
Journal of Computational Physics 377 (2019) 117–141
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Maximum-principle-preserving third-order local
discontinuous Galerkin method for convection-diffusion

equations on overlapping meshes✩

Jie Du a, Yang Yang b,∗
a Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
b Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 February 2018
Received in revised form 28 September
2018
Accepted 23 October 2018
Available online 25 October 2018

Keywords:
Convection-diffusion equations
Maximum-principle-preserving
Local discontinuous Galerkin method
Overlapping mesh

Local discontinuous Galerkin (LDG) methods are popular for convection-diffusion equations.
In LDG methods, we introduce an auxiliary variable p to represent the derivative of
the primary variable u, and solve them on the same mesh. It is well known that the
maximum-principle-preserving (MPP) LDG method is only available up to second-order
accuracy. Recently, we introduced a new algorithm, and solve u and p on different meshes,
and obtained stability and optimal error estimates. In this paper, we will continue this
approach and construct MPP third-order LDG methods for convection-diffusion equations
on overlapping meshes. The new algorithm is more flexible and does not increase any
computational cost. Numerical evidence will be given to demonstrate the accuracy and
good performance of the third-order MPP LDG method.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we aim to construct maximum-principle-preserving (MPP) third-order local discontinuous Galerkin (LDG)
schemes for solving the following convection-diffusion equation

ut + f (u)x = b(u)xx, (1.1)

or equivalently

ut + f (u)x = (a2(u)ux)x, (1.2)

as well as their two-dimensional versions, where a2(u) = b′(u) ≥ 0. We also assume that a(u) ≥ 0 and periodic bound-
ary conditions. The initial condition is given as u(x, 0) = u0(x). It is well known that the exact solution satisfies a strict
maximum-principle, i.e.,

u(x, t) ∈ [m,M], ∀x ∈ R, ∀t ≥ 0,

✩ Supported by the NSF grant DMS-1818467.

* Corresponding author.
E-mail addresses: jdu@mail.tsinghua.edu.cn (J. Du), yyang7@mtu.edu (Y. Yang).
https://doi.org/10.1016/j.jcp.2018.10.034
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.10.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:jdu@mail.tsinghua.edu.cn
mailto:yyang7@mtu.edu
https://doi.org/10.1016/j.jcp.2018.10.034
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.10.034&domain=pdf

118 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
where m = minx u0(x) and M = maxx u0(x). In particular, if m = 0, the exact solution will maintain non-negative for all time,
resulting in the positivity-preserving (PP) property.

The discontinuous Galerkin (DG) method was first introduced in 1973 by Reed and Hill [22] in the framework of neutron
linear transport. Subsequently, Cockburn et al. developed Runge–Kutta discontinuous Galerkin (RKDG) methods for hyper-
bolic conservation laws in a series of papers [6,4,5,7]. In [8], Cockburn and Shu introduced the LDG method to solve the
convection-diffusion equations. Their idea was motivated by Bassi and Rebay [1], where the compressible Navier–Stokes
equations were successfully solved. Recently, in [27], genuinely MPP high-order DG schemes for scalar conservation laws
and two-dimensional incompressible flows in vorticity-streamfunction formulation have been constructed. Subsequently,
PP high-order DG schemes for compressible Euler equations were given in [28,29]. Later, the technique was applied to
other hyperbolic systems, such as pressureless Euler equations [26], extended MHD equations [31], relativistic hydrody-
namics [21], etc., and the L1 stability was demonstrated. For parabolic equations, the extension was given in [30], where
second-order MPP discontinuous Galerkin methods were demonstrated, and the construction of high-order schemes seem
to be not straightforward. Later another approach based on the flux limiter were discussed in [25,15]. In [2], the third-order
MPP direct DG method was introduced. However, the scheme was not easy to implement and we need to add two penalty
terms. In this paper, we will introduce the modified LDG method on overlapping meshes and construct MPP third-order
LDG methods.

As in traditional LDG methods, we introduce an auxiliary variable p to represent a(u)ux and thus can rewrite (1.2) into
the following system of first order equations{

ut + f (u)x = (a(u)p)x,

p = A(u)x,
(1.3)

where A(u) = ∫ u
0 a(τ)dτ . Usually, u and p are solved on the same mesh. In [11], we introduced a new algorithm and solve

u and p on the primitive and dual meshes, respectively, where the dual mesh is generated from the primitive one. There
are several advantages of the new algorithm.

1. The fluxes for the convection terms are easy to construct.
It is well known that due to the discontinuity of the numerical approximations across the cell interfaces, we need to
introduce the numerical fluxes. For convection-diffusion equations, the fluxes for the diffusion terms seem to be easy
to construct and in most cases we can simply choose the alternating ones [8]. However, the fluxes for the convection
terms are not easy to construct. Especially for some convection-diffusion systems such as the chemotaxis model [17,20]
and miscible displacements in porous media [9,10], where the convection terms are the products of one of the primary
variables and the derivatives of another primary variable. Due to the discontinuity nature of the DG methods, most
of the well established numerical fluxes, such as the upwind fluxes, cannot be applied, since the coefficients of the
convection terms turn out to be discontinuous after the spatial discretization. It is well known that hyperbolic equations
with discontinuous coefficients are in general not well-posed [12,16]. Therefore, the DG schemes may not be stable
when applied to those model equations. To make the numerical solutions to be physically relevant, we have to add very
large penalty terms which depend on the numerical approximations of the derivatives of the primary variables [18,14].
With the new algorithm, the derivatives, solving on the dual mesh, are continuous across the cell interfaces on the
primitive mesh, hence the upwind fluxes can be applied.

2. The new algorithm is more flexible without increasing the computational cost.
It is well known that to avoid the numerical fluxes, some modification of DG methods have been introduced, such as the
Central DG (CDG) methods [19] and Staggered DG (SDG) methods [3]. For CDG methods, we have to solve each equation
in (1.3) on both the primitive and dual meshes, which doubles the computational cost. In our new method, we solve
u on the primitive mesh and p on the dual mesh, respectively. Therefore, the computational cost is exactly the same
as the original LDG method. Moreover, different from the SDG methods, we do not require any continuity conditions
across the cell interfaces for u on the primitive cells or p on the dual meshes. Therefore, the new LDG method is more
flexible and it is very convenient to apply limiters.

3. Most importantly, we can construct third-order MPP schemes.
In [30], the authors demonstrated that the original MPP LDG methods are only available up to second-order accuracy.
In the new algorithm, we add a mild penalty, which does not depend on the numerical approximations, in the equation
of u, and construct third-order MPP schemes. Since the dual mesh can be moved arbitrarily, we will show that if the
dual mesh agree with the primitive mesh, the penalty coefficient turns out to be infinity. Therefore, our algorithm does
not violate the results given in [30]. Finally, the new algorithm is stable and easy to understand and construct [11].
It is able to be generated to higher order schemes. For convection-diffusion equations, the rates of accuracy are op-
timal. However, numerical experiments demonstrate a suboptimal rate of convergence if odd order polynomials were
applied to pure diffusion equations. In [11], we have introduced a couple of ways to recover optimal convergence rates.
Therefore, we will not discuss the error estimates in this paper, and focus on the MPP technique only.

The organization of this paper is as follows. In Section 2, we construct the new LDG scheme for one dimensional non-
linear convection-diffusion equations on overlapping meshes. In Section 3, we introduced the MPP technique in one space

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 119
Fig. 2.1. Overlapping meshes.

dimension. Generations of the new LDG scheme and the MPP technique to two space dimensions will be given in Sec-
tion 4. Numerical experiments in one and two space dimensions will be given in Section 5 to demonstrate the accuracy and
good performance of the new third-order MPP LDG scheme. Finally, we will end in Section 6 with concluding remarks and
remarks for future works.

2. LDG scheme on overlapping meshes in one space dimension

In this section, we first illustrate the generation of overlapping meshes in one space dimension as well as some notations
in Section 2.1, and then show how to construct LDG methods on the generated overlapping meshes in Section 2.2. For
simplicity, we consider the periodic boundary condition. The analyses for other boundary conditions will be discussed in
the future.

2.1. Overlapping meshes

Fig. 2.1 is an illustration of the overlapping meshes. The mesh on the top in this figure is the primitive mesh on which
the original variable u is solved, while the one in the bottom is the dual mesh on which the auxiliary variable p is solved.

We first show how to define the primitive mesh. It is just a regular decomposition of the computational domain [0, 1],
which can be non-uniform. We denote the i-th cell as

Ii = [xi− 1
2
, xi+ 1

2
], i = 1, · · · ,Nx.

The cell length and the cell center of Ii are denoted as

�xi = xi+ 1
2

− xi− 1
2
, xi =

xi− 1
2

+ xi+ 1
2

2
,

respectively. Based on the primitive mesh, we move each cell center within the corresponding cell to obtain a new mesh
called the P-mesh, which is used to solve the auxiliary variable p, i.e. in each cell Ii , we choose a point x̃i given as

x̃i = xi + �xi
2

ξi0, ξi0 ∈ [−1,1], i = 1, · · · ,Nx. (2.1)

For simplicity, we consider ξi0 to be a constant independent of i and denoted as ξ0 ∈ [−1, 1]. Note that here the subscript 0
is used to describe a constant but not the index of cell. It is easy to check x̃i ∈ [xi− 1

2
, xi+ 1

2
]. The (i − 1

2)-th cell of the dual
mesh is defined as

Pi− 1
2

= [x̃i−1, x̃i], i = 1, · · · ,Nx,

where we denote x̃0 = x̃Nx − 1. We further denote the cell length and the cell center of Pi− 1
2
as

�x̃i− 1
2

= x̃i − x̃i−1, x̃i− 1
2

= x̃i−1 + x̃i
2

,

respectively. Notice that when ξ0 = 0, we have x̃i = xi and Pi+ 1
2

= [xi, xi+1]. In this case, the cell interfaces of the dual
mesh are exactly the cell centers of the primitive mesh. Due to the periodic boundary condition, we can also define P 1

2
=

[0, ̃x1] ∪ [x̃Nx , 1]. Therefore, we regard a function on P 1
2
as a function on [x̃0, ̃x1]. We define the dual mesh to be the P-mesh

which consists of all these P cells. This kind of mesh is the most commonly used overlapping mesh, such as in the CDG
method [19]. When ξ0 = −1, we have x̃i = xi− 1

2
and hence the P-mesh is the same as the primitive mesh.

2.2. LDG method on overlapping meshes

Base on the previous defined overlapping meshes, we are ready to construct the LDG method for (1.3). The finite element
space on each mesh consists of piecewise polynomials:

120 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
Vh := {uh : uh|Ii ∈ Pk(Ii), i = 1, · · · ,Nx},
Ph := {ph : ph|P

i− 1
2

∈ Pk(Pi− 1
2
), i = 1, · · · ,Nx},

where Pk(Ii) and Pk(Pi− 1
2
) are the sets of all polynomials of degree up to k defined on the cell Ii and Pi− 1

2
, respectively.

We multiply the first equation in (1.3) with a test function v ∈ Vh and integrate this equation on the primitive mesh.
Similarly, we multiply the second equation with a test function w ∈ Ph and integrate it on the dual mesh. By using integra-
tion by parts, our new LDG method on overlapping meshes is defined as follows: to find (uh , ph) ∈ Vh × Ph , such that for
any test functions (v, w) ∈ Vh × Ph and any i, we have∫

Ii

(uh)t vdx = −
∫
Ii

(a(uh)ph − f (uh)) vxdx

+ (âi+ 1
2
p̂i+ 1

2
− f̂ i+ 1

2
)v−

i+ 1
2

− (âi− 1
2
p̂i− 1

2
− f̂ i− 1

2
)v+

i− 1
2
, (2.2)∫

P
i− 1

2

phwdx = −
∫

P
i− 1

2

A(uh)wxdx+ A(uh(x̃i))w
−
i − A(uh(x̃i−1))w

+
i−1, (2.3)

where v−
i+ 1

2
= v−(xi+ 1

2
) and w−

i = w−(x̃i). Likewise for v+
i− 1

2
and w+

i−1. For simplicity, we denote v−
1
2

= v−
Nx+ 1

2
and

v+
Nx+ 1

2
= v+

1
2
. The numerical flux â at the point xi+ 1

2
is taken as

âi+ 1
2

=
[A(uh)]i+ 1

2

[uh]i+ 1
2

,

where [s]i+ 1
2

:= s+
i+ 1

2
− s−

i+ 1
2
denotes the jump of a function s across the cell interface x = xi+ 1

2
. Similarly, we can also denote

the jump of w across x = x̃i on the P-mesh as [w]i = w+
i − w−

i . For simplicity, if [uh] = 0, we define â = a(uh). The flux
for the convection term f̂ i+ 1

2
= f̂ (u−

i+ 1
2
, u+

i+ 1
2
) is the usual monotone flux used in the traditional DG methods. More details

for the suitable numerical fluxes can be found in [27]. ph is defined as a piecewise polynomial on the dual mesh and it is
continuous at the cell interfaces of the primitive mesh, hence ph(xi+ 1

2
) is well-defined. We take

p̂i+ 1
2

= ph(xi+ 1
2
) +

αi+ 1
2

�x̃i+ 1
2

[A(uh)]i+ 1
2
, (2.4)

where the parameter αi+ 1
2
is chosen by the MPP technique.

3. MPP third-order LDG scheme in one space dimension

In this section, we proceed to demonstrate the MPP technique and consider the third-order scheme only, i.e. k = 2.

3.1. Analysis for the spacial discretization

In this subsection, we apply Euler forward time discretization and analyze the spacial discretization. We use un
h as the

numerical solution at time level n and use ūn
i to denote the cell average of un

h on Ii . For simplicity, if we consider the
numerical approximation at time level n, then the superscript will be omitted. Taking v = 1 in (2.2), we obtain the equation
satisfied by the numerical cell average ūi

ūn+1
i =

(
1

2
ūn
i − �t

�xi
(f̂ i+ 1

2
− f̂ i− 1

2
)

)
+
(
1

2
ūn
i + �t

�xi
(âi+ 1

2
p̂i+ 1

2
− âi− 1

2
p̂i− 1

2
)

)
:= 1

2
Ci + 1

2
Di, (3.1)

where

Ci = ūn
i − 2�t

�xi
(f̂ i+ 1

2
− f̂ i− 1

2
), and Di = ūn

i + 2�t

�xi
(âi+ 1

2
p̂i+ 1

2
− âi− 1

2
p̂i− 1

2
) (3.2)

are the convection and diffusion terms, respectively. In this section, we assume un
h ∈ [m, M] and aim to find sufficient

conditions to make Ci, Di ∈ [m, M], and thus ūn+1
i ∈ [m, M]. The technique for Ci has been discussed in [27] and we recall

the result for the frequently used Lax–Friedrichs flux here.

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 121
Lemma 3.1. Consider the global Lax–Friedrichs flux

f̂ i+ 1
2

= 1

2
[f (u−

i+ 1
2
) + f (u+

i+ 1
2
) − a(u+

i+ 1
2

− u−
i+ 1

2
)], a = max

u
| f ′(u)|,

where the maximum is taken over the whole region where u vary. Suppose m ≤ un
h ≤ M, then we have m ≤ Ci ≤ M, under the condition

�t ≤ minβ wβ

4a
min

i
�xi, (3.3)

where w ′
β s are the quadrature weights for the 3-point Legendre Gauss–Lobatto quadrature for the interval [−1, 1].

The rest of this section will focus on the MPP technique for the diffusion term Di . We divide the whole algorithm into
five steps and demonstrate the implementation of the technique in the end.

Step 1: Computation of ph(xi+ 1
2
) and ph(xi− 1

2
)

We need to solve ph(xi+ 1
2
) and ph(xi− 1

2
) by (2.3) and thus can rewrite Di as a function of un

h . For simplicity, we map
x ∈ Pi+ 1

2
= [x̃i, ̃xi+1] onto the standard element ξ ∈ [−1, 1] as

x = x̃i+ 1
2

+
�x̃i+ 1

2

2
ξ, ξ =

2x− 2x̃i+ 1
2

�x̃i+ 1
2

:= ξ i+ 1
2 (x), (3.4)

where in the second equation we can view ξ as a function of x and denote this function as ξ i+ 1
2 (x). Moreover, we denote

Legendre polynomial functions on [−1, 1] as

L0 = 1, L1(ξ) = ξ, L2(ξ) = 1

2
(3ξ2 − 1), (3.5)

and represent ph|P
i+ 1

2
on the standard element as

ph(x(ξ)) = p0(ξ) = a0L0 + a1L1(ξ) + a2L2(ξ), ξ ∈ [−1,1].
Here the subscript in p0 is not the index of cell. We just use it to describe a function defined on [−1, 1]. Notice that
xi+ 1

2
∈ [x̃i, ̃xi+1], by simple computations, we know that

xi+ 1
2

= x̃i+ 1
2

+
�x̃i+ 1

2

2
ξi+ 1

2
,

where

ξi+ 1
2

=
−ξ0(dxi+ 1

2
+ 1) + (dxi+ 1

2
− 1)

ξ0(1 − dxi+ 1
2
) + (dxi+ 1

2
+ 1)

∈ [−1,1], (3.6)

and dxi+ 1
2

= �xi�xi+1
. Hence, we have

ph(xi+ 1
2
) = p0(ξi+ 1

2
) = a0 + a1ξi+ 1

2
+ a2

2
(3ξ2

i+ 1
2

− 1). (3.7)

By using the orthogonal property of Legendre polynomial basis functions, we can get

a0 = 1

2

1∫
−1

p0L0dξ, a1 = 3

2

1∫
−1

p0L1dξ, a2 = 5

2

1∫
−1

p0L2dξ. (3.8)

Substituting (3.8) into the (3.7), we obtain

ph(xi+ 1
2
) = 1

2

1∫
−1

p0(ξ)si+
1
2 (ξ)dξ, (3.9)

where si+ 1
2 is a function of ξ defined as

si+
1
2 (ξ) = 1 + 3ξi+ 1

2
ξ + 5

4
(3ξ2

i+ 1
2

− 1)(3ξ2 − 1), ξ ∈ [−1,1]. (3.10)

122 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
We then revert back to the physical element Pi+ 1
2
. By using (2.3), we get

ph(xi+ 1
2
) = 1

2

1∫
−1

p0(ξ)si+
1
2 (ξ)dξ = 1

�x̃i+ 1
2

∫
P
i+ 1

2

ph(x)s
i+ 1

2

(
ξ i+ 1

2 (x)
)
dx

= 1

�x̃i+ 1
2

⎡
⎢⎣−

x̃i+1∫
x̃i

A(uh)s
i+ 1

2

(
ξ i+ 1

2 (x)
)
x
dx+ A(uh(x̃i+1))s

i+ 1
2 (1) − A(uh(x̃i))s

i+ 1
2 (−1)

⎤
⎥⎦

= 1

�x̃i+ 1
2

⎡
⎢⎢⎣−

x
i+ 1

2∫
x̃i

A(uh)s
i+ 1

2

(
ξ i+ 1

2 (x)
)
x
dx− A(uh(x̃i))s

i+ 1
2 (−1)

⎤
⎥⎥⎦

+ 1

�x̃i+ 1
2

⎡
⎢⎢⎣

x̃i+1∫
x
i+ 1

2

A(uh)xs
i+ 1

2

(
ξ i+ 1

2 (x)
)
dx+ A(u+

h (xi+ 1
2
))si+

1
2 (ξi+ 1

2
)

⎤
⎥⎥⎦ , (3.11)

where the integration by part is used in the last step. Similarly, we can compute ph(xi− 1
2
) as

ph(xi− 1
2
) = 1

�x̃i− 1
2

⎡
⎢⎢⎣

x
i− 1

2∫
x̃i−1

A(uh)xs
i− 1

2

(
ξ i− 1

2 (x)
)
dx− A(u−

h (xi− 1
2
))si−

1
2 (ξi− 1

2
)

⎤
⎥⎥⎦

+ 1

�x̃i− 1
2

⎡
⎢⎢⎣−

x̃i∫
x
i− 1

2

A(uh)s
i− 1

2

(
ξ i− 1

2 (x)
)
x
dx+ A(uh(x̃i))s

i− 1
2 (1)

⎤
⎥⎥⎦ . (3.12)

Step 2: Decomposition of Di

We consider the decomposition of Di . Substituting (3.11) and (3.12) into (3.2), we can decompose Di as

Di = ūn
i +

2âi+ 1
2
�t

�xi

[
ph(xi+ 1

2
) +

αi+ 1
2

�x̃i+ 1
2

[A]i+ 1
2

]
−

2âi− 1
2
�t

�xi

[
ph(xi− 1

2
) +

αi− 1
2

�x̃i− 1
2

[A]i− 1
2

]

= ūn
i + 2�t

�xi
Ui +

2�tâi+ 1
2

�xi�x̃i+ 1
2

Ui+1 +
2�tâi− 1

2

�xi�x̃i− 1
2

Ui−1, (3.13)

where

Ui =
âi+ 1

2

�x̃i+ 1
2

⎡
⎢⎢⎣−

x
i+ 1

2∫
x̃i

A(uh)s
i+ 1

2

(
ξ i+ 1

2 (x)
)
x
dx− A(uh(x̃i))s

i+ 1
2 (−1) − αi+ 1

2
A(u−

h (xi+ 1
2
))

⎤
⎥⎥⎦

−
âi− 1

2

�x̃i− 1
2

⎡
⎢⎢⎣−

x̃i∫
x
i− 1

2

A(uh)s
i− 1

2

(
ξ i− 1

2 (x)
)
x
dx+ A(uh(x̃i))s

i− 1
2 (1) + αi− 1

2
A(u+

h (xi− 1
2
))

⎤
⎥⎥⎦ , (3.14)

Ui+1 =
x̃i+1∫

x
i+ 1

2

A(uh)xs
i+ 1

2

(
ξ i+ 1

2 (x)
)
dx+ A(u+

h (xi+ 1
2
))
[
si+

1
2 (ξi+ 1

2
) + αi+ 1

2

]
, (3.15)

Ui−1 = −
x
i− 1

2∫
x̃i−1

A(uh)xs
i− 1

2

(
ξ i− 1

2 (x)
)
dx+ A(u−

h (xi− 1
2
))
[
si−

1
2 (ξi− 1

2
) + αi− 1

2

]
. (3.16)

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 123
Step 3: PP technique for linear case

Now we proceed to discuss the PP technique for linear diffusion terms, i.e. A(u) = u, m = 0 and M = ∞. Then
(3.14)–(3.16) can be written as

Ui = 1

�x̃i+ 1
2

⎡
⎢⎢⎣−

x
i+ 1

2∫
x̃i

uhs
i+ 1

2

(
ξ i+ 1

2 (x)
)
x
dx− uh(x̃i)s

i+ 1
2 (−1) − αi+ 1

2
u−
h (xi+ 1

2
)

⎤
⎥⎥⎦

− 1

�x̃i− 1
2

⎡
⎢⎢⎣−

x̃i∫
x
i− 1

2

uhs
i− 1

2

(
ξ i− 1

2 (x)
)
x
dx+ uh(x̃i)s

i− 1
2 (1) + αi− 1

2
u+
h (xi− 1

2
)

⎤
⎥⎥⎦ , (3.17)

Ui+1 =
x̃i+1∫

x
i+ 1

2

(uh)xs
i+ 1

2

(
ξ i+ 1

2 (x)
)
dx+ u+

h (xi+ 1
2
)
[
si+

1
2 (ξi+ 1

2
) + αi+ 1

2

]
, (3.18)

Ui−1 = −
x
i− 1

2∫
x̃i−1

(uh)xs
i− 1

2

(
ξ i− 1

2 (x)
)
dx+ u−

h (xi− 1
2
)
[
si−

1
2 (ξi− 1

2
) + αi− 1

2

]
. (3.19)

We will consider Ui first and the result is given below.

Lemma 3.2. Suppose uh ≥ 0 in Ii , where Ii is a certain element. Then ūi + 2�t
�xi

Ui ≥ 0 under the condition

�t ≤ �x2

12
[
maxi h(|ξi+ 1

2
|) + 3�(ξ0) + 3maxi αi+ 1

2

] , (3.20)

where �x = mini{�x̃i+ 1
2
, �xi},

h(ξ) =
{

ξ
(
1+ 5

2 (3ξ2 − 1)
)
, if 3ξ2 − 1 ≥ 0

ξ − 5
2 (3ξ2 − 1), if 3ξ2 − 1 < 0

(3.21)

and

�(ξ) = max

{
5

2
(3ξ2 − 1) + 3|ξ | + 1, 1− 3ξ2

5(3ξ2 − 1)
− 5

4
(3ξ2 − 1)

}
. (3.22)

Proof. When Ui ≥ 0, it is obvious that ūn
i + �t

�xi
Ui ≥ 0. Hence we only need to consider the case with Ui < 0. In this case,

we need to require �t ≤ ūni−Ui/�xi
. Next, we try to find an upper bound of − Ui�xi

.

− Ui

�xi
= 1

�xi�x̃i+ 1
2

x
i+ 1

2∫
x̃i

uhs
i+ 1

2

(
ξ i+ 1

2 (x)
)
x
dx− 1

�xi�x̃i− 1
2

x̃i∫
x
i− 1

2

uhs
i− 1

2

(
ξ i− 1

2 (x)
)
x
dx

+
(

si+ 1
2 (−1)

�xi�x̃i+ 1
2

+ si− 1
2 (1)

�xi�x̃i− 1
2

)
uh(x̃i) +

αi+ 1
2

�xi�x̃i+ 1
2

u−
h (xi+ 1

2
) +

αi− 1
2

�xi�x̃i− 1
2

u+
h (xi− 1

2
). (3.23)

For simplicity, we denote ti+ 1
2 (x) := si+ 1

2

(
ξ i+ 1

2 (x)
)
x
. By using the chain rule, we know that

ti+
1
2 (x) = s

i+ 1
2

ξ ξ
i+ 1

2
x = 2

�x̃i+ 1
2

(
3ξi+ 1

2
+ 15(3ξ2

i+ 1
2

− 1)
x− x̃i+ 1

2

�x̃i+ 1
2

)
.

Notice that ti+ 1
2 (x) is linear in x, and it is easy to get

max
x∈[x̃i ,xi+ 1

2
]
ti+

1
2 (x) = 6

�x̃i+ 1
2

h(ξi+ 1
2
), max

x∈[x
i− 1

2
,x̃i]

{−ti−
1
2 (x)} = 6

�x̃i− 1
2

h(−ξi+ 1
2
),

124 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
Also, it is obvious that

h(ξ) ≤ h(|ξ |), ξ ∈ [−1,1].
Hence, the upper bound for the integration terms in (3.23) can be estimated as

1

�xi�x̃i+ 1
2

x
i+ 1

2∫
x̃i

uht
i+ 1

2 (x)dx− 1

�xi�x̃i− 1
2

x̃i∫
x
i− 1

2

uht
i− 1

2 (x)dx

≤
∫ x

i+ 1
2

x̃i
uh dx

�xi
max

x∈[x̃i ,xi+ 1
2
]
ti+ 1

2 (x)

�x̃i+ 1
2

+
∫ x̃i
x
i− 1

2

uh dx

�xi
max

x∈[x
i− 1

2
,x̃i]

−ti− 1
2 (x)

�x̃i− 1
2

≤ 6ūn
i

�x2
max

i
h(|ξi+ 1

2
|). (3.24)

For the other terms in (3.23), we can use the same idea for solving ph(xi+ 1
2
) in (3.9) and map x ∈ Ii onto the standard

element η ∈ [−1, 1]. Then we can compute the point value of uh as an integration

uh(x(η0)) := u0(η0) = 1

2

1∫
−1

u0(η)r(η0, η)dη, ∀η0 ∈ [−1,1],

where

r(η0, η) = 1+ 3η0η + 5

4
(3η2

0 − 1)(3η2 − 1).

Hence, the rest terms in (3.23) become(
si+ 1

2 (−1)

�xi�x̃i+ 1
2

+ si− 1
2 (1)

�xi�x̃i− 1
2

)
uh(x̃i) +

αi+ 1
2

�xi�x̃i+ 1
2

u−
h (xi+ 1

2
) +

αi− 1
2

�xi�x̃i− 1
2

u+
h (xi− 1

2
)

= 1

2�xi

1∫
−1

u0(η)R(η)dη ≤ ūn
i

�xi
max

η∈[−1,1] R(η), (3.25)

where

R(η) =
[
si+ 1

2 (−1)

�x̃i+ 1
2

+ si− 1
2 (1)

�x̃i− 1
2

]
r(ξ0, η) +

αi+ 1
2

�x̃i+ 1
2

r(1, η) +
αi− 1

2

�x̃i− 1
2

r(−1, η),

and we have used u0(η) ≥ 0 for η ∈ [−1, 1] in the last step. By simple computations, we know that

max
η∈[−1,1] |r(η0, η)| ≤ �(η0) ≤ 9, η0 ∈ [−1,1].

Since si+ 1
2 (ξ) = r(ξi+ 1

2
, ξ), we have

R(η) ≤
[|r(ξi+ 1

2
,−1)|

�x̃i+ 1
2

+
|r(ξi− 1

2
,1)|

�x̃i− 1
2

]
|r(ξ0, η)| +

αi+ 1
2

�x̃i+ 1
2

|r(1, η)| +
αi− 1

2

�x̃i− 1
2

|r(−1, η)|

≤ 18

�x
�(ξ0) + 18

�x
max

i
αi+ 1

2
. (3.26)

Combing Eqs. (3.23), (3.24), (3.25), and (3.26), we have

− Ui

�xi
≤ 6ūn

i

�x2

[
max

i
h(|ξi+ 1

2
|) + 3�(ξ0) + 3max

i
αi+ 1

2

]
, (3.27)

and thus can obtain the conclusion. �
Remark 3.1. Notice that we have only given a very rough estimate of the upper bound of − Ui�xi

in (3.27) to show that
ūn
i + �t

�xi
Ui can be non-negative with a small �t . In practice, the real upper bound of − Ui�xi

may be much smaller and hence
�t can be much larger than the one in (3.20).

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 125
Fig. 3.1. Corresponding region in a1a2 plane when u1(η) ≥ 0 for η ∈ [−1,1].

Now, we proceed to analyze Ui+1 and Ui−1. In this step, we need to find the requirement on αi+ 1
2
to make Ui+1 ≥ 0.

We assume that uh(x) ≥ 0 in Ii+1 = [xi+ 1
2
, xi+ 3

2
]. For simplicity, we map x ∈ Ii+1 onto the standard element [−1, 1]:

x = xi+1 + �xi+1

2
η, η ∈ [−1,1],

and consider uh as a function of η on the standard element:

uh(x(η)) = u1(η) = a0 + a1L1(η) + a2L2(η), η ∈ [−1,1].
Notice that Ui+1 is linear with respect to uh and

a0 = 1

2

1∫
−1

u1(x(η))dη ≥ 0.

We only need to consider the case with

u1(η) = 1 + a1L1(η) + a2L2(η), η ∈ [−1,1].
We first illustrate a lemma to show the equivalent requirement on a1 and a2 when u1 ≥ 0.

Lemma 3.3. u1(η) = 1 + a1L1(η) + a2L2(η) ≥ 0 for any η ∈ [−1, 1] if and only if{
1± a1 + a2 ≥ 0, when |a1| ≥ 3a2,
a21
3 + (a2 − 1)2 ≤ 1, when |a1| < 3a2.

Proof. If the parabola u1(η) opens downward, i.e. a2 < 0, then u1(η) ≥ 0 in [−1, 1] if and only if

u1(−1) = 1− a1 + a2 ≥ 0 and u1(1) = 1+ a1 + a2 ≥ 0. (3.28)

If a2 = 0 and hence u1(η) is a linear polynomial, then we also have u1(η) ≥ 0 in [−1, 1] if and only if (3.28) is satisfied. If
the parabola u1(η) opens upward and the symmetry axis − a1

3a2
lies out of [−1, 1], i.e. a2 > 0 and |a1|

3a2
≥ 1, then u1(η) ≥ 0

in [−1, 1] if and only if (3.28) is satisfied. Finally, if the parabola u1(η) opens upward and the symmetry axis lies within
[−1, 1], i.e. a2 > 0 and |a1|

3a2
< 1, then u1 ≥ 0 if and only if minu1 = 1 − 3a22+a21

6a2
≥ 0, that is

a21
3

+ (a2 − 1)2 ≤ 1.

Combing all the cases above, we get the conclusion. �
We can easily see that (a1, a2) falls into the shaded region in Fig. 3.1 when the requirements in the above lemma are

satisfied. It is easy to verify that the line 1 ± a1 + a2 = 0 is tangent to the ellipse a21
3 + (a2 − 1)2 = 1 at the point (∓ 3

2 , 12)

and hence the region in Fig. 3.1 is convex. Since Ui+1 is linear with respect to uh , we only need to consider the following
two special cases.

126 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
1. Case 1: a1 = 0 and a2 = −1.
In this case, we can get

Ui+1 = 3(ξ0 + 1)

16

[
45ξ4

i+ 1
2

+ 30ξ3
i+ 1

2
− 14ξi+ 1

2
− 2ξi+ 1

2
+ 13− 3(ξi+ 1

2
+ 1)2(5ξ2

i+ 1
2

+ 1)ξ0

]
.

To make Ui+1 ≥ 0, we need

ξ0 ≤ min
ξ
i+ 1

2
∈[−1,1]

45ξ4
i+ 1

2
+ 30ξ3

i+ 1
2

− 14ξ2
i+ 1

2
− 2ξi+ 1

2
+ 13

3(ξi+ 1
2

+ 1)2(5ξ2
i+ 1

2
+ 1)

= 29

9
− 26

√
6

27
≈ 0.8635. (3.29)

Notice that ξi+ 1
2
is a function of ξ0 and �xi�xi+1

as shown in (3.6), we would like to adjust ξ0 such that Ui+1 ≥ 0 for any

ξi+ 1
2

∈ [−1, 1]. That is, we do not restrict the mesh sizes ratio �xi�xi+1
.

2. Case 2: the boundary of the ellipse, i.e., a
2
1
3 + (a2 − 1)2 = 1.

In this case, we have

Ui+1 = ξ0 + 1

4
(+ b1a1 + b2a2) ,

where

	 = 4

ξ0 + 1

[
αi+ 1

2
+ 1+ 3ξ2

i+ 1
2

+ 5

4
(3ξ2

i+ 1
2

− 1)2
]

,

b1 = ξi+ 1
2
(ξi+ 1

2
+ 1)(15ξ2

i+ 1
2

+ 1) + 4− 	,

b2 = 	 − 3

4

(
45ξ4

i+ 1
2

+ 30ξ3
i+ 1

2
− 14ξ2

i+ 1
2

− 2ξi+ 1
2

+ 13

)
+ 9ξ0

4
(ξi+ 1

2
+ 1)2(5ξ2

i+ 1
2

+ 1).

To make Ui+1 ≥ 0, we need

	 + b1a1 + b2a2 = 	 + b2 + b1a1 + b2(a2 − 1) ≥ 0,

i.e.

	 + b2 ≥ −[b1a1 + b2(a2 − 1)].
Since a

2
1
3 + (a2 − 1)2 = 1, we need to have

	 + b2 ≥
√
3b21 + b22,

which is equivalent to the following requirement on the penalty coefficient

αi+ 1
2

≥
[ξi+ 1

2
(ξi+ 1

2
+ 1)(15ξ2

i+ 1
2

+ 1) + 4]2

6(5ξ2
i+ 1

2
+ 1)(ξi+ 1

2
+ 1)2

− 5

4
(3ξ2

i+ 1
2

− 1)2 − 3ξ2
i+ 1

2
− 1

:= g(dxi+ 1
2
, ξ0), (3.30)

where we have used (3.6) and represent ξi+ 1
2
as a function of ξ0 and dxi+ 1

2
. The analysis above can be summarized as the

following lemma.

Lemma 3.4. Suppose uh ≥ 0 in Ii+1 and the conditions in (3.29) and (3.30) are satisfied, then Ui+1 ≥ 0. Similarly, if uh ≥ 0 in Ii−1

and

ξ0 ≥ 26
√
6

27
− 29

9
and αi− 1

2
≥ g(1/dxi− 1

2
,−ξ0), (3.31)

then we have Ui−1 ≥ 0.

Based on the above lemma, we should choose ξ0 ∈ [26
√
6

27 − 29
9 , 299 − 26

√
6

27]. Also, αi+ 1
2
at a fixed boundary xi+ 1

2
should

satisfy

αi+ 1
2

≥ max{g(dxi+ 1
2
, ξ0), g(1/dxi+ 1

2
,−ξ0)} := g̃(dxi+ 1

2
, ξ0). (3.32)

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 127
Fig. 3.2. Plots of g̃(dxi+ 1
2
, ξ0) for different given dxi+ 1

2
.

Recall that dxi+ 1
2

= �xi�xi+1
. In practice when the computational mesh is given, which can be non-uniform, dxi+ 1

2
can be

computed for each fixed i. Next, we just fix the value of dxi+ 1
2

for a fixed i and try to adjust ξ0 such that αi+ 1
2

can be
minimized. By simple computations, we have

min
ξ0

g̃(dxi+ 1
2
, ξ0) = 1/4,

and there are two critical points

ξ1
0 =

dx2
i+ 1

2
− 2

√
3dxi+ 1

2
− 1

dx2
i+ 1

2
+ 4dxi+ 1

2
+ 1

, ξ2
0 =

dx2
i+ 1

2
+ 2

√
3dxi+ 1

2
− 1

dx2
i+ 1

2
+ 4dxi+ 1

2
+ 1

.

Fig. 3.2 shows the plots of g̃(dxi+ 1
2
, ξ0) with respect to ξ0 ∈ [−1, 1] for different given dxi+ 1

2
. If dxi+ 1

2
= 1, then the mesh is

uniform and ξ1
0 and ξ2

0 are the roots of the Legendre polynomial of degree two,

ξ1
0 = −

√
3

3
, ξ2

0 =
√
3

3
.

Also, for ξ0 = 0, i.e. the dual mesh is generated by the midpoint of the primitive mesh, we have

g̃(1,0) = 5/12.

When dxi+ 1
2

= 2, we can take

ξ1
0 = −4

√
3− 3

13
, ξ2

0 = 4
√
3+ 3

13
.

When dxi+ 1
2

= 1/2, we can take

ξ1
0 = −4

√
3+ 3

13
, ξ2

0 = 4
√
3− 3

13
.

Finally, we would like to point out that for fixed dxi+ 1
2
, g̃ → ∞ as |ξ0| → 1. Therefore, we cannot construct third-order

MPP technique for the original LDG method, and our conclusion does not violate that given in [30].

Step 4: PP technique for nonlinear case

In this step, we will discuss the PP technique for nonlinear problems. We assume uh ≥ 0 which further implies A(uh) ≥ 0.
To apply the same analysis for the linear case, we would like to replace A(uh) in (2.3) by a piecewise quadratic polynomial
Ã(x) ≥ 0 such that Ã(x)|Ii ∈ P2(Ii) and for any i = 1, · · · , Nx

Ã−
i+ 1

2
= A

(
(uh)

−
i+ 1

2

)
, Ã+

i− 1
2

= A

(
(uh)

+
i− 1

2

)
, ‖ Ã‖L∞(Ii) ≤ C̃‖A(uh)‖L∞(Ii). (3.33)

128 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
Then Ui , Ui+1 and Ui−1 in (3.14), (3.15) and (3.16) can be written as

Ui =
âi+ 1

2

�x̃i+ 1
2

⎡
⎢⎢⎣−

x
i+ 1

2∫
x̃i

Ãsi+
1
2

(
ξ i+ 1

2 (x)
)
x
dx− A(x̃i)s

i+ 1
2 (−1) − αi+ 1

2
Ã−
i+ 1

2

⎤
⎥⎥⎦

−
âi− 1

2

�x̃i− 1
2

⎡
⎢⎢⎣−

x̃i∫
x
i− 1

2

Ãsi−
1
2

(
ξ i− 1

2 (x)
)
x
dx+ A(x̃i)s

i− 1
2 (1) + αi− 1

2
A+
i− 1

2

⎤
⎥⎥⎦ , (3.34)

Ui+1 =
x̃i+1∫

x
i+ 1

2

Ãxs
i+ 1

2

(
ξ i+ 1

2 (x)
)
dx+ A+

i+ 1
2

[
si+

1
2 (ξi+ 1

2
) + αi+ 1

2

]
, (3.35)

Ui−1 = −
x
i− 1

2∫
x̃i−1

Ãxs
i− 1

2

(
ξ i− 1

2 (x)
)
dx+ A−

i− 1
2

[
si−

1
2 (ξi− 1

2
) + αi− 1

2

]
. (3.36)

The construction of Ã will be discussed in the “Implementation”. Now, we can demonstrate the positivity of Di in (3.13).
Following the same proof of Lemma 3.4 we have

Lemma 3.5. Suppose Ui+1 and Ui−1 are given in (3.35) and (3.36), respectively, then Ui+1 ≥ 0 and Ui−1 ≥ 0 under the conditions

26
√
6

27
− 29

9
≤ ξ0 ≤ 29

9
− 26

√
6

27
and αi− 1

2
≥ max

{
g(1/dxi− 1

2
,−ξ0), g(dxi− 1

2
, ξ0)

}
, (3.37)

where g is defined in (3.30).

The estimate of Ui given in (3.34) can be obtained below.

Lemma 3.6. Suppose uh ≥ 0 in Ii , then ūh + 2�t
�xi

Ui ≥ 0 under the condition

�t ≤ μ2�x2

12μ1C̃ maxu a2(u)
[
maxi h(|ξi+ 1

2
|) + 3�(ξ0) + 3maxi αi+ 1

2

] , (3.38)

where h and �were defined in (3.21) and (3.22), respectively, and μ1 and μ2 are the parameters used in the following norm equivalence
for P2 polynomials:

μ1‖uh‖L∞(Ii) ≥ ūn
i ≥ μ2‖uh‖L∞(Ii). (3.39)

Proof. Following the same analysis for (3.27), we have

− Ũ i

�xi
≤ 6ūn

i maxu a(u)

�x2

[
max

i
h(|ξi+ 1

2
|) + 3�(ξ0) + 3max

i
αi+ 1

2

]
.

Therefore, we have

Ã + �t

�xi maxu a(u)
Ũ i ≥ 0

under the condition (3.20). Now, we find the relationship between Ã and ūh:

Ã ≤ μ1‖ Ã‖L∞(Ii) ≤ μ1C̃‖A(uh)‖L∞(Ii) ≤ μ1C̃ max
u

a(u)‖uh‖L∞(Ii) ≤ μ1C̃

μ2
max

u
a(u)ūh,

where in the first and last steps, we applied the norm equivalence, step two requires Lemma 3.7 and the third step is the
mean value theorem. �

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 129
Remark 3.2. (3.39) follows from the norm equivalence. Notice that we assume the numerical approximation uh ≥ 0 in cell Ii ,
then

ūi = 1

�xi

∫
Ii

uhdx = 1

�xi
‖uh‖L1(Ii).

Since uh is a polynomial of degree 2, by the norm equivalence in finite dimension spaces and the scaling argument, we can
find two constants μ1 and μ2 such that

μ1‖uh‖L∞(Ii) ≥ 1

�xi
‖uh‖L1(Ii) ≥ μ2‖uh‖L∞(Ii),

which further yields (3.39).

The above two lemmas yield a straightforward corollary.

Corollary 3.1. Suppose the conditions in the above two lemmas are satisfied, if un
h ≥ 0, then ūn+1 ≥ 0. Moreover, if un

h ≤ 0, then
ūn+1 ≤ 0.

Remark 3.3. In (3.38), the time step will be very small. If we enforce the time step, the computational cost for time is
actually very high. Moreover, it will be extremely difficult to construct the PP limiter with implicit Euler method, and we
will discuss this in the future.

Step 5: MPP technique for the nonlinear case

Now we can proceed to the MPP technique. We also need to replace A(uh) in (2.3) with a piecewise quadratic polynomial
Ã(x) such that (3.33) is satisfied and

m∫
0

a(u) du ≤ Ã(x) ≤
M∫
0

a(u) du,

and the result is given in the following theorem.

Theorem 3.1. Suppose m ≤ uh ≤ M, and the conditions in Lemmas 3.5 and 3.6 are satisfied, then we have m ≤ ūn+1
i ≤ M.

Proof. We only prove m ≤ ūn+1
i , since the other inequality can be obtained following the same lines with minor changes.

Define vh = uh −m, then vh ≥ 0 and define

B(vh) = A(uh) =
uh∫
0

a(u) du =
vh∫

−m

a(v +m) dv. (3.40)

Therefore, Di in (3.13) can be written as

Di −m = v̄ni + 2�t

�xi
V i +

2�tâi+ 1
2

�xi�x̃i+ 1
2

Vi+1 +
2�tâi− 1

2

�xi�x̃i− 1
2

Vi−1,

where

Vi =
âi+ 1

2

�x̃i+ 1
2

⎡
⎢⎢⎣−

x
i+ 1

2∫
x̃i

B(vh)s
i+ 1

2

(
ξ i+ 1

2 (x)
)
x
dx− B(vh(x̃i))s

i+ 1
2 (−1) − αi+ 1

2
B(v−

h (xi+ 1
2
))

⎤
⎥⎥⎦

−
âi− 1

2

�x̃i− 1
2

⎡
⎢⎢⎣−

x̃i∫
x
i− 1

B(vh)s
i− 1

2

(
ξ i− 1

2 (x)
)
x
dx+ B(vh(x̃i))s

i− 1
2 (1) + αi− 1

2
B(v+

h (xi− 1
2
))

⎤
⎥⎥⎦ ,
2

130 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
Vi+1 =
x̃i+1∫

x
i+ 1

2

B(vh)xs
i+ 1

2

(
ξ i+ 1

2 (x)
)
dx+ B(v+

h (xi+ 1
2
))
[
si+

1
2 (ξi+ 1

2
) + αi+ 1

2

]
,

Vi−1 = −
x
i− 1

2∫
x̃i−1

B(vh)xs
i− 1

2

(
ξ i− 1

2 (x)
)
dx+ B(v−

h (xi− 1
2
))
[
si−

1
2 (ξi− 1

2
) + αi− 1

2

]
.

It is easy to check that in the definition of B in (3.40), we can replace the lower limiter in the integral by any constants
without changing the value of Di . Therefore, we may assume B(vh) =

∫ vh
0 a(v +m) dv . Now, following (3.33), we can replace

B by B̃ to compute Di . Then the analyses in previous steps can be applied directly to obtain Di −m ≥ 0, which further yield
Di ≥m. By Lemma 3.1, we have m ≤ ūn+1

i . �
3.2. Implementation

In this subsection, we will demonstrate how to implement the MPP LDG method. WLOG, we assume A(uh) =
∫ uh
0 a(u) du

and m ≤ uh ≤ M . We further denote m̃ = ∫m
0 a(u) du and M̃ = ∫ M

0 a(u) du, and hence m̃ ≤ A(uh) ≤ M̃ . We use the following
steps to construct a quadratic polynomial Ã in each element Ii such that m̃ ≤ Ã ≤ M̃:

1. Compute a linear function p1 ∈ P1(Ii) such that p1 is the interpolation of A(uh) at x = xi− 1
2

and x = xi+ 1
2
. Since

m̃ ≤ A(uh) ≤ M̃ , it is obvious that p1(x) ∈ [m̃, M̃], ∀x ∈ Ii .
2. Calculate a quadratic polynomial p2 ∈ P2(Ii) such that p2 is the interpolation of A(uh) at x = xi− 1

2
, x = xi and x = xi+ 1

2
.

It is possible that minx∈Ii p2(x) < m̃ or maxx∈Ii p2(x) > M̃ , but they will not happen simultaneously.
3. Combine p1 and p2 to get Ã = θ p2 + (1 − θ)p1, where θ ∈ [0, 1] is the largest possible value such that m̃ ≤ Ã ≤ M̃ . This

can always be done since in the extreme case when θ = 0 we have Ã = p1 ∈ [m̃, M̃].

Remark. In the case that minx∈Ii p2(x) < m̃, we can solve minx∈Ii [θ p2(x) + (1 − θ)p1(x)] = m̃ to get θ . If there are multiple
solutions, we just take the largest one within the region [0,1]. In the case that maxx∈Ii p2(x) > M̃ , we can simply solve
maxx∈Ii [θ p2(x) + (1 − θ)p1(x)] = M̃ to get θ .

Lemma 3.7. Suppose Ã is constructed above, then there exists a positive constant C such that

‖ Ã‖L∞(Ii) ≤ C‖A(uh)‖L∞(Ii).

Proof. It is easy to see that

‖p2‖L∞(Ii) ≤ C‖A(uh)‖L∞(Ii), ‖p1‖L∞(Ii) ≤ ‖A(uh)‖L∞(Ii).

Finally, the conclusion follows from triangle inequality directly. �
With Theorem 3.1, the numerical cell average ūn+1

i ∈ [m, M]. However, the numerical approximation un+1
h may be out of

the bounds. Therefore, we also need to apply some limiter to un+1
h and the procedure is given below. For simplicity, we will

drop the superscript n + 1.

1. Set up a small number ε = 10−13.
2. If ūh ≤m + ε or ūh ≥ M − ε , take uh = ūh . Then skip the following steps.
3. Define mi = minx∈Ii uh(x) and Mi = maxx∈Ii uh(x). Set θ = 1. If mi <m or Mi > M , then take

θ = max

{
ūh −m − ε

ūh −mi
,
ūh − M + ε

ūh − Mi

}
.

4. Apply the slope limiter ũh = ūh + θ(uh − ūh), and use ũh as the new numerical approximation.

Remark. We still use the notation θ here but it is not the same one used to compute Ã. Similar rule applies to the two
dimensional problem to be discussed in Section 4.

In [27], the authors have proved that the limiter keeps the high-order accuracy.

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 131
3.3. High-order time integrations

All the previous analyses are based on first-order Euler forward time discretization. We can also use strong stability
preserving (SSP) high-order time discretizations to solve the ODE system wt = Lw. More details of these time discretizations
can be found in [24,23,13]. In this paper, we use the third-order SSP Runge–Kutta method [24]

w(1) = wn + �tL(wn),

w(2) = 3

4
wn + 1

4

(
w(1) + �tL(w(1))

)
, (3.41)

wn+1 = 1

3
wn + 2

3

(
w(2) + �tL(w(2))

)
,

and the third order SSP multi-step method [23]

wn+1 = 16

27

(
wn + 3�tL(wn)

)+ 11

27

(
wn−3 + 12

11
�tL(wn−3)

)
. (3.42)

4. LDG scheme on overlapping meshes in two space dimensions

In this section, we will construct the third-order MPP LDG scheme on overlapping meshes in two space dimensions and,
for simplicity, we study the following pure diffusion equation over the domain � = [0, 1] × [0, 1],⎧⎨

⎩
ut = (a(u)p)x + (b(u)q)y,
p = A(u)x,

q = B(u)y,

(4.1)

subject to periodic boundary conditions, where A(u) = ∫ u a(t)dt and B(u) = ∫ u b(t)dt .
We first define the primitive mesh for the primary variable u which is a regular rectangular decomposition of �. Let

0 = x 1
2

< x 3
2

< · · · < xNx+ 1
2

= 1 and 0 = y 1
2

< y 3
2

< · · · < yNy+ 1
2

= 1 be grid points in x and y directions, respectively. We
denote the i, j-th cell as

Ii j = Ii × J j, i = 1, · · · ,Nx, j = 1, · · · ,Ny,

where Ii = [xi− 1
2
, xi+ 1

2
] and J j = [y j− 1

2
, y j+ 1

2
]. Moreover, we denote

�xi = xi+ 1
2

− xi− 1
2
, xi =

xi− 1
2

+ xi+ 1
2

2
, �y j = y j+ 1

2
− y j− 1

2
, y j =

y j− 1
2

+ y j+ 1
2

2
.

Moreover, we define �x = mini �xi and �y = min j �y j . We also move each cell horizontally to obtain the P-mesh: Pi+ 1
2 , j =

Pi+ 1
2

× J j , where

Pi+ 1
2

= [x̃i, x̃i+1], x̃i = xi + �xi
2

ξ0, ξ0 ∈ [−1,1], i = 1,2, · · · ,Nx, (4.2)

with x̃0 = x̃Nx − 1. Similarly, we can define the Q-mesh: Q i, j+ 1
2

= Ii × Q j+ 1
2
, where

Q j+ 1
2

= [ỹ j, ỹ j+1], ỹ j = y j + �y j

2
η0, η0 ∈ [−1,1], j = 1,2, · · · ,Ny, (4.3)

with ỹ0 = ỹNy −1. The P-mesh and Q-mesh are used for the auxiliary variables p and q, respectively. Similar to the problem
in one space dimension, we can also define P 1

2 , j = ([0, ̃x1] ∪ [x̃Nx , 1]) × J j and Q j, 12
= Ii × ([0, ỹ1] ∪ [ỹNy , 1]).

We define the finite element spaces to be

Vh := {uh : uh|Ii j ∈ Q k(Ii j), i = 1, · · · ,Nx, j = 1, · · · ,Ny},
Ph := {ph : ph|P

i+ 1
2 , j

∈ Q k(Pi+ 1
2 , j), i = 1, · · · ,Nx, j = 1, · · · ,Ny},

Qh := {qh : qh|Q
i, j+ 1

2
∈ Q k(Q i, j+ 1

2
), i = 1, · · · ,Nx, j = 1, · · · ,Ny},

where Q k is the tensor product polynomials of degree k. Given u ∈ Vh , we denote u+
i− 1

2 , j
, u−

i+ 1
2 , j

, u+
i, j− 1

2
, u−

i, j+ 1
2
to be the

traces of u on the four edges of Ii j , respectively. Likewise for the traces of Pi+ 1
2 , j and Q i, j+ 1

2
along x = x̃i , x = x̃i+1 and

y = ỹ j , y = ỹ j+1, respectively. Moreover, we use [u] = u+ − u− and {u} = 1
2 (u+ + u−) as the jump and average of u at the

cell interfaces, respectively.

132 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
Now, we can introduce the LDG method on the overlapping meshes: to find (uh, ph, qh) ∈ Vh × Ph × Qh , such that for
any test functions (v, w, z) ∈ Vh × Ph × Qh , we have∫

Ii j

(uh)t vdxdy = −
∫
Ii j

a(uh)phvxdxdy +
∫
J j

âi+ 1
2 , j p̂i+ 1

2 , j v
−
i+ 1

2 , j
dy −

∫
J j

âi− 1
2 , j p̂i− 1

2 , j v
+
i− 1

2 , j
dy,

−
∫
Ii j

b(uh)qhv ydxdy +
∫
Ii

b̂i, j+ 1
2
q̂i, j+ 1

2
v−
i, j+ 1

2
dx−

∫
Ii

b̂i, j− 1
2
q̂i, j− 1

2
v+
i, j− 1

2
dx, (4.4)

∫
P
i+ 1

2 , j

phwdxdy = −
∫

P
i+ 1

2 , j

A(uh)wxdxdy +
∫
J j

A(uh(x̃i+1))w
−
i+1, jdy −

∫
J j

A(uh(x̃i))w
+
i, jdy, (4.5)

∫
Q

i, j+ 1
2

qhzdxdy = −
∫

Q
i, j+ 1

2

B(uh)zydxdy +
∫
Ii

B(uh(ỹ j+1))z
−
i, j+1dx−

∫
Ii

B(uh(ỹ j))z
+
i, jdx. (4.6)

The numerical flux â along x = xi+ 1
2
and b̂ along y = y j+ 1

2
are taken as

âi+ 1
2 , j =

[A(uh)]i+ 1
2 , j

[uh]i+ 1
2 , j

, b̂i, j+ 1
2

=
[B(uh)]i, j+ 1

2

[uh]i, j+ 1
2

,

where [s]i+ 1
2 , j := s+

i+ 1
2 , j

− s−
i+ 1

2 , j
denotes the jump of a function s across the cell boundary {xi+ 1

2
} × J j . Likewise for [s]i, j+ 1

2
.

Moreover, we choose

p̂i+ 1
2 , j = ph(xi+ 1

2
, y) +

αi+ 1
2 , j

�x̃i+ 1
2 , j

[uh]i+ 1
2 , j, q̂i, j+ 1

2
= qh(x, y j+ 1

2
) +

αi, j+ 1
2

�x̃i, j+ 1
2

[uh]i, j+ 1
2
.

To approximate the integral on Ii and J j in (4.4)–(4.6), we use the three-point Gaussian quadrature. For each γ = 1, 2, 3,
we can construct a quadratic polynomial ψγ (x) in J j such that{

ψγ (y j
σ) = 1, σ = γ ,

ψγ (y j
σ) = 0, σ �= γ ,

where y j
σ , σ = 1, 2, 3 are the three quadrature points in the Gaussian quadrature for J j . Likewise for xiσ . In (4.5), we take

w(x, y) = ψγ (y)w̃(x), where w̃(x) is a quadratic polynomial on Pi+ 1
2
, to obtain

∫
P
i+ 1

2

ph(·, y j
γ)w̃dx = −

∫
P
i+ 1

2

A(uh(·, y j
γ))w̃xdx+ A(uh(x̃i+1, y

j
γ))w̃−

i+1 − A(uh(x̃i, y
j
γ))w̃+

i , (4.7)

which is similar to (2.3) and we can follow the same analyses in Section 3.2 to construct the MPP technique of problems in
two space dimensions. Therefore, we only demonstrate the algorithm as follows and omit the proof.

1. Step 1: Modify A(uh) and B(uh). We only demonstrate how to modify A(uh) along the line segment I = Ii × {y j
γ } and

the procedure can be applied to B(uh) with minor changes. WLOG, we assume m ≤ u ≤ M .
(a) Calculate a quadratic polynomial p2 ∈ P2(I) such that p2 is the interpolation of A(uh) at x = xi− 1

2
, x = xi , x = xi+ 1

2
along I .

(b) Compute a linear function p1 ∈ P1(I) such that p1 is the interpolation of A(uh) at x = xi− 1
2
and x = xi+ 1

2
along I .

(c) Apply a limiter to p2: p̃ = θ p2 + (1 − θ)p1.
(d) Choose the largest possible θ ∈ [0, 1] such that

∫m
0 a(u) du ≤ p̃ ≤ ∫ M

0 a(u) du, and use p̃ as Ã.
2. Step 2: Compute ph(xi+ 1

2
, yγ). We use Ã to replace A in (4.7) to obtain

∫
P
i+ 1

2

ph(·, y j
γ)w̃dx = −

∫
P
i+ 1

2

Ã(uh(·, y j
γ))w̃xdx+ Ã(x̃i+1, y

j
γ)w̃−

i+1 − Ã(x̃i, y
j
γ)w̃+

i ,

and take suitable test function w̃ to obtain ph(x 1 , y j
γ). One example is (3.10).
i+ 2

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 133
3. Step 3: Update uh in (4.4). We use the values of ph(xi+ 1
2
, y j

γ) and qh(xiγ , y j+ 1
2
) and three-point Gaussian quadrature to

approximate the integrals on the cell interfaces. Following Lemma 3.5, we take

26
√
6

27
− 29

9
≤ ξ0, η0 ≤ 29

9
− 26

√
6

27
,

and

αi− 1
2 , j ≥ max

{
g(1/dxi− 1

2
,−ξ0), g(dxi− 1

2
, ξ0)

}
, αi, j− 1

2
≥ max

{
g(1/dy j− 1

2
,−η0), g(dy j− 1

2
, η0)

}
,

where

dxi− 1
2

= �xi−1

�xi
, dy j− 1

2
= �y j−1

�y j
.

Moreover, following Lemma 3.6, we also need to choose

�t ≤ μ2�x2

12μ1C̃ maxu a2(u)
[
maxi h(|ξi+ 1

2
|) + 3�(ξ0) + 3maxi, j αi+ 1

2 , j

] ,
and

�t ≤ μ2�y2

12μ1C̃ maxu b2(u)
[
maxi h(|ηi+ 1

2
|) + 3�(η0) + 3maxi, j αi, j+ 1

2

] ,
then we can obtain m ≤ ūn+1

h ≤ M .
4. Step 4: Apply the bound-preserving limiter.

(a) Set up a small number ε = 10−13.
(b) If ūh ≤m + ε or ūh ≥ M − ε , take uh = ūh . Then skip the following steps.
(c) Define

mx
i, j = min

x∈Ii ,γ =1,2,3
uh(x, y

j
γ), Mx

i, j = max
x∈Ii ,γ =1,2,3

uh(x, y
j
γ).

We can also define my
i, j and My

i, j analogously. Let

mi, j = min{mx
i, j,m

y
i, j}, Mi, j = max{Mx

i, j,M
y
i, j},

and set θ = 1. If mi, j <m or Mi, j > M , then we take

θ = max

{
ūh −m − ε

ūh −mi, j
,
ūh − M + ε

ūh − Mi, j

}
.

(d) Compute ũh = ūh + θ(uh − ūh), and use ũh as the new numerical approximation.

Before, we finish this section, we would like to demonstrate the following remarks.

Remark 4.1. In step 1, we use Ã to replace A(uh) along Ii × {y j
γ }. We can also extend Ã to the whole cell Ii, j such that

Ã ∈ Vh , and use the new Ã as A in (4.5) to compute the integrals exactly.

Remark 4.2. For linear equations, we can take piecewise Pk polynomials as the finite element space. In this case, â is a
constant, hence we only need to evaluate

∫
J j
p(uh) dy instead of ph at the quadrature points. Therefore, in (4.5), we can

take w as a function of x only to evaluate
∫
J j
p(uh) dy.

Remark 4.3. Due to the nature of overlapping meshes, it is not easy to extend the scheme to unstructured meshes. The
technique for triangular meshes will be discussed in the future.

134 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
Table 5.1
Accuracy test for the linear heat equation.
Number of
cells

LDG without limiter LDG with limiter

L2 norm order L∞ norm order L2 norm order L∞ norm order

ξ0 = 0

10 3.05E-04 – 8.61E-04 – 2.33E-04 – 5.91E-04 –
20 3.85E-05 2.99 1.11E-04 2.95 2.84E-05 3.04 7.41E-05 2.99
40 4.83E-06 3.00 1.40E-05 2.99 3.52E-06 3.01 9.28E-06 3.00
80 6.04E-07 3.00 1.75E-06 3.00 4.39E-07 3.00 1.16E-06 3.00
160 7.55E-08 3.00 2.19E-07 3.00 5.49E-08 3.00 1.45E-07 3.00
320 9.43E-09 3.00 2.74E-08 3.00 6.86E-09 3.00 1.81E-08 3.00

ξ0 = √
3/3

10 3.09E-04 – 1.03E-03 – 2.40E-04 – 7.63E-04 –
20 3.76E-05 3.04 1.26E-04 3.03 2.98E-05 3.01 9.62E-05 2.99
40 4.67E-06 3.01 1.57E-05 3.01 3.73E-06 3.00 1.20E-05 3.00
80 5.83E-07 3.00 1.96E-06 3.00 4.66E-07 3.00 1.51E-06 3.00
160 7.28E-08 3.00 2.44E-07 3.00 5.82E-08 3.00 1.88E-07 3.00
320 9.10E-09 3.00 3.05E-08 3.00 7.28E-09 3.00 2.35E-08 3.00

Table 5.2
Accuracy test for the nonlinear heat equation.
Number of
cells

LDG without limiter LDG with limiter

L2 norm order L∞ norm order L2 norm order L∞ norm order

ξ0 = 0

10 2.32E-04 – 8.31E-04 – 1.84E-04 – 5.92E-04 –
20 2.93E-05 2.99 1.04E-04 2.99 2.22E-05 3.05 7.41E-05 3.00
40 3.67E-06 3.00 1.32E-05 2.98 2.75E-06 3.01 9.25E-06 3.00
80 4.59E-07 3.00 1.65E-06 3.00 3.43E-07 3.00 1.15E-06 3.00
160 5.74E-08 3.00 2.06E-07 3.00 4.29E-08 3.00 1.44E-07 3.00
320 7.20E-09 2.99 2.62E-08 2.98 5.36E-09 3.00 1.80E-08 3.00

ξ0 = √
3/3

10 2.38E-04 – 9.79E-04 – 1.88E-04 – 7.32E-04 –
20 2.88E-05 3.04 1.19E-04 3.05 2.33E-05 3.01 9.31E-05 2.97
40 3.57E-06 3.01 1.48E-05 3.01 2.91E-06 3.00 1.16E-05 3.00
80 4.46E-07 3.00 1.84E-06 3.00 3.64E-07 3.00 1.45E-06 3.00
160 5.57E-08 3.00 2.30E-07 3.00 4.54E-08 3.00 1.82E-07 3.00
320 6.96E-09 3.00 2.89E-08 3.00 5.68E-09 3.00 2.27E-08 3.00

5. Numerical examples

In this section, we provide numerical experiments to demonstrate the performance of the third-order MPP LDG method.
For simplicity, uniform primitive meshes (dxi+ 1

2
= 1 for all i) are used in all numerical examples. In this case, all penalty

parameters αi+ 1
2

at different cell boundaries are in fact the same and hence we simply rewrite it as α. We test different
offsets of the auxiliary mesh in each numerical example. For ξ0 = 0, we take the penalty parameter as α = 0.42, and for
ξ0 = √

3/3, we take α = 0.25. For simplicity, we only test the preserving property of the lower bound of the solution.
The results for preserving the upper bound are similar. Hence, we take M = ∞. We use the third-order TVD Runge–Kutta
method for time discretization and the third-order LDG scheme on overlapping meshes for the space discretization.

5.1. One-dimensional numerical tests

Example 5.1. We consider the following linear heat equation{
ut = uxx,

u(x,0) = sin(x) + 1,
(5.1)

on [0, 2π] with a 2π -periodic boundary condition.

The exact solution is u(x, t) = e−t sin(x) + 1. Numerical errors at T = 1 with different values of ξ0 are listed in Table 5.1.
In the left column, we test the LDG method without limiter. That is, we take α = 0 and do not apply the slope limiter
described on Page 15. We can observe the expected third-order accuracy for our scheme on overlapping meshes. In the
right column of the table, we take m = 0 and apply the PP limiter. Here only the solutions on the two elements sharing

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 135
Table 5.3
Accuracy test for the linear convection-diffusion equation.
Number of
cells

LDG without limiter LDG with limiter

L2 norm order L∞ norm order L2 norm order L∞ norm order

ξ0 = 0

10 8.56E-04 – 2.59E-03 – 8.99E-04 – 3.14E-03 –
20 1.06E-04 3.01 3.12E-04 3.05 1.07E-04 3.08 3.12E-04 3.33
40 1.32E-05 3.01 3.90E-05 3.00 1.32E-05 3.01 3.91E-05 3.00
80 1.63E-06 3.02 4.78E-06 3.03 1.64E-06 3.01 4.81E-06 3.02
160 1.99E-07 3.04 5.74E-07 3.06 2.01E-07 3.03 5.81E-07 3.05
320 2.37E-08 3.07 6.63E-08 3.11 2.42E-08 3.05 6.79E-08 3.10

ξ0 = √
3/3

10 8.56E-04 – 2.59E-03 – 8.97E-04 – 3.11E-03 –
20 1.06E-04 3.01 3.11E-04 3.06 1.06E-04 3.08 3.12E-04 3.32
40 1.32E-05 3.01 3.88E-05 3.01 1.32E-05 3.01 3.88E-05 3.00
80 1.63E-06 3.02 4.73E-06 3.03 1.63E-06 3.02 4.75E-06 3.03
160 1.98E-07 3.04 5.64E-07 3.07 2.00E-07 3.03 5.68E-07 3.06
320 2.37E-08 3.06 6.46E-08 3.13 2.40E-08 3.06 6.53E-08 3.12

Table 5.4
Elements that have been modified by the slope limiter.

Time Cell Time Cell Time Cell

Nx = 10 Nx = 20 Nx = 40

3.95E-02 8 0 15, 16 0 30, 31
7.90E-02 8 9.87E-03 16 2.47E-03 31
1.18E-01 8 1.97E-02 16
1.58E-01 8 2.96E-02 16
1.97E-01 8
2.37E-01 8
2.76E-01 8, 9
3.16E-01 8, 9
3.55E-01 9
3.95E-01 9
9.47E-01 10

Nx = 80 Nx = 160 Nx = 320

0 60, 61 0 120, 121 0 240, 241

the minimum value point x = 3
2π are modified by the slope limiter at the initial time. But the authors in [28] have already

proved that this slope limiter keeps the high-order accuracy. In our test, we take α �= 0 in all cells even though most of
them do not need to apply the PP limiter. We can observe that the penalty term with α �= 0 indeed does not harm the
original high order accuracy.

Example 5.2. We consider the following nonlinear heat equation{
ut = (e0.2uux)x,

u(x,0) = sin(x) + 1,
(5.2)

on [0, 2π] with a 2π -periodic boundary condition.

For this nonlinear problem, the exact solution is not easy to derive. However, when computing the numerical error for
N cells, we can treat the numerical solution with 2N cells as the reference solution. Numerical errors at T = 1 are listed in
Table 5.2. We can also observe the expected third-order accuracy for our scheme on overlapping meshes. In this example,
we take m = 0. As in the previous example, the slope limiter only works on the two elements sharing the point x = 3

2π at
the initial time. However, we still take α �= 0 and replace A by Ã in all cells at all time levels. By comparing the left and
right columns of the error table, we can observe that the penalty term in our scheme and the replacement of A by Ã will
not harm the original third-order of accuracy of the LDG method.

Example 5.3. We consider the following linear convection-diffusion equation{
ut + ux = εuxx,

u(x,0) = sin(x),
(5.3)

on [0, 2π] with a 2π -periodic boundary condition.

136 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
Fig. 5.1. Porous medium equation with m = 8. Comparison of numerical solutions with and without limiters.

The exact solution is u(x, t) = exp(−εt)sin(x − t). We take ε = 0.001. Numerical errors at T = 1 are listed in Table 5.3. In
the MPP limiter, we take m = −1. In Table 5.4, we list the indices of cells that have been modified by the slope limiter with
ξ0 = 0. The results for ξ0 = √

3/3 are exactly the same. We can see that the slope limiter works on the elements containing
the global minimum at several time levels. We still take α �= 0 globally at each time level and can also observe the expected
third-order accuracy for the MPP LDG scheme. Therefore, the technique also works for convection-diffusion equations.

Example 5.4. We consider the following porous medium equation

ut = (um)xx, m > 1. (5.4)

This is a classical example of degenerate parabolic equations. We use the Barenblatt solution

Bm(x, t) = t−k
[(

1− k(m − 1)

2m

|x|2
t2k

)] 1
m−1

, (5.5)

+

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 137
Fig. 5.2. Porous medium equation with limiter. Different m.

138 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
Fig. 5.3. Buckley–Leverett equation. ξ0 = 0.

Table 5.5
Accuracy test for the linear convection-diffusion equation in 2D.
Number of
cells

LDG without limiter LDG with limiter

L2 norm order L∞ norm order L2 norm order L∞ norm order

ξ0 = 0

10 8.68E-04 – 1.83E-03 – 8.68E-04 – 1.83E-03 –
20 1.15E-04 2.92 2.54E-04 2.85 1.15E-04 2.92 2.54E-04 2.85
40 1.42E-05 3.01 3.18E-05 3.00 1.43E-05 3.01 3.19E-05 3.00
80 1.76E-06 3.02 3.92E-06 3.02 1.77E-06 3.02 3.95E-06 3.01
160 2.14E-07 3.04 4.77E-07 3.04 2.16E-07 3.03 4.84E-07 3.03
320 2.52E-08 3.08 5.63E-08 3.08 2.59E-08 3.06 5.79E-08 3.06

ξ0 = √
3/3

10 8.68E-04 – 1.83E-03 – 8.68E-04 – 1.83E-03 –
20 1.15E-04 2.92 2.54E-04 2.85 1.15E-04 2.92 2.54E-04 2.85
40 1.42E-05 3.01 3.17E-05 3.00 1.43E-05 3.01 3.18E-05 3.00
80 1.75E-06 3.02 3.91E-06 3.02 1.76E-06 3.02 3.93E-06 3.02
160 2.13E-07 3.04 4.75E-07 3.04 2.14E-07 3.04 4.79E-07 3.04
320 2.52E-08 3.08 5.60E-08 3.08 2.56E-08 3.07 5.69E-08 3.07

where k = 1
m+1 . This is an exact solution to the porous medium equation in one space dimension with compact support. The

initial condition is taken to be Bm(x, 1), and the numerical solution is computed to T = 2. We take ξ0 = 0 with α = 0.42,
and ξ0 = √

3/3 with α = 0.25, respectively.
In Fig. 5.1, we take m = 8 and compare the original numerical solutions without limiter and the numerical solutions with

the MPP limiter. For the numerical solutions without limiter, we can see that there are significant undershoots near the foot
of the solutions. While our MPP limiter keeps the solutions strictly non-negative in the whole computational domain. Fig. 5.2
shows the numerical solutions with limiter for different values of m. We can see that the MPP LDG scheme on overlapping
meshes resolves the discontinuities in the solutions quite well and keeps the solution strictly non-negative.

Example 5.5. We consider the following convection-diffusion Buckley–Leverett equation, which is often used in reservoir
simulations

ut + f (u)x = ε(ν(u)ux)x, x ∈ [0,1],
where f (u) and ν(u) are given as

f (u) = u2

u2 + (1− u)2
, ν(u) =

{
4u(1− u), 0� u � 1,
0, otherwise.

The initial and boundary conditions are given as

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 139
Fig. 5.4. Porous medium equation at T = 0.0005. N = 40.

u(x,0) =
{
1− 3x, 0� x� 1/3,
0, 1/3� x� 1,

u(0, t) = 1.

We take ε = 0.01 and ξ0 = 0 in our numerical test. Numerical solutions at T = 0.2 with and without limiter are shown
in Fig. 5.3. For the solution computed without limiter, there are some undershoots near the foot of the solution. While our
MPP limiter can eliminates all negative values. Numerical results for ξ0 = √

3/3 are similar, thus we will not show them
here to save space.

5.2. Two-dimensional numerical tests

Example 5.6. We consider the following two-dimensional linear convection-diffusion equation{
ut + ∇ · u = ε�u,

u(x, y,0) = sin(2π(x+ y)),
(5.6)

on [0, 1] × [0, 1] with periodic boundary conditions.

140 J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141
Fig. 5.5. Porous medium equation at T = 0.005. LDG with maximum-principle-satisfying limiter. ξ0 = 0, N = 160.

The exact solution is u(x, y, t) = exp(−8π2εt)sin(2π(x + y − 2t)). We take ε = 0.0001. Numerical errors at T = 0.1 are
listed in Table 5.5. We observe the expected third-order rate of convergence. Also, the MPP limiter does not harm the
original third-order accuracy.

Example 5.7. We test the two-dimensional porous medium equation

ut = �(u2), (5.7)

with a periodic boundary condition and the initial condition

u(x, y,0) =
{
1, if (x, y) ∈ [− 1

2 , 1
2] × [− 1

2 , 1
2],

0, otherwise,
(5.8)

in the computational domain [−1, 1] × [−1, 1].

Following [30], we compared MPP LDG scheme with the one without limiters at time t = 0.0005, as shown in Fig. 5.4.
We can see that without the MPP technique, the scheme will yield non-physical negative values and the numerical approx-
imations will blow up eventually, while the MPP limiter keeps the numerical solution nonnegative. Numerical results with
MPP limiter at a later time T = 0.005 are shown in Fig. 5.5. Here we take ξ0 = 0. Results for ξ0 = √

3/3 are similar. We can
see that the numerical solution is nonnegative and the scheme is stable. Also, our scheme resolves the discontinuities in
the solutions quite well.

6. Conclusion

In this paper, we have constructed third-order MPP LDG methods on overlapped meshes. The penalty in the scheme
does not depend on the numerical approximation and tends to infinity if the dual mesh moves towards the primitive mesh.
Numerical experiments demonstrated the good performance of the scheme.

References

[1] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations,
J. Comput. Phys. 131 (1997) 267–279.

[2] Z. Chen, H. Huang, J. Yan, Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion
equations on unstructured triangular meshes, J. Comput. Phys. 308 (2016) 198–217.

[3] E. Chung, C.S. Lee, A staggered discontinuous Galerkin method for the convection-diffusion equation, J. Numer. Math. 20 (2012) 1–31.
[4] B. Cockburn, S. Hou, C.-W. Shu, The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidi-

mensional case, Math. Comput. 54 (1990) 545–581.
[5] B. Cockburn, S.-Y. Lin, C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-

dimensional systems, J. Comput. Phys. 84 (1989) 90–113.
[6] B. Cockburn, C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework,

Math. Comput. 52 (1989) 411–435.

http://refhub.elsevier.com/S0021-9991(18)30701-0/bib626173736931393937s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib626173736931393937s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4368656E32303136s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4368656E32303136s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4368756E6732303132s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib726B32s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib726B32s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib726B33s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib726B33s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib726B31s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib726B31s1

J. Du, Y. Yang / Journal of Computational Physics 377 (2019) 117–141 141
[7] B. Cockburn, C.-W. Shu, The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys. 141
(1998) 199–224.

[8] B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998)
2440–2463.

[9] J. Douglas Jr., R.E. Ewing, M.F. Wheeler, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous
media, RAIRO. Anal. Numér. 17 (1983) 249–256.

[10] J. Douglas Jr., R.E. Ewing, M.F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO. Anal.
Numér. 17 (1983) 17–33.

[11] J. Du, Y. Yang, E. Chung, Local discontinuous Galerkin methods for convection-diffusion equations on overlapped meshes, submitted for publication.
[12] I.M. Gelfand, Some questions of analysis and differential equations, Am. Math. Soc. Trans. 26 (1963) 201–219.
[13] S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001) 89–112.
[14] H. Guo, Y. Yang, Bound-preserving discontinuous Galerkin method for compressible miscible displacement problem in porous media, SIAM J. Sci.

Comput. 39 (2017) A1969–A1990.
[15] L. Guo, Y. Yang, Positivity-preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions, J. Comput. Phys.

289 (2015) 181–195.
[16] A.E. Hurd, D.H. Sattinger, Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients, Trans. Am. Math. Soc. 132

(1968) 159–174.
[17] E.F. Keller, L.A. Segel, Initiation on slime mold aggregation viewed as instability, J. Theor. Biol. 26 (1970) 399–415.
[18] X. Li, C.-W. Shu, Y. Yang, Local discontinuous Galerkin method for the Keller–Segel chemotaxis model, J. Sci. Comput. 73 (2017) 943–967.
[19] Y. Liu, C.-W. Shu, E. Tadmor, M. Zhang, Central local discontinuous Galerkin methods on overlapping cells for diffusion equations, ESAIM: Math. Model.

Numer. Anal. (M2AN) 45 (2011) 1009–1032.
[20] C. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953) 311338.
[21] T. Qin, C.-W. Shu, Y. Yang, Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics, J. Comput. Phys. 315 (2016) 323–347.
[22] W.H. Reed, T.R. Hill, Triangular Mesh Methods for the Neutron Transport Equation, Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos,

NM, 1973.
[23] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput. 9 (1988) 1073–1084.
[24] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–471.
[25] T. Xiong, J.-M. Qiu, Z. Xu, High order maximum-principle-preserving discontinuous Galerkin method for convection-diffusion equations, SIAM J. Sci.

Comput. 37 (2015) A583–A608.
[26] Y. Yang, D. Wei, C.-W. Shu, Discontinuous Galerkin method for Krause’s consensus models and pressureless Euler equations, J. Comput. Phys. 252 (2013)

109–127.
[27] X. Zhang, C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys. 229 (2010) 3091–3120.
[28] X. Zhang, C.-W. Shu, On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes,

J. Comput. Phys. 229 (2010) 8918–8934.
[29] X. Zhang, C.-W. Shu, Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms, J. Comput.

Phys. 230 (2011) 1238–1248.
[30] Y. Zhang, X. Zhang, C.-W. Shu, Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on tri-

angular meshes, J. Comput. Phys. 234 (2013) 295–316.
[31] X. Zhao, Y. Yang, C. Seyler, A positivity-preserving semi-implicit discontinuous Galerkin scheme for solving extended magnetohydrodynamics equations,

J. Comput. Phys. 278 (2014) 400–415.

http://refhub.elsevier.com/S0021-9991(18)30701-0/bib726B34s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib726B34s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib636F636B6275726E31393938s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib636F636B6275726E31393938s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib446F75676C617331393833s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib446F75676C617331393833s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib446F75676C61733139383361s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib446F75676C61733139383361s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib47656C66616E6431393633s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib74696D6531s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib47756F32303137s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib47756F32303137s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib47756F32303135s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib47756F32303135s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4875726431393638s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4875726431393638s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4B656C6C657231393730s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4C6932303137s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4C697532303131s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4C697532303131s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib5061746C616B31393533s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib51696E32303136s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4447s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib4447s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib74696D6532s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib534Fs1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib58696F6E6732303135s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib58696F6E6732303135s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib59616E6732303133s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib59616E6732303133s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib7869616E6778696F6E6731s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib7869616E6778696F6E6732s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib7869616E6778696F6E6732s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib7869616E6778696F6E6733s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib7869616E6778696F6E6733s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib7A68616E6732303133s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib7A68616E6732303133s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib5A68616F32303134s1
http://refhub.elsevier.com/S0021-9991(18)30701-0/bib5A68616F32303134s1

	Maximum-principle-preserving third-order local discontinuous Galerkin method for convection-diffusion equations on overlapping meshes
	1 Introduction
	2 LDG scheme on overlapping meshes in one space dimension
	2.1 Overlapping meshes
	2.2 LDG method on overlapping meshes

	3 MPP third-order LDG scheme in one space dimension
	3.1 Analysis for the spacial discretization
	3.2 Implementation
	3.3 High-order time integrations

	4 LDG scheme on overlapping meshes in two space dimensions
	5 Numerical examples
	5.1 One-dimensional numerical tests
	5.2 Two-dimensional numerical tests

	6 Conclusion
	References

