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Abstract—We propose a new method for the construction and visualization of geometrically-motivated boxplot displays for elastic
curve data. We use a recent shape analysis framework, based on the square-root velocity function representation of curves, to extract
different sources of variability from elastic curves, which include location, scale, shape, orientation and parametrization. We then focus
on constructing separate displays for these various components using the Riemannian geometry of their representation spaces. This
involves computation of a median, two quartiles, and two extremes based on geometric considerations. The outlyingness of an elastic
curve is also defined separately based on each of the five components. We evaluate the proposed methods using multiple simulations,
and then focus our attention on real data applications. In particular, we study variability in (a) 3D spirals, (b) handwritten signatures, (c)
3D fibers from diffusion tensor magnetic resonance imaging, and (d) trajectories of the Lorenz system.

Index Terms—Shape variability, Square-root velocity function, Geometric boxplots, Elastic curves

1 INTRODUCTION

Curve data objects are becoming ubiquitous in the cur-
rent digital era. In particular, improvements in acquisition
technology have enabled collection of large and densely-
sampled curve datasets of various sorts. For example, con-
tours in a topographic map can be considered as pla-
nar curves. Furthermore, advancement of medical imag-
ing, computer vision and image processing technology is
allowing radiologists to acquire a large number of various
types of medical images. Studying the morphology of the
outlines of anatomical structures is then important for dis-
ease diagnosis and monitoring, and may enable new and
early treatment strategies. In fact, multiple cutting-edge ap-
plication areas, including medical imaging and diagnostics,
computer vision, graphics, astronomy, geology, and others,
regard curves as the main data objects under study.
Curves, however, are complex data objects because they
are infinite dimensional and possess different sources of
variability. Thanks to recent progress in the shape analysis
community [1], [2], [3], statistical methods for analyzing
such data are now well established. In particular, Kurtek
et al. [3] define different feature spaces that enable decom-
position of variability in curve data into (a) translation,
(b) scale, (c) rotation, (d) parameterization, and (e) shape.
They then define statistical methods on the representation
spaces of these various components. However, the number
of visualization toolboxes for assessing these different types
of variability in curve data is very small. Visualization is an
important part of exploratory data analysis. Furthermore,
effective visualization tools are necessary to communicate
results of statistical analyses to experts in applied fields.
Our focus in this paper is on visualization for shape
analysis of elastic curves, open and closed, which have four
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physical properties: location, scale, shape and orientation.
Note that while parametrization is not technically an intrin-
sic property of the curves, it is used in this work as a way
to compute optimal correspondences; this is what makes
the curves and statistical analyses elastic [2]. We provide a
motivating example in Fig. 1 based on the MPEG-7 dataset'.
It is extremely difficult to extract any useful information
when the original data is shown in a single plot. How-
ever, separation into the different sources of variability, i.e.,
location, scale, shape, orientation and parametrization (for
closed curves parameterization is composed of a registration
function called phase, which we make precise later, and a
starting or seed point on the curve), reveals the true nature
of variation hidden in the original data. Each boxplot-type
display constructed using the proposed method reflects
the particular variation from that component of the curve
only, which facilitates intuitive interpretation of results.
Additionally, one can detect componentwise outliers in the
data, providing more information to the user than outlier
detection using the original curves.

A key premise of the proposed visualization approach
for elastic curves is that the shape boxplots are invariant
to how the original data objects are parameterized. We
build our visualization toolbox on the square-root velocity
function framework proposed in [2], which has been shown
to have such an invariance property. In [3] and [4], the au-
thors extend this framework to include different sources of
variability, in addition to shape, in the statistical analysis. An
important result in these papers is that under the SRVF rep-
resentation, the so-called elastic metric (a first order Sobolev
metric that measures the amount of bending and stretching
deformations) simplifies to the standard IL? metric, enabling
efficient computation of statistics. The proposed approach
works as follows. First, we extract the various components
of variability in the original curves. Second, we use the Rie-
mannian geometry of the respective representation spaces

1. http:/ /www.dabi.temple.edu/~shape/MPEG7/dataset.html
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Fig. 1. Visualization of elastic curve data. The proposed method first decomposes the data into the location, scale, shape, orientation,
and reparametrization components, and then generates a boxplot-type display for each one separately (black=median, blue and
green=quartiles, cyan and magenta=extremes). This allows for effective visualization of variability in each component.

to compute order statistics, which are used for subsequent
boxplot-type visualization. We additionally study the ability
of the proposed method to detect various types of outliers,
and compare our approach to a distance-based approach [4].

1.1 Related Work

The most closely related work that considers boxplot visu-
alizations for curve data is [5]. Their approach is similar to
that of [6], which was the first to construct boxplot displays
for functional data. The authors in [5] first generalize the
concept of functional band depth [7], [8], [9], which itself
is a generalization of data depth, to multivariate curves.
The depth values are used to rank the curve observations
and enable outlier detection. Then, the feature curves of the
boxplot are constructed according to the contiguous band
swept by a percentage of the deepest ensemble members
using the Constructive Solid Geometry (CSG) union opera-
tor. The main drawback of this method is inherited from the
functional band depth-based methods, in that they require a
pre-registration of the data. If the data has significant trans-
lation, scale, rotation and/or parameterization variability,
then the structure of the boxplot (without accounting for
these different sources of variability) may not be very infor-
mative. This is because parts of the boxplot are constructed
in a pointwise manner, e.g., the 50% band is swept by the
50% deepest ensemble members. A second disadvantage of
this approach is that it is not able to differentiate the nature
of curve outlyingness.

1.2 Contributions and Paper Organization

To overcome drawbacks of previous approaches, we build
on the recent method in [10]. In particular, this work pro-
vides an extension of their method from univariate func-
tional data to the case of multivariate curves; our approach
defines a comprehensive exploratory data analysis pipeline
for multivariate curve data. The main contributions of this
paper are as follows:

1) We define a unified approach for computing quartiles
and extremes for different sources of variability in
multivariate curves. We extract the translation, scale, ro-
tation, parameterization and shape components of the
data under an elastic shape analysis framework, and
use the Riemannian geometry of their representation
spaces to compute a median, two quartiles and two
extremes.

2) We construct boxplot-type visualizations for each
source of variability, thus allowing the user to clearly
see the contribution of each component to the total
variation in the data.

