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In plants, the carotenoid biosynthesis pathway (CBP) is essential for the production of 
photosynthetic and protective pigments, plant hormones, and visual/olfactory attractants 
for animal pollinators and seed dispersers. The regulation of carotenoid biosynthesis at 
the transcriptional level is vitally important for all of these functions and has been the 
subject of intensive research. Many putative transcriptional regulators, both direct and 
indirect, have been identified through conventional mutant analysis, transcriptome 
profiling, yeast one-hybrid screening, and candidate gene approaches. Despite this 
progress, our understanding of the transcriptional regulation of carotenoid biosynthesis 
remains fragmented and incomplete. Frequently, a stimulus or regulator is known, but 
the mechanism by which it affects transcription has not been elucidated. In other cases, 
mechanisms have been proposed (such as direct binding of a CBP gene promoter by 
a transcription factor), but function was tested only in vitro or in heterologous systems, 
making it unclear whether these proteins actually play a role in carotenoid regulation in 
their endogenous environments. Even in cases where the mechanism is relatively well 
understood, regulators are often studied in isolation, either in a single plant species or 
outside the context of other known regulators. This presents a conundrum: why so many 
candidate regulators but so little consensus? Here we summarize current knowledge 
on transcriptional regulation of the CBP, lay out the challenges contributing to this 
conundrum, identify remaining knowledge gaps, and suggest future research directions 
to address these challenges and knowledge gaps.
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INTRODUCTION

Carotenoids are red, orange, and yellow pigments produced by photoautotrophic organisms. In the 
green tissues of plants, carotenoids are essential for light capture, photoprotection, and stabilization 
of the photosynthetic apparatus (Frank and Cogdell, 1996; Hashimoto et al., 2016). Leaf carotenoids 
are therefore synthesized in tight coordination with chlorophylls, and their composition is remarkably 
conserved across higher plants (Goodwin and Britton, 1988; Meier et al., 2011). In addition to their 
integral roles in photosynthesis, carotenoids accumulate as secondary metabolites in many flowers 
and fruits to attract pollinators and seed dispersers. Due to their dispensable nature in non-green 
tissues, these pigments often differ drastically in composition and concentration between species or 
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even between varieties of the same species (Moehs et al., 2001; 
Bradshaw and Schemske, 2003; Nielsen et al., 2003; Giovannoni, 
2007; Ha et al., 2007; Chiou et al., 2010; Yamagishi et al., 2010; 
Yamamizo et al., 2010; Zhang et al., 2015). Floral and fruit 
carotenoids can also be cleaved to produce volatile compounds 
(i.e., scents and flavors), which further enhance plant–animal 
interactions (Dudareva et al., 2006). Finally, carotenoids serve 
as precursors for the synthesis of the plant hormones abscisic 
acid (ABA) and strigolactones, as well as other apocarotenoids 
that are involved in many developmental processes and stress 
responses (Cutler et al., 2010; Hou et al., 2016; Jia et al., 2017).

Because of their critical importance in the physiology, 
development, ecology, and evolution of plants, carotenoid 
metabolism and function have been intensively studied. The 
highly conserved carotenoid biosynthesis pathway (CBP) has 
been characterized in many plants (reviewed in Ruiz-Sola and 
Rodríguez-Concepción, 2012). In recent years, attention has 
turned to the regulation of carotenoid accumulation at multiple 
levels: transcriptional, post-transcriptional, post-translational, 
storage/degradation, and feedback regulation by end products. 
This has led to the discovery of numerous carotenoid regulatory 
mechanisms such as the post-translational regulation of 
phytoene synthase (PSY) by Orange (Or) (Lu et al., 2006; 
Zhou et al., 2015), the catabolism of carotenoids by carotenoid 
cleavage dioxygenases (CCDs) and 9-cis-epoxycarotenoid 
dioxygenases (NCEDs) (e.g., Auldridge et al., 2006; Ohmiya 
et al., 2006; Vallabhaneni et al., 2010), and feedback regulation 
by apocarotenoid-derived signaling molecules (e.g., Avendaño-
Vásquez et al., 2014).

In this review, we will focus on the transcriptional regulation 
of carotenoid biosynthesis genes. For other aspects of carotenoid 
regulation, we refer readers to several recent reviews (Cazzonelli 
and Pogson, 2010; Yuan et al., 2015; Nisar et al., 2015; Liu 
et al., 2015a; Hou et al., 2016; Li et al., 2016; Enfissi et al., 2017; 
Llorente et al., 2017; Sun et al., 2018a; Ohmiya et al., 2019). In 
this paper, “transcriptional regulation” of carotenoid biosynthesis 
genes simply refers to altered transcript abundance in response 
to a stimulus or as a result of the mutation, knockdown, or 
overexpression of another gene (e.g., transcription factor, 
chromatin remodeler). Additionally, we use the term “CBP 
genes” to refer to the core CBP, from PSY to NSY (see Figure 1 
for a schematic of the CBP). Upstream non-carotenoid specific 
genes [mevalonate (MVA) or methylerythritol phosphate (MEP) 
pathways], genes of the side branches leading to the production 
of hormones and apocarotenoids, and genes necessary for 
the production of uncommon carotenoids (e.g., capsanthin, 
capsorubin, astaxanthin), are not discussed in detail.

We have organized this review by tissue type because 
carotenoids serve unique functions in photosynthetic tissues, 
fruits, flowers, seeds, and roots and because the literature is 
already somewhat structured in this manner. For example, 
tomatoes are considered the model system for carotenoid 
biosynthesis in fruits, and Arabidopsis for that in leaves. Even 
in narrowing the scope to just transcriptional regulation, 
this review covers about 40 putative regulators of carotenoid 
biosynthesis genes (Table  S1). However, there is little overlap 
of these numerous regulators between studies of different tissue 

types or different plant species. In other words, very few of these 
putative regulators seem to have a conserved function in the 
transcriptional control of carotenoid biosynthesis genes across 
tissue types or plant species. We lay out some of the challenges 
contributing to this conundrum, identify remaining knowledge 
gaps, and suggest research directions to address these challenges 
and knowledge gaps in the coming years.

Photosynthetic Tissues
Carotenoids are an integral part of the light harvesting apparatus, 
capturing light energy and protecting the photosynthetic 
apparatus from damaging reactive oxygen species (ROS) 
formed during photosynthesis (Demmig-Adams and Adams, 
1996; Pogson et al., 1998; Niyogi, 1999; Baroli and Niyogi, 
2000; Dall’Osto et al., 2007). These pigments may also play 
an important role in temperature stress by scavenging ROS 
produced by photosystem II (PSII) in extreme temperatures and 
stabilizing thylakoid membranes (Havaux, 1998; Pospíšil, 2016). 

FIGURE 1 | Transcriptional regulation of carotenoid biosynthesis pathway 
(CBP) genes in photosynthetic tissues. The regulation of CBP genes 
in response to light (sun), senescence (leaf), and high temperature 
(thermometer) and by epigenetic controls (DNA) is shown. The carotenoid 
biosynthesis pathway is in black, with carotenoid biosynthesis genes 
indicated in dark blue. Carotenoid regulators discussed in the paper are 
shown in light blue, with other regulators in purple. Green arrows indicate 
positive regulation, while blunt red arrows indicate negative regulation. Solid 
lines show direct interactions, while dotted lines show indirect/unknown 
interactions. GGPP, geranylgeranyl pyrophosphate; PSY, phytoene synthase; 
PDS, phytoene desaturase; Z-ISO, 15-cis-zeta-carotene isomerase; ZDS, 
zeta-carotene desaturase; CRTISO, carotene isomerase; LCYB, lycopene 
beta-cyclase; CYCB, chromoplast-specific lycopene beta-cyclase; BCH, 
beta-carotene hydroxylase; ZEP, zeaxanthin epoxidase; VDE, violaxanthin 
deepoxidase; NSY, neoxanthin synthase; LCYE, lycopene epsilon-cyclase; 
CYP97A3, cytochrome P450–type beta-hydroxylase; CYP97C1, cytochrome 
P450–type epsilon-hydroxylase.
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Additionally, the developmental program for leaf senescence 
requires carotenoid precursors for the production of ABA and 
strigolactones (Nambara and Marion-Poll, 2005; Snowden 
et al., 2005; López‐Ráez et al., 2008; Alder et al., 2012; Ueda and 
Kusaba, 2015). Transcriptional regulation of the CBP genes in 
photosynthetic tissues is therefore highly influenced by light, 
temperature, and developmental cues.

Light
The light signaling machinery of plants has been extensively 
characterized in Arabidopsis (e.g., Delker et al., 2014; Dong et al., 
2014; reviewed in Jiao et al., 2007; Lau and Deng, 2012), and 
many key regulatory genes have been identified. One such gene, 
Phytochrome Interacting Factor 1 (PIF1), is perhaps the best-
understood transcriptional regulator of carotenoid biosynthesis. 
During seedling deetiolation, phytochromes are activated by red 
light and move from the cytoplasm into the nucleus to interact 
with signaling components. The bHLH transcription factor PIF1, 
which represses AtPSY expression in the dark, is phosphorylated 
by phytochromes upon photoactivation and subsequently 
degraded by the proteasome (Bae and Choi, 2008; Shen et al., 
2008; Shin et al., 2009). This initiates the rapid de-repression of 
AtPSY as well as genes involved in chlorophyll biosynthesis and 
chloroplast development.

Toledo-Ortiz et al. (2010) showed that Arabidopsis PIF1 binds 
directly to a G-box element in the AtPSY promoter in both in vitro 
and in vivo assays and demonstrated that this binding leads to 
transcriptional repression. PIFs also contribute to the regulation 
of AtPSY in mature plants during their daily light/dark cycles. 
In fully deetiolated plants grown under short-day conditions, 
higher levels of carotenoids and AtPSY transcripts were found in 
pif mutants than in wild-type plants (Toledo-Ortiz et al., 2010).

Another important player in light signaling is the bZIP 
transcription factor Long Hypocotyl 5 (HY5), which acts 
antagonistically to PIF1 during photomorphogenesis. HY5 
activates carotenoid and chlorophyll biosynthesis genes, as well 
as genes involved in chloroplast development and cotyledon 
expansion. Unlike PIF1, which is stabilized in the dark by the 
DET1/DDB1/CUL4 complex, HY5 is stabilized by light (the COP1/
DDB1/CUL4 complex targets HY5 for degradation in the dark) 
(Shi et al., 2015; Zhu et al., 2015). Interestingly, HY5 and PIF1 
bind to the same G-box element of the AtPSY promoter, which 
serves as a relatively simple switch to promote deetiolation upon 
illumination. This switch also functions in the daily light/dark 
cycles of mature plants (Toledo-Ortiz et al., 2014).

PIFs are also involved in shade-triggered reduction of 
carotenoid accumulation in Arabidopsis leaves, through an HY5-
independent mechanism. When there is a low red/far red (R/FR) 
ratio of light in shade conditions, Phytochrome Rapidly Regulated 
1 (PAR1), a bHLH co-factor, is upregulated and induces AtPSY 
expression by physically interacting with PIF1 and preventing it 
from sitting on the AtPSY promoter (Bou-Torrent et al., 2015).

Carotenoid biosynthesis is also induced when greening is 
de-repressed in the dark, which can be achieved through the 
blockage of gibberellic acid (GA) biosynthesis (Rodríguez-Villalón 
et al., 2009; Toledo-Ortiz et al., 2010). GA negatively regulates 
DELLA proteins, which in turn negatively regulate PIFs. In 

Arabidopsis GA biosynthesis mutants, AtPSY transcript levels 
in etiolated seedlings are elevated relative to the wild type. In 
“double” mutants lacking both GA and DELLAs, this response 
is repressed. Treatment of wild-type plants with a GA inhibitor 
reduced PIF1 binding to the G-box in the AtPSY promoter 
(Cheminant et al., 2011).

While the PIF1/HY5 regulatory mechanism is relatively 
well understood, there is still much to be learned about the 
transcriptional regulation of carotenoid biosynthesis during 
deetiolation. For instance, many other carotenoid biosynthesis 
genes are de-repressed during photomorphogenesis in 
Arabidopsis, such as AtBCH2, AtZEP, and AtLCYE (which are 
constitutively de-repressed in pif mutants). Of these, only AtBCH2 
has a G-box in its promoter, but this G-box is not bound by PIF1 
(Toledo-Ortiz et al., 2010). Additionally, truncated AtPSY genes 
lacking G-boxes in Arabidopsis are still light responsive (Welsch 
et al., 2003), indicating that there are other factors involved in 
light responsiveness unrelated to the PIF pathway and/or that 
PIFs may bind other elements.

Indeed, a chromatin immunoprecipitation–microarray (ChIP–
chip) analysis in Arabidopsis seeds showed that PIF1 binds to 
748 sites, only 59% of which contain G-box elements (Oh et al., 
2009); additionally, only a small fraction of G-box elements 
in the Arabidopsis genome have been shown to be bound by 
PIFs (Kim et al., 2016). PIF1 has been shown to bind PIF 
binding E-box (PBE) elements in vitro, though this interaction 
is relatively weak (Kim et al., 2008; Pfeiffer et al., 2014). PIF1-
interacting transcription factors may facilitate the targeting 
of PIF1 to specific sites, particularly those containing multiple 
G-boxes and/or G-box coupling elements (GCEs) (Kim et al., 
2016). Thus, non-canonical PIF binding sites may play a role in 
PIF1 regulation of other CBP genes.

Another thing to consider is that PIF1 is certainly not a specific 
carotenoid regulator: it has been shown to directly regulate the 
chlorophyll biosynthesis gene AtPOR by binding its promoter and 
to indirectly regulate other genes in that pathway (Moon et  al., 
2008). This may account in part for the tight coordination between 
chlorophyll and carotenoid biosynthesis in green tissues during 
photomorphogenesis. However, for PIF1 to function in chromoplast-
containing tissues, the regulation of carotenoid and chlorophyll 
biosynthesis must be decoupled (see the "Fruits" section).

The intensity of light affects both carotenoid concentration 
and composition (Hirschberg, 2001). High light stress produces 
ROS such as triplet chlorophyll and singlet oxygen, which can 
be deactivated by carotenoids. Additionally, excess excitation 
energy in the photosystems can be effectively dissipated by 
carotenoids, particularly zeaxanthin (Dall’Osto et al., 2012; 
Jahns and Holzwarth, 2012). High light causes a rapid decrease 
in lumen pH, which increases violaxanthin deepoxidase 
(VDE) enzyme activity, converting violaxanthin to zeaxanthin 
(Figure 1). Although this interconversion between violaxanthin 
and zeaxanthin (i.e., the xanthophyll cycle) is regulated post-
translationally by activation and inactivation of the VDE enzyme 
(Müller et al., 2001), high light does induce transcriptional 
changes of CBP genes as well. For example, the ratio of LCYB 
to LCYE transcripts increases fivefold in both Arabidopsis and 
tomato leaves in high light relative to low light (Hirschberg, 2001), 
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which channels metabolic flux through the branch of the CBP that 
produces zeaxanthin (Figure 1). AtBCH2 transcription is also 
upregulated by high light treatment in Arabidopsis (Rossel et al., 
2002), likely enhancing the metabolic flow towards xanthophylls 
as well. However, the transcription factors responsible for these 
CBP gene expression changes remain unknown.

Ultraviolet B (UV-B) light also triggers the production 
of carotenoids, which are directly linked to photoprotection 
of the photosynthetic apparatus (Middleton and Teramura, 
1993). Irradiation of Arabidopsis plants with UV-B causes 
slight decreases in lutein and β-carotene content but a 
substantial increase in zeaxanthin. Correspondingly, the 
expression of AtPSY, AtZDS, and AtBCH1/2 is enhanced. 
Loss-of-function AtLYCE (LUT2) mutants accumulate more 
β-carotene branch xanthophylls compared to the wild type 
and consequently show decreased DNA and oxidative damage 
under UV-B light (Emiliani et al., 2018). Interestingly, 
the UV-B response pathway and the photomorphogenesis 
pathway share several common components. For example, 
the active form of UV RESPONSE LOCUS 8 (UVR8), a 
UV-B–specific photoreceptor, directly interacts with COP1 
and regulates HY5 expression (Brown et al., 2005; Brown and 
Jenkins, 2008; Cloix and Jenkins, 2008; Favory et al., 2009; 
Rizzini et al., 2011). Therefore, it would not be surprising if 
the transcriptional regulators of the CBP genes downstream of 
AtPSY (e.g., AtZDS, AtBCH1/2) turned out to be the same for 
both UV-B response and photomorphogenesis.

Temperature
The PIF1/HY5 switch can also control AtPSY expression in 
response to temperature cues (Toledo-Ortiz et al., 2014). In 
addition to being stabilized by light, HY5 is stabilized by cold 
temperatures (Catalá et al., 2011). In a ChIP assay, both the 
AtPSY and AtVDE promoters were preferentially bound by 
HY5 at low compared to ambient temperatures. Furthermore, 
the rapid increase of HY5 and decrease of PIF1 protein levels 
when etiolated Arabidopsis seedlings were exposed to light 
was more robust at lower temperature (Toledo-Ortiz et al., 
2014). This would lead to higher expression of AtPSY at lower 
temperatures. These findings are echoed by experiments in 
maize (Zea mays), which showed that ZmPSY1 and ZmPSY2 
expression decreases at high temperatures in both light and 
dark conditions (Li et al., 2008a).

The sensitivity of PSY transcript levels to temperature 
cues indicates that transcriptional regulation of the CBP may 
be partially responsible for temperature stress responses. It 
makes sense that high light and low temperature responses 
would overlap, because the consequences of these stressors 
are similar: they both produce ROS and prevent the repair 
of PSII damage (reviewed in Szymańska et al., 2017). Thus, 
PIF1/HY5 regulation of PSY may be an important mechanism 
for increasing carotenoids to scavenge ROS. However, high 
temperature stress, which also produces damaging ROS, 
reduces the expression of PSY, indicating that transcriptional 
regulation of this gene is not responsible for high temperature 
stress response.

Senescence
Leaf senescence is a developmentally controlled process leading 
eventually to organ death. The breakdown and recycling of 
macromolecules from senescing leaves allow plants to reallocate 
resources to reproduction or new growth (Gan and Amasino, 1997; 
Lim et al., 2007). One of the most prominent phenotypes during 
senescence is leaf yellowing due to the breakdown of pigments in 
chloroplasts (Ougham et al., 2005). Although all photosynthetic 
pigments are eventually broken down, chlorophylls are usually 
lost more rapidly than carotenoids. There are also changes in the 
composition of carotenoids during senescence: while all decline, 
lutein remains at relatively stable levels compared to neoxanthin, 
violaxanthin, and antheraxanthin (Biswal, 1995; Britton and 
Young, 1989). This is perhaps due to the cleavage of β-carotene 
branch carotenoids for the production of strigolactones and 
ABA, which further promote leaf senescence (Yang et al., 2003; 
Ueda and Kusaba, 2015).

The transcription of CBP genes changes dramatically during 
leaf senescence. In an Arabidopsis microarray analysis of senescing 
leaves, AtLCYE, AtCYP97C1, and AtCYP97A3 expression drops, 
reducing flux through the α-carotene branch of the pathway. 
This is followed by the induction of AtBCH1, which might be 
important for downstream hormone production (Breeze et al., 
2011). Similar trends can also be seen in woody perennial plants: 
in aspen trees (Populus tremula), PtBCH2 is significantly induced 
by autumn senescence (Andersson et al., 2004).

The only known potential regulator of CBP genes during leaf 
senescence is DRL1 from grapevine (Vitis vinifera), encoding a 
NAC transcription factor. Overexpression of DRL1 in tobacco 
has been shown to delay leaf senescence and decrease ABA 
levels. The expression of NtZEP1 and carotenoid cleavage genes is 
reduced in these transgenic plants (Zhu et al., 2019). However, the 
endogenous function of DRL1 in grapevine is yet to be reported.

Other CBP Regulators in Photosynthetic Tissues
Besides ZEP, two other CBP genes downstream of PSY 
have potential known regulators in photosynthetic tissues. 
In Arabidopsis leaves, the Ethylene Response Factor (ERF) 
transcription factor RELATED TO AP2 2 (RAP2.2) was shown 
to bind the AtPSY and AtPDS promoters in vitro (Welsch et al., 
2007). However, overexpression of AtRAP2.2 in Arabidopsis 
leaves did not result in higher AtPSY or AtPDS messenger RNA 
(mRNA) levels, nor a change in carotenoid concentration. A 
knockout mutant of AtRAP2.2 was not available, probably due 
to lethality. These results leave the endogenous function of 
AtRAP2.2 in carotenoid regulation ambiguous.

AtCRTISO is another CBP gene in photosynthetic tissues 
with an identified regulator: the histone methyltransferase Set 
Domain Group 8 (SDG8). sdg8 mutants produce low levels of 
CRTISO mRNA, which correlates with reduced trimethyl-H3K4 
and increased dimethyl-H3K4 around the CRTISO transcription 
start site (Cazzonelli et al., 2009). Although this mechanism is 
well understood, SDG8 is certainly not a specific carotenoid 
regulator: mutation in this gene downregulates 85 other genes 
and causes broad pleiotropic effects, including increased shoot 
branching, reduced fertility, and early flowering. It is currently 
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unknown whether the function of SDG8 in carotenoid 
biosynthesis is conserved across species.

As described above, only a few regulators of carotenoid 
biosynthesis in green tissues, such as PIF1 and HY5, have 
been well characterized and shown to directly regulate PSY in 
Arabidopsis. Additionally, their importance as regulators of 
photomorphogenesis, responses to daily light/dark cycles, and 
temperature has been established. However, we still know very 
little about what regulates most CBP genes downstream of PSY 
in green tissues.

Fruits
The ripening developmental program of fleshy fruits involves 
changes in texture (alteration of cell wall composition, reduction 
in turgor pressure), flavor and aroma (alteration of volatiles, 
sugar/starch, and acid metabolism), and color (alteration of 
chlorophyll, carotenoid, and flavonoid content) (Klee and 
Giovannoni, 2011). Many economically important fruits (e.g., 
tomato, orange, papaya) produce copious carotenoids during 
ripening, and therefore, the transcriptional control of CBP genes 
during fruit ripening has attracted considerable research efforts.

Tomatoes
The foremost model for carotenoid regulation during fruit 
ripening is tomato (Solanum lycopersicum) (Figures 2–3), which 
primarily accumulates lycopene in mature fruits. During tomato 
fruit development, transcription of the early CBP genes SlPSY1 
and SlPDS increases, while the transcription of SlLCYE and 
SlLCYB, which convert lycopene to other downstream products, 
decreases (Pecker et al., 1992; Giuliano et al., 1993; Fraser et al., 
1994; Corona et al., 1996; Ronen et al., 1999; Alba et al., 2005). 
Tomato fruits are climacteric, and thus, ethylene biosynthesis and 
signaling are necessary for the onset and completion of ripening 
(reviewed in Liu et al., 2015b). CBP gene regulation is also tightly 
coupled with these processes, and many of the regulators that 
affect CBP gene expression also affect other aspects of ripening. 
These may therefore be considered general regulators of ripening, 
oftentimes functioning far upstream of the CBP genes.

Several MADS-box ripening regulators affect the expression 
of CBP genes in tomatoes, and a ripening model similar to 
the floral quartet model has been proposed (Figure 2). In this 
model, different combinations of MADS-box proteins bind 
different target genes (Bemer et al., 2012; Shima et al., 2013; 
Fujisawa et al., 2014). These “ripening quartet” regulators include 
Tomato AGAMOUS-LIKE1 (TAGL1), Ripening Inhibitor (RIN), 
FRUITFULL1 (FUL1), and FUL2. These transcription factors 
have both overlapping and individual (but never antagonistic) 
contributions to the expression of CBP genes, with the total effect 
being the positive regulation of SlPSY1, SlPSY2, SlZDS, SlZ-ISO, 
SlCRTISO, and SlBCH, and the negative regulation of SlLCYB, 
SlLCYE, and SlCYCB (the chromