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Abstract

We describe a recent framework for statistical shape analysis of curves and show
its applicability to various biological datasets. The presented methods are based on
a functional representation of shape called the square-root velocity function and a
closely related elastic metric. The main benefit of this approach is its invariance to
reparameterization (in addition to the standard shape-preserving transformations of
translation, rotation and scale), and ability to compute optimal registrations (point
correspondences) across objects. Building upon the defined distance between shapes,
we additionally describe tools for computing sample statistics including the mean and
covariance. Based on the covariance structure, one can also explore variability in shape
samples via principal component analysis. Finally, the estimated mean and covariance
can be used to define Wrapped Gaussian models on the shape space, which are easy to
sample from. We present multiple case studies on various biological datasets including
(1) leaf outlines, (2) internal carotid arteries, (3) Diffusion Tensor Magnetic Resonance
Imaging fiber tracts, (4) Glioblastoma Multiforme tumors, and (5) vertebrae in mice.
We additionally provide a MATLAB package that can be used to produce the results
given in this manuscript.
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1 Introduction
1.1 Motivation

Shape is one of the most fundamental properties of biological structures, and it
provides a unique characterization of their overall appearance. For example, the shape
of a leaf outline as well as the internal vein structure is highly indicative of the tree
species that the leaf came from Cope et al. (2012) and Laga et al. (2014). In another
context, the shape/structure of a protein is often closely related to its function (Kolodny
et al. 2006; Hasegawa and Holm 2009; Liu et al. 2011). Thus, shape analysis provides
an important set of data analytic tools for multiple biological applications including
botany, bioinformatics, medical imaging, etc. Shape analysis methods develop appro-
priate mathematical representations of shape, metrics on the corresponding shape
spaces, and efficient computational tools that can be used to quantify shape differ-
ences. Statistical shape analysis treats shape as a random object and provides tools for
computing summary statistics of a sample of shapes, characterization of variability
in shape classes via principal component analysis (PCA), classification and cluster-
ing of shapes, definition and fitting of statistical models on shape spaces as well as
associated inferential tools such as hypothesis testing (Kurtek and Xie 2015). Fig-
ure 1 shows several examples of biological data that can benefit from statistical shape
analysis: This includes leaf outlines, Glioblastoma Multiforme (GBM) tumors, mouse
vertebrae, Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) fiber tracts and
internal carotid arteries. For the leaf and GBM tumor examples, we show the out-
lines in red overlayed on the original images from which the data were extracted. We
additionally include two simulated spiral curves that are helpful in understanding the
shape of a-helices in protein structures (Liu et al. 2010). It is also important to note that
while this paper focuses on applications in biology (in the most general meaning of the
word), statistical shape analysis plays an important role in many other applications,

Leaf Qutlines GBM Tumors Mouse Vertebrae
DT-MRI Fibers Internal Carotid Arteries Simulated Spirals

A e e |«

Fig.1 Several examples of biological structures where shape plays an important role in the characterization
of their appearance: leaf outlines extracted from photograph images, GBM tumor outlines extracted from
MRIs, mouse vertebrae, fiber curves extracted from DT-MRISs, internal carotid arteries and simulated spirals
(Color figure online)

@ Springer



2054 M. H. Choetal.

including computer vision, graphics, anthropology, geology, and more (Srivastava and
Klassen 2016).

1.2 Landmark-Based Shape Analysis

In 1984, Kendall (1984) defined shape as a geometric property of an object that remains
after rigid motion (translation and rotation) and scaling variabilities are filtered out.
Kendall, and many others, represented shapes via a finite collection of points called
landmarks. The landmarks can either be provided by an expert in the application area of
interest or automatically identified through simple mathematical features of the objects
such as high absolute curvature. The former type of landmarks is called anatomical
due to their semantic meaning in the context of the objects being studied. The latter are
simply called mathematical landmarks. Statistical shape analysis using the landmark-
based representation is very well-developed, especially for two-dimensional objects;
there are many books on this topic including Small (1996), Bookstein (1992) and
Dryden and Mardia (2016). These methods have also reached deep into biological
applications; for some examples, see Mardia and Dryden (1989), O’Higgins and Dry-
den (1992), Dryden and Mardia (1993) and Bookstein (1984, 1996). However, in
many modern “big data” scenarios, the need for landmark selection becomes imprac-
tical and sometimes even impossible. In medical imaging, radiologists and doctors are
usually the experts who annotate landmarks for shape analysis. However, when the
sample size reaches hundreds or thousands of images, this process becomes expen-
sive and extremely tedious. At the same time, in the context of tumor shape analysis,
anatomical landmarks often do not exist. Another drawback of landmark-based shape
representations is loss of information, i.e., once the landmarks are chosen, the rest of
the object’s outline is discarded.

