6 p ey ]
Xi_1

We will consider U; first and the result is given below.
Lemma 3.2. Suppose u, > 0 in I;, where I; is a certain element. Then u; + i—if U; > 0 under the condition

Ax?
At < :
12 [maxi h(l&, 3 +3€(E0) +3max; ai+%]

where Ax = mini{ARH% , AXil,

e +3682-1), if 362-12>0
"@)‘{s—%ezsz—n, if 382 -1<0
and
_ S22 _ o3 5 o
L&) _maX{Z(BE +3E1+1,1 5(3%_2 -1 4(35 1)}.

(317)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Proof. When U; > 0, it is obvious that uf + AA—;Ui > 0. Hence we only need to consider the case with U; < 0. In this case,

on
we need to require At < %}Ax, Next, we try to find an upper bound of _AL;,-'

Xi+% )2,'
U 1 . . 1 ; i
L= — = / UhSH_% (SH—%(X)) dx — ——— / uhsl_% (gl_%(x)) dx
AXxi AXiDX 1 X AXiAX;_1 x
2 Xi 2xiil
2
21 ;1
s'T2(-1) sT2(1) . ¥l -3 4
+ = + = up(X;) + —————u, (x; + —=u; (x; .
AXi AR 1 AXAX 1 h(%) AXiAX 1 n '+%) AXiAX; 1 n _%)
i+3 i-3 43 72

For simplicity, we denote (i3 x) = si+3 (é”% (x)) . By using the chain rule, we know that
X

. i1 i1 2 X=X 1
i3 ) — i T2giT7 _ ) 1 2 _q _ g
2 (x) g “&x A??,-_,_l 3‘51+% + 5(3Si+% ) Ai{i+l .
2 2
Notice that ti+3 (x) is linear in x, and it is easy to get
1 6 1 6
max "2 (x) = ——h(§ 1), max _ {—t'""2(x)} = ——h(=§_1).
xel%.x 11 AXH_% 2 xelx,_1.%] AXI-_% 2
2 2

(3.23)
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Also, it is obvious that

h) =h(gh,  &el-1,1]

Hence, the upper bound for the integration terms in (3.23) can be estimated as

Xip1 %i
1 : 1 :
_— / uht’+%(x)dx—7~ / uht‘_%(x)dx
AXiAX; 1 AXiAX; 1
1+3 % i zxi X
2
Yt o I3 updx
f_. up dx ti+3 (x x_1 “h —tl_7 X
% max L& T max ———® - 1D (3.24)

AV xelxix, 11 DX 1 AXi  xelx_1.%] AX_%
2 2

For the other terms in (3.23), we can use the same idea for solving ph(x,.+%) in (3.9) and map x € I; onto the standard
element 7 € [—1, 1]. Then we can compute the point value of u; as an integration

1
1
un (X010)) = 10 (0) = 5 / uo()r(no. Mdn. VYo € [~1,1],
—1
where
_ S22 2_
r(no,n)—1+3non+4(3no 1H@En*-1).

Hence, the rest terms in (3.23) become

1 1
s s i T Gy,
= = Up(Xi = u, (X —1U, (X:
(AX,’AXH_% + AXiAXi_% n (i) + AXiAXH_% h ( ’+%) + AXiAXi_% h ( '_%)
1 n
u.
uo(MR(mdn < — max_R(), (3.25)

T2Ax = AX; nel-1.1]
-1

where

sti(—1)  siT1(1) oyl o1

R(n) = _ + — réo, n) + —2r(1,n) + —2r(-1,7),

(m [ X A%, (o.M Axi+1( ) Axi,l( m
2 2 2 2

and we have used ug(n) >0 for n € [—1, 1] in the last step. By simple computations, we know that

max [r(no, M| <£(mo) =9,  noe[-1,1].
nel=1.1]

Since s"+%(§) = r(EH—%’E)' we have

] rGig =Dl IrG_g. DI @y oy
= z = r(éo, —|r(1, —|r(—1,
(m = AR + A% Ir(§o. M1+ X Ir(1, mI+ AR Ir(=1,m|
2 2 2 2
< ]SZ(S )+ 18 max o, (3.26)
ax VT Ax '
Combing Egs. (3.23), (3.24), (3.25), and (3.26), we have
Ui 6ul
xS < maxh(|§,+ D+ 360 +3maxay, ) (3.27)
and thus can obtain the conclusion. O
Remark 3.1. Notice that we have only given a very rough estimate of the upper bound of —ﬁ in (3.27) to show that
uf + At U; can be non-negative with a small At. In practice, the real upper bound of — L - may be much smaller and hence

At can be much larger than the one in (3.20).
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a,

Fig. 3.1. Corresponding region in ajay plane when uy(n) >0 for n € [—1,1].

Now, we proceed to analyze U;;1 and U;_1. In this step, we need to find the requirement on ¢
We assume that up(x) >0 in [;41 = [xi+%,x

41 to make Uj4q > 0.

2

i3] For simplicity, we map x € I;;1 onto the standard element [—1, 1]:
2

AXitq

X=Xjt+1+ n, nel-1,1],

and consider uy as a function of 1 on the standard element:

up(x(m) =u1(m) =ao+arl(n) +azl2(m), nel-1,1].
Notice that U;j;1 is linear with respect to u, and

1

1
Q=7 / uq(x(n))dn > 0.
-1

We only need to consider the case with

ur(m) =1+a1L1(n) +azxl2(n), n e [-1,1].

