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a b s t r a c t

In this paper, we apply local discontinuous Galerkin methods to the compressible worm-
hole propagation. Optimal error estimates for the pressure, velocity, porosity and concen-
tration in different norms are established on non-uniform grids. Numerical experiments
are presented to verify the theoretical analysis and show the good performance of the LDG
scheme for compressible wormhole propagation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

To increase the production rate, acid treatment of carbonate reservoirs has been widely applied in oil and gas well
stimulation techniques by increasing permeability of the damaged zone near the well. The material near the well can be
dissolved by the injected acid and flow channels that establish a good connectivity between the reservoir and the well can
be constructed. It is well known that the relative increase in permeability for a given amount of acid is a strong function of
the injection conditions and only at suitable flow rates, wormholes (long conductive channels) are formed. These channels
penetrate deep into the formation and facilitate the flow of oil. Thus, for successful stimulation of a well it is required to
produce wormholes with optimum density and penetrating deep into the formation.

The mathematical model of the wormhole propagation has been investigated intensively [1–6]. To the best knowledge,
there are not toomanyworks discussing numerical simulations. Theoretical and numerical analyses of chemical-dissolution
front instability were investigated in [7]. Later, parallel simulation for wormhole propagation was discussed in [8].
Subsequently, in [9], the authors applied the mixed finite element method to the problem. The stability analysis and a priori
error estimates for velocity, pressure, concentration and porosity were established in different norms. Moreover, in [10] the
authors considered block-centered finite differencemethod. However, the scheme is only second-order accurate. To the best
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knowledge of the authors, no previous work focused on discontinuous Galerkin (DG) methods for wormhole propagation. In
this paper, we would like to apply the high-order local discontinuous Galerkin (LDG) methods for compressible wormhole
propagation.

The DG method gained even greater popularity recently for good stability, high order accuracy, and flexibility on h-p
adaptivity and on complex geometry. The DGmethod was first introduced in 1973 by Reed and Hill [11] in the framework of
neutron linear transport. Subsequently, Cockburn et al. developed Runge–Kutta discontinuous Galerkin (RKDG)methods for
hyperbolic conservation laws in a series of papers [12–15]. In [16], Cockburn and Shu first introduced the local discontinuous
Galerkin (LDG) method to solve the convection–diffusion equation. Their idea was motivated by Bassi and Rebay [17],
where the compressible Navier–Stokes equations were successfully solved. The idea of the LDG method is to rewrite the
equation with higher order derivatives into a first order system, then apply the DG method to the system. With suitable
numerical fluxes, the stability and optimal error estimates can be proved for somemodel equations [18–21]. As an extension
of DG schemes for hyperbolic conservation laws, the LDG methods share the advantages of the DG methods. Besides, a key
advantage of this scheme is the local solvability, i.e. the auxiliary variables approximating the gradient of the solution can
be locally eliminated.

It is not easy to apply the LDG methods to wormhole propagation directly due to the inter-element discontinuities of
two independent solution variables. More precisely, in this problem, the approximations of u in the convection term in (2.3)
is discontinuous across the cell interfaces and it is difficult to obtain the error estimates if we analyze the convection and
diffusion terms separately. To explain this point, let us consider the following hyperbolic equation

ut + (a(x)u)x = 0,

where a(x) is discontinuous at x = x0. In [22,23], the authors studied such a problem and defined

Q =
a(x0 + b) − a(x0)

b
.

If Q is bounded from below for all b, then the solution exists, but may not be unique. If Q is bounded from above for all b, we
can guarantee the uniqueness, but the solutionmay not exist. Recently,Wang et al. [24–26] obtained optimal error estimates
of the LDG methods with IMEX time integration for linear and nonlinear convection–diffusion problems. Subsequently, the
idea has been applied to miscible displacements in porous media [27–29], chemotaxis model [30] to obtain optimal rates of
convergence. The key idea is to explore an important relationship between the gradient and interface jump of the numerical
solution polynomial with the numerical approximation of auxiliary variable for the gradient in the LDG methods, which is
stated in Lemma4.4.Moreover, the systems are coupled together. Therefore, wewill derive four energy inequalities to obtain
optimal error estimates in L∞(0, T ; L2) for concentration c , in L2(0, T ; L2) for s = −∇c , in L∞(0, T ; L2) for porosity φ and in
L∞(0, T ; L2) for pressure p.

The paper is organized as follows. In Section 2, we demonstrate the governing equations of the compressible wormhole
propagation. In Section 3, we present some preliminaries, including the basic notations and norms to be used throughout
the paper and the LDG spatial discretization. Section 4 is the main body of the paper where we present the projections and
some essential properties of the finite element spaces, error equations and the details of the optimal error estimates for
compressible wormhole propagation. Numerical results are given to demonstrate the accuracy and capability of the method
in Section 5. We will end in Section 6 with some concluding remarks.

2. Compressible wormhole propagation

In this section, we demonstrate the governing equations of the compressible wormhole propagation. Let Ω = [0, 1] ×

[0, 1] be a rectangular domain in R2. The classical equations governing the compressible wormhole propagation in two space
dimensions are as follows [9,10]:

γ
∂p
∂t

+
∂φ

∂t
+ ∇ · u = f , (x, y) ∈ Ω, 0 < t ≤ T , (2.1)

u =
−κ(φ)

µ
∇p, (x, y) ∈ Ω, 0 < t ≤ T , (2.2)

∂(φcf )
∂t

+ ∇ · (ucf ) = ∇ · (φD∇cf ) + kcav(cs − cf ) + fpcf + fIcI , (2.3)

∂φ

∂t
=

αkcav(cf − cs)
ρs

, (x, y) ∈ Ω, 0 < t ≤ T , (2.4)

where p and u are the pressure in the fluid mixture, the Darcy velocity of the mixture (volume flowing across a unit across-
section per unit time), respectively. µ is the viscosity and γ is a pseudo-compressibility parameter that results in slight
change of the density of the fluid phase in the dissolution process. f = fI + fp is the external volumetric flow rate with fP and
fI being the production and injection rates, respectively. cf is the cup-mixing concentration of the acid in the fluid phase. cI
is the injected concentration. Following [10], we consider only molecular diffusion, so that D = dmI with I being the identity
matrix. In this paper the tensor matrix D is assumed to be positive definite and may depend on x, y, but not u. Moreover,
the pressure is uniquely determined up to a constant, thus we assume

∫
Ω
pdxdy = 0 at t = 0. kc is the local mass-transfer
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coefficient, av is the interfacial area available for reaction per unit volume of themedium. The variable cs is the concentration
of the acid at the fluid–solid interface given as

cs =
cf

1 + ks/kc
, (2.5)

where ks is the surface reaction rate constant. φ and κ in the first term on the right hand side of (2.2) are the porosity and
permeability of the rock, respectively and the relationship between the permeability and the porosity is established by the
Carman–Kozeny correlation [31]

κ

κ0
=

φ

φ0

(
φ(1 − φ0)
φ0(1 − φ)

)2

, (2.6)

where φ0 and κ0 are the initial porosity and permeability of the rock, respectively. Therefore, we can consider κ as a function
of φ, and it is easy to derive

1
κ(φ)

= κ−1(φ) =
φ0

φκ0

(
φ0(1 − φ)
φ(1 − φ0)

)2

.

In (2.4), α is the dissolving power of the acid and ρs is the density of the solid phase. Using porosity and permeability, av is
shown as

av

a0
=

φ

φ0

√
κ0φ

κφ0
=

1 − φ

1 − φ0
, (2.7)

where a0 is the initial interfacial area. In this problem, the initial concentration are pressure are given as

cf (x, y, 0) = c0(x, y), p(x, y, 0) = p0(x, y), φ(x, y, 0) = φ0(x, y), (x, y) ∈ Ω.

For simplicity, we consider periodic boundary condition in this paper. The analysis for homogeneous Neumann boundary
can be obtained following the same lines with some minor changes, and we thus omit it.

Finally, we make the following hypotheses (H) for the problem.

1. 0 < φ∗ ≤ φ(x, y) ≤ φ∗ < 1.
2. D is uniformly Lipschitz continuous, and for any v, w ∈ R2 there exist two positive constants D∗, D∗ such that

vTDv ≥ D∗vTv = D∗∥v∥2 and vTDw ≤ D∗
∥v∥∥w∥, where ∥v∥ is the standard Euclidian norm in R2.

3. γ , α, ρs, µ, kc , and ks are all given positive constants, and 0 < φ0∗ ≤ φ0 ≤ φ∗

0 < 1, 0 < a0∗ ≤ a0 ≤ a∗

0.
4. cf , φ, cf t , φt ,u and s = −∇cf are uniformly bounded in R2

× [0, T ].

It is easy to obtain the following lemma

Lemma 2.1. Suppose hypotheses 1 and 3 are satisfied, then av(φ) and κ−1(φ) are bounded and Lipschitz continuous, i.e. there
exists C such that

av(φ) ≤ C, κ−1(φ) ≤ C, |av(φ1) − av(φ2)| ≤ C |φ1 − φ2| |κ−1(φ1) − κ−1(φ2)| ≤ C |φ1 − φ2|.

3. Preliminaries

In this section, we will demonstrate some preliminary results that will be used throughout the paper.

3.1. Basic notations

In this section, we present the notations. Let 0 = x 1
2

< · · · < xNx+
1
2

= 1 and 0 = y 1
2

< · · · < yNy+
1
2

= 1 be
the grid points in the x and y directions, respectively. Define Ii = (xi− 1

2
, xi+ 1

2
) and Jj = (yj− 1

2
, yj+ 1

2
). Let K = Ii × Jj,

i = 1, . . . ,Nx, j = 1, . . . ,Ny, be a partition of Ω and denote Ωh = {K }. The mesh sizes in the x and y directions are given
as ∆xi = xi+ 1

2
− xi− 1

2
and ∆yj = yj+ 1

2
− yj− 1

2
, respectively and h = max{maxi ∆xi,maxj ∆yj}. Moreover, we assume the

partition is quasi-uniform, i.e. there exists a positive constant λ such that h ≤ λhmin, where hmin = min{mini ∆xi,minj ∆yj}.
The finite element space is chosen as

W k
h = {z : z|K∈ Q k(K ), ∀K ∈ Ωh},

where Q k(K ) denotes the space of tensor product polynomials of degrees at most k in K . Note that functions in W k
h are

discontinuous across element interfaces. This is one of the main differences between the DG method and traditional finite
element method. We choose β = (1, 1)T to be a fixed vector that is not parallel to any normals of the element interfaces.
We denote Γh to be the set of all element interfaces and Γ0 = Γh\∂Ω . Let E ∈ Γ0 be an interior edge shared by elements Kℓ

and Kr , where β · nℓ > 0, and β · nr < 0, respectively, with nℓ and nr being the outward normals of Kℓ and Kr , respectively.
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For any z ∈ W k
h , we define z−

= z|∂Kℓ
and z+

= z|∂Kr , respectively. The jump is given as [z] = z+
− z−. Moreover, for

s ∈ Wk
h = W k

h × W k
h , we define s+ and s− and [s] analogously. We also define ∂Ω− = {E ∈ ∂Ω|β · n < 0}, where n is the

outer normal of E , and ∂Ω+ = ∂Ω\∂Ω−. For any E ∈ ∂Ω−, there exists K ∈ Ωh such that E ∈ ∂K , we define z+
|E= z|∂K ,

and define z− on ∂Ω+ analogously. For simplicity, given E = {x 1
2
} × Jj ∈ ∂Ω− and Ẽ = {xNx+

1
2
} × Jj ∈ ∂Ω+, by periodic

boundary condition, we define

z−
|E= z−

|Ẽ , and z+
|Ẽ= z+

|E .

Similarly, given E = Ii × {y 1
2
} ∈ ∂Ω− and Ẽ = Ii × {yNy+

1
2
} ∈ ∂Ω+, we define

z−
|E= z−

|Ẽ , and z+
|Ẽ= z+

|E .

Throughout this paper, the symbol C is used as a generic constant which may appear differently at different occurrences.
Moreover, the symbol ϵ is a sufficiently small positive constant.

3.2. Norms

In this subsection, we define several norms that will be used throughout the paper.
Denote ∥u∥0,K to be the standard L2 norm of u in cell K . For any natural number ℓ, we consider the norm of the Sobolev

space Hℓ(K ), defined by

∥u∥ℓ,K =

⎧⎨⎩ ∑
0≤α+β≤ℓ

 ∂α+βu
∂xα∂yβ

2

0,K

⎫⎬⎭
1
2

.

Moreover, we define the norms on the whole computational domain as

∥u∥ℓ =

⎛⎝ ∑
K∈Ωh

∥u∥2
ℓ,K

⎞⎠ 1
2

.

For convenience, if we consider the standard L2 norm, then the corresponding subscript will be omitted.
Let ΓK be the edges of K , and we define

∥u∥2
ΓK

=

∫
∂K

u2ds.

We also define

∥u∥2
Γh

=

∑
K∈Ωh

∥u∥2
ΓK

.

Moreover, we define the standard L∞ norm of u in K as ∥u∥∞,K , and define the L∞ norm on the whole computational
domain as

∥u∥∞ = max
K∈Ωh

∥u∥∞,K .

Finally, we define similar norms for vector u = (u1, u2)T as

∥u∥
2
ℓ,K = ∥u1∥

2
ℓ,K + ∥u2∥

2
ℓ,K , ∥u∥

2
ΓK

= ∥u1∥
2
ΓK

+ ∥u2∥
2
ΓK

, ∥u∥∞,K = max{∥u1∥∞,K , ∥u2∥∞,K }.

Similarly, the norms on the whole computational domain are given as

∥u∥
2
ℓ =

∑
K∈Ωh

∥u∥
2
ℓ,K , ∥u∥

2
Γh

=

∑
K∈Ωh

∥u∥
2
ΓK

, ∥u∥∞ = max
K∈Ωh

∥u∥∞,K .

3.3. LDG scheme

Applying (2.5)–(2.7), we can transform the nonlinear system (2.1)–(2.4) into

γ
∂p
∂t

+
∂φ

∂t
+ ∇ · u = f , (3.1)

u =
−κ(φ)

µ
∇p, (3.2)

∂(φcf )
∂t

+ ∇ · (ucf ) − ∇ · (φD∇cf ) + Aav(φ)cf = fpcf + fIcI , (3.3)
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∂φ

∂t
= Bav(φ)cf , (3.4)

where A =
kcks
kc+ks

, B =
αkcks

ρs(kc+ks)
and av(φ) =

a0(1−φ)
1−φ0

. Then we introduce some auxiliary variables to represent the derivatives
of the solution which further yields a first order system:

γ
∂p
∂t

+
∂φ

∂t
+ ∇ · u = f , (3.5)

µ

κ(φ)
u + ∇p = 0, (3.6)

∂(φcf )
∂t

+ ∇ · (ucf ) + ∇ · z + Aav(φ)cf = fpcf + fIcI , (3.7)

s = −∇cf , (3.8)

z = φDs, (3.9)
∂φ

∂t
= Bav(φ)cf . (3.10)

We multiply (3.5)–(3.10) with test functions and formally integrate by parts in K to obtain(
γ

∂p
∂t

, ζ

)
K

+

(
∂φ

∂t
, ζ

)
K
= (u, ∇ζ )K − ⟨u · νK , ζ ⟩∂K + (f , ζ )K ,(

µ

κ(φ)
u, θ

)
K
= (p, ∇ · θ)K − ⟨p, θ · νK ⟩∂K ,

((φcf )t , v)K = (ucf + z, ∇v)K − ⟨(ucf + z) · νK , v⟩∂K

− (Aav(φ)cf , v)K + (fpcf + fIcI , v)K ,

(s,w)K = (cf , ∇ · w)K − ⟨cf ,w · νK ⟩∂K ,

(z,ψ)K = (φDs,ψ)K ,

(φt , β)K = (Bav(φ)cf , β)K ,

where ζ , v, β ∈ W k
h , θ,w,ψ ∈ Wk

h, (u, v)K =
∫
K uvdxdy, (u, v)K =

∫
K u · vdxdy, ⟨u, v⟩∂K =

∫
∂K uvds and νK is the outer

unit normal of K . Replacing the exact solutions cf , p, φ, s, z, u in the above equations by their numerical approximations
ch, ph, φh ∈ W k

h and sh, zh, uh ∈ Wk
h, respectively and using numerical fluxes along the cell interfaces, we can obtain the