1.3 Contour-Based Shape Analysis

In the past two decades, there has been a steady push in the shape analysis community
to define new tools based on functional representations of the objects’ outlines. These
methods bypass the need for landmark selection and use the entire outline as a shape
representation for statistical analysis. The main challenge in such approaches is the
need for an additional form of invariance in the analysis: Reparameterizations of the
functions representing the objects’ contours do not change their shape. There are two
ways to deal with this issue. Earlier works fixed the parameterization of all objects to
arc-length and proceeded with shape analysis under this normalized setting (Zahn and
Roskies 1972; Klassen et al. 2004; Srivastava et al. 2005). The main drawback of these
approaches is that fixed parameterizations are often suboptimal in terms of the match-
ing of geometric features across objects, i.e., the same part of a leaf outline may not
be well-matched across two leaves under fixed, arc-length parameterization. Allow-
ing arbitrary parameterizations of objects in the representation of shape allows one
to achieve invariance to this nuisance variability through the process of registration.
Informally, registration achieves point-to-point correspondence across objects based
on their geometric features. More formally, this process requires a metric on the rep-
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Fig. 2 Translation, scale, rotation and reparameterization represent nuisance transformations in shape
analysis (left). We generally observe curve data under random such transformations (right). Different param-
eterizations are displayed using a change in color as one traverses the outline from the start (blue) to the
end point (yellow), and as points on the outline sampled according to the rate of traversal (compared to
arc-length, points are more (less) spread out when the curve is traversed faster (slower) (Color figure online)

resentation space that is preserved under common reparameterizations. One can then
compute optimal registrations, under this metric, by minimizing the distance between
two shapes with respect to reparameterization (this process is described formally in
Sect. 2.3).

Figure 2 confirms that a translation, scale, rotation and reparameterization of the
outline of a biological object do not change its shape. The translation, scale and rotation
nuisance variables only change the two-dimensional coordinates traced by the outline
of the object; in addition, a reparameterization (a special function made precise later)
changes the speed at which the outline is traversed (shown in the figure using color
and spacing between neighboring points along the outline). Thus, any statistical shape
analysis framework must respect the invariance to these four transformations.

This paper describes a particular recent framework for shape analysis of 2D and 3D
curves that allows elastic registration. The methods described here are based on an elas-
tic metric (hence, elastic registration) (Mio et al. 2007; Younes 1998), which provides
a natural and intuitive interpretation of shape deformations, and their contribution to
comparisons and statistics of shapes. An important ingredient is a simplification of
the elastic metric through a convenient transformation called the square-root velocity
function (SRVF) (Joshi et al. 2007; Srivastava et al. 2011; Kurtek et al. 2012; Srivas-
tava and Klassen 2016); this, in turn, allows efficient computation on the shape space,
thus facilitating statistical analysis of potentially large shape datasets. Some aspects of
the mathematical properties of the SRVF framework are discussed in Bruveris (2016)
and Lahiri et al. (2015). As seen in detail in subsequent sections, the SRVF chooses a
particular instance within the general family of elastic metrics by fixing two parame-
ters related to penalties on stretching and bending of curves. Recent efforts within the
community have focused on extending the SRVF approach to accommodate the entire
family of elastic metrics (Kurtek and Needham 2018; Bauer et al. 2018). Other exten-
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sions of the original SRVF framework consider landmark-constrained elastic shape
analysis, which is often of interest in biological applications (Strait et al. 2017).

1.4 Organization of Manuscript

The intent of this paper is to provide a light introduction to elastic shape analysis of
curves under the SRVF framework, with many biological examples and a ready-to-use,
documented MATLAB package to reproduce some of the analyses. To achieve these
goals, the rest of this paper is organized as follows. Section 2 provides the necessary
mathematical background to define the elastic shape analysis framework. In particular,
we provide a detailed description of the elastic metric and it’s relation to the SRVFE.
We also show how one can achieve invariance to all shape-preserving transformations
under this metric and representation. Section 3 builds on this by defining sample
statistics of shapes including the mean and covariance, and for summarizing variability
in shape data via PCA. It also provides tools for random sampling from the so-called
Wrapped Gaussian distribution, which is extremely useful for model validation. In
Sect. 4, we begin by describing the multiple datasets used throughout this paper. Then,
to clearly show the benefits of the elastic shape analysis approach, we first apply it
to a simulated spiral dataset. We then showcase the method on multiple biological
datasets. We close the paper with a short discussion in Sect. 5.

2 Mathematical Framework

In this section, we first provide several preliminary definitions that will be helpful
throughout the rest of the paper. For a more comprehensive review of these concepts, we
refer the interested reader to texts on differential and Riemannian geometry including
Boothby (1975), Lang (2001) and Spivak (1979). We then shift our attention to the
description of elastic shape analysis under the SRVF framework.

2.1 Definitions and Preliminaries

In differential geometry, a nonlinear manifold M is a space that is not a vector space:
ax + by ¢ M evenif x,y € M for a, b € R. However, manifolds have an important
property of being locally Euclidean, i.e., a small neighborhood of any point on the
manifold can be represented as a linear Euclidean space. The tangent space at a point
p € M is a vector space; it contains all possible tangential perturbations of p and is
denoted by T,,(M). A Riemannian manifold is a smooth manifold M equipped with
a smoothly varying inner-product ({-, -)) , defined on the linear tangent spaces. This
inner-product is called a Riemannian metric. In this paper, we denote elements of a
tangent space at a point p by §p € T),(M) and refer to them as tangent vectors.