We first illustrate a lemma to show the equivalent requirement on a; and a; when ug > 0.

Lemma3.3.u;(n) =14+a1L1(n) +azLla(n) = 0 forany n € [—1, 1] if and only if

1+a;+a;>0, when |aq| > 3ay,

2
T+@—-1%*<1,  when|a| <3a.

Proof. If the parabola uq(n) opens downward, i.e. a; < 0, then uy(n) >0 in [—1, 1] if and only if

ui(=1)=1—-ay+ay>0 and ui(1)=14ay+a >0. (3.28)

If a =0 and hence u1(n) is a linear polynomial, then we also have u1(n) >0 in [—1, 1] if and only if (3.28) is satisfied. If
the parabola uq(n) opens upward and the symmetry axis —3"712 lies out of [—1, 1], i.e. a; > 0 and % >1, then u1(n) >0
in [—1,1] if and only if (3.28) is satisfied. Finally, if the parabola u1(n) opens upward and the symmetry axis lies within

302 +a? .
2~ >0, that is
2

[—1,1], i.e.a; >0 and % <1, then uqy >0 if and only if minu; =1 —
2
a

3 t@-1n?<1.

Combing all the cases above, we get the conclusion. O

We can easily see that (aj,ay) falls into the shaded region in Fig. 3.1 when the requirements in the above lemma are

2
satisfied. It is easy to verify that the line 1 4+ a; +a; =0 is tangent to the ellipse %1 + (az — 1)2 =1 at the point (;%, %)
and hence the region in Fig. 3.1 is convex. Since U;y1 is linear with respect to up, we only need to consider the following
two special cases.
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1. Case1: a; =0 and a; = —1.
In this case, we can get
3¢ +1)
16
To make U;yq > 0, we need
4 3 2
455,y 306, — S, — 26,0 T 13 9 266

& < min 2 S =g~ 0.8635. (3.29)
§ipp =1l 3G+ D) (SEH% +1) 9

Uiy = [4551% +3087 y — 14y — 26, +13 -3, + DIGE, + 1)&0] .

Notice that & _

(3.6), we would like to adjust & such that U;;q > 0 for any

AX;
AXiy1*

51+1 e[-1,1]. That is, we do not restrict the mesh sizes ratio

2. Case 2: the boundary of the ellipse, i.e., aq +@—-1%=1.
In this case, we have

§0+

Uiy1 = (T'+ b1ay + baay),

where
5
— ' 2 232 _1)2
—50“[O‘z+%+1+3‘5,~+%+4(3‘5,~+% 1)},
b1:gi+%(si+%+1)(15§i2+%+1)+4—r,

3 4 3 2 9%o 2cs2
by, =T-— 1 (45§i+% +30§i+% —14§i+% —2$i+% +13> + T(SH% +1) (5.§i+% +1).

To make U;4q > 0, we need

I'+biay +brap =T + by + b1ay + ba(ax — 1) > 0,

[+ by > —[b1ar +ba(az — 1)].
2
Since %1 + (a; — 1)?2 =1, we need to have

T+ by >,/3b3 +b3,

which is equivalent to the following requirement on the penalty coefficient
2 2
(6, y €y +DASE, +1)+4]
2 2
6(5.§i+% + 1)(z§i+% +1)

= g(dxH%,éo), (3.30)

o

>
i+1 =

-G8, D=3, -

where we have used (3.6) and represent §i+% as a function of & and dxl.+%. The analysis above can be summarized as the
following lemma.

Lemma 3.4. Suppose uy > 0 in I; 11 and the conditions in (3.29) and (3.30) are satisfied, then U1 > 0. Similarly, if up > 0 in I;_1
and
266 29
- - . > .
& > >7 5 and o1z g(1/dx;

then we have Uj_1 > 0.

,—&0). (331)

1
2

Based on the above lemma, we should choose &y € [26‘/— -2 29 26*/_] Also, «;

5 % 1 at a fixed boundary x; 1 should

i+3
satisfy

O‘i+% Z max{g(dXH_% ’ §0)7 g(l/dxi+%’ _50)} = g(dxi+% ’ &0) (332)
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5¢ 5¢ 5¢
af 4F 4F
3f 3f 3f
2f 2F 2F
1F 1k 1F
of of of

T T T T T T TR T T
108 06 04 02 0 02 04 06 08 1 108 06 04 02 0 02 04 06 08 1 108 06 04 02 0 02 04 06 08 1

3 & g
(a) de, 1 =1 (b) da;y 1 =2 (c) d;rH%:l/Q

Fig. 3.2. Plots of g(dxi+% , &) for different given dxH_%.

Recall that dx; 1 = %. In practice when the computational mesh is given, which can be non-uniform, dx; i can be
2 2
computed for each fixed i. Next, we just fix the value of dx; 1 for a fixed i and try to adjust & such that o;, 1 can be

minimized. By simple computations, we have
min gldx;, 1,60)=1/4,
and there are two critical points
dx?

l+%
2
dxi+% +4dxi+% +1

2
—2+/3dx;, 1 1 2 dxt,, + 2¢/3dx;y —1
’ 0=

2
dxl,+% +4dxi+% +1

Fig. 3.2 shows the plots of g(dxH% , &0) with respect to & € [—1, 1] for different given dxi+%. If dxi+% =1, then the mesh is
uniform and ég and 53 are the roots of the Legendre polynomial of degree two,

Also, for &y =0, i.e. the dual mesh is generated by the midpoint of the primitive mesh, we have

£(1,0)=5/12.
When dx; 1 =2, we can take
2
43 -3 2 4V3+3
13 o= 13

When dxH% =1/2, we can take

§ =

1 4343 . 4V3-3
o= 13 07 13
Finally, we would like to point out that for fixed dx; 1 g — 00 as |&y| — 1. Therefore, we cannot construct third-order
MPP technique for the original LDG method, and our conclusion does not violate that given in [30].

Step 4: PP technique for nonlinear case

In this step, we will discuss the PP technique for nonlinear problems. We assume uy > 0 which further implies A(up) > 0.
To apply the same a~nalysis for the linear case, we would like to replace A(up) in (2.3) by a piecewise quadratic polynomial
A(x) > 0 such that A(x)|;, € P2(I;) and for any i =1, ---, Ny

A,;l =A ((Uh)l;1>, A,tl =A ((uh)ltl>» I Allooryy < ClIA@R) oo a1y (3.33)
2 2 2 2
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Then U;, Ujy1 and U;—q in (3.14), (3.15) and (3.16) can be written as

X. 1
N ity
U= 72 | = [ Asi+} (g”%(x)) dx — AR)s™2 (=) — a1 A”
1 A&iJrl X l RS
2 ;(i
~ i Xi
-3 Gl (pic] il +
L B B z(s z(x)) dx+ ARSI () +a,_1AT | |, (3.34)
AX;_1 X 2 i—y
2 X1
L 2
Xiy1
~ 201 201 1
Uiyt = / Aysit? (§'+?(x)) dx+ AL [s'+7(s,.+%) +ai+%], (3.35)
ipd

|
(S

1], (3.36)

=3

Ui =— / Agsi—2 (si*% (x)) dx + AL, [sf*% & 1)+

The construction of A will be discussed in the “Implementation”. Now, we can demonstrate the positivity of D; in (3.13).
Following the same proof of Lemma 3.4 we have

Lemma 3.5. Suppose U; 1 and U;_1 are given in (3.35) and (3.36), respectively, then U;11 > 0 and U;_1 > 0 under the conditions

266 29 29 2646
— = — <{<——-——— and «;

27 9~ =79 27 i-3
where g is defined in (3.30).

= max | g(1/dx;_y. ~£0). &(dx,_y. o) | (337)

The estimate of U; given in (3.34) can be obtained below.

Lemma 3.6. Suppose uy > 0 in I;, then up + ZA—ﬁitU,- > 0 under the condition

U2 AX?

At < (3.38)

124, C maxy a2 (u) [maxi h(&;, 1D+ 3€(0) +3max; ai+%]

3

where h and ¢ were defined in (3.21) and (3.22), respectively, and w1 and (1, are the parameters used in the following norm equivalence
for P2 polynomials:

wlluplizeoqy = Ul > pollugllzeo ). (3.39)

Proof. Following the same analysis for (3.27), we have

U; _ 6if max, a(u)
TS e maxh(|§;, ;1) +3¢(0) +3maxe,, ;1 |-
Therefore, we have
= At -

—U
+ Ax; max, a(u)

under the condition (3.20). Now, we find the relationship between A and Up:

= ~ ~ ~ /L‘lc —
A < prllAllpeeqyy < 1CIIAUR) ooty < 1€ mfxa(u)lluhllLoo([i) < Uy muaxa(u)uh,

where in the first and last steps, we applied the norm equivalence, step two requires Lemma 3.7 and the third step is the
mean value theorem. O
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Remark 3.2. (3.39) follows from the norm equivalence. Notice that we assume the numerical approximation u;, > 0 in cell [;,
then

u ! / updx ! lupll
i=— =— 1) -
! AXi h AX; hilLT )
Ii
Since up is a polynomial of degree 2, by the norm equivalence in finite dimension spaces and the scaling argument, we can
find two constants w1 and w such that

1
malluplleo ) = A—||Uh||L1(1i) > pallupliee ),
Xi

which further yields (3.39).
The above two lemmas yield a straightforward corollary.

Corollary 3.1. Suppose the conditions in the above two lemmas are satisfied, if uj > 0, then "1 > 0. Moreover, if up <0, then
a1 <.

Remark 3.3. In (3.38), the time step will be very small. If we enforce the time step, the computational cost for time is
actually very high. Moreover, it will be extremely difficult to construct the PP limiter with implicit Euler method, and we
will discuss this in the future.

Step 5: MPP technique for the nonlinear case

Now we can proceed to the MPP technique. We also need to replace A(up) in (2.3) with a piecewise quadratic polynomial
A(x) such that (3.33) is satisfied and

m M
/a(u) du<A(x) < /a(u) du,
0 0

and the result is given in the following theorem.

Theorem 3.1. Suppose m < uy < M, and the conditions in Lemmas 3.5 and 3.6 are satisfied, then we have m < 1'1?'H <M.

Proof. We only prove m < ﬂ?“, since the other inequality can be obtained following the same lines with minor changes.

Define v, = up —m, then v, > 0 and define

Up Vh
B(vp) = A(up) :/a(u) du = / a(v+m)dv. (3.40)
0 —m

Therefore, D; in (3.13) can be written as

b m_"/”_i_ZAtV‘_i_ 2Atai+% . ZAtai_% v
! - AX; ! AXI‘A)?HL i+l AX{A)N(FL =t
2 2
where
i XH%
Vi= 2| - / BOrs'*E (§42(0) dx— BupG)s™ 2 (—1) — a1 BV (X4 1)
AXi, 1 x 2 2
2 5‘,,
i, |
S f Br)s' 2 (§72(0) dx+ B ™2 (1) + @,y BOF(x_p) |,
AX. 1 X 2 2
1—7 x 1
L 2
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Xi+1

Vigr = f B’ (£ 00) dx+ B ) [$73 )+ ],

|
Nl=

2

Vier== [ B (4 00)de+ B ) [sH 6 +ary .

It is easy to check that in the definition of B in (3.40), we can replace the lower limiter in the integral by any constants
without changing the value of D;. Therefore, we may assume B(vy) = fOV“ a(v+m) dv. Now, following (3.33), we can replace

B by B to compute D;. Then the analyses in previous steps can be applied directly to obtain D; —m > 0, which further yield
D; > m. By Lemma 3.1, we have m<u/*'. O

3.2. Implementation

In this subsection, we will demonstrate how to implement the MPP LDG method. WLOG, we assume A(up) = (;"h a(u) du
and m < up < M. We further denote m = fg" a(u) du and M = fOMa(u) du, and hence m < A(uy) < M. We use the following
steps to construct a quadratic polynomial A in each element I; such that m < A < M:

1. Compute a linear function p; € P'(I;) such that p; is the interpolation of A(uy) at x = Xi_1 and x = X1 Since
m < A(up) < M, it is obvious that pq(x) € [m, M], Vx € I;.

2. Calculate a quadratic polynomial p; € P2(I;) such that py is the interpolation of A(up) at x = Xi_ 1, X=X and x = Xip1-
It is possible that minyy p2~(x) <1 or MmaXyey; p2(x) > M, but they will not happen simultaneously. o

3. Combine p; and p; to get A =6p, + (1—6)p1, where 6 € [0, 1] is the largest possible value such that m < A < M. This

can always be done since in the extreme case when 6 =0 we have A = pq € [m, M].

Remark. In the case that minej; p2(x) <m, we can solve minye;[p2(x) + (1 —60)p1(x)] =m to get 6. If there are multiple
solutions, we just take the largest one within the region [0,1]. In the case that maxyej; p2(x) > M, we can simply solve
maxxer; [0p2(x) + (1 —0)p1(x)] =M to get 6.

Lemma 3.7. Suppose A is constructed above, then there exists a positive constant C such that
Al Loty < CIIA@p) |Leo ;) -
Proof. It is easy to see that

Ip2lireery < ClIAUp) liooryy, 1l < NA@R) Loy -

Finally, the conclusion follows from triangle inequality directly. O

With Theorem 3.1, the numerical cell average 1]?+1 € [m, M]. However, the numerical approximation uT’

1 may be out of
the bounds. Therefore, we also need to apply some limiter to uﬂ“ and the procedure is given below. For simplicity, we will

drop the superscript n + 1.

1. Set up a small number € = 10713,
2. If up <m+e€ or up > M — €, take up = . Then skip the following steps.
3. Define m; = minyey, up(x) and M; = maxyey; up(x). Set 6 = 1. If m; <m or M; > M, then take

{ﬁh—m—e ﬁh—M—i-e}

6 = max — , ——=
Up —m up — M;

4. Apply the slope limiter i, = iy + 6 (up — uy), and use i, as the new numerical approximation.

Remark. We still use the notation 6 here but it is not the same one used to compute A. Similar rule applies to the two
dimensional problem to be discussed in Section 4.

In [27], the authors have proved that the limiter keeps the high-order accuracy.
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3.3. High-order time integrations

All the previous analyses are based on first-order Euler forward time discretization. We can also use strong stability
preserving (SSP) high-order time discretizations to solve the ODE system w; = Lw. More details of these time discretizations
can be found in [24,23,13]. In this paper, we use the third-order SSP Runge-Kutta method [24]

w® =w" + AtL(W"),

3 1
w® = Zwh g (wm n Aruw<1>>) , (341)

4 4
1 2

w't = ow' 4 2 (w(z) + AtL(w(z))) ,

and the third order SSP multi-step method [23]

16 11 12

witl = > (W" 4+ 3ALL(W")) + 57 <W”_3 + ﬁAtL(w”_3)> ) (3.42)

4. LDG scheme on overlapping meshes in two space dimensions

In this section, we will construct the third-order MPP LDG scheme on overlapping meshes in two space dimensions and,
for simplicity, we study the following pure diffusion equation over the domain = [0, 1] x [0, 1],

ur = (@)p)x + (b(w)q)y,
p=A)x, (4.1)
q= By,

subject to periodic boundary conditions, where A(u) = f” a(t)dt and B(u) = f” b(t)dt.

We first define the primitive mesh for the primary variable u which is a regular rectangular decomposition of . Let
Ozx% <Xy < <Xy =1and 0= Yi<Y3 < <Yyl =1 be grid points in x and y directions, respectively. We
denote the i, j-th cell as

lj=lix Jj, =1, Ny j=1, Ny,

where [; = [xi_%,x 1]and J; = [yj_%,yﬁ%]. Moreover, we denote

i+3
X_1+X.,1 Yi1+Yi1
i i+ J J+
AXp=X, 1 —X_1, Xi:%s AYj=VYipl = Vi1 }’jZ%
Moreover, we define Ax =min; Ax; and Ay =min;j Ay;. We also move each cell horizontally to obtain the P-mesh: P,.+%,j =
PH_% x ] j, where
< - - Ax; .
Pipy =i kil Xi=xit —-f. fel-1.1, =12 Ny (4.2)
with Xop =Xy, — 1. Similarly, we can define the Q-mesh: Qi,j+% =1 x QH%' where
- - - Ayj )
Q1 =Wpyinl  yi=yj+—"no.  moel-L1L  j=1.2,-.Ny, (4.3)

with yo = yn, — 1. The P-mesh and Q-mesh are used for the auxiliary variables p and g, respectively. Similar to the problem
in one space dimension, we can also define P%,j = ([0,X1]U [Xn,, 1]) x J; and Qj’% =1I; x ([0, y11U [¥n,, 1D.
We define the finite element spaces to be
Vi = {up Suply; € Qk(lij)v i=1,---,Nx, j=1,--- Ny},
—— . k P P
Ph '_{ph 'ph|Pl+%J € Q (Pl+%,])’ l_la aNX7 ]_17 ,Ny}s
— . k - .
Qh = {qh -qh|Q“+% € Q (Qi’jJ’,%)! i=1,---, Ny, ]—1,"‘ 7Ny}7
+

21
i—5,]
traces of u on the four edges of I, respectively. Likewise for the traces of P, 1 and Q

where QF is the tensor product polynomials of degree k. Given u € Vj,, we denote u u u, . , tobe the

- +
. l 3] u -_ly . 1
1+3,] L,j—3 Lj+3
i+ along x = X;, X = X1 and
y=75¥j, ¥y =3+, respectively. Moreover, we use [u] =u" —u~ and {u} = %(u+ 4+ u~) as the jump and average of u at the
cell interfaces, respectively.
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Now, we can introduce the LDG method on the overlapping meshes: to find (up, pn,qn) € Vi X Py x Qp, such that for
any test functions (v, w, z) € Vj, x Py x Qp, we have

_ - 5 - - 5 +
[(Uh)tVdXd.V——/a(uh)phvdedy+/‘ai+%wjpi+%vai+%,jdy_/ai_%vjpi_%*fvi—%'jdy’

Iij lij I I
_/b(uh)qhvydxdy+/bi’j+%@i’j+%v;j+%dx—/bi’jf%di’jf%v:ji%dx, (4.4)
/ prwdxdy = — / A(uh)wxdxdy+/A(uh(>”<i+1))wi‘+1,jdy—/A(uh(?ci))Wffjdy, (4.5)
i+d.j i+3. i Ji
f qrzdxdy = — / B(uh)zydxdy—i—/B(uh(jfj+1))zgj+ldx—/B(uh(j/j))z;fjdx. (4.6)
Qi.j+% Qi,j+% li li

The numerical flux G along x =x; 1 and b along y = Y1 are taken as

+
[A(uh)],'_;,_%,j N [B(uh)]i’j_,_%
a. 1 .= P e
1+5.] [uh]i+%,j L]+3 [uh]i’ij%
where [S]H_%J = 5,’1%,1‘ _5;%,1 denotes the jump of a function s across the cell boundary {xH_%} x J . Likewise for [s]i’H%.

Moreover, we choose

. ®iplj . &+l
Pip1j=PnX 1. ¥)+ AT, j[uh],-+%,j, Gi jp1 =an(x Y1)+ m[uh]i7j+%-
2’ JT2

To approximate the integral on I; and J; in (4.4)-(4.6), we use the three-point Gaussian quadrature. For each y =1,2,3,
we can construct a quadratic polynomial ¥? (x) in J; such that

Yy =1, 0=y,
VY (yg) =0, 0 £y,

where y{;. o0 =1,2,3 are the three quadrature points in the Gaussian quadrature for J;. Likewise for xﬁ,. In (4.5), we take
w(x,y) =¥ (y)w(x), where w(x) is a quadratic polynomial on Pi+%, to obtain

f pr(. yi)Wdx = — / AQUn(-, Y)))WrdX + Aup i1, YI)IWi,, — Atn i, y) )W, (4.7)
i+l ird
2 2

which is similar to (2.3) and we can follow the same analyses in Section 3.2 to construct the MPP technique of problems in
two space dimensions. Therefore, we only demonstrate the algorithm as follows and omit the proof.

1. Step 1: Modify A(up) and B(up). We only demonstrate how to modify A(up) along the line segment [ = I; x {y{,} and
the procedure can be applied to B(up) with minor changes. WLOG, we assume m <u < M.
(a) Calculate a quadratic polynomial p; € P2(I) such that p, is the interpolation of A(up) at x = Xi 12 X=X, X=X, 1

along 1.

(b) Compute a linear function p; € P1(I) such that p; is the interpolation of A(uy) at x :xi_% and x = xi+% along .
(c) Apply a limiter to p2: p=60p2 + (1 —0)p;.
(d) Choose the largest possible 6 € [0, 1] such that foma(u) du<p=< [OM a(u) du, and use p as A.

2. Step 2: Compute pp (xl.+% . Yy). We use A to replace A in (4.7) to obtain

/ (. y)Wdx = — / AQunC. y)))Wadx + A, y)) Wiy, — AGi y)) Wy,
PH—Z ity

and take suitable test function W to obtain py (xi+% , y{,). One example is (3.10).
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3. Step 3: Update uy, in (4.4). We use the values of pj (xi+% R y{,) and qp (xg,, yj+%) and three-point Gaussian quadrature to
approximate the integrals on the cell interfaces. Following Lemma 3.5, we take

266 29<E _29 26./6
27 g =500 =g T
and
;1 j = max [g(l/dxi_%, —£0), g(dxi_%,éo)] , @ j_1 = max {g(l/dy,-_f, ~M0), 8@y 1, no)} ,
where
_ AXiq Ay
dx,-_%— Ax; Vi1 = Ay;

Moreover, following Lemma 3.6, we also need to choose

Ax?
At < M2

T 121 C maxy @2 () [max,- R, 1D +3€(0) +3 max,-,,-a,,%j]

)

and

Ay2
At < _ M2y
12441 C maxy b2 (u) [max,-h(lnH% D +3€(no) + 3maxi,joe.’j+%]

1

’

then we can obtain m < ﬂg” <M.
4. Step 4: Apply the bound-preserving limiter.
(a) Set up a small number € = 1013,
(b) If up <m+e€ or up > M — €, take up = up. Then skip the following steps.
(c) Define

X . j X J
my. = min up (X, , M:. = max up (X, .
LI xely=1,2,3 h( Yy) LI xeliy=1,2,3 h(. ¥y)

y y
We can also define my ; and Mi_j analogously. Let

- y y
mi j =min{my ;,mj ;}, Mij=max{Mj; M},

and set 6 =1.If m; j <m or M; j > M, then we take

{L_lh—m—é ﬂh—M-‘ré}
0 =max{ — , — .
uh—m,-,j uh—M,‘.j

(d) Compute iy =iy + 6 (up — up), and use iy as the new numerical approximation.

Before, we finish this section, we would like to demonstrate the following remarks.

Remark 4.1. In step 1, we use A to replace A(uy) along I; x {y{,}. We can also extend A to the whole cell I; j such that
A € Vy, and use the new A as A in (4.5) to compute the integrals exactly.

Remark 4.2. For linear equations, we can take piecewise P¥ polynomials as the finite element space. In this case, d is a
constant, hence we only need to evaluate [ Jj p(up) dy instead of pp at the quadrature points. Therefore, in (4.5), we can

take w as a function of x only to evaluate fjj p(up) dy.

Remark 4.3. Due to the nature of overlapping meshes, it is not easy to extend the scheme to unstructured meshes. The
technique for triangular meshes will be discussed in the future.
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Table 5.1
Accuracy test for the linear heat equation.
Number of LDG without limiter LDG with limiter
cells L? norm order L*° norm order L? norm order L* norm order
=0
10 3.05E-04 - 8.61E-04 - 2.33E-04 - 5.91E-04 -
20 3.85E-05 2.99 1.11E-04 2.95 2.84E-05 3.04 7.41E-05 2.99
40 4.83E-06 3.00 1.40E-05 2.99 3.52E-06 3.01 9.28E-06 3.00
80 6.04E-07 3.00 1.75E-06 3.00 4.39E-07 3.00 1.16E-06 3.00
160 7.55E-08 3.00 2.19E-07 3.00 5.49E-08 3.00 1.45E-07 3.00
320 9.43E-09 3.00 2.74E-08 3.00 6.86E-09 3.00 1.81E-08 3.00
£ =+/3/3
10 3.09E-04 - 1.03E-03 - 2.40E-04 - 7.63E-04 -
20 3.76E-05 3.04 1.26E-04 3.03 2.98E-05 3.01 9.62E-05 2.99
40 4.67E-06 3.01 1.57E-05 3.01 3.73E-06 3.00 1.20E-05 3.00
80 5.83E-07 3.00 1.96E-06 3.00 4.66E-07 3.00 1.51E-06 3.00
160 7.28E-08 3.00 2.44E-07 3.00 5.82E-08 3.00 1.88E-07 3.00
320 9.10E-09 3.00 3.05E-08 3.00 7.28E-09 3.00 2.35E-08 3.00
Table 5.2
Accuracy test for the nonlinear heat equation.
Number of LDG without limiter LDG with limiter
cells L? norm order L norm order L? norm order L* norm order
=0
10 2.32E-04 - 8.31E-04 - 1.84E-04 - 5.92E-04 -
20 2.93E-05 2.99 1.04E-04 2.99 2.22E-05 3.05 7.41E-05 3.00
40 3.67E-06 3.00 1.32E-05 2.98 2.75E-06 3.01 9.25E-06 3.00
80 4.59E-07 3.00 1.65E-06 3.00 3.43E-07 3.00 1.15E-06 3.00
160 5.74E-08 3.00 2.06E-07 3.00 4.29E-08 3.00 1.44E-07 3.00
320 7.20E-09 2.99 2.62E-08 2.98 5.36E-09 3.00 1.80E-08 3.00
& =+3/3
10 2.38E-04 - 9.79E-04 - 1.88E-04 - 7.32E-04 -
20 2.88E-05 3.04 1.19E-04 3.05 2.33E-05 3.01 9.31E-05 2.97
40 3.57E-06 3.01 1.48E-05 3.01 2.91E-06 3.00 1.16E-05 3.00
80 4.46E-07 3.00 1.84E-06 3.00 3.64E-07 3.00 1.45E-06 3.00
160 5.57E-08 3.00 2.30E-07 3.00 4.54E-08 3.00 1.82E-07 3.00
320 6.96E-09 3.00 2.89E-08 3.00 5.68E-09 3.00 2.27E-08 3.00

5. Numerical examples

In this section, we provide numerical experiments to demonstrate the performance of the third-order MPP LDG method.
For simplicity, uniform primitive meshes (dxH% =1 for all i) are used in all numerical examples. In this case, all penalty
parameters o; 1 at different cell boundaries are in fact the same and hence we simply rewrite it as «. We test different
offsets of the auxiliary mesh in each numerical example. For & = 0, we take the penalty parameter as « = 0.42, and for
£ = +/3/3, we take o = 0.25. For simplicity, we only test the preserving property of the lower bound of the solution.
The results for preserving the upper bound are similar. Hence, we take M = co. We use the third-order TVD Runge-Kutta
method for time discretization and the third-order LDG scheme on overlapping meshes for the space discretization.

5.1. One-dimensional numerical tests

Example 5.1. We consider the following linear heat equation

Ut = Uxx,
[ u(x,0) =sin(x) + 1, (5.1)

on [0, 27r] with a 2w -periodic boundary condition.

The exact solution is u(x, t) = e~ sin(x) + 1. Numerical errors at T =1 with different values of & are listed in Table 5.1.
In the left column, we test the LDG method without limiter. That is, we take @ =0 and do not apply the slope limiter
described on Page 15. We can observe the expected third-order accuracy for our scheme on overlapping meshes. In the
right column of the table, we take m = 0 and apply the PP limiter. Here only the solutions on the two elements sharing
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Table 5.3
Accuracy test for the linear convection-diffusion equation.
Number of LDG without limiter LDG with limiter
cells L? norm order L*° norm order L? norm order L* norm order
=0
10 8.56E-04 - 2.59E-03 - 8.99E-04 - 3.14E-03 -
20 1.06E-04 3.01 3.12E-04 3.05 1.07E-04 3.08 3.12E-04 333
40 1.32E-05 3.01 3.90E-05 3.00 1.32E-05 3.01 3.91E-05 3.00
80 1.63E-06 3.02 4.78E-06 3.03 1.64E-06 3.01 4.81E-06 3.02
160 1.99E-07 3.04 5.74E-07 3.06 2.01E-07 3.03 5.81E-07 3.05
320 2.37E-08 3.07 6.63E-08 311 2.42E-08 3.05 6.79E-08 3.10
£ =+/3/3
10 8.56E-04 - 2.59E-03 - 8.97E-04 - 3.11E-03 -
20 1.06E-04 3.01 3.11E-04 3.06 1.06E-04 3.08 3.12E-04 3.32
40 1.32E-05 3.01 3.88E-05 3.01 1.32E-05 3.01 3.88E-05 3.00
80 1.63E-06 3.02 4.73E-06 3.03 1.63E-06 3.02 4.75E-06 3.03
160 1.98E-07 3.04 5.64E-07 3.07 2.00E-07 3.03 5.68E-07 3.06
320 2.37E-08 3.06 6.46E-08 313 2.40E-08 3.06 6.53E-08 312
Table 5.4
Elements that have been modified by the slope limiter.

Time Cell Time Cell Time Cell

Nx=10 Ny =20 Ny =40

3.95E-02 8 0 15, 16 0 30, 31

7.90E-02 8 9.87E-03 16 2.47E-03 31

1.18E-01 8 1.97E-02 16

1.58E-01 8 2.96E-02 16

1.97E-01 8

2.37E-01 8

2.76E-01 8,9

3.16E-01 8,9

3.55E-01 9

3.95E-01 9

9.47E-01 10

Ny =280 Ny =160 Ny =320

0 60, 61 0 120, 121 0 240, 241

the minimum value point x = %7{ are modified by the slope limiter at the initial time. But the authors in [28] have already
proved that this slope limiter keeps the high-order accuracy. In our test, we take o # 0 in all cells even though most of
them do not need to apply the PP limiter. We can observe that the penalty term with o # 0 indeed does not harm the
original high order accuracy.

Example 5.2. We consider the following nonlinear heat equation

ue = (€224 uy)y,
u(x,0) =sin(x) +1,

on [0, 27r] with a 27 -periodic boundary condition.

For this nonlinear problem, the exact solution is not easy to derive. However, when computing the numerical error for
N cells, we can treat the numerical solution with 2N cells as the reference solution. Numerical errors at T =1 are listed in
Table 5.2. We can also observe the expected third-order accuracy for our scheme on overlapping meshes. In this example,
we take m = 0. As in the previous example, the slope limiter only works on the two elements sharing the point x = %71 at
the initial time. However, we still take « £ 0 and replace A by A in all cells at all time levels. By comparing the left and
right columns of the error table, we can observe that the penalty term in our scheme and the replacement of A by A will
not harm the original third-order of accuracy of the LDG method.

Example 5.3. We consider the following linear convection-diffusion equation

Up + Uy = €Uxy,
u(x, 0) =sin(x),

on [0, 27r] with a 27 -periodic boundary condition.
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The exact solution is u(x,t) = exp(—et)sin(x —t). We take € = 0.001. Numerical errors at T =1 are listed in Table 5.3. In
the MPP limiter, we take m = —1. In Table 5.4, we list the indices of cells that have been modified by the slope limiter with
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Fig. 5.1. Porous medium equation with m = 8. Comparison of numerical solutions with and without limiters.

& = 0. The results for £ = +/3/3 are exactly the same. We can see that the slope limiter works on the elements containing
the global minimum at several time levels. We still take o # 0 globally at each time level and can also observe the expected
third-order accuracy for the MPP LDG scheme. Therefore, the technique also works for convection-diffusion equations.

Example 5.4. We consider the following porous medium equation

ur = UM,

m> 1.

(5.4)

This is a classical example of degenerate parabolic equations. We use the Barenblatt solution

1
_ k(m —1) |x? e
k
Bt 0= (1= o

(5.5)
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Fig. 5.3. Buckley-Leverett equation. £ = 0.
Table 5.5

Accuracy test for the linear convection-diffusion equation in 2D.

Number of LDG without limiter LDG with limiter

cells L? norm order L norm order L? norm order L* norm order
=0

10 8.68E-04 - 1.83E-03 - 8.68E-04 - 1.83E-03 -

20 115E-04 2.92 2.54E-04 2.85 1.15E-04 2.92 2.54E-04 2.85

40 1.42E-05 3.01 3.18E-05 3.00 1.43E-05 3.01 3.19E-05 3.00

80 1.76E-06 3.02 3.92E-06 3.02 1.77E-06 3.02 3.95E-06 3.01

160 2.14E-07 3.04 4.77E-07 3.04 2.16E-07 3.03 4.84E-07 3.03

320 2.52E-08 3.08 5.63E-08 3.08 2.59E-08 3.06 5.79E-08 3.06
£ =+/3/3

10 8.68E-04 - 1.83E-03 - 8.68E-04 - 1.83E-03 -

20 115E-04 2.92 2.54E-04 2.85 115E-04 2.92 2.54E-04 2.85

40 1.42E-05 3.01 3.17E-05 3.00 1.43E-05 3.01 3.18E-05 3.00

80 1.75E-06 3.02 3.91E-06 3.02 1.76E-06 3.02 3.93E-06 3.02

160 2.13E-07 3.04 4.75E-07 3.04 2.14E-07 3.04 4.79E-07 3.04

320 2.52E-08 3.08 5.60E-08 3.08 2.56E-08 3.07 5.69E-08 3.07

where k = mLH This is an exact solution to the porous medium equation in one space dimension with compact support. The

initial condition is taken to be Bp(x, 1), and the numerical solution is computed to T = 2. We take & = 0 with o =0.42,
and & = +/3/3 with o = 0.25, respectively.

In Fig. 5.1, we take m = 8 and compare the original numerical solutions without limiter and the numerical solutions with
the MPP limiter. For the numerical solutions without limiter, we can see that there are significant undershoots near the foot
of the solutions. While our MPP limiter keeps the solutions strictly non-negative in the whole computational domain. Fig. 5.2
shows the numerical solutions with limiter for different values of m. We can see that the MPP LDG scheme on overlapping
meshes resolves the discontinuities in the solutions quite well and keeps the solution strictly non-negative.

Example 5.5. We consider the following convection-diffusion Buckley-Leverett equation, which is often used in reservoir
simulations

ur + f(u)x = e(W(W)uy)x, xe[0,1],
where f(u) and v(u) are given as
2
. ) 4ud —uw), o<u<l,
fa= uz + (1 —u)?’ v = { 0, otherwise.

The initial and boundary conditions are given as
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Fig. 5.4. Porous medium equation at T = 0.0005. N = 40.

1-—3x, 0<x<1/3,

u(x,O):{O, 13<x<1, u0,t)=1.

We take € = 0.01 and & =0 in our numerical test. Numerical solutions at T = 0.2 with and without limiter are shown
in Fig. 5.3. For the solution computed without limiter, there are some undershoots near the foot of the solution. While our
MPP limiter can eliminates all negative values. Numerical results for & = +/3/3 are similar, thus we will not show them
here to save space.

5.2. Two-dimensional numerical tests

Example 5.6. We consider the following two-dimensional linear convection-diffusion equation

ur+V-u=€Au,
ux,y,0)=sin2m(x+y)),

on [0, 1] x [0, 1] with periodic boundary conditions.
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(a) surface of the solution (b) Cut along y =0

Fig. 5.5. Porous medium equation at T = 0.005. LDG with maximum-principle-satisfying limiter. & =0, N = 160.

The exact solution is u(x, y, t) = exp(—8mw2et)sin(2w (x + y — 2t)). We take € = 0.0001. Numerical errors at T = 0.1 are
listed in Table 5.5. We observe the expected third-order rate of convergence. Also, the MPP limiter does not harm the
original third-order accuracy.

Example 5.7. We test the two-dimensional porous medium equation

ur=A@W?), (5.7)

with a periodic boundary condition and the initial condition

1 ifeyel—3. 31 x[-3. 31,
U y.0) = { 0,  otherwise, (5:8)

in the computational domain [—1, 1] x [—1, 1].

Following [30], we compared MPP LDG scheme with the one without limiters at time t = 0.0005, as shown in Fig. 5.4.
We can see that without the MPP technique, the scheme will yield non-physical negative values and the numerical approx-
imations will blow up eventually, while the MPP limiter keeps the numerical solution nonnegative. Numerical results with
MPP limiter at a later time T = 0.005 are shown in Fig. 5.5. Here we take & = 0. Results for & = +/3/3 are similar. We can
see that the numerical solution is nonnegative and the scheme is stable. Also, our scheme resolves the discontinuities in
the solutions quite well.

6. Conclusion

In this paper, we have constructed third-order MPP LDG methods on overlapped meshes. The penalty in the scheme
does not depend on the numerical approximation and tends to infinity if the dual mesh moves towards the primitive mesh.
Numerical experiments demonstrated the good performance of the scheme.
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