3) We provide a new definition of the interquartile range
and use it to identify different types of outliers in the
data, based on the five different sources of variation in
elastic curves.

The rest of this paper is organized as follows. In Section
2, we review elastic shape analysis [2], [3], which allows
for extraction of the different sources of variability in elastic
curve data. Section 3 provides details of the construction of
the shape boxplot, while Section 4 describes the construction
of the orientation boxplot. Sections 5 and 6 present multiple
simulations as well as results of visualizing variability in
real 2D and 3D elastic curves. Finally, we close with a
brief summary and some ideas for future work in Section
7. The Supplementary Material includes (a) a description
of our approach to construct the location boxplot using
curve centroids, (b) algorithms for computing the shape
and orientation medians, and extracting the orientation
and parameterization components from elastic curves, (c)
detailed results for Simulations 1, 2 and 4, and (d) a detailed
assessment of computational cost for all real data examples.

2 BACKGROUND: ELASTIC SHAPE ANALYSIS

The data objects in this article are elastic curves. Let
B = {8 D — RY|Bis absolutely continuous} be
the space of absolutely continuous parametrized curves
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in Euclidean d-dimensional space, where d = 2 or
3, and D = [0,1] for open curves or D = S! for
closed curves. As most real datasets consider planar and
three-dimensional curves, this is the focus of this arti-
cle. Define SO(d) = {R € R™{RTR RRT =
I, det(R) = +1} as the rotation group, and I' = {v :
D — D]~ is an orientation-preserving diffeomorphism} as
the reparameterization group. In the case of closed curves,
we decompose the reparameterization into a starting point
on the curve (seed) and an orientation-preserving diffeo-
morphism of [0,1] (a process called unwrapping). For any
B € B, Re SO() and v € ', § o+ is a reparametrization
of a curve 8 by v and Rf is a rotation of 5 by R.

To define a proper metric on the shape space of elastic
curves, i.e., the quotient space B/(SO(d) x I'), we require
that these two groups act by isometries under this metric.
It is well-known that the elastic family of metrics has this
property [1], [11]. However, this metric is difficult to use in
practice. To simplify computation, [2] defined the square-
root velocity function (SRVF) transformation as follows. For
acurve 3 € B, its SRVF ¢ : D — R? is defined using a
mapping @ : B — L2(D,R?) (henceforth referred to as I.?)

as ¢ = Q(B) = B/1/|8], where | - | is the Euclidean norm

in R? and 5 is the time derivative of 3. The SRVF transform
simplifies the elastic metric to the L2 metric. The mapping
B« (g, 8(0)) between B and 1.2 x R is a bijection, and the
original curve 3 can be reconstructed from its SRVF using
Q- 1(a)(t) = B(t) = B(0) + [} a(s)la(s)|ds, V. Thus, before
computing the SRVF for all curves in a dataset, we extract
their location component defined via the centroid. For R €
SO(d), RB <» Rg,and fory € T, Boy < (q,7) == (gov)V7.

Once the curves are mapped to their SRVFs, we com-
pute their lengths: [, |3(t)|dt = [}, |q(t)|*dt = ||q||*>. This
comprises the scale component. Then, we define C = {q €
L2|||g||* = 1} as the pre-shape space of open curves (i.e.,
SRVFs of all unit length open curves). C is the unit Hilbert
sphere (in the case of closed curves, it is a submanifold of
the unit Hilbert sphere), and is called the pre-shape space
because rotation and reparametrization variabilities have
not yet been extracted from the curves. Importantly, the
action of the product group I' x SO(d) on C is by isometries
under the L* metric: | R(q1,7) — R(g2: )|l = lar — all,
for all ¢1,¢42 € C, v € I"and R € SO(d). Thus, the SRVF
becomes essential to our study, because it can be used to
separate the rotation and parametrization variabilities from
the shape variability in elastic curves.

This framework enables us to extract different sources
of variability in elastic curves and analyze them individu-
ally in the following representation spaces: location in R<,
scale in R, shape in C/(I" x SO(d)), orientation in SO(d)
and reparametrization in I'. Thus, our general approach
for visualization and outlier detection is to first extract
the location and scale components from the curves. Next,
we transform them into their SRVFs and further separate
the orientation and reparametrization components from the
shape component. Finally, we construct feature summary
statistics based on the unique Riemannian geometry of each
representation space, and provide a separate display and
outlier detection for the different sources of variability.

The construction of the scale boxplot based on curve

3

lengths is trivial as its representation space is R ; we use the
standard Tukey boxplot [12]. The construction of the transla-
tion boxplot is similar to the shape and orientation boxplots
introduced in Sections 3.2 and 4, and is included in Section 1
of the Supplementary Material. For the reparameterization
boxplot, we use the same method as [10]; please refer to
that paper for details. In the case of closed curves, we use
the circular boxplot introduced in Section 4.1 to display the
seed variability (since it is an element of S*).

3 SHAPE SPACE, MEDIAN AND BOXPLOT

We first provide detailed steps to extract the rotation and
reparameterization variabilities from elastic curves via the
shape median, and then to construct a boxplot-type display
for the shape component. Our description focuses on the
space of open curves. Closed curves can be handled simi-
larly with minor adjustments in the algorithms.

3.1 Definition of Shape Space and Shape Median

For any ¢ € C, we define its orbit as [¢] = {R(q,7)|(7, R) €
I' x SO(d)}. Shape is uniquely associated with an orbit
and a distance between shapes can be viewed as a distance
between the orbits of their corresponding SRVFs; the shape
distance is defined as:

Dy([q1], la2]) = cos ' ({q1, R(g2,7))), (1)

min
y€T, RESO(d)
where (-,-) is the L? inner product. The orientation and
parameterization of an elastic curve is usually defined rela-
tive to some template. The template we use in this work is
the so-called geometric median [13], which is also used in
the construction of the shape boxplot. We define the shape
geometric median of a sample of SRVFs {q1,...,q,} as [4]:

n

argmin Z Dy ( [q], [Qi]), (2)

[¢]eL? /(T xSO(d)) =1

[4] =

where Dy is given in Eqn. 1. A gradient-descent algorithm
to compute this median is given in Section 2 of the Sup-
plementary Material. Solving the optimization problem in
Eqn. 2 results in (a) shape median [g]; (b) shape distances,
{D},..., D"}, from the shape median to all of the SRVFs
in the data; (c) optimal rotations of the data with respect to
the median, {Ry,...,R,}; (d) optimal reparametrizations
of the data with respect to the median, {v1,...,7,}; and
(e) the shape component of the data, {Gi,...,Gn}, after
applying the optimal rotations and reparametrizations to
{¢1,.-.,qn}. Note that the shape median is technically
defined as an entire orbit. However, in practice, one obtains
a single representative element of the orbit ¢ € [g]. This is
done using the orbit centering method [14], which guaran-
tees that the median of {y1,...,v,} is Via(t) = ¢ and the
median of {Ry, ..., R,} is the identity matrix Ig.