The Riemannian structure on M provides many important geometric tools. First,
using the Riemannian metric, one can define the length of a path between two points
p.q € M as Lla] = fol \/((d(r), &(7)))a(r)dt, where o is a parameterized path
between p and g on M, and « denotes its time derivative. The shortest path between
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two points p and g on the manifold is called a (locally distance minimizing) geodesic:
@ = argming[o,1}— M|a(0)=p.a(l)=¢ L[]. One can think of geodesics as paths of
minimal deformation, under the defined Riemannian metric, between points p and g on
M. Then, the geodesic distance between p and ¢ on M is defined as d(p, q¢) = L[&].
For any point p € M, the exponential map exp, : T,(M) — M maps points in
the tangent space, p € T,(M), to the manifold M, such that starting from p with
velocity & p one reaches exp , (6 p) along the geodesic path in unit time. Thus, we also
sometimes refer to the tangent vector § p as a velocity or shooting vector. The inverse
of this operation, called the inverse-exponential map exp;l : M — T,(M), projects
apoint g € M to a corresponding tangent vector 8p € T),(M) using §p = exp,‘,1 (@);
the length of this vector (as measured via the Riemannian metric) is exactly the same
as the length of the geodesic path between p and ¢ on M. The exponential map and
its inverse allow us to seamlessly transfer points between the nonlinear manifold M
and the linear tangent space T, (M).

A highly relevant Riemannian manifold for shape analysis is the infinite-
dimensional sphere in L2([0, 1], RY) = {f : [0,1] — Rdlfol | f()|dr < oo},
defined as Soo = {f € L2([0, 1], RY)| fo‘ | £()|*dr = 1}, endowed with the standard
[L? Riemannian metric given by (for two tangent vectors 8 f1, 8 f> € T7(Soo0))

1
((8f1.8/2)) 2/0 (8.f1(2), 8 f2(1))dr, ey

where the inner-product inside the integral, (-, -), is the standard Euclidean prod-
uct in R?. The relevant tangent space is defined as T7(Seo) = {6f : [0,1] —

d _ . 2 . . _ 1 2 1/2
RY|((3 f, f)) = O}. The resulting L2 norm is given by [|5 f|| = (fo 18 £ (1) dt) ,

where | - | denotes the standard Euclidean norm in R¢. Under this setup, the geodesic
distance and path between any two functions fi, f> € S can be computed analyti-
cally using the following two formulas:

d(f1. f2) = cos™ ({(f1. f2))) = v, )
a(t) = — ! (sin(v(l — 1)) f1 +sin(vt) fo), 1 €[0,1]. 3)
sin(v)

Finally, one can also compute the exponential and inverse-exponential maps analyti-
cally using the following two formulas (f1, f2 € Sec and 8 f € T, (Seo)):

)
exp,, (3.f) = cosIS £ fi + mumnﬁ, @
exP}I1 (f2) = sinv(v) (f2 — cos(v) f1). 5)

As will becomes obvious in subsequent sections, the availability of analytical expres-
sions for these geometric tools greatly simplifies the computation needed for statistical
shape analysis.
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Fig.3 Several examples of reparameterization functions of D = [0, 1]. The identity, i.e., no reparameteri-
zation, is given in red (Color figure online)

2.2 Elastic Riemannian Metric, Square-Root Velocity Function and Pre-shape
Space

Although shapes seem to be trivial for human beings to understand, mathematically
defining the notion of shape is a daunting task. As noted earlier, we define shape as
a property of an object’s outline that is invariant to the shape-preserving transforma-
tions of translation, rotation, scale and reparameterization. To treat the topic formally,
we need to define a parameterization of an object’s outline. While the methods and
concepts presented in this paper can be easily generalized to any dimension, to keep
the presentation simple, we focus on two-dimensional, i.e., planar, curves. In this case,
an object’s outline is given by a parameterized curve g : D — R?, where D = [0, 1]
for open curves and D = S! for closed curves (there is no natural start/end point on a
closed curve). We use D where a distinction between these two cases is not necessary.
In the framework presented next, we consider the space of all absolutely continuous
planar curves and denote it by F.

A reparameterization of a curve $ is given by a function y : D — D, which is
smooth with a smooth inverse and preserves the direction of parameterization. We
denote the space of such functions by I" (the set of orientation-preserving diffeomor-
phisms). Figure 3 illustrates several examples of such reparameterization functions for
D = [0, 1], with the identity element (no reparameterization) in red. Given a § € F
and a y € I, the reparameterized curve is given by composing 8 with y: 8 o y.
Intuitively, a reparameterization preserves the shape of a curve and only changes the
speed at which the points along the curve are traversed. Figure 2 shows three exam-
ples of different parameterizations of the same curve. The parameterization in each
case is displayed in two different ways: (1) as a change in color as one traverses the
outline from the start to the end point, and (2) as a set of points sampled on the outline
according to the rate of traversal, i.e., compared to arc length, points are more spread
out when the curve is traversed faster and less spread out when the curve is traversed
slower.

To build a statistical shape analysis framework, we are interested in answering the
following basic questions:

1. What is the distance between two given shapes?
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2. Having a proper distance function, how can we define and find the mean of a

sample of shapes?

What are the principal modes of variation in a sample of shapes?

4. Can we define simple probability models on shapes and generate random samples
from them?

(O8]

As reflected in the order of the statistical queries above, the most critical notion
that must be formalized is the definition of a distance between two shapes. The
simplest solution that comes to mind is the standard L2 distance: |1 — Bl =

1/2
(fol |B1(t) — ﬂz(t)|2dt) . However, it is easy to show that the IL? metric is not

invariant to reparameterization, i.e., |81 — B2ll # |81 o ¥ — B2 o y| in general;
this makes the IL? metric inappropriate for shape analysis of parameterized curves
(Srivastava et al. 2011; Younes 1998).

To this end, we begin by introducing a Riemannian metric, which provides an
interpretable measure of dissimilarity between two curves. First, we represent the

B
T (the

direction or angle function), where 3 denotes the time derivative of A. Note that the
representation of 8 using the pair (r, 6) is unique up to translations. However, this
does not pose problems for shape analysis since shape is defined to be translation
invariant. Under this new representation, we define the so-called Elastic Riemannian
Metric (ERM) as follows (for two tangent vectors (§r1, 661) and (6r2, §6>)) (Mio et al.
2007):

curve f using the pair (r,0) where r = | ,3| (the speed function) and 6 =

({({(8r1,801), (6r2,802)))) (r.0)
—a f 571 (872 (1) ——dr + b / (861 (1), 862(1))r (1)dt. (©6)
D r(t) D

The ERM has an intuitive interpretation: The first term measures stretching of the curve
because the dr;s are variations of the speed function, while the second term measures
bending of the curve since the §6;s are variations of the direction function. Finally,
and importantly, it can be shown that the ERM is invariant to reparameterizations
of curves: dgrm(B1, B2) = derm(B1 © v, B2 o ¥). These properties make the ERM
well-suited for shape analysis of parameterized curves.

Unfortunately, the ERM, as given in Eq. 6, is difficult to use in practice. In fact, even
computing distances under this Riemannian metric turns out to be a difficult numerical
task. To circumvent this issue, Srivastava et al. (2011) defined the square-root velocity

function (SRVF) as ¢ = /r0 = L to0 represent the curve 8. Note that since the

N

SRVF is defined using j only, it is automatically invariant to translations. One can
also show that if the curve B is absolutely continuous, its SRVF is an element of the
space >(D, R?) (Robinson 2012). Finally, the inverse mapping from an SRVF g to
the corresponding curve § is given by the simple formula: 8() = fé q(s)|q(s)|ds for
all 1. The natural metric on the SRVF space is then given by the L.? metric.

The next question is: How is the SRVF related to the ERM? To establish this
connection, we first need to express tangent vectors 8¢ in terms of the corresponding
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@ (b) 0
~ 1

8q = expy (g8,
~ \
200 @

Fig. 4 a Geodesic path and distance between two SRVFs on the pre-shape space C. b Exponential and
inverse-exponential maps on the SRVF pre-shape space C (Color figure online)

tangent vector pairs (8r, §6). To do this, we compute the variation on both sides of the

equation ¢ = +/r@ and get the following relationship 8¢ = ﬁér@ +4/r86. Plugging

this expression into the standard I.? inner-product we get the following:
1 1
((8q1,8q2)) = — | Sri()dra(t)——=dt + [ (861 (t)862(t))r(1)dt, (N
4 Jp r () D

which is exactly the ERM defined in Eq. 6 with (a, b) = (J—P 1). This result is striking!
Instead of working with the complicated ERM, one can simply transform all curves
to their SRVF representations and use the simple IL? metric; the two approaches are
equivalent. The only thing that is sacrificed is the flexibility of working with general
values for (a, b). However, this is a small price to pay for the tremendous computational
simplification.

In addition to translation invariance, we also want to remove variability due to
scaling, rotation and reparameterization. To remove scaling, we simply rescale all
curves to unit length, i.e., [, |Bldr = [pla®)[*dt = |lg||> = 1. Thus, the SRVFs of
unit length curves have I.? norm equal to one and are thus elements of Sy, (we have
already defined many important tools for analyzing elements of S in Sect. 2.1). For
closed curves (D = S'), we have an additional nonlinear closure constraint given by
fS 1 q(t)|g(t)|dt = 0. This leads to two representation spaces that are relevant for shape
analysis: C = {¢g : [0, 1] — IR2|||q||2 = 1} = S (SRVF space of unit length, open
curves)andC¢ = {g : S' — R?|[l¢g[|> = 1, [q1 ¢(t)|q()|dt = 0} C Soc (SRVF space
of unit length, closed curves). These two spaces are termed pre-shape spaces since we
have not yet accounted for the variability due to rotations and reparameterizations.

Figure 4a illustrates the geodesic path and distance between two SRVFs g1 and ¢»
in the pre-shape space C. Since C is a sphere, the geodesic path & is a great circle
connecting g1 and g»; the expression for this path is given in Eq. 3. The corresponding
geodesic distance between g and g» is simply the length of this great circle geodesic
path. Figure 4b illustrates the mapping of points from the tangent space 7, (C) to
the pre-shape space C, and vice versa, using the exponential and inverse-exponential
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maps, respectively. The mathematical expressions for these mappings are given in
Egs. 4 and 5.

2.3 Shape Space and Distance

We use the notion of equivalence classes, also called orbits, to reconcile the remaining
two nuisance variabilities: rotation and reparameterization. First, the SRVF of a rotated
curve OB, where O € SOQ2) (SOQ2) = {0 € R¥*210T0 = I, det(0) = 1} is
the special orthogonal group, which contains all rotation matrices), is simply given
by Ogq. Second, the SRVF of a reparameterized curve 8 o y, where y € I, is given
by (¢, y) = (g o y)+/y. Thus, rotations act in the same way on SRVFs as they do on
the original curves. However, reparameterizations do not; there is an extra term of N2
in the action on SRVFs. Using this new action, one can show that the L2 metric on
the SRVF space is invariant to reparameterizations: ||g1 — q2|| = ||(q1, ¥) — (g2, )|
(we already knew this since the IL> metric on the SRVF space is equivalent to the
parameterization-invariant ERM on the space of curves). We define an equivalence
class of an SRVF as [¢q] = {O(q, y)|O € SO(2), y € I'}, i.e., all possible rotations
and reparameterizations of g. The equivalence class [¢] represents a shape uniquely,
and the set of all such equivalence classes defines the shape space S = {[q]} =
C/(SO(2) x I') (a quotient space of the pre-shape space under the action of the
rotation and reparameterization groups).

We begin by defining the shape distance for open curves. Due to parameterization
invariance of the metric on the pre-shape space, this distance is defined as:

ds(lq1], [2]) = cos 1 ({{gq1, O(g2, Y)))). 8)

inf
(0,y)eSOQ)xT

Denoting the minimizers of Eq. 8 by O* and y*, we can compute g5 = O*(q2, y*) €
[g2], and construct the corresponding geodesic path from g; to g5 for visualizing
shape deformations (this geodesic is a path of minimal deformation between the two
shapes); it is given by the great circle arc connecting ¢ and ¢; on the pre-shape space
C. The minimizer O* € SO (2) can be computed using Procrustes analysis (essentially
a singular value decomposition problem). The minimizer y* € I" can be computed
using the Dynamic Programming algorithm (Robinson 2012) or a gradient descent
approach (Srivastava and Klassen 2016). For closed curves, C¢ C S, and therefore
geodesic paths and distances between shapes are no longer available in closed form.
However, one can use efficient numerical techniques, such as the path straightening
algorithm (Klassen and Srivastava 2006), to perform these computations. We omit the
description of these methods for brevity and refer the interested reader to Srivastava
etal. (2011) for further details. In the remainder of the paper, we abuse notation slightly
and simply use d; to refer to the shape distance between open and closed curves.
Figure 5 explains the process of computing the geodesic distance between two
shapes. The orbits of two SRVFs ¢ and ¢; represent their shapes and contain all of their
possible rotations and reparameterizations. Thus, we are tasked with computing the
distance between the two orbits. To do this, we fix g in [¢;] (corresponding to the left
camel) and search for an optimal rotation O* € SO (2) and optimal reparameterization
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[QI]LH[QQ]

ds([q1], [g2])

Fig. 5 Computation of the geodesic distance between shapes involves the search for an optimal rotation
and reparameterization of one of the curves to best match it to the other. Initially, both curves are sampled
using arc-length parameterization (left and bottom-right camels). The top-right camel has the same shape
as the bottom-right camel, and has been optimally rotated and reparameterized to match the left camel (note
the different spacing of points and colors on the two front legs). Different parameterizations are displayed
using a change in color as one traverses the outline from the start to the end point, and as points on the
outline sampled according to the rate of traversal (Color figure online)

Non-Elastic Elastic

Fig. 6 Comparison of elastic versus nonelastic shape deformations. The two given shapes are shown in
blue (start of path) and red (end of path). Each geodesic path of shapes is sampled using five equally spaced
points in black (Color figure online)

y* € I' that moves g3 (corresponding to the bottom-right camel) along its orbit to a
point g5 (corresponding to the top-right camel) that is closest to the orbit of g;. Then,
the distance between these two elements is the same as the distance between the two
orbits in the shape space S. The change in rotation and parameterization between the
bottom-right and top-right camels is clear and allows for better matching of geometric
features for the camel on the left and the camel on the right.

To further motivate the use of elastic shape analysis in real applications, we compare
nonelastic deformations to their elastic counterparts for two examples taken from
the MPEG-7 dataset,! which consists of 1400 different shapes evenly split into 70
classes. This dataset is commonly used as a benchmark for various types of computer
vision algorithms. Figure 6 presents these results. Elastic refers to a shape deformation
computed under the SRVF representation in the shape space S; nonelastic refers to a
shape deformation where the parameterization of both curves is fixed to arc-length.

1 http://www.dabi.temple.edu/~shape/MPEG7/dataset.html.
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Visually, the elastic deformations are much more natural, where important features of
the objects, such as legs, are preserved along the path. Elasticity becomes even more
important during statistical analysis as any shape distortions become amplified. As an
example, without formally defining an average shape, the midpoints of the presented
paths are averages of the two endpoints. It is clear that elastic averages are better
representatives than nonelastic ones.

3 Statistics on the SRVF Shape Space

After defining a meaningful distance between shapes, we can now also define various
sample shape statistics. In the following, we define the mean, covariance, PCA, and a
simple Wrapped Gaussian model that is easy to sample from.

3.1 Karcher Mean Shape

The most basic summary statistic of interest is the sample mean shape. The main
challenge in defining this mean is that the shape space S is not a vector space, but rather
a quotient space of a nonlinear manifold. This points in the direction of computing
an extrinsic or intrinsic mean on S. Extrinsic statistics require an embedding of the
shape space in a larger linear space; it is not clear how this can be done for the shape
space S. Thus, we proceed with the intrinsic shape mean defined through the Karcher
mean.

Suppose {B1, ..., Bn} is a random sample of parameterized curves, and their cor-
responding SRVFs are given by {q1, ..., g»}. Then, the Karcher mean shape is given
by:

n
[] = arg min ) " ds(Iq], [a:)*. ©)
g [7]1eS ; s\Lq1s 19i

The Karcher mean [/i] is actually an entire equivalence class. However, for further
analysis and visualization, we simply choose a single element within this class i € [/].
The optimization problem in Eq. 9 must be solved numerically via a gradient-based
algorithm (Pennec 2006; Le 2001). The detailed algorithm for computing the Karcher
mean shape is given in Kurtek et al. (2013) and uses the analytical expressions for
the exponential and inverse-exponential maps provided in Egs. 4 and 5. Note that the
solution obtained via this algorithm may only be a local minimum. In some cases, one
may be interested in computing a more robust measure of center such as the median.
To do this, one minimizes the sum of shape distances rather than the sum of squared
shape distances (Fletcher et al. 2009). A detailed gradient-based algorithm for this
optimization is also given in Kurtek et al. (2013).

3.2 Karcher Covariance and Principal Component Analysis

Principal component analysis (PCA) is a statistical technique often used to (1) reduce
the dimensionality of a dataset while retaining as much variation as possible and
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(2) explore the main directions of variability in data. This is achieved through linear
transformations of the original variables to new, uncorrelated variables called principal
components (PCs). In general, PCA is performed via an eigendecomposition of the
sample covariance matrix estimated from a set of given data. See Jolliffe (2002) for a
comprehensive introduction to PCA.

In the setting of elastic shape analysis, we estimate the sample covariance matrix
and perform PCA in the tangent space at the estimated Karcher mean, [, as follows.
We first project all of the data to this tangent space using the inverse-exponential map:
8qf = exp;1 (g) € Tp(S),i = 1,...,n, where g/ denotes the optimally rotated
and reparameterized SRVF ¢; with respect to the mean /1. Using this representation,
the covariance kernel is defined as a function K : D x D — R given by K (w, ) =
1/(n — 1)) Z?zl(éqi* (w), 8ql.*(t)). Computationally, since the curves have to be
sampled with a finite number of points, say N, the resulting covariance matrix is
finite-dimensional and can be computed as follows. Let X € R?¥*" be the observed
tangent data matrix with n observations and N discretization points in R? on each
tangent vector (where each 8¢ is reshaped to a vector of size 2N). Then, the Karcher
covariance matrix Koy € RV *2V is computed using Koy = (1/(n—1))X X7, since
the Karcher mean has been identified with the origin of the tangent space T} (S).

Using the covariance matrix K>y, one can perform PCA in the tangent space using
standard singular value decomposition: Koy = U XU . The orthonormal matrix U
contains the principal directions of variability in the observed data (orthonormal PCA
basis). The diagonal matrix X contains the singular values of K,y , ordered from largest
to smallest, which correspond to the PC variances. Since the number of observations in
real data analysis problems is typically smaller than the dimensionality of each tangent
vector, i.e., n < 2N, there are at most n — 1 positive singular values in X. Then, the
submatrix formed by the first » columns of U, call it U, spans the principal subspace
of the observed data and provides the n observations of the principal coefficients in
R" as C = U,TX . An important tool in statistical shape analysis is the ability to
visually assess the principal directions of variation by following geodesic paths in the
directions given by columns of the matrix U. For a particular direction U, this is done
by computing exp (t\/ZTj Uj), where X;; is the jth singular value and the constant
t is varied from t = — k to t = k (this will trace the geodesic path from — k standard
deviations to + k standard deviations around the mean). We provide visualizations of
this type in a later section to validate our PCA models.

3.3 Wrapped Gaussian Model and Random Sampling

Another useful statistical tool in shape analysis is the ability to generate random shapes
from some model on the shape space; we use a simple one called the Wrapped Gaussian
model. After dimension reduction through PCA, one can use a multivariate Gaussian
distribution to model a tangent vector (rearranged as a long vector of size 2N). Then, to
generate a random sample from this model, one computes §grand = Zf-;l zi/Zii Ui,

id
where z; N (0, 1) and k < n — 1. One can then rearrange the elements of §¢rang to
form a matrix of size 2 x N and obtain a random shape in SRVF form by applying
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the exponential map grana = exp; (8Grand)- The Wrapped Gaussian model, and its
truncated version, are described in detail in Kurtek et al. (2012).

4 Case Studies on Biological Data

In this section, we provide multiple examples of applications of the elastic shape
analysis framework based on the SRVF representation to real biological datasets;
we also consider a simulated dataset of spiral curves wherein the results are easily
interpretable. Two examples from each dataset are displayed in Fig. 1. This section
considers two different data types: (1) three-dimensional open curves, and (2) two-
dimensional closed curves. Each part contains three different datasets, each of which
is described in more detail in the subsequent section. For each dataset, we show (1)
geodesic paths and distances between pairs of shapes, (2) sample mean shapes, (3)
principal modes of variability from PCA, and (4) a few random sample shapes from
an estimated Wrapped Gaussian model.

4.1 Data Description

Simulated Data We begin with a simulated dataset of 3D open curves. Each curve in
the dataset has a straight segment and three helices. The main sources of variability
in this data come from the length of the straight segment and the width of the helices.
This data was generated and used for illustrative purposes in Kurtek et al. (2012).

AneuRisk65 Data This dataset of three-dimensional open curves represents the struc-
ture of internal carotid arteries. The curves were extracted from three-dimensional
angiographic images taken from 65 subjects, hospitalized at Niguarda Ca’ Granda Hos-
pital (Milan). The subjects were suspected of being affected by cerebral aneurysms.
For a detailed description of this data and associated processing steps, see Sangalli
et al. (2014) and Xie et al. (2014).

DT-MRI Fibers DT-MRI fiber tracts are typically represented as 3D curves; they
are usually extracted via tractography from 3D DT-MRI scans. In short, tractography
searches for the principal diffusion directions coinciding with the local tangent direc-
tions of fibrous tissues in the brain. The fiber tracts are then delineated by integration
of the principal diffusion directions. The dataset used here was extracted from the
human language circuit in the left hemisphere (see Morgan et al. 2009; Kurtek et al.
2012 for more details).

Flavia Plant Leaf Data The first dataset of two-dimensional closed curves is called
the Flavia Plant Leaf data (Wu et al. 2007). The leaf outlines were acquired from
images of plants captured using a digital camera. The main task associated with this
dataset is to classify leaves based on their shapes (Laga et al. 2014). The entire dataset
contains 32 classes of leaves with more than 50 observations per class.

Brain Tumor Contours Glioblastoma Multiforme (GBM) is a morphologically het-
erogeneous disease; it is known as one of the most common malignant brain tumors
found in adults (Bharath et al. 2018). The dataset we use here corresponds to the
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outline of the GBM tumor in the axial MRI slice with the largest tumor area. The
original data from pre-surgical T1-weighted post-contrast and T2-weighted FLAIR
MRIs were obtained from The Cancer Imaging Archive.

Mouse Vertebra The last dataset consists of the second thoracic (T2) vertebrae in
mice. It has been analyzed in many previous papers including Dryden and Mardia
(1998), Cheng et al. (2016), and most recently Strait et al. (2017). The dataset contains
three different groups of mice (30 control, 23 large, and 23 small). The large and small
groups consist of mice that were genetically selected for large and small body weights;
the control group was not genetically selected. This dataset is available in R as part of
the “shapes” package.?

4.2 Geodesic Paths and Distances Between Biological Shapes

We begin with several examples of elastic geodesic paths between shapes of various
biological structures. Figure 7 presents the geodesic path and corresponding distance
(number under the path) for each example. First, we note that the geodesic paths repre-
sent natural deformations between the considered shapes. In particular, it is noticeable
that important geometric features are well-preserved along each path. For instance, in
the case of the simulated spiral example, the first shape (start point of the geodesic)
has a longer straight segment and a more contracted set of spirals. The second shape
(endpoint of the geodesic) has a shorter straight segment and a stretched set of spi-
rals. The corresponding shape deformation naturally preserves the three spirals and
simply stretches them out while also contracting the straight segment. In the case of
closed curves, we first focus on the geodesic path between the first pair of leaves.
Here, the first thinner leaf deforms into a wider one, while preserving the structure of
the sharp tip. In the second example for leaves, the first maple leaf has seven distinct
peaks while the second one has only five peaks. Along the geodesic path, five of the
peaks are nicely preserved while two are destroyed. The other examples, while more
difficult to interpret, also show interesting shape deformations. Finally, it is clear that
the associated distances are larger for shapes that visually differ more.

4.3 Karcher Means of Biological Shapes

As seen before, we can use the metric on the elastic shape space to define an average
shape as a summary of given data. We show several examples for different types of
data in Fig. 8. To calculate the average shape, we first randomly select five objects
from each original dataset. We show the selected samples in the left column of the
figure. The corresponding Karcher mean shape for each sample is given in the right
column of the figure. As one can see from the first example where we used the sim-
ulated spirals, the five shapes in the sample differ in two main ways: (1) the straight
segments have very different lengths, and (2) the spirals have very different widths.
The corresponding mean shape looks natural for this data and nicely preserves the
structure of the three spirals. For the two leaf outline examples, the computed average

2 https://cran.r-project.org/web/packages/shapes/index.thml.
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Fig.7 Several examples of elastic geodesic paths and corresponding distances (numbers under each path)
between various types of biological shapes. The two given shapes are shown in blue (start of path) and red
(end of path). Each geodesic path of shapes is sampled using five equally spaced points in black (Color
figure online)

is also a nice representative of the given data, i.e., it is of very similar structure as
the given sample. In the case of the GBM tumors, the given sample shapes are very
heterogeneous. The resulting average is a bit smoother than the given data but still
contains some interesting geometric features.

