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1. Introduction

To increase the production rate, acid treatment of carbonate reservoirs has been widely applied in oil and gas well
stimulation techniques by increasing permeability of the damaged zone near the well. The material near the well can be
dissolved by the injected acid and flow channels that establish a good connectivity between the reservoir and the well can
be constructed. It is well known that the relative increase in permeability for a given amount of acid is a strong function of
the injection conditions and only at suitable flow rates, wormholes (long conductive channels) are formed. These channels
penetrate deep into the formation and facilitate the flow of oil. Thus, for successful stimulation of a well it is required to
produce wormholes with optimum density and penetrating deep into the formation.

The mathematical model of the wormhole propagation has been investigated intensively [ 1-6]. To the best knowledge,
there are not too many works discussing numerical simulations. Theoretical and numerical analyses of chemical-dissolution
front instability were investigated in [7]. Later, parallel simulation for wormhole propagation was discussed in [8].
Subsequently, in [9], the authors applied the mixed finite element method to the problem. The stability analysis and a priori
error estimates for velocity, pressure, concentration and porosity were established in different norms. Moreover, in [ 10] the
authors considered block-centered finite difference method. However, the scheme is only second-order accurate. To the best
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knowledge of the authors, no previous work focused on discontinuous Galerkin (DG) methods for wormhole propagation. In
this paper, we would like to apply the high-order local discontinuous Galerkin (LDG) methods for compressible wormhole
propagation.

The DG method gained even greater popularity recently for good stability, high order accuracy, and flexibility on h-p
adaptivity and on complex geometry. The DG method was first introduced in 1973 by Reed and Hill [ 11] in the framework of
neutron linear transport. Subsequently, Cockburn et al. developed Runge-Kutta discontinuous Galerkin (RKDG) methods for
hyperbolic conservation laws in a series of papers [12-15].In [16], Cockburn and Shu first introduced the local discontinuous
Galerkin (LDG) method to solve the convection-diffusion equation. Their idea was motivated by Bassi and Rebay [17],
where the compressible Navier-Stokes equations were successfully solved. The idea of the LDG method is to rewrite the
equation with higher order derivatives into a first order system, then apply the DG method to the system. With suitable
numerical fluxes, the stability and optimal error estimates can be proved for some model equations [ 18-21]. As an extension
of DG schemes for hyperbolic conservation laws, the LDG methods share the advantages of the DG methods. Besides, a key
advantage of this scheme is the local solvability, i.e. the auxiliary variables approximating the gradient of the solution can
be locally eliminated.

It is not easy to apply the LDG methods to wormhole propagation directly due to the inter-element discontinuities of
two independent solution variables. More precisely, in this problem, the approximations of u in the convection term in (2.3)
is discontinuous across the cell interfaces and it is difficult to obtain the error estimates if we analyze the convection and
diffusion terms separately. To explain this point, let us consider the following hyperbolic equation

ue + (a(x)u)y = 0,
where a(x) is discontinuous at x = xg. In [22,23], the authors studied such a problem and defined
0= axo + b; - a(Xo).

If Q is bounded from below for all b, then the solution exists, but may not be unique. If Q is bounded from above for all b, we
can guarantee the uniqueness, but the solution may not exist. Recently, Wang et al. [24-26] obtained optimal error estimates
of the LDG methods with IMEX time integration for linear and nonlinear convection-diffusion problems. Subsequently, the
idea has been applied to miscible displacements in porous media [27-29], chemotaxis model [30] to obtain optimal rates of
convergence. The key idea is to explore an important relationship between the gradient and interface jump of the numerical
solution polynomial with the numerical approximation of auxiliary variable for the gradient in the LDG methods, which is
stated in Lemma 4.4. Moreover, the systems are coupled together. Therefore, we will derive four energy inequalities to obtain
optimal error estimates in L>(0, T; L?) for concentration c, in L*(0, T; L?) for s = —Vc, in L*°(0, T; L?) for porosity ¢ and in
L%°(0, T; L?) for pressure p.

The paper is organized as follows. In Section 2, we demonstrate the governing equations of the compressible wormhole
propagation. In Section 3, we present some preliminaries, including the basic notations and norms to be used throughout
the paper and the LDG spatial discretization. Section 4 is the main body of the paper where we present the projections and
some essential properties of the finite element spaces, error equations and the details of the optimal error estimates for
compressible wormhole propagation. Numerical results are given to demonstrate the accuracy and capability of the method
in Section 5. We will end in Section 6 with some concluding remarks.

2. Compressible wormhole propagation
In this section, we demonstrate the governing equations of the compressible wormhole propagation. Let £2 = [0, 1] x

[0, 1] be a rectangular domain in R?. The classical equations governing the compressible wormhole propagation in two space
dimensions are as follows [9,10]:

y%+aa—f+v-u=f, Ky e, 0<t<T, 2.1)
u= %((MVp, x,y)e2,0<t<T, (2.2)
a(iftcf) F V- (u) = V- ($DVE) + keao(s — &) + focs +ficr, (2.3)
%:W, Xy e, 0<t<T, (2.4)

where p and u are the pressure in the fluid mixture, the Darcy velocity of the mixture (volume flowing across a unit across-
section per unit time), respectively. u is the viscosity and y is a pseudo-compressibility parameter that results in slight
change of the density of the fluid phase in the dissolution process. f = f; + f, is the external volumetric flow rate with fp and
fi being the production and injection rates, respectively. ¢ is the cup-mixing concentration of the acid in the fluid phase. ¢;
is the injected concentration. Following [ 10], we consider only molecular diffusion, so that D = d,,,I with I being the identity
matrix. In this paper the tensor matrix D is assumed to be positive definite and may depend on x, y, but not u. Moreover,
the pressure is uniquely determined up to a constant, thus we assume f o Pdxdy = 0 att = 0. k is the local mass-transfer
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coefficient, a, is the interfacial area available for reaction per unit volume of the medium. The variable cs is the concentration
of the acid at the fluid-solid interface given as

Cr
= ————, 2.5
ST 4k /ke (2:5)
where k; is the surface reaction rate constant. ¢ and « in the first term on the right hand side of (2.2) are the porosity and
permeability of the rock, respectively and the relationship between the permeability and the porosity is established by the
Carman-Kozeny correlation [31]

€ _ ¢ (s0-d0)Y
Ko o <¢o<1 —¢)) ’ (2:6)

where ¢ and kg are the initial porosity and permeability of the rock, respectively. Therefore, we can consider « as a function
of ¢, and it is easy to derive

L _%(%(1—@)?

=K =
k(¢) ¢ro \ (1 — o)

In (2.4), « is the dissolving power of the acid and p;s is the density of the solid phase. Using porosity and permeability, a, is

shown as

& _ 9 [kob _1-¢ 27)
a  ¢o\ ko 1—¢o '

where qj is the initial interfacial area. In this problem, the initial concentration are pressure are given as

r(x,y,0) =co(x,y), px,y,0) =po(x,y), &(x,y,0)=ddo(x,y), (x,¥)€ 2.

For simplicity, we consider periodic boundary condition in this paper. The analysis for homogeneous Neumann boundary
can be obtained following the same lines with some minor changes, and we thus omit it.
Finally, we make the following hypotheses (H) for the problem.

LO0<¢. <oy =¢" <1

2. D is uniformly Lipschitz continuous, and for any v, w € R? there exist two positive constants D,, D* such that
vIDv > D,v'v = D,||v||> and v’ Dw < D*||v||||w]|, where ||v|| is the standard Euclidian norm in R?.

3. ¥, a, ps, 14, ke, and kg are all given positive constants, and 0 < ¢, < ¢o < ¢ < 1,0 < ap, < ap < aj.
4. ¢, ¢, ¢, ¢, uand s = —V¢y are uniformly bounded in R? x [0, T].

It is easy to obtain the following lemma

Lemma 2.1. Suppose hypotheses 1 and 3 are satisfied, then a,(¢) and k ~'(¢) are bounded and Lipschitz continuous, i.e. there
exists C such that

a(p) <C, kU P)<C, lay(d1) — ay(¢2)l < Clgr — d2| 1k~ (d1) — k' (¢h2)l < Clp — ol
3. Preliminaries
In this section, we will demonstrate some preliminary results that will be used throughout the paper.

3.1. Basic notations

In this section, we present the notations. Let 0 = x% < - < xNXJr% = land 0 = y% < e < yNw% = 1be
the grid points in the x and y directions, respectively. Define I; = (Xifl’XiJr%) and J; = (yjf%,yH%). Let K = I; x Jj,
i=1,...,Ny, j=1,...,N,, be apartition of £2 and denote £2, = {K}. Tzhe mesh sizes in the x and y directions are given

as Ax; = xi+% —x;_1 and Ay; = il — yj_%, respectively and h = max{max; Ax;, max; Ay;}. Moreover, we assume the
partition is quasi—uni%orm, i.e. there exists a positive constant A such that h < Ahy,, where hyi, = min{min; Ax;, min; Ay;}.
The finite element space is chosen as

W =z : z|xe QX(K), VK € 24},

where Q¥(K) denotes the space of tensor product polynomials of degrees at most k in K. Note that functions in W,’,‘ are
discontinuous across element interfaces. This is one of the main differences between the DG method and traditional finite
element method. We choose 8 = (1, 1)" to be a fixed vector that is not parallel to any normals of the element interfaces.
We denote I}, to be the set of all element interfaces and I, = I;\052. Let £ € Iy be an interior edge shared by elements K,
and K;, where 8- n; > 0,and 8 - n; < 0, respectively, with n, and n;, being the outward normals of K, and K, respectively.
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Forany z € W,ﬂ‘, we define z= = z|y, and zt = z|yx,, respectively. The jump is given as [z] = z+ — z~. Moreover, for
s € W = W} x Wk, we define s* and s~ and [s] analogously. We also define 322_ = {€ € 3£2|8 - n < 0}, where n is the
outer normal of £, and 982, = 0£2\352_. For any £ € 982_, there exists K € £2, such that £ € 0K, we define z* |s= z|,
and define z~ on 02, analogously. For simplicity, given & = {x%} x Jj € 9£2_ and = {xNx+%} x Jj € 9824, by periodic
boundary condition, we define
Z7le=2z"lg and zT|g=z"|s.
Similarly, given £ = [; x Ly%} €dR_andé =1I; x {yNﬁ%} € 082, we define
M

Z le=2z"lg and zT|g=z"|s.

Throughout this paper, the symbol C is used as a generic constant which may appear differently at different occurrences.
Moreover, the symbol € is a sufficiently small positive constant.

3.2. Norms

In this subsection, we define several norms that will be used throughout the paper.
Denote ||uf|ox to be the standard L? norm of u in cell K. For any natural number ¢, we consider the norm of the Sobolev
space HY(K), defined by

Il =14

O<a+p=<t

aa+ﬂu 2

0x*oyP

0.K

Moreover, we define the norms on the whole computational domain as

2
2
lulle = | D ullf

Kes2p

For convenience, if we consider the standard L? norm, then the corresponding subscript will be omitted.
Let I'k be the edges of K, and we define

2 2
lully :/ u-ds.
K

We also define

2 2
lulid, = > lull?, .

Kes2y

Moreover, we define the standard L* norm of u in K as ||u||« k, and define the L*° norm on the whole computational
domain as

lulloo = max [|ufloo.x-
Kes2p
Finally, we define similar norms for vector u = (us, uy)" as

2 2 2 2 2 2
lull x = lually  + N2l Ml = lully + luzliz, lleox = max{fiu ok, Uz2llok}-

Similarly, the norms on the whole computational domain are given as

2 2 2 2
fulf = >l Tulf, = D i, ulle = max fulle.
Ken Ken h

3.3. LDG scheme

Applying (2.5)-(2.7), we can transform the nonlinear system (2.1)-(2.4) into

op 3¢ _
Vot TV U=/ .
ao K@ (3:2)
%
009 | . (ue) = V- (9DVE) + Aan(d) = s +fich, G2

at
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a¢
— = Ba,(¢)cr, 34
ar — B0y (34)
where A = "f"s "‘,fcfﬁs and a,(¢) = ao(1 J Then we introduce some auxiliary variables to represent the derivatives
of the solutlon wh1ch fﬁrther yields a first order system:
8p d¢
ar + ot + =/ (3.5)
nw
——u+Vp=0, (3.6)
k(¢)
a(epcr) _
ot + V- (ucr) + V- 2+ Aay(@)cr = focr + ficr, (3.7)
s = —Vgy, (3.8)
z = ¢Ds, (3.9)
99
o = Baled (3.10)

We multiply (3.5)-(3.10) with test functions and formally integrate by parts in K to obtain
ap ¢
(Vﬁ,é') +< C) =(u, Vi) — (u-vg, Oax + (f, ¢k,
K

(%@“’ 0)1( =, V- 0) — (P 8- vi)a

((pcpde, vIk = (ucy +z, Vo) — {(ucy +z) - v, v)ak
— (Aay(@)cr, vk + (fpor + ficr, v)k,
(s, W)k =(¢r, V- W) — {(Cr, W - vg)ok,
(z, ¥)k =(¢Ds, ¥k,
(¢¢, Bk =(Bay(@)cs, Bk,

where £, v, 8 € WS, 0,w, ¥ € W}, (u, v)x = [, uvdxdy, (u, v)x = [, u-vdxdy, (u, v)sx = [, uvds and vy is the outer
unit normal of K. Replacing the exact solutions ¢;, p, ¢, s, z, uin the above equations by their numerical approximations
Ch, Dh, ¢n € W,f and sy, zy, u € W’h‘, respectively and using numerical fluxes along the cell interfaces, we can obtain the
LDG scheme: forany t € [0, T],

(V%,é) +(8¢h t) =Ly(uy, &)+ (f, (3.11)

K K
(K(’;h)uh, 0>K =Dy (pr, 0) (3.12)

((¢r)e, vk = Li(an, ch, v) + L§(Zh, v)
+ (fpcn + ficr, v)k — (Aay(én)cn, vk (3.13)
(Sn, W)k = Di(cp, W) (3.14)
(zn, ¥k = (¢nDsn, ¥k (3.15)
(éne» Bl = (Bay(¢n)en, Bk (3.16)
where

Ly(s, ¢, v)=(sc, Vv)x — (SC - vk, v)ok,

L(s, v)=(s, Vv) — (8- vk, v)ok,
Dk(c,w)=(c, V- W) — (C, W - v) k.

The main error estimate requires the following initial discretization whose proof follows from Lemma 4.2 directly, and we
thus omit it.

3.4. The main theorem

We will use several special projections in this paper. Firstly, we define P™ into W,f which is, for each cell K
(PTu—u, v}k =0, YveQ“'(K),

f (Pru—wx_. Y (y)dy =0, Yo e PI()),
]j 2
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(P*u—u)(x.y;_1 Ju(x)dx =0, Vv € P7(1),
I
(PTu—u)x_1,¥_1)=0,

where P¥ denotes the polynomials of degree k. Moreover, we also define /7, and I1; into W,i‘ which are, for each cell K,
(IT;u—u v =0, VveQXK),

[t u= iy iy =0, vo e PG,
Ji

(T, u—uv) =0, YveQ“K)

— _ k :
[(Hy u— u)(x,yH%)v(x)dX =0, VvePY),
as well as a vectored-valued projection I~ = I1; ® ;. Finally, we also use the L?-projection Py into W,f which is, for each
cell K
(Pau—u, vl =0, Yo e Q¥K), (3.17)
and its two dimensional version P, = P, ® Py. For the special projections given above, we will demonstrate the following

lemma by the standard approximation theory [32].

Lemma 3.1. We choose the initial solution as
cn(%,y,0) = P¥co,  ¢n(x,y,0)=Pido pn(x,y,0) =P po, (3.18)
then we have
llcr(x, ¥, 0) = ca(x, y, 0)]| < Ch**T,
Ip(x, y, 0) = pa(x, y, 0)I| < CH*,
l¢(x, y, 0) — pn(x, y, 0)|| < CH*T.
We use alternating fluxes for the diffusion term and take
Z,=12,, Gh=cy, Uy=u,, pp=p;.
For the convection term, we take
ncy = %(u,fc,f +u,cp —ave(eh —cp)),

where @ > 0 can be chosen as any fixed constant independent of h and v, is the unit normal of e € Iy such that § - v, > 0.
Moreover, we define

W)=Y (o), (@v)= )y (uvk,
Key Keqy
and
£is,cv)= Y Li(s,cv), £s,v)= ) Li(s,v),  Dle,w)= Y Dilc,w).
Kes2p Kes2p Kes2y

It is easy to check the following identity by integration by parts on each cell

Lemma 3.2. For any functions v and w,
£4w, v) + D(v, w) = 0. (3.19)
Now we state the main theorem.
Theorem 3.1. Letc; € L®°(0, T; H¥3),s € L(0, T; (H*"2)?), u € L°(0, T; (H¥*2)%), ¢ € L*°(0, T; H*3) be the exact solutions
of the problem (3.5)-(3.10), and let wy, py, Ch, Sh, Zn, ¢n be the numerical solutions of the semi-discrete LDG scheme (3.11)-(3.16)

with initial discretization given as (3.18). If the finite element space is the piecewise tensor product polynomials of degree at most
k and h is sufficiently small, then we have the error estimate

llcr = cullioo(o. 1212y + IS — Shll 20,1129
I
+1Ip — Prllio 12y + 119 — Pl 1212y < Ch*H, (3.20)
where the constant C is independent of h.
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4. The proof of the main theorem

In this section, we proceed to the proof of Theorem 3.1. We first introduce several projections and present some auxiliary
results. Subsequently, we make an a priori error estimate which provides the boundedness of the numerical approximations.
Then we construct the error equations which further yield several main energy inequalities and complete the proof of (3.20).
Finally, we verify the a priori error estimate at the end of this section.

4.1. Projections and interpolation properties

In this section, we will demonstrate the projections and several useful lemmas. Let us start with the classical inverse
properties [32].
Lemma4.1. Assumeu € W,f, then there exists a positive constant C independent of h and u such that

hllulloox +h"2ull e < Clluli.

Lemma 4.2. Suppose w € H*t1(82), then for any project Py, which is either P, I, I1; or Py, we have
lw = Pywll + 12 ||w — Pywl|, < CR**.

Moreover, the projection P* on the Cartesian meshes has the following superconvergence property [33].

Lemma 4.3. Suppose w € H**2(82), then for any p € Wy, we have
1D(w — PTw, p)| < CH** M |[w kg2l pll- (4.1)

In this paper, we use e to denote the error between the exact and numerical solutions, i.e.e. = ¢f — ¢y, €, =p—pp, €, =
u—u, e =S—=sy, € =2Z— 2, ey = ¢ — ¢,. As the general treatment of the finite element methods, we split the errors
into two terms as

ec =& —nc, nc=Ptg—c¢, &=P'g—a,

ep =&, —np, Up=P+P—P, gp:P+p_Ph,

eu:&u_nw "u:H_u_u! Eu:H_ll—llh,

e=§&—, ng=Ps—s, & =Pis—sp,

ezzgz_nz’ ”z:H_Z_L gz:H_Z_Zh’

ep =8 —ng, Ny="Pp—¢, & =DPcd— .

Based on the above notations, it is easy to verify that
£, v) =%, v) =0, Vv e QXK). (4.2)

Following [24-26,34] with some minor changes, we have the following lemma

Lemma 4.4. Suppose &. and &, are defined above, we have

_1
IVEN < CU&N + 1Y), hm 2[R, < CUIE + BT,
Let us finish this section by proving the following lemma whose proof was given in [30].

Lemma4.5. Letu e C*t'(2)and [Tu € W,f. Suppose ||u — ITu|| < Ch* for some positive constant C and k < k + 1. Then
hllu — Mul| e + h"?||lu — Mul, < Ch,

where the positive constant C does not depend on h.
4.2. A priori error estimate

In this subsection, we would like to make an a priori error estimate assumption that

lice — call + 1l — ¢nll < h, (4.3)
which further implies

lichlloo + llgnlloo = C (4.4)
by hypothesis 4 and Lemma 4.5. Moreover, by Hypothesis 1, we can obtain

Ipnlloc = C, 1~ (¢hn) = C. (4.5)

Finally, by Lemma 2.1, we have
ay(dn) <C, k) <C. (4.6)
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Remark 4.1. The a priori estimate assumption (4.3) holds for small enough h and this choice is heavily based on how large
the constant C is in (3.20). Notice that the constant C is independent of h, as long as h is sufficiently small, say h < H. Then
we can guarantee (4.3) holds for 0 < t < T. Moreover, we will show that, if h < H, then the equality of (4.3) cannot happen
ift < T. However, we still need this estimate to obtain the boundedness of the numerical approximations. This assumption,
which will be verified in Section 4.8, is used for the estimate of the convection terms.

4.3. Error equations

In this subsection, we proceed to construct the error equations. From (3.11)-(3.16), we have the following error equations

de de
(Van + z) =r%ey. ¢). (4.7)
(ﬁu - %uh, o) =Dle,. 0), (4.8)
(@) — (Pncn)e, v)= LW, ¢, v) — LUy, €, v) + L£(s;, V)
— (Alay(p)er — av(@n)en), v) + (frec, v), (4.9)
(es, w)=D(ec, W), (4.10)
(ez, ¥)=(D(ps — dnsn), V), (4.11)
(eg,» B)=(B(ay(¢)cr — ay(n)cn), B), (4.12)

foranyv, ¢, p € Wrandw, ¢, 8 € WK
4.4. The first energy inequality

In this subsection, we will derive the first energy inequality. Takingv = &, w =§&,, ¥ = —§,in(4.9),(4.10) and (4.11),
respectively, and using Lemma 3.2 and (4.2), we can obtain

96,
(ma—i, &) + (Dnk,. £) = Ry + Ry + Rs + Ry + Rs -+ R, (4.13)
where

e
Rl = (‘pha’i’ $C> - (Cft$¢a SC) + (Cf[n¢a EC) - (¢f$c’ SC) + (‘Ptr]C’ SC)
- (Ch$¢ta gC) + (Chr}(bt’ SC)
R; :(D¢h”s’ Es) - (DSEW Es) + (Dsntb’ &s)’
Rs=(uc; — upch, VE) + > (UG — WnCy - ve, [Ec])e

ecle
Ry=—D(nc, &,),
R5 :(7757 Ez) - (”zv Es) + (fpem Sc)s
Rs = _(A(av(¢)cf - au(‘f’h)ch)v é:c):

where I, = IH U d£2_ and (u, v)e = fe uv ds. Now, we estimate R; (i = 1, ..., 6) term by term. Using hypotheses 4 and
(4.4), we can get

Ri < ClIEH (Imeell + 1861 + mgll -+ NEcl + lncll + 18Il + g, 1)
<C(IEIP + 5 1% + 15p 1> + H**2) (4.14)

where the second step requires Lemma 4.2. Use hypotheses 2, 4 and Lemma 4.2 again to obtain

Ro < ClIE (Imsll + 1€l + l1ms11)

<C (155117 + H*2) + ell& |1 (4.15)
We estimate R; by dividing it into three parts
R3 = R31 + R3z; — Rss, (4.16)

where

R31 =(ucy — ucy, V&) + (ucy — uycy, V&),

1 -
Rn=> > (Que —ufl —ue ) ve, [ED)e,

ecle
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1
Rss =2 D {alé — ncl. [&c])e.

ecle

Using hypothesis 4 and (4.4), we have
R31 < C (llcr — cull + [lu — ugll) | VE]|
<C (R &N + 15N (181 + hT), (4.17)

where in the first step, we use Schwarz inequality while the second step follows from Lemmas 4.2 and 4.4. C depends on
llullso and ||cy|l 0. The estimate of R3; also requires hypothesis 4 and (4.4),

1
Ry =2 D (ulg — ¢h) + (w—u e +uler — )+ (w—u;)e) - ve, [Ecl)e

ecle
<C(llcs = cullm, + lw—wnllr,) &
< Chi (Il + &l + Imull, + 1€,0 7 )(IEN + B
<C (R 1EN + &) (I&N + BT, (4.18)

where in the second step we use Schwarz inequality, the third step follows from Lemma 4.4, the last one requires Lemmas 4.1
and 4.2. Now we proceed to the estimate of R33,

Ras < C(lIncllr, + & ln)ITE N,
< Ch2(1neclln, + el &N + R+
<C (" +11& D) (&N + R, (4.19)

where the first step follows from Schwarz inequality, the second step is based on Lemma 4.4, the third one requires
Lemma 4.2. Plug (4.17), (4.18) and (4.19) into (4.16) to obtain

R < C (W1 4 18,1l + I1&0) (&) + )

<C (1607 + 1117 + B*2) + €ll& ]I (4.20)
The estimate of R4 follows from Lemmas 4.3 and 4.2
Ry < CH* YicrllisallE, | < CHP2 + €]l&, 1. (4.21)

Use Hypotheses 4 and Lemma 4.2 to obtain

Rs < lInsllI& 1 + lIn, I1& Il + Cliecllll€
<C(I&I% + n**2) + e (I&]1” + 1E,1%) . (4.22)

Finally, we estimate Rg,

Re = (Aay(¢)(cs — cn), &) + (Acn(ay(@) — av(en), &c))
< Cli&lllicr = call + ClIEN P — Pnll
<C (&P + g 1> + h*+2) (4.23)

where the second step follows from hypothesis 4, Lemma 2.1 and (4.4), and the last step requires Lemma 4.2. Substituting
the estimation (4.14), (4.15), (4.20)-(4.23) into (4.13) and use hypothesis 2 and (4.5), we obtain

dfl&ll?
at

+ &N < C (Il + 11617 + g 117 + 18,117 + h**2)

+€ (I1&11” + 11£.1%) (4.24)
Now we proceed to eliminate ||| on the right-hand side of the above equation. Take ¥ = &, in (4.11) to obtain
(Sz! Ez):(”zs §z) + (D(S¢ - Sh¢h)a 52)7
:('72, Ez) + (DS(¢ - d’f‘l)v Ez) + (D¢h(s - Sh)v gz)a
which further implies
1€, 1% < I I111€, 1| + Cllg — nlllIE, 1l + Clis — sull &,
<C (g 1% + 117 + h**2) + €&, 117,

where in the first step we applied hypotheses 3, 4 and (4.4), the second step follows from Lemma 4.2. Take € to be small,
we have

€12 = C (NEs 1> + 18,17 + h?+?)
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Substituting the above equation into (4.24), then integrating with respect to t, we have the first energy inequality

t
0

t
&l + f &7 dt < C f (&I 4 1817 + 20, I + [4]12) dt + CH42. (4.25)
0

4.5. The second energy inequality

In this subsection, we will construct the second energy inequality. Take ¢ = &, 0 = &, in(4.7) and (4.8), respectively and
use Lemma 3.2 and (4.2) to obtain

(o &) + (K(’fméw eu) =T+ T +Ts, (4.26)
where

T] :(Vrlpp ‘i:p) - (E(bt’ Ep) + (n(bt! %—p)a

g 0 U
L=|—F—m,8])— N »Su ) >
’ (K(dm)”“ ¢ ) (“ (x(qs) x(qsh)) ¢ )

T3 = —D(Up, Eu)

Now we estimate T; (i = 1, 2, 3) term by term. Using Lemma 4.2 we have

Ty < CUEN (1pe | + &g Nl + g, 1)
<C(IIE* + l1gp, I” + B F2) . (4.27)

The estimate of T, requires Lemma 2.1, (4.6) and hypothesis 4,

T, < ClI&, Myl + ClI&,NI¢ — nll
<C (&7 +P*2) + €)1, 1. (4.28)

For T3, we use Lemma 4.3 to obtain

T3 < CH*"Ipllir2ll&, ] < CH**F2 + €&, 117 (4.29)
Substituting (4.27)-(4.29) into (4.26), we have

Ml/z

&
k2 (én)

Integrating the above equation with respect to t and using hypothesis 1, we obtain

2
1d
+ ﬁny”zépuz < C(IE 12 + 1Ep, 1> + 1Es 1 + B T2) + €&, 11%.

t t
&1 +/ 1€, dt < C/ (IE 17 + 1€ 17 + 18511%) de + C?+2. (4.30)
0 0

4.6. The third energy inequality

In this subsection, we will derive the third energy inequality. We take 8 = &, in (4.12) to obtain
(g 69)=ngp,. &) + (Bau(@)cr — Bay(n)ch, &)
=(1g- &) + (Bay(d)cr — cn). &) + (Ben(au(@) — av(en)). &) »
which further yields
1d

T IE6 11> < lImg MIEo 1l + Clicr — cullll&p | + Clld — ullll, I

<C (517 + 151 + h**2)

where we have used Lemma 2.1 and (4.4). Integrating the above inequality with respect to t, we obtain the third energy
inequality

lgs1% < C / (165117 + 1&c117) dt + CH?+2. (4.31)
0
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4.7. The fourth energy inequality

In this subsection, we will demonstrate the last energy inequality. We take = &;, in (4.12) to obtain

Eper E60) =g, Eo) + (Bau(@)cr — Bay(dn)ch, &4,)
= (n¢[’ E¢t) + (Bav(¢)(Cf - Ch)v Sd’t) + (BCh(aU(¢) - av(d)h))v $¢[) :

Then we have

£ 1% < 1mp IIEg, | + Clicr — call €1l + Clld — dulllly, |
< C (&I + 1512 + h*F2) + ellgy, I,

which further yields the last energy inequality

16, I1> < C (IEcl® + 16417 + h22). (4.32)

4.8. Proof of Theorem 3.1

Now we are ready to combine the four energy inequalities and finish the proof of Theorem 3.1.
Firstly, from (4.25) and (4.30), it is easy to derive the following estimate

t
0

t
&1 + 11617 +f €11 dt < Cf (€N + IE N + 1€ I1> + 11Ep, %) de + Ch**2,
0

Thanks to (4.32), we can eliminate &4, in the above inequality to obtain

t t
el + 16,12 + / &2 de < f (&2 + 117 + 1812) de + CH+2.
0 0

Then adding (4.31) and the above inequality, we have

t
0

t
&I + 1817 + 1155117 +/ lI&1I? dt < C/ (IEI? + IE I + 1€ 117) dt + Cn?+2.
0

Now, we can employ Gronwall’s inequality to obtain

t
&I + 1617 + 1155117 +/ &% de < Ch?+2.
0

Finally, by using the standard approximation result, we obtain (3.20). To complete the proof, let us verify the a priori
assumption (4.3). For k > 1, we can consider h small enough so that Ch**! < %h, where C is the constant determined
by the final time T. Then define t* = inf{t : |t — cull + ¢ — @nll = h}, we should have |lc; — cull + ||¢ — ¢nll = h by
continuity in time at t = t*. However, if t* < T, Theorem 3.1 implies that ||c — c,|| + |l¢ — ¢nll < Ch**! fort < t* in
particular h = ||(c — cx)(t*)|| + [|(¢ — dn)(t¥)]| < Ch*+! < %h, which is a contradiction. Therefore, there always holds t* > T
, and thus the a priori assumption (4.3) is justified.

5. Numerical example

In this section we provide numerical examples to illustrate the accuracy and capability of the method. Time discretization
is given as the third order explicit strong-stability-preserving Runge-Kutta method [35].
w =w" + AtL(W"),
w@ = %w” + % (W + ArLw ™)),
wl = %w” + % (W® + ArLw®))
We take the time step to be sufficiently small such that the error in time is negligible compared to spatial error.
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0.2 0.2 10
0.18 0.18 9
0.16 0.16 8
0.14 0.14 7
0.12 p, 6 0.12 6
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0.1 ’ 5 0.1 5
0.08 4 0.08 4
0.06 0.06 3
0.04 0.04 2
0.02 0.02 1

0 0 0
0 0.05 0.1 0.15 0.2

0 0.05 0.1 0.15 0.2

(a) ¢y at T'= 10s (b) ¢y at T' = 20s

02 10 02
0.18 9 0.18
0.16 8 0.16
0.14 7 0.14
0.12 6 0.12
0.1 5 0.1
0.08 4 0.08
0.06 3 0.06
0.04 2 0.04
0.02 1 0.02

0 0 0

0 0.05 0.1 0.15 0.2

(c) ¢5 at T = 35s (d) ¢f at T'= 50s

Fig. 1. Concentration of acid with time evolution.

Example 5.1. We solve (2.1)-(2.4) and the parameters are taken as

D=10"2L,Ky=1,T = 0.1, (5.33)
a=ki=ki=pnu=f=1, (5.34)
ao = 0.5, ps = 10,y = 0.1, (5.35)

where I is an identity matrix.

The exact smooth solutions are given as

p(x, t) = e' sin(27x) sin(2wy), (5.36)
¢(x, t) = tsin(2wx)cos(2wy) + 0.2, (5.37)
¢r(x, t) = 0.1e" cos(2mx) cos(2my) + 0.2. (5.38)

We can calculate the initial conditions and the right hand sides accordingly. Piecewise linear and quadratic tensor product
polynomials are used in the LDG scheme. We use uniform meshes with M x M cells over the computational domain
£2 = [0, 1] x [0, 1], and compute the numerical approximations at T = 0.1. Periodic boundary condition is used in this
numerical example. The numerical results are given in Table 1. From the table, we can observe optimal convergence rates,
which verifies the results in Theorem 3.1.

Example 5.2. We simulate a real wormhole propagation scenario in petroleum engineering and the parameters are taken
as

D=0, Ky,=10"°m? T =60s, (5.39)
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Table 1
Accuracy test for Example 5.1.
M x M [lp = pnlli2() Order ller = enllize) order l¢ — dnll2(ey Order
16 x 16 1.99E—-02 - 1.68E—02 - 1.67E—04 -
32 x 32 5.00E—03 1.99 3.92E-03 2.10 4.20E—-05 2.00
p! 64 x 64 1.25E-03 2.00 7.36E—04 241 1.05E—-05 2.00
128 x 128 3.13E-04 2.00 1.18E—-04 2.64 2.62E—-06 2.00
16 x 16 1.40E—03 - 2.43E-03 - 1.17E-05 -
32 x 32 1.76E—04 3.00 2.78E—04 3.13 1.48E—06 3.00
p? 64 x 64 2.20E-05 3.00 2.61E-05 341 1.85E—-07 3.00
128 x 128 2.75E—-06 3.00 2.14E—06 3.61 2.31E-08 3.00
0.2
0.18 )
0.16 :
0.14 :
0.12 i
0.1, i
0.08 ‘
0.06 .
0.04 ;
0.02 5
% 0.05 0.1 0.15 0.2 '
(a) ¢ at T'=10s (b) ¢ at T' = 20s
0.2 i 0.2 A
0.18 i 0.18 X
0.16 ) 0.16 .
0.14 A 0.14 B
0.12 X 0.12 i
0.1 : 0.1 :
0.08 . 0.08
0.06 5 0.06 &
0.04 i 0.04 4
0.02 g 0.02 .
% 0.05 0.1 0.15 02 ' % 0.05 0.1 0.15 02 '
(c) ¢ at T = 35s (d) ¢ at T =50s
Fig. 2. Porosity of rock with time evolution.
a = 10kg/mol, k. =1m/s, ks=10m/s, (5.40)
w=10"2Pas, fi=f,=0, (5.41)
a=2m"!, p;=2500kg/m?, y =0, (5.42)

Computational domain is £2 = [0, 0.2 m] x [0, 0.2 m]. Initial concentration of acid and initial porosity of rock in this domain
are set to be cg = 0 and ¢9 = 0.2, respectively. The acid flow is injected to the porous media from the left boundary with a
velocity of u = 0.01 m/s and drained out of it from the right boundary with the same velocity. Top and bottom boundary
conditions are set to be periodic. The concentration of influx acid is 10 mol/m?. To observe the wormhole propagation, we
set a singular area with high porosity and permeability on the middle of the left boundary with size to be 0.01 m x 0.01 m.
The porosity of this singular area is 0.4 and permeability is determined by (2.6) which is about 1078 m?.

The contour plots of concentration of acid, porosity of rock and pressure with time evolution are shown in the following
Figs. 1-3, respectively, from which we can observe the wormhole propagation clearly.
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=)

0.2 10000 0.2
0.18 8000 0.18
0.16 6000 0.16
0.14 4000 0.14
0.12 2000 0.12
0.1 0.1

0.08 -2000 0.08 -
0.06 -4000 0.06
0.04 -6000 0.04
0.02 -8000 0.02
0 -10000 0

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

(a) pat T =10s (b) p at T'=20s
02 10000 02 10000
0.18 8000 0.18 8000
0.16 6000 0.16 6000
0.14 4000 0.14 4000
0.12 2000 0.12 2000
0.1 0 0.1 0
0.08 -2000 0.08 -2000
0.06 4000 0.06 -4000
0.04 -6000 0.04 -6000
0.02 -8000 0.02 -8000
0 -10000 0 -10000
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 02
(c) pat T =35s (d) p at T = 50s

Fig. 3. Pressure with time evolution.

6. Concluding remarks

In this paper, we study the compressible wormhole prorogation, and optimal convergence rates are derived. Numerical

experiments verify the theoretical analysis.
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