The algorithm to compute the shape median, and the
procedure to compute shape boxplots, require two main
geometric tools on the Hilbert sphere. Let the tangent
space at any point ¢ € C be denoted by T;(C). Then, the
exponential map, exp, : T,(C) — C, maps points from
the tangent space to the representation space: equ(v) =
cos(||v]|)q + sin(HvH)ﬁ, for v € T,(C) and ¢ € C; the
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Fig. 2. 20 planar butterfly outlines with parametrization shown as
color. Points of the same color correspond to the same param-
eter values t = /99, ¢ = 0,17, 33,50, 66,84 corresponding to
black, blue, cyan, green, magenta and red, respectively.
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Fig. 3. Separation of (a) location, (b) scale, (c) shape, (d) orienta-
tion and reparametrization, (e) phase and (f) seed, variabilities
in the butterfly outlines in Fig. 2.

inverse exponential map, exp,' : C — T,,(C), maps
points from the representation space to the tangent space:
expy, (g2) = % (g2 — cos(6)q1), where ¢q1, q2 € C and
0 = cos™'({q1, q2)). Intuitively, the exponential map takes
a vector v in the linear tangent space, T,(C), and maps
it along the geodesic path on C to a point g, = exp,(v).
An important property of the exponential map is that the
length of the vector v in the tangent space (as measured
using the defined Riemannian metric) is exactly the same as
the Riemannian distance on C between the points ¢ and g,.
In subsequent sections, we additionally use the exponential
and inverse exponential mappings to redefine certain diffi-
cult computational problems on a nonlinear representation
space to equivalent simpler ones on a linear tangent space.
An example of the full separation of different sources of
variability in elastic curves is given in Figs. 2 and 3. The
data here are outlines of 20 butterflies from the MPEG-7
dataset mentioned earlier. When we plot the butterfly out-
lines separately as in Fig. 2, it is obvious that those outlines
clearly differ in five main aspects: (a) location (Fig. 3(a)), (b)
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scale (Fig. 3(b)), (c) shape (Fig. 3(c)), (d) relative directions
the butterflies are facing or orientation (Fig. 3(d)), and (e)
reparametrization (relative timing of prominent geometric
features in Fig. 3(e) and starting points in Fig. 3(f)). Next,
we propose an innovative method to construct boxplot-
type displays for the shape and orientation components,
which require specialized geometric tools relevant to their
representation spaces.

3.2 Construction of Shape Boxplot

The construction of the proposed shape boxplot requires the
computation of the median, two quartiles and two extremes
for the curve shapes in a given dataset. We have already
outlined a procedure for computing the median, and now
focus on the quartiles and extremes. We first order the
curves according to their distances from the shape median,
and select the 50% of the curves, {q(1),---,G([n/27)}, that
are closest to g; this defines the 50% “central shape region”.
To identify the two shape quartiles, we prefer the two
SRVFs ¢ within the 50% central shape region to both be
far away from each other and in “opposite directions” from
the shape median. This allows us to capture a lot of the
shape variability in the given curves. It is easier to construct
these feature summary statistics in a linear tangent space
than directly on the unit sphere. Thus, we first construct
the quartiles and extremes in the tangent space at the shape
median, map them back to the shape space under the SRVF
representation and finally to the original space of curves for
visualization. To facilitate these tasks, we take advantage of
the analytical expressions for the exponential and inverse
exponential maps, as defined earlier.

The tangent space defined at the shape median is a linear
space with the standard .2 metric. We use the inverse expo-
nential map to transfer {gi, . . ., G, } to T3(C): v; = exp; ' (G;)
fori =1,...,n.Note that ||v;|| is equal to the shape distance
D’ that we already computed. We optimize the following
expression over the 50% central shape region to define the
two shape quartiles (v, , vQ,):

argmax 1- lonll [lv2| B
01,02 €{v(1)s-V([ny2]) } m?XHU(,‘)” miaxHU(i)H

(o) 1) ©

The first term ensures that the two quartiles are far away
from each other, the second term ensures that they are in
opposite directions and the parameter A controls the weight
of each term. Different choices of A result in different types
of boxplots. In all of our experiments, we use A = 0.5 to
ensure equal contribution of both terms. To display the two
quartiles, we map them back to the original space of (unit
length) elastic curves using 8, = Q '(exp,(vg,)) and
Baos = Q' (expg(vg,)), where Q7! was defined in Section
2. Given the two quartiles, the shape interquartile range
(IQR) is defined as the sum of the shape distances from each
quartile to the geometric median: IQR; = ||vg, || + [[vg,]|-
Then, the two shape outlier cutoffs are defined as:

V@,

vw, =09, + ks X IQR; X +—, and
||UQ1”
_ VQs
Vw, =VQ, + ks X IQR, X . 4)
[0, |l
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The choice of k; is not trivial in this setting since these quan-
tities are defined on the shape space; we discuss it in more
detail in Section 5. Importantly, the ability to select &k in Eqn.
4 allows the user to tune the outlier detection procedure in
a data dependent manner. Shape outliers are defined as any
g that is farther away from the shape median than both of
the outlier cutoffs; that is, ¢ is identified as a shape outlier if
[v]| > max{|[vw, |, |[ows||}, where v = exp; '(g). The two
shape extremes are defined as the two shapes closest to each
of the two shape outlier cutoffs, with the constraints that (a)
they lie outside of the 50% central shape region, and (b) they
are not flagged as shape outliers.

Fig. 4 shows the shape boxplot for the butterfly data
in Fig. 2. Compared to Fig. 3(c) where all of the aligned
shapes are plotted together in a single display, we plot
them individually in Fig. 4(a). We display the full shape
boxplot in Fig. 4(b) and the two outlier cutoffs in Fig. 4(c).
The relative separation between any pair of the feature
summary shapes in the boxplot signifies the relative simi-
larity between the two shapes. This idea of visualization is
the same as in the standard Tukey boxplot for univariate
Euclidean data. From these boxplot-type displays, we are
able to visualize the trend of shape variation from one end
of the boxplot to the other. Specifically, we can see in the
deformation from the black shape median to the green shape
quartile that the antennae and the top part of the wings
of the butterflies expand. The corresponding outlier cutoff
(magenta) amplifies this effect, where the antennae and
the top part of the wings become increasingly wider and
flatter. In contrast, the deformation from the shape median
to the blue shape quartile shows the antennae and the top
part of the wings narrowing, which makes the middle part
of the wings “push out”. The corresponding outlier cutoff
(cyan) again amplifies this effect: the antennae and the top
part of the wings become increasingly narrow. We find no
shape outliers in this butterfly dataset. The corresponding
shape extremes (also cyan and magenta) are identified as
the shapes closest to each of the outlier cutoffs.

4 CONSTRUCTION OF ORIENTATION BOXPLOT

The orientation component is a set of rotation matrices
{R1,..., Ry} obtained from aligning the data to the shape
median as described in Section 3.1. Their representation
space is SO(d), the special orthogonal group of dx d rotation
matrices, whose geometry is nonlinear. Therefore, we are
going to use the same strategy as in Section 3.2: (a) map all
of the rotation matrices to a tangent space whose geometry
is linear, (b) construct the orientation boxplot in the tangent
space, and (c) map all of the orientation summary statistics
back to SO(d). This procedure requires an appropriate
Riemmanian geometry of SO(d), which we describe next.
The space SO(d) is a Lie group with matrix multipli-
cation as the group operation. Thus, the tangent space of
SO(d) at the identity element I is the Lie algebra so(d),
which consists of all skew-symmetric d x d matrices: so(d) =
{S € R¥*4|S 4+ ST = 0}; the tangent space at R € SO(d) is
defined as Tr(SO(d)) = {RS|S is skew-symmetric}. Given
51,582 € so(d), the inner product between S; and S is
defined as: (51, S3) = trace(ST S2). Under this Riemannian
metric, the Lie group exponential and inverse exponential

(a)

RS RV
PP DD
AR AN
BB II L

DD A

Fig. 4. Shape boxplot for the butterfly outlines in Fig. 2: (a)
aligned shapes, (b) full shape boxplot with shape median
(black), shape quartiles (blue and green) and shape extremes
(cyan and magenta), and (c) shape outlier cutoffs.

maps are defined as follows. For S € so(d), the exponential
map, exp : so(d) — SO(d), is exp(S) = e, where e is the
matrix exponential; for R € S O(d), the inverse exponential
map, exp ' : SO(d) — so(d), is exp }(R) = log(R),
where log is the matrix logarithm. The orientation distance
between two rotations R and R, is defined as:

Do(Ri, Ro) = || log(RY Ra)| ®)

where || - || 7 denotes the Frobenius norm.
Using these tools, we can define the geometric median
of a set of rotation matrices {Ry, ..., R,} as:
n n
D,(R;,R) = argmin
ReSO(d) ;=

R = argmin Z | log(RF R)|| .
ReSO(d) j=1 1

(6)
The solution to this optimization problem can be found
using a gradient-descent algorithm provided in Section 2 of
the Supplementary Material. After the orientation median
is computed, we adjust all of the rotations such that the
orientation median R is equal to Iy, i.e.,, we perform the
orbit centering step discussed before.

Next, we use the inverse exponential map to transfer
all of the rotation matrices to the tangent space at the
orientation median identified with I;: w; = exp~!(R;) for
i =1,...,n. We continue our construction of the orientation
boxplot in that tangent space. We order the rotation matrices
according to their orientation distances to the orientation
median D! = ||log(R;)[|lr = ||willr, ¢ = 1,...,n, and
extract the 50% of rotation matrices that are closest to R:
{Rq),- .-, R(tn/21)} These rotations define the 50% “central
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orientation region”. We solve the following optimization
problem over the 50% central orientation region to find the
two orientation quartiles (wq,, wg,):

argmax (1— lwillp n lw2llF _
w1, w2 €{W(1y, - W([n/2]) ) mLaXHw(l)HF m?XHw(Z)”F

_,\<< Wi w2 >+1). @)
willF” lwz | F

The interpretation of the two terms and the parameter
A are the same as for the shape boxplot. We again use
A = 0.5 in all of our experiments. Finally, we compute
R, = exp(wg,) and Rg, = exp(wg,). Given the two
orientation quartiles, the orientation IQR is defined as
IQR, = ||lwg,||lF + ||lwg,||r. The two orientation outlier
cutoffs are defined as:

ww, = wg, + ko X IQR, X &, and
lwe,llF

Wiy = Wy + ko X IQRy X — o3 ®)
lwes ||l

As in the case of the shape boxplot, the choice of &, is not
trivial and we address this issue in Section 5 via simulations.
A rotation R is identified as an orientation outlier if that
rotation matrix is farther away from the orientation median
than both of the outlier cutoffs; that is, w = exp~!(R) sat-
isfies ||lw||p > max{||ww, || F,||ww;|F}. Again, the ability
to select k, in Eqn. 8 allows tuning in a data dependent
manner. The two orientation extremes are defined as those
closest to each of the two orientation outlier cutoffs wyy,
and wyy,, with the constraints that (a) they lie outside of the
50% central orientation region, and (b) they are not flagged
as orientation outliers. This construction of the orientation
boxplot is similar in spirit to our construction of the shape
boxplot. As seen in subsequent sections, our boxplot display
shows the standard frame in R? rotated by the correspond-
ing summary statistics (median, quartiles and extremes).

4.1

When the curves are bivariate (d = 2), the rotation group
SO(2) is one-dimensional and its elements can be rep-
resented as angles, ie., elements of the unit circle st.
Specifically, for any R € SO(2), one can write R as
cos(r) —sin(r)
sin(r)  cos(r)
the bivariate case, we can simplify our construction of the
orientation boxplot by directly working on S' rather than
SO(2). In this way, the boxplot construction is similar to the
univariate Euclidean case, except that we have to consider
the special geometry of the circle.
Given a set of angles {r1,...,r,}, the median angle is
defined as:

Construction of the Circular Boxplot

, where r € [0, 2m). Therefore, in

n
7 = argmin E
rel0,2m) ;=1

Do’ (Tia T)v (9)

where D, (r1,r2) = min{|ry — ra|,27 — |r1 — 12|} is the
distance between two angles, r; and 72, in S!. The median
angle (and its cut locus) splits the circle into two equal-sized
semi-circles. The two quartile angles are defined as the two
median angles within the range of each semi-circle. The 50%
central angle region is the arc connecting the two quartile
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Fig. 5. Orientation boxplot for the butterfly outlines in Fig. 2:
(a) median 7 (black), quartiles rq, (blue) and rq, (green) and
extremes (cyan and magenta), and (b) same as (a) but instead
of extremes we plot the outlier cutoffs ru, (cyan) and rw,
(magenta).

angles. The angle IQR is defined as IQR, = Dy (rq,,T) +
D (7,7¢q,). The two angle outlier cutoffs are defined as:

T —-Tr
iy =70, + ko X IQRy x 2 and
1
0. — T
TWs; = TQs + kor x IQR, X Vzdi_ﬂ (10)
3

These two angle outlier cutoffs have to be within the range
of each semi-circle. If either of the angle outlier cutoffs is
out of range, then this guarantees that there are no outliers.
An angle is detected as an outlier if it lies outside of the
arc connecting the median angle and the corresponding
angle outlier cutoff in the same semi-circle. Finally, the two
extreme angles are found in each semi-circle as the angles
that are closest to each of the two angle outlier cutoffs, ryy,
and 7y,, with the constraints that they are (a) in the same
semi-circle as the corresponding outlier cutoffs, (b) outside
of the 50% central region, and (c) not flagged as outliers.

Since the orientation of bivariate elastic curves is rep-
resented by a set of angles, i.e., circular data, one can use
the von Mises distribution to determine the outlier cutoff
constant k.. The von Mises distribution is a standard statis-
tical model for directional data [15] and has two parameters:
a mean angle ;1 and a concentration parameter x. As K
increases, the von Mises distribution with mean p and
concentration x converges to a Gaussian distribution with
mean 4 and variance 1/« [16]. This connection motivates us
to estimate the value of the outlier cutoff constant, k,/, using
the von Mises distribution in a similar manner to using
the Gaussian distribution to justify the 1.5 factor for the
standard outlier cutoff in Tukey’s boxplot. In the standard
Euclidean setting, an easy derivation shows that if the data
is normally distributed (with any variance), and the outlier
cutoff constant is 1.5, then the range between the two outlier
cutoffs contains approximately 99.3% of the data, and the
rest of the data are flagged as outliers. We want the outlier
cutoff constant, k., to behave similarly in the case of the
von Mises distribution: approximately 99.3% of the circular
data to be contained between the two outlier cutoffs. In the
case of the von Mises distribution, the value of the outlier
cutoff constant depends on the concentration parameter.
We plug in the maximum likelihood estimate (MLE) of the
concentration parameter [15] and compute the value of k,
satisfying the desired probability.

Fig. 5 provides an example of constructing a circular
boxplot for the butterfly data in Fig. 2. Our implementation
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of the circular boxplot uses the MATLAB Directional Statis-
tics Toolbox [17]. As before, after the orientation median
is computed, we adjust all of the rotations such that the
orientation median is 7 = 0 (black). The full circular boxplot
is displayed in panel (a); it provides a nice summary of
the given data. The two angle outlier cutoffs (cyan and
magenta) can be seen in panel (b). We notice that both of
the outlier cutoffs fall outside of their corresponding semi-
circles resulting in no orientation outliers.

5 SIMULATIONS

We begin with several simulations to guide the appropriate
choice of the values of the outlier cutoffs for the shape and
orientation boxplots. We are interested in the distribution
of two quantities: p., the percentage of correctly detected
outliers (number of correctly detected outliers divided by
the total number of outliers), and p¢, the percentage of
falsely detected outliers (number of falsely detected outliers
divided by the total number of non-outliers). For each sim-
ulation, we generate 100 replicates and report the estimated
values p. and p; (as a figure for Simulations 1, 2 and 4, and
a table for Simulation 3). More detailed tabulated results
for Simulations 1, 2 and 4 are provided in Section 3 of the
Supplementary Material. For shape outliers, we also apply
the methods of [4], which are distance-based. They first com-
pute the geodesic distances between the estimated median
shape and each of the shapes in the data {D},..., D"}. The
quartiles, 1 and @3, of the distances are used to compute
the IQR. Then, the observations corresponding to distances
that are greater than ()3 + 1.5/QR are labeled as outliers.
When computing the distances, one has the choice of either
accounting for (referred to as elastic) or not accounting for
(referred to as arc-length) parametrization variability.
Simulation 1: We generate 20 ellipses; 15 have both semi-
major and semi-minor axes (independently) following a
uniform distribution on (0.9, 1.1), U (0.9, 1.1), and five have
semi-minor axes following a U(0.9,1.1) and semi-major
axes following a U (aq, az). We try three different settings for
ay and ag: U(1.3,1.5), U(1.4,1.6) and U(1.5,2.5). Thus, we
introduce exactly 25% of shape outliers into the dataset for
each setting. One example simulated dataset for each setting
is displayed in Figs. 6(a)-(c). We focus on outlier detection
for the shape component in this simulation.

The results of this simulation are reported in Fig. 7(a).
Mild shape outliers were created with the outlying semi-
major axis between (1.3,1.5) (blue). The performance of
true positive shape outlier detection improves substantially
when the outlying semi-major axis length increases by only
0.1 of a unit to (1.4, 1.6) (red). Finally, with semi-major axis
length being between (1.5,2.5) (green), the shape outlier
detection performance is very stable in terms of the choice of
ks. The elastic method of [4] provides average true detection
rates of 54.0%(23.9%), 63.2%(21.0%) and 87.8%(13.6%),
respectively, over the three simulated datasets (the standard
deviations are reported in the parentheses). The nonelas-
tic method of [4] reports average true detection rates of
55.8%(23.8%), 69.4%(20.4%) and 88.8%(13.4%), respec-
tively. Both methods in [4] report false detection rates of
0%(0%) for all cases. The performance of the proposed
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Fig. 6. Sample datasets for Simulation 1 (a) U(1.3,1.5), (b)
U(1.4,1.6), (c) U(1.5,2.5); (d) Simulation 2; and Simulation 3
with (1, x2) equal to (e) (5,5), and (f) (5, 2).
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Fig. 7. Plots of average false (xz-axis) and true (y-axis)
positive outlier detection rates in (%) for (a) Simulation
1 with settings U(1.3,1.5) (blue), U(1.4,1.6) (red) and
U(1.5,2.5) (green), and Simulation 2 (black); and (b) Sim-
ulation 4 with settings [7x/6,7/3] (blue), [n/3,7/2] (red)
and [n/2,27/3] (green). The marks in (a) correspond to
ks = 1.5,1.4,1.3,1.2,1.1,1.0,0.8,0.7,0.6, and in (b) to k, =
1.4,1.3,1.2,1.0,0.9,0.8,0.6,0.5, 0.4.

method is favorable compared to the methods in [4] for
shape outlier detection.

Simulation 2: Next, we consider 20 sets of closed curves
from the MPEG-7 dataset, with each set containing exactly
20 shapes. For each replication, we randomly select one
set from the 20 sets of outlines as the non-outlying class
and randomly replace two outlines within the non-outlying
class by two outlines randomly chosen from the other sets
to introduce 10% of outliers. We again focus on outlier
detection for the shape component. One example simulated
dataset is displayed in Fig. 6(d). The results, shown in
Fig. 7(a) in black, demonstrate that our method performs
well in this setting. The elastic method of [4] reports an
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Average true and false positive outlier detection rates (in % with
standard deviations in parentheses) for data in Simulation 3.

TABLE 1

(K1, ko) 5,5) 54 53) 52)
e 98.7 (32) | 97.6 (4.2) | 93.8 (6.3) | 86.8 (3.8)
by 0.1(0.3) | 02(05) | 0.2(0.6) | 02(0.6)

average true detection rate of 91.5%(24.7%) and an average
false detection rate of 1.6%(3.5%), while the nonelastic one
gives an average true detection rate of 73.5%(37.2%) and
an average false detection rate of 1.2%(3.2%). Again, the
proposed method performs well compared to [4].

Combining our observations from Simulations 1 and

2, we advise the following general settings for the shape
outlier cutoff constant k,: mild shape outliers detected
with ks € [0.7,1.1), regular shape outliers detected with
ks € [1.1,1.4) and severe shape outliers detected with
ks > 1.4. This multiscale approach to outlier detection al-
lows for better exploration of complex elastic curve datasets.
Simulation 3: We use this simulation to test the proposed
outlier detection method for circular data based on cutoffs
motivated by the von Mises distribution. Specifically, we
generate 100 angles using a mixture of two von Mises
distributions: each angle is generated with a probability
of 0.8 from a von Mises distribution with mean 7 and
concentration parameter x1, and with a probability of 0.2
it is generated from a von Mises distribution with mean
%77 and concentration parameter k3. Thus, we introduce
approximately 20% of outliers into the dataset. We use the
following pairs of (k1,k2): (5,5), (5,4), (5,3) and (5,2). Two
example simulated datasets are displayed in Figs. 6(e)-(f).
The results of this simulation, shown in Table 1, confirm
that the proposed outlier detection method, assuming the
von Mises distribution for the circular data, is effective and
robust. To the best of our knowledge, there are no meth-
ods in the current literature that can detect 2D orientation
outliers in elastic curve data.
Simulation 4: We generate 3D rotation matrices via ma-
trix multiplication of three basic rotation matrices, R;(«),
R, (), and R (v), which rotate a shape about the =, y and
z-axes, respectively, using R = R, (a)R,(8)R.(v). Here,
a,  and «y denote the angles of rotation and take values in
[0, 27). For each replication, we generate 100 rotation matri-
ces, such that with probability 0.8 o, 8, v € U(0,7/6) and
with probability 0.2 «, 8, v € U(01,63). We choose the fol-
lowing three settings for this simulation: (a) 1 = 7/6, 63 =
/3, (b) 61 = 7/3, 03 = /2, and (c) 01 = 7/2, O = 27/3;
the last setting generates rotations farthest from identity. As
a result, we introduce approximately 20% of 3D orientation
outliers into the dataset.

Mild 3D orientation outliers were created with «, 3, v €
U(%, 5)- From the results shown in Fig. 7(b), we can see that
the true detection rates drop very fast as k, increases. In con-
trast, with o, 3, v € U(%, ) and with o, 3, v € U(F, 2?”),
the performance of both the true and false detection rates
is very good across almost all of the k, values in the
table. We advise using the following scale for k,: mild 3D
orientation outliers are detected with &, € [0.5,0.9), regular
3D orientation outliers are detected with k, € [0.9,1.3) and

Fig. 8. Separation of (b) location, (c) scale, (d) shape, (e) orien-
tation, and (f) phase variabilities in the (a) 3D spiral data.
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Fig. 9. (a) Location, and (b) phase boxplots for the spiral data.

severe 3D orientation outliers are detected with &k, > 1.3.

6 APPLICATIONS TO REAL DATA

Next, we assess our method on four elastic curve datasets.
The first example considers artificially generated 3D helical
curves. The second example visualizes variability in signa-
tures, which are planar open curves. In the third example,
we visualize variability in a set of three-dimensional brain
fibers extracted from a diffusion tensor magnetic resonance
image (DT-MRI). Finally, in the last example, we study
variability in 3D curves generated by the Lorenz system.
Example 1: This study considers variability in 70 spiral
curves. We plot the original data in Fig. 8(a). The variability
of the spirals is quite complex and involves differences in
shape, orientation, length and location. As a byproduct of
computing the shape median, we additionally extract the
parameterization variability. While this component is often
regarded as a nuisance variable in shape analysis, it may
be informative in some multivariate curve data settings. We
display the separation of different sources of variability in
Figs. 8(b)-(f). Based on the length of each spiral, we discover
two scale outliers that are substantially longer than other
spirals (Fig. 8(c)). The plot of the 3D orientations in Fig. 8(e)
shows that this component has a lot of variability.

The location boxplot is displayed in Fig. 9(a); we find no
location outliers. The two clusters of reparameterizations in
Fig. 8(f) indicate that in order to match the timing of the
features on the median shape, some of the parameterization
functions must go faster in the beginning and then slower,
while others go slower first and then faster; few go at
a similar pace as the median. The phase boxplot in Fig.
9(b) summarizes these features: the distance from either
of the two phase quartiles to its corresponding extreme is
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Fig. 10. (a) Shape boxplot, and (b) mild shape outliers for the
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Fig. 11. Deformation between shape centroids of two clusters
formed according to the phase functions in Fig. 8(f).

much less than to the median, which implies that the phase
functions are spread out toward the two phase extremes
where the clusters are formed. Note that this clustering
is closely related to the variability in shape of the spirals,
which we discuss next.

Fig. 10 summarizes the shape component variability in
the spirals. The shape boxplot is displayed in Fig. 10(a). The
shapes in this dataset vary in mostly two ways. From the
shape median to the blue shape quartile and corresponding
cyan extreme, the spiral stretches, becomes thinner and the
straight segment extends; from the shape median to the
green shape quartile and corresponding magenta extreme,
the spiral contracts, becomes thicker and the straight seg-
ment shortens. We can also visualize the relative similarities
between each pair of the feature summary shapes: the green
quartile and magenta extreme are much closer to each other
than the blue and cyan pair. This is consistent visually as
the green and magenta spirals are more similar to each
other in terms of shape than the blue and cyan spirals. We
detect four mild shape outliers (Fig. 10(b)), all of which have
very elongated, thin spirals and long straight segments. In
comparison, the elastic method of [4] flags six outliers.

The variability in the shape boxplot can be further re-
lated to the observed phase variability. On the one hand,
compared to the shape median, the straight segments of the
blue quartile and cyan extreme are longer, and the spirals
are thinner; on the other hand, the straight segments of
the green quartile and magenta extreme are shorter, and
the spirals are thicker. In order to match the features across
these different summaries, the phase functions correspond-
ing to the shapes similar to the blue quartile and cyan
extreme have to traverse slower along the spiral and then
faster along the straight segment; in contrast, the phase
functions corresponding to the green quartile and magenta
extreme have to traverse along the spiral faster and then
slower along the straight segment. This explains the two

4

(b)

v

Fig. 12. (a) Orientation boxplot, and (b) mild orientation outliers
for the spiral data.

clusters evident in the extracted phase functions. Fig. 11
displays the geodesic (minimal deformation) path between
the shapes of the centroids of spirals clustered according to
phase sampled at five equally spaced points (black shapes
along the path). The first cluster corresponds to the phase
functions in Fig. 8(f) concentrated below the 45 degree
line (i.e., identity reparameterization). Most shapes in this
cluster look like the blue quartile and cyan extreme in Fig.
10(a), and the resulting shape mean in this cluster is the
red curve in the geodesic path (thin spiral with long straight
segment). The second phase cluster corresponds to functions
in Fig. 8(f) concentrated above identity reparameterization.
Most shapes in this cluster look like the green quartile and
magenta extreme in Fig. 10(a), and the resulting shape mean
in this cluster is the blue curve in the geodesic path (thick
spiral with short straight segment).

The three-dimensional orientations extracted from the

spiral data are displayed in Fig. 12 as rotations of the
standard frame in R3. In each plot, the thin red, green and
blue axes represent the original x, y and z-axes, respectively,
corresponding to an identity rotation. The thick red, green
and blue axes represent the z, y, and z axes, respectively,
after applying the desired rotation. Fig. 12(a) displays the
orientation boxplot. Since the orientation component of
the spirals appears to be quite random, there does not
seem to be an intuitive pattern in this display. As in the
shape boxplot, the relative separation between any pair of
the feature summary rotations is based on the orientation
distance between them; this improves visualization as it is
challenging to observe in the original plot in Fig. 8(e). Two
rotations are flagged as mild orientation outliers and are
displayed in Fig. 12(b).
Example 2: This real data study considers a dataset
of 40 handwritten signatures “Lau” from the SVC 2004
dataset [18]. The signatures are shown in Fig. 13(a). The
reparametrization variability in this example can possibly
represent different speed of writing.

We extract the different components of variability in the
data and show them in Figs. 13(b)-(f). We also compute
the length of each signature and provide the standard
boxplot in Fig. 13(c); no scale outliers were found in this
dataset. The small variability in the orientation component
(Fig. 13(e)) is consistent with a visual inspection of the 40
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Fig. 13. Separation of (b) location, (c) scale, (d) shape, (e) orien-
tation, and (f) phase variabilities in the (a) signature data.

Fig. 15. Separation of (b) location, (c) scale, (d) shape, (e) orien-
tation, and (f) phase variabilities in the (a) 3D fiber data.
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Fig. 14. (a) Location, (b) orientation, (c) phase, and (d) shape
boxplots for the signature data.

signatures. Nonetheless, we still flag two orientation outliers
as seen in the boxplot in Fig. 14(b). We display the location
boxplot in Fig. 14(a) and detect four location outliers. We
also detect two phase outliers in this signature data (red
phase functions in Fig. 14(c)), which may indicate that those
two signatures were written at significantly different speeds
relative to the other signatures.

Finally, we assess the shape variability in this signature

dataset. We display the shape boxplot in Fig. 14(d) and see
that the five feature summary shapes are approximately
equally separated. From the shape median to the green
shape quartile and magenta extreme, the last letter “u” in the
signature tends to look more like a “w” and the horizontal
segment in the first letter “L” becomes tilted. On the other
hand, from the shape median to the blue shape quartile
and cyan extreme, the horizontal segment in the “L” shifts
higher. Our method and the elastic method of [4] do not
detect any shape outliers in this dataset.
Example 3: The data in this study considers fiber tracts in
the human brain extracted from a DT-MRI and consists of
176 3D open curves. The data is presented in Fig. 15(a).
Based on an initial observation, the fibers can be clustered
into two groups (this result was reported in [3]). Addition-
ally, we know that some of the fiber curves are replicated.

We extract the different components of variability in this
data and display them in Figs. 15(b)-(f). As seen in Fig.
15(c), we flag several fibers as scale outliers based on their
length. Additionally, based on the plots of the shape and
orientation components in Figs. 15(d) and (e), there seem to
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Fig. 16. (a) Location, and (b) phase boxplots for the fiber data.

() ®)

Fig. 17. (a) Shape boxplot, and (b) severe shape outliers for the
fiber data.

be fewer than 176 observations in the original dataset; this is
consistent with our prior knowledge that there are multiple
replicates in this data. The rotations in Fig. 15(e) indicate
some clustering in this component. The location boxplot is
displayed in Fig. 16(a) and no location outliers are detected.
The phase boxplot is shown in Fig. 16(b) and is considered
a nuisance variable in this application.

Next, we investigate the variability in the shape compo-
nent. We observe from Fig. 17(a) that the magenta extreme
shape and the green quartile shape are separated by a larger
distance than their blue and cyan counterparts. Also, from
the shape median to the blue shape quartile and cyan ex-
treme, the left part of the fiber straightens and flattens, and
the right part of the fiber tends to extend rightward; from
the shape median to the green shape quartile and magenta
extreme, the left part of the fiber curves inward, and the
right part of the fiber straightens. We detect 11 severe shape
outliers. Interestingly, all of them are exactly the same, as
shown in Fig. 17(b). This confirms our prior knowledge of
the existence of duplicates, which were perhaps introduced
during initial data pre-processing. The elastic method of [4]
also flags the same 11 shape outliers.

Finally, we display the orientation boxplot in Fig. 18.
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Fig. 18. (a) Orientation boxplot, (b) mild, (c) regular, and (d)
severe orientation outliers for the fiber data.
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Fig. 19. Separation of (b) location, (c) scale, (d) shape, (e) orien-
tation, and (f) phase variabilities in the (a) Lorenz trajectories.
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Fig. 20. (a) Location, (b) phase, and (c) shape boxplots for the
Lorenz trajectories.

There appears to be little variability in this component, and
this is consistent with our initial observation from Fig. 15.
We visualize the distribution of orientations by examining
the relative separation between pairs of boxplot features.
Somewhat unexpectedly, we detect 55 orientation outliers
that can be separated into five groups, where each group
contains 11 rotations that are exactly the same as seen in
Figs. 18(b)-(f); this is again due to duplicates in the data.
Within the five different rotation outliers, one of them is
flagged as a mild orientation outlier, two as regular outliers
and two as severe outliers.
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Fig. 21. (a) Orientation boxplot, (b)-(j) mild orientation outliers,
and (k)&(l) regular orientation outliers for the Lorenz trajectories.

Example 4: Lastly, we examine three-dimensional trajecto-
ries of the Lorenz system [19], a set of ordinary differential
equations that were originally used to describe the simpli-
fied dynamics of convection in the atmosphere. They have
since also been used to model other oscillating systems,
including lasers and dynamos. An important characteristic
of the Lorenz system is its sensitivity to small perturbations
for certain parameter regimes. In fact, small deviations
over time can result in exponentially fast divergence of the
system trajectory, a phenomenon called chaos. Because this
system is restricted to lie on a lower-dimensional manifold,
called the Lorenz attractor, individual trajectories share sim-
ilar qualitative features such as time spent in each lobe of the
attractor. This variability also changes over time, as small
perturbations typically require some time to propagate into
large differences in trajectories. We examine a posterior
sample (of size 100) over the solution trajectory for the
Lorenz system with fixed initial states and parameter values
in the chaotic regime [20]. Because the Lorenz system does
not have a closed form solution, discretization uncertainty
characterized by this posterior sample qualitatively resem-
bles a system with small perturbations across the domain.
Initially, trajectories are very similar, but begin to diverge
over the last third of the domain. The proposed approach
provides a useful visualization tool to study the distribution
of these complex nonlinear paths.

The dataset is displayed in Fig. 19(a). We separate the
original data into various components of variability shown
in Figs. 19(b)-(f). The scale boxplot in Fig. 19(c) detects six
scale outliers, all of which are significantly shorter in length
than other Lorenz attractor curves. We also find that the
Lorenz attractor curves appear very similar in shape (Fig.
19(d)). The extracted orientation components also have very
small variability (Fig. 19(e)). We construct the location box-
plot in Fig. 20(a) and flag four location outliers. The phase
component (Figs. 19(f) and 20(b)) of the Lorenz attractor
curves is more interesting: there is almost no variability
until the last one-third of the interval. This is consistent with
the chaotic nature of this system; small initial difference in
the seemingly coincident Lorenz attractor curves leads to
massive divergence in the path of the curves at later stages,
popularized as “the butterfly effect”.
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The shape boxplot is shown in Fig. 20(c). Although the
shapes appear similar, we note relative differences based on
the separation of the feature summaries: the blue quartile
and cyan extreme are much closer to each other than the
green quartile and magenta extreme. That is, the blue and
cyan curves are more similar to each other in shape than the
green and magenta ones, though we cannot see much of the
subtle differences. Both our method and the elastic method
of [4] detect no shape outliers.

Finally, we construct the orientation boxplot in Figure
21(a). As in the case of the shape component, it is difficult to
see the difference in the derived rotations, since they vary in
a very small range of angles. However, using the proposed
tools, we detect a total of 11 orientation outliers, among
which nine are mild outliers and two are regular outliers.
Computational Cost: The computational cost of the pro-
posed approach for Examples 1-4 is 32, 27, 68 and 895 sec-
onds, respectively. A more detailed assessment of algorithm
convergence and computational cost is provided in Section
4 of the Supplementary Material.

7 SUMMARY AND FUTURE WORK

In this article, we extended the idea of Tukey’s boxplot from
univariate Euclidean data to elastic curve data. The goal
of this paper is to define the median, the two quartiles,
the two extremes and detect outliers for various sources
of variability in curve datasets. To achieve this goal, we
introduced a set of procedures to construct boxplot-type
displays for visualization of the location, shape and orienta-
tion components often present in elastic curve observations
(the reparameterization and scale components are assessed
using previously introduced methods). Different from tradi-
tional approaches to visualizing curve data based on a single
boxplot display, often constructed via depth-based methods,
the proposed approach is metric-based and considers the
different sources of variability separately; the boxplots are
generated via geometric tools defined on each of their rep-
resentation spaces. Our method thus allows for independent
outlier detection for each component. In the future, we will
focus on extending this concept of component-wise boxplot
displays to more complex functional data, including images
and shapes of surfaces. In both cases, the Riemannian ge-
ometry of the phase component is much more complex and
requires the development of novel, computationally efficient
tools.
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