LDG scheme: for any t ∈ [0, T ],(
γ

∂ph
∂t

, ζ

)
K

+

(
∂φh

∂t
, ζ

)
K
=Ld

K (uh, ζ ) + (f , ζ )K (3.11)(
µ

κ(φh)
uh, θ

)
K
=DK (ph, θ) (3.12)

((φcf )t , v)K =Lc
K (uh, ch, v) + Ld

K (zh, v)
+ (fpch + fIcI , v)K − (Aav(φh)ch, v)K (3.13)

(sh,w)K =DK (ch,w) (3.14)
(zh,ψ)K = (φhDsh,ψ)K (3.15)
(φht , β)K = (Bav(φh)ch, β)K (3.16)

where

Lc
K (s, c, v)= (sc, ∇v)K − ⟨ŝc · νK , v⟩∂K ,

Ld
K (s, v)= (s, ∇v)K − ⟨̂s · νK , v⟩∂K ,

DK (c,w)= (c, ∇ · w)K − ⟨̂c,w · νK ⟩∂K .

The main error estimate requires the following initial discretization whose proof follows from Lemma 4.2 directly, and we
thus omit it.

3.4. The main theorem

We will use several special projections in this paper. Firstly, we define P+ intoW k
h which is, for each cell K

(P+u − u, v)K = 0, ∀v ∈ Q k−1(K ),∫
Jj

(P+u − u)(xi− 1
2
, y)v(y)dy = 0, ∀v ∈ Pk−1(Jj),
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Ii

(P+u − u)(x, yj− 1
2
)v(x)dx = 0, ∀v ∈ Pk−1(Ii),

(P+u − u)(xi− 1
2
, yj− 1

2
) = 0,

where Pk denotes the polynomials of degree k. Moreover, we also define Π−
x and Π−

y into W k
h which are, for each cell K ,

(Π−

x u − u, vx)K = 0, ∀v ∈ Q k(K ),∫
Jj

(Π−

x u − u)(xi+ 1
2
, y)v(y)dy = 0, ∀v ∈ Pk(Jj),

(Π−

y u − u, vy)K = 0, ∀v ∈ Q k(K ),∫
Ii

(Π−

y u − u)(x, yj+ 1
2
)v(x)dx = 0, ∀v ∈ Pk(Ii),

as well as a vectored-valued projectionΠ −
= Π−

x ⊗Π−
y . Finally, we also use the L2-projection Pk intoW k

h which is, for each
cell K

(Pku − u, v)K = 0, ∀v ∈ Q k(K ), (3.17)

and its two dimensional version Pk = Pk ⊗ Pk. For the special projections given above, we will demonstrate the following
lemma by the standard approximation theory [32].

Lemma 3.1. We choose the initial solution as

ch(x, y, 0) = P+c0, φh(x, y, 0) = Pkφ0 ph(x, y, 0) = P+p0, (3.18)

then we have

∥cf (x, y, 0) − ch(x, y, 0)∥ ≤ Chk+1,

∥p(x, y, 0) − ph(x, y, 0)∥ ≤ Chk+1,

∥φ(x, y, 0) − φh(x, y, 0)∥ ≤ Chk+1.

We use alternating fluxes for the diffusion term and take

ẑh = z−

h , ĉh = c+

h , ûh = u−

h , p̂h = p+

h .

For the convection term, we take

ûhch =
1
2
(u+

h c
+

h + u−

h c
−

h − ανe(c+

h − c−

h )),

where α ≥ 0 can be chosen as any fixed constant independent of h and νe is the unit normal of e ∈ Γ0 such that β · νe > 0.
Moreover, we define

(u, v) =

∑
K∈Ωh

(u, v)K , (u, v) =

∑
K∈Ωh

(u, v)K ,

and

Lc(s, c, v) =

∑
K∈Ωh

Lc
K (s, c, v), Ld(s, v) =

∑
K∈Ωh

Ld
K (s, v), D(c,w) =

∑
K∈Ωh

DK (c,w).

It is easy to check the following identity by integration by parts on each cell

Lemma 3.2. For any functions v andw,

Ld(w, v) + D(v,w) = 0. (3.19)

Now we state the main theorem.

Theorem3.1. Let cf ∈ L∞(0, T ;Hk+3), s ∈ L∞(0, T ; (Hk+2)2), u ∈ L∞(0, T ; (Hk+2)2),φ ∈ L∞(0, T ;Hk+3) be the exact solutions
of the problem (3.5)–(3.10), and let uh, ph, ch, sh, zh, φh be the numerical solutions of the semi-discrete LDG scheme (3.11)–(3.16)
with initial discretization given as (3.18). If the finite element space is the piecewise tensor product polynomials of degree at most
k and h is sufficiently small, then we have the error estimate

∥cf − ch∥L∞(0,T ;L2) + ∥s − sh∥L2(0,T ;L2)

+ ∥p − ph∥L∞(0,T ;L2) + ∥φ − φh∥L∞(0,T ;L2) ≤ Chk+1, (3.20)

where the constant C is independent of h.
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4. The proof of the main theorem

In this section, we proceed to the proof of Theorem 3.1. We first introduce several projections and present some auxiliary
results. Subsequently, wemake an a priori error estimatewhich provides the boundedness of the numerical approximations.
Thenwe construct the error equations which further yield several main energy inequalities and complete the proof of (3.20).
Finally, we verify the a priori error estimate at the end of this section.

4.1. Projections and interpolation properties

In this section, we will demonstrate the projections and several useful lemmas. Let us start with the classical inverse
properties [32].

Lemma 4.1. Assume u ∈ W k
h , then there exists a positive constant C independent of h and u such that

h∥u∥∞,K + h1/2
∥u∥ΓK ≤ C∥u∥K .

Lemma 4.2. Suppose w ∈ Hk+1(Ω), then for any project Ph, which is either P+, Π−
x , Π−

y or Pk, we have

∥w − Phw∥ + h1/2
∥w − Phw∥Γh ≤ Chk+1.

Moreover, the projection P+ on the Cartesian meshes has the following superconvergence property [33].

Lemma 4.3. Suppose w ∈ Hk+2(Ω), then for any ρ ∈ Wh we have

|D(w − P+w, ρ)| ≤ Chk+1
∥w∥k+2∥ρ∥. (4.1)

In this paper, we use e to denote the error between the exact and numerical solutions, i.e. ec = cf − ch, ep = p−ph, eu =

u − uh, es = s − sh, ez = z − zh, eφ = φ − φh. As the general treatment of the finite element methods, we split the errors
into two terms as

ec = ξc − ηc, ηc = P+cf − cf , ξc = P+cf − ch,
ep = ξp − ηp, ηp = P+p − p, ξp = P+p − ph,
eu = ξu − ηu, ηu = Π −u − u, ξu = Π −u − uh,

es = ξs − ηs, ηs = Pks − s, ξs = Pks − sh,
ez = ξz − ηz, ηz = Π −z − z, ξz = Π −z − zh,
eφ = ξφ − ηφ, ηφ = Pkφ − φ, ξφ = Pkφ − φh.

Based on the above notations, it is easy to verify that

Ld(ηu, v) = Ld(ηz, v) = 0, ∀v ∈ Q k(K ). (4.2)

Following [24–26,34] with some minor changes, we have the following lemma

Lemma 4.4. Suppose ξc and ξs are defined above, we have

∥∇ξc∥ ≤ C(∥ξs∥ + hk+1), h−
1
2 ∥[ξc]∥Γh ≤ C(∥ξs∥ + hk+1).

Let us finish this section by proving the following lemma whose proof was given in [30].

Lemma 4.5. Let u ∈ Ck+1(Ω) and Πu ∈ W k
h . Suppose ∥u − Πu∥ ≤ Chκ for some positive constant C and κ ≤ k + 1. Then

h∥u − Πu∥∞ + h1/2
∥u − Πu∥Γh ≤ Chκ ,

where the positive constant C does not depend on h.

4.2. A priori error estimate

In this subsection, we would like to make an a priori error estimate assumption that

∥cf − ch∥ + ∥φ − φh∥ ≤ h, (4.3)

which further implies

∥ch∥∞ + ∥φh∥∞ ≤ C (4.4)

by hypothesis 4 and Lemma 4.5. Moreover, by Hypothesis 1, we can obtain

∥φh∥∞ ≥ C, κ−1(φh) ≥ C . (4.5)

Finally, by Lemma 2.1, we have

av(φh) ≤ C, κ−1(φh) ≤ C . (4.6)
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Remark 4.1. The a priori estimate assumption (4.3) holds for small enough h and this choice is heavily based on how large
the constant C is in (3.20). Notice that the constant C is independent of h, as long as h is sufficiently small, say h < H . Then
we can guarantee (4.3) holds for 0 ≤ t ≤ T . Moreover, we will show that, if h < H , then the equality of (4.3) cannot happen
if t < T . However, we still need this estimate to obtain the boundedness of the numerical approximations. This assumption,
which will be verified in Section 4.8, is used for the estimate of the convection terms.

4.3. Error equations

In this subsection,we proceed to construct the error equations. From (3.11)–(3.16), we have the following error equations(
γ

∂ep
∂t

+
∂eφ

∂t
, ζ

)
=Ld(eu, ζ ), (4.7)(

µ

κ(φ)
u −

µ

κ(φh)
uh, θ

)
=D(ep, θ), (4.8)

((φcf )t − (φhch)t , v)=Lc(u, cf , v) − Lc(uh, ch, v) + Ld(sz, v)
−

(
A(av(φ)cf − av(φh)ch), v

)
+ (fpec, v), (4.9)

(es,w)=D(ec,w), (4.10)
(ez,ψ)= (D(φs − φhsh),ψ), (4.11)
(eφ t , β)= (B(av(φ)cf − av(φh)ch), β), (4.12)

for any v, ζ , β ∈ W k
h andw, ψ, θ ∈ Wk

h.

4.4. The first energy inequality

In this subsection, we will derive the first energy inequality. Taking v = ξc, w = ξz, ψ = −ξs in (4.9), (4.10) and (4.11),
respectively, and using Lemma 3.2 and (4.2), we can obtain(

φh
∂ξc

∂t
, ξc

)
+

(
Dφhξs, ξs

)
= R1 + R2 + R3 + R4 + R5 + R6, (4.13)

where

R1 =

(
φh

∂ηc

∂t
, ξc

)
− (cf tξφ, ξc) + (cf tηφ, ξc) − (φtξc, ξc) + (φtηc, ξc)

− (chξφ t , ξc) + (chηφ t , ξc)
R2 = (Dφhηs, ξs) − (Dsξφ, ξs) + (Dsηφ, ξs),

R3 = (ucf − uhch, ∇ξc) +

∑
e∈Γe

⟨ucf − ûhch · νe, [ξc]⟩e

R4 =−D(ηc, ξz),
R5 = (ηs, ξz) − (ηz, ξs) + (fpec, ξc),
R6 =−(A(av(φ)cf − av(φh)ch), ξc),

where Γe = Γ0 ∪ ∂Ω− and ⟨u, v⟩e =
∫
e uv ds. Now, we estimate Ri (i = 1, . . . , 6) term by term. Using hypotheses 4 and

(4.4), we can get

R1 ≤C∥ξc∥
(
∥ηc t∥ + ∥ξφ∥ + ∥ηφ∥ + ∥ξc∥ + ∥ηc∥ + ∥ξφ t∥ + ∥ηφ t∥

)
≤C

(
∥ξc∥

2
+ ∥ξφ∥

2
+ ∥ξφ t∥

2
+ h2k+2) , (4.14)

where the second step requires Lemma 4.2. Use hypotheses 2, 4 and Lemma 4.2 again to obtain

R2 ≤C∥ξs∥
(
∥ηs∥ + ∥ξφ∥ + ∥ηφ∥

)
≤C

(
∥ξφ∥

2
+ h2k+2)

+ ϵ∥ξs∥
2. (4.15)

We estimate R3 by dividing it into three parts

R3 = R31 + R32 − R33, (4.16)

where

R31 = (ucf − uch, ∇ξc) + (uch − uhch, ∇ξc),

R32 =
1
2

∑
e∈Γe

⟨(2ucf − u+

h c
+

h − u−

h c
−

h ) · νe, [ξc]⟩e,
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R33 =
1
2

∑
e∈Γe

⟨α[ξc − ηc], [ξc]⟩e.

Using hypothesis 4 and (4.4), we have

R31 ≤C
(
∥cf − ch∥ + ∥u − uh∥

)
∥∇ξc∥

≤C
(
hk+1

+ ∥ξu∥ + ∥ξc∥
) (

∥ξs∥ + hk+1) , (4.17)

where in the first step, we use Schwarz inequality while the second step follows from Lemmas 4.2 and 4.4. C depends on
∥u∥∞ and ∥ch∥∞. The estimate of R32 also requires hypothesis 4 and (4.4),

R32 =
1
2

∑
e∈Γe

⟨
(
u(cf − c+

h ) + (u − u+

h )c
+

h + u(cf − c−

h ) + (u − u−

h )c
−

h

)
· νe, [ξc]⟩e

≤ C
(
∥cf − ch∥Γh + ∥u − uh∥Γh

)
∥[ξc]∥Γh

≤ Ch
1
2 (∥ηc∥Γh + ∥ξc∥Γh + ∥ηu∥Γh + ∥ξu∥Γh )(∥ξs∥ + hk+1)

≤ C
(
hk+1

+ ∥ξu∥ + ∥ξc∥
) (

∥ξs∥ + hk+1) , (4.18)

where in the second stepweuse Schwarz inequality, the third step follows fromLemma4.4, the last one requires Lemmas 4.1
and 4.2. Now we proceed to the estimate of R33,

R33 ≤C(∥ηc∥Γh + ∥ξc∥Γh )∥[ξc]∥Γh

≤Ch
1
2 (∥ηc∥Γh + ∥ξc∥Γh )(∥ξs∥ + hk+1)

≤C
(
hk+1

+ ∥ξc∥
) (

∥ξs∥ + hk+1) , (4.19)

where the first step follows from Schwarz inequality, the second step is based on Lemma 4.4, the third one requires
Lemma 4.2. Plug (4.17), (4.18) and (4.19) into (4.16) to obtain

R3 ≤C
(
hk+1

+ ∥ξu∥ + ∥ξc∥
) (

∥ξs∥ + hk+1)
≤C

(
∥ξu∥

2
+ ∥ξc∥

2
+ h2k+2)

+ ϵ∥ξs∥
2. (4.20)

The estimate of R4 follows from Lemmas 4.3 and 4.2

R4 ≤ Chk+1
∥cf ∥k+2∥ξz∥ ≤ Ch2k+2

+ ϵ∥ξz∥
2. (4.21)

Use Hypotheses 4 and Lemma 4.2 to obtain

R5 ≤∥ηs∥∥ξz∥ + ∥ηz∥∥ξs∥ + C∥ec∥∥ξc∥

≤C
(
∥ξc∥

2
+ h2k+2)

+ ϵ
(
∥ξs∥

2
+ ∥ξz∥

2) . (4.22)

Finally, we estimate R6,

R6 = (Aav(φ)(cf − ch), ξc) + (Ach(av(φ) − av(φh), ξc))
≤ C∥ξc∥∥cf − ch∥ + C∥ξc∥∥φ − φh∥

≤ C
(
∥ξc∥

2
+ ∥ξφ∥

2
+ h2k+2) , (4.23)

where the second step follows from hypothesis 4, Lemma 2.1 and (4.4), and the last step requires Lemma 4.2. Substituting
the estimation (4.14), (4.15), (4.20)–(4.23) into (4.13) and use hypothesis 2 and (4.5), we obtain

d∥ξc∥2

∂t
+ ∥ξs∥

2
≤C

(
∥ξc∥

2
+ ∥ξφ∥

2
+ ∥ξφ t∥

2
+ ∥ξu∥

2
+ h2k+2)

+ ϵ
(
∥ξs∥

2
+ ∥ξz∥

2) (4.24)

Now we proceed to eliminate ∥ξz∥ on the right-hand side of the above equation. Take ψ = ξz in (4.11) to obtain

(ξz, ξz)= (ηz, ξz) + (D(sφ − shφh), ξz),
= (ηz, ξz) + (Ds(φ − φh), ξz) + (Dφh(s − sh), ξz),

which further implies

∥ξz∥
2
≤∥ηz∥∥ξz∥ + C∥φ − φh∥∥ξz∥ + C∥s − sh∥∥ξz∥
≤C

(
∥ξφ∥

2
+ ∥ξs∥

2
+ h2k+2)

+ ϵ∥ξz∥
2,

where in the first step we applied hypotheses 3, 4 and (4.4), the second step follows from Lemma 4.2. Take ϵ to be small,
we have

∥ξz∥
2

≤ C
(
∥ξφ∥

2
+ ∥ξs∥

2
+ h2k+2) .
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Substituting the above equation into (4.24), then integrating with respect to t , we have the first energy inequality

∥ξc∥
2
+

∫ t

0
∥ξs∥

2 dt ≤ C
∫ t

0

(
∥ξc∥

2
+ ∥ξφ∥

2
+ ∥ξφ t∥

2
+ ∥ξu∥

2) dt + Ch2k+2. (4.25)

4.5. The second energy inequality

In this subsection, we will construct the second energy inequality. Take ζ = ξp, θ = ξu in (4.7) and (4.8), respectively and
use Lemma 3.2 and (4.2) to obtain

(γ ξpt , ξp) +

(
µ

κ(φh)
ξu, ξu

)
= T1 + T2 + T3, (4.26)

where

T1 = (γ ηpt , ξp) − (ξφ t , ξp) + (ηφ t , ξp),

T2 =

(
µ

κ(φh)
ηu, ξu

)
−

(
u

(
µ

κ(φ)
−

µ

κ(φh)

)
, ξu

)
,

T3 =−D(ηp, ξu).

Now we estimate Ti (i = 1, 2, 3) term by term. Using Lemma 4.2 we have

T1 ≤C∥ξp∥
(
∥ηpt∥ + ∥ξφ t∥ + ∥ηφ t∥

)
≤C

(
∥ξp∥

2
+ ∥ξφ t∥

2
+ h2k+2) . (4.27)

The estimate of T2 requires Lemma 2.1, (4.6) and hypothesis 4,

T2 ≤C∥ξu∥∥ηu∥ + C∥ξu∥∥φ − φh∥

≤C
(
∥ξφ∥

2
+ h2k+2)

+ ϵ∥ξu∥
2. (4.28)

For T3, we use Lemma 4.3 to obtain

T3 ≤ Chk+1
∥p∥k+2∥ξu∥ ≤ Ch2k+2

+ ϵ∥ξu∥
2. (4.29)

Substituting (4.27)–(4.29) into (4.26), we have µ1/2

κ
1
2 (φh)

ξu


2

+
1
2

d
dt

∥γ 1/2ξp∥
2

≤ C
(
∥ξp∥

2
+ ∥ξφ t∥

2
+ ∥ξφ∥

2
+ h2k+2)

+ ϵ∥ξu∥
2.

Integrating the above equation with respect to t and using hypothesis 1, we obtain

∥ξp∥
2
+

∫ t

0
∥ξu∥

2 dt ≤ C
∫ t

0

(
∥ξp∥

2
+ ∥ξφ t∥

2
+ ∥ξφ∥

2) dt + Ch2k+2. (4.30)

4.6. The third energy inequality

In this subsection, we will derive the third energy inequality. We take β = ξφ in (4.12) to obtain

(ξφ t , ξφ)= (ηφ t , ξφ) +
(
Bav(φ)cf − Bav(φh)ch, ξφ

)
= (ηφ t , ξφ) +

(
Bav(φ)(cf − ch), ξφ

)
+

(
Bch(av(φ) − av(φh)), ξφ

)
,

which further yields

1
2

d
dt

∥ξφ∥
2
≤∥ηφ t∥∥ξφ∥ + C∥cf − ch∥∥ξφ∥ + C∥φ − φh∥∥ξφ∥

≤C
(
∥ξφ∥

2
+ ∥ξc∥

2
+ h2k+2) ,

where we have used Lemma 2.1 and (4.4). Integrating the above inequality with respect to t , we obtain the third energy
inequality

∥ξφ∥
2

≤ C
∫ t

0

(
∥ξφ∥

2
+ ∥ξc∥

2) dt + Ch2k+2. (4.31)



H. Guo et al. / Journal of Computational and Applied Mathematics 350 (2019) 247–261 257

4.7. The fourth energy inequality

In this subsection, we will demonstrate the last energy inequality. We take β = ξφ t in (4.12) to obtain

(ξφ t , ξφ t )= (ηφ t , ξφ t ) +
(
Bav(φ)cf − Bav(φh)ch, ξφ t

)
= (ηφ t , ξφ t ) +

(
Bav(φ)(cf − ch), ξφ t

)
+

(
Bch(av(φ) − av(φh)), ξφ t

)
.

Then we have

∥ξφ t∥
2
≤∥ηφ t∥∥ξφ t∥ + C∥cf − ch∥∥ξφ t∥ + C∥φ − φh∥∥ξφ t∥

≤C
(
∥ξc∥

2
+ ∥ξφ∥

2
+ h2k+2)

+ ϵ∥ξφ t∥
2,

which further yields the last energy inequality

∥ξφ t∥
2

≤ C
(
∥ξc∥

2
+ ∥ξφ∥

2
+ h2k+2) . (4.32)

4.8. Proof of Theorem 3.1

Now we are ready to combine the four energy inequalities and finish the proof of Theorem 3.1.
Firstly, from (4.25) and (4.30), it is easy to derive the following estimate

∥ξc∥
2
+ ∥ξp∥

2
+

∫ t

0
∥ξs∥

2 dt ≤ C
∫ t

0

(
∥ξc∥

2
+ ∥ξp∥

2
+ ∥ξφ∥

2
+ ∥ξφ t∥

2) dt + Ch2k+2.

Thanks to (4.32), we can eliminate ξφ t in the above inequality to obtain

∥ξc∥
2
+ ∥ξp∥

2
+

∫ t

0
∥ξs∥

2 dt ≤ C
∫ t

0

(
∥ξc∥

2
+ ∥ξp∥

2
+ ∥ξφ∥

2) dt + Ch2k+2.

Then adding (4.31) and the above inequality, we have

∥ξc∥
2
+ ∥ξp∥

2
+ ∥ξφ∥

2
+

∫ t

0
∥ξs∥

2 dt ≤ C
∫ t

0

(
∥ξc∥

2
+ ∥ξp∥

2
+ ∥ξφ∥

2) dt + Ch2k+2.

Now, we can employ Gronwall’s inequality to obtain

∥ξc∥
2
+ ∥ξp∥

2
+ ∥ξφ∥

2
+

∫ t

0
∥ξs∥

2 dt ≤ Ch2k+2.

Finally, by using the standard approximation result, we obtain (3.20). To complete the proof, let us verify the a priori
assumption (4.3). For k ≥ 1, we can consider h small enough so that Chk+1 < 1

2h, where C is the constant determined
by the final time T . Then define t∗ = inf{t : ∥cf − ch∥ + ∥φ − φh∥ ≥ h}, we should have ∥cf − ch∥ + ∥φ − φh∥ = h by
continuity in time at t = t∗. However, if t∗ < T , Theorem 3.1 implies that ∥c − ch∥ + ∥φ − φh∥ ≤ Chk+1 for t ≤ t∗, in
particular h = ∥(c − ch)(t∗)∥ + ∥(φ − φh)(t∗)∥ ≤ Chk+1 < 1

2h, which is a contradiction. Therefore, there always holds t∗ ≥ T
, and thus the a priori assumption (4.3) is justified.

5. Numerical example

In this sectionwe provide numerical examples to illustrate the accuracy and capability of themethod. Time discretization
is given as the third order explicit strong-stability-preserving Runge–Kutta method [35].

w(1)
=wn

+ ∆tL(wn),

w(2)
=

3
4
wn

+
1
4

(
w(1)

+ ∆tL(w(1))
)
,

wn+1
=

1
3
wn

+
2
3

(
w(2)

+ ∆tL(w(2))
)
,

We take the time step to be sufficiently small such that the error in time is negligible compared to spatial error.
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Fig. 1. Concentration of acid with time evolution.

Example 5.1. We solve (2.1)–(2.4) and the parameters are taken as

D = 10−2I, K0 = 1, T = 0.1, (5.33)
α = kc = ks = µ = fI = 1, (5.34)
a0 = 0.5, ρs = 10, γ = 0.1, (5.35)

where I is an identity matrix.

The exact smooth solutions are given as

p(x, t) = et sin(2πx) sin(2πy), (5.36)
φ(x, t) = t sin(2πx) cos(2πy) + 0.2, (5.37)
cf (x, t) = 0.1et cos(2πx) cos(2πy) + 0.2. (5.38)

We can calculate the initial conditions and the right hand sides accordingly. Piecewise linear and quadratic tensor product
polynomials are used in the LDG scheme. We use uniform meshes with M × M cells over the computational domain
Ω = [0, 1] × [0, 1], and compute the numerical approximations at T = 0.1. Periodic boundary condition is used in this
numerical example. The numerical results are given in Table 1. From the table, we can observe optimal convergence rates,
which verifies the results in Theorem 3.1.

Example 5.2. We simulate a real wormhole propagation scenario in petroleum engineering and the parameters are taken
as

D = 0, K0 = 10−9 m2, T = 60 s, (5.39)
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Table 1
Accuracy test for Example 5.1.

M × M ∥p − ph∥L2(Ω) Order ∥cf − ch∥L2(Ω) order ∥φ − φh∥L2(Ω) Order

16 × 16 1.99E−02 – 1.68E−02 – 1.67E−04 –
32 × 32 5.00E−03 1.99 3.92E−03 2.10 4.20E−05 2.00

P1 64 × 64 1.25E−03 2.00 7.36E−04 2.41 1.05E−05 2.00
128 × 128 3.13E−04 2.00 1.18E−04 2.64 2.62E−06 2.00

16 × 16 1.40E−03 – 2.43E−03 – 1.17E−05 –
32 × 32 1.76E−04 3.00 2.78E−04 3.13 1.48E−06 3.00

P2 64 × 64 2.20E−05 3.00 2.61E−05 3.41 1.85E−07 3.00
128 × 128 2.75E−06 3.00 2.14E−06 3.61 2.31E−08 3.00

Fig. 2. Porosity of rock with time evolution.

α = 10 kg/mol, kc = 1 m/s, ks = 10 m/s, (5.40)
µ = 10−2 Pa s, fI = fp = 0, (5.41)

a0 = 2 m−1, ρs = 2500 kg/m2, γ = 0, (5.42)

Computational domain isΩ = [0, 0.2m]×[0, 0.2m]. Initial concentration of acid and initial porosity of rock in this domain
are set to be c0 = 0 and φ0 = 0.2, respectively. The acid flow is injected to the porous media from the left boundary with a
velocity of u = 0.01 m/s and drained out of it from the right boundary with the same velocity. Top and bottom boundary
conditions are set to be periodic. The concentration of influx acid is 10 mol/m2. To observe the wormhole propagation, we
set a singular area with high porosity and permeability on the middle of the left boundary with size to be 0.01 m × 0.01 m.
The porosity of this singular area is 0.4 and permeability is determined by (2.6) which is about 10−8 m2.

The contour plots of concentration of acid, porosity of rock and pressure with time evolution are shown in the following
Figs. 1–3, respectively, from which we can observe the wormhole propagation clearly.
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Fig. 3. Pressure with time evolution.

6. Concluding remarks

In this paper, we study the compressible wormhole prorogation, and optimal convergence rates are derived. Numerical
experiments verify the theoretical analysis.
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