4.4 Principal Modes of Variation in Biological Shapes

Given a mean shape, one can project all of the sample shapes to the corresponding
tangent space, estimate the covariance structure and perform PCA. It is then often
useful to explore the principal modes of variability in shape data; this is done by
following the PCA-based directions of variability within a certain amount of standard
deviation around the mean for each direction. Figure 9 displays the shape paths for the
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Fig. 8 Several examples of mean shapes for different types of biological data: The given samples are
displayed in the left panel while the corresponding averages are shown in the right panel (Color figure

online)

first two principal directions of variability based on the data presented in Fig. 8. For
each direction, we traverse the path from —1.5 standard deviations to +1.5 standard
deviations around the Karcher mean shape (displayed in red) (with a spacing of 0.5
standard deviations). We note that, overall, the displayed principal directions have a
nice interpretation in terms of the variability present in the given data. For example, the
first principal direction for the simulated spirals captures the variability in the length
of the straight segment and the width of the spirals. The second direction reflects the
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Fig. 9 Several examples of the first two principal directions of variability (PD 1 and PD 2) in the data
displayed in Fig. 8. The displayed paths start at — 1.5 standard deviations from the mean and deform to
+ 1.5 standard deviations from the mean, with a spacing of 0.5 standard deviations between consecutive
shapes (Color figure online)

amount of spread between the spirals; there appears to be much less variability in the
second direction compared to the first one. Interestingly, the first principal direction
for the maple leaf data captures the different shapes of the five peaks on the leaves. The
second direction, on the other hand, captures the variability due to different numbers
of peaks on the leaves: The path evolves from a maple leaf with seven peaks to a maple
leaf with five peaks. The case of the GBM tumors is also interesting. Here, we note
that the first principal direction of variability evolves from a relatively smooth, circular
tumor to one with protruding parts, especially toward the top of the shape. This reflects
natural variability in tumors; doctors often consider rounded tumors as milder than
protruding ones. Finally, in the case of the internal carotid arteries, both directions of
variability reflect the differing placements and magnitudes of high absolute curvature
areas on the curves in the given data.
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Fig. 10 Several examples of random biological shapes generated from an estimated wrapped Gaussian
model (Color figure online)

4.5 Randomly Generated Biological Shapes Based on Wrapped Gaussian Model

We close this section with several examples of randomly generated biological shapes.
We use the Karcher mean and PC directions to define the Wrapped Gaussian model
based on each set of sample shapes displayed in Fig. 8. Then, we randomly sample
six different shapes for each case and display them in Fig. 10. In all examples, the
randomly sampled shapes have similar structure to the given data, i.e., they are natural
in the context of each application. The six sample shapes of spirals differ in a natural
way: They all have three spirals with different width and a straight segment with
different length. The leaf random samples also vary in a natural way: Some of the
maple leaves have five peaks while others have six or seven. Thus, we conclude that
the estimated model naturally reflects the variability in given data.

5 Summary and Supplementary Materials

In this manuscript, we have described a framework for elastic statistical shape analysis
of open and closed curves. This framework is based on an elastic Riemannian metric
and a corresponding simplification via the SRVF transformation. This enables the
definition of computationally efficient data analysis tools including (1) geodesic paths
and distances, (2) Karcher means, (3) Karcher covariances and PCA, and (4) Wrapped
Gaussian models. We demonstrate each of these ideas using multiple examples, and
note that the resulting statistics are intuitive and naturally reflect variability in given
data. In particular, we consider various biological applications including statistical
shape analysis of (1) leaf outlines, (2) DT-MRI brain fibers, (3) internal carotid arteries,
(4) GBM tumors, and (5) mouse vertebrae.
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Most of the examples explored in this manuscript consider relatively smooth out-
lines of objects. A natural question arises regarding the robustness of these approaches
to observation noise. In particular, it is important to understand the effect of noise on
the estimation of the optimal reparameterization during pairwise comparisons. In the
small noise setting, this estimation is quite robust. However, in the presence of substan-
tial noise, the described approach may be susceptible to registering geometric features
created by the noise rather than the true underlying shape. Thus, in those cases, it is
recommended to smooth or denoise the outlines prior to statistical analysis. For more
details on the performance of these approaches in the presence of noise, we refer the
interested reader to Section 4.8.3 in Srivastava and Klassen (2016).

In addition to this manuscript, we have provided a package of MATLAB functions
that were used to produce all of the presented results. The functions include comments
that help the user understand the different tasks being performed. Additionally, we have
provided a ReadMe file with overall documentation for the package. The package can
be downloaded using the following link: https://tinyurl.com/y8slvry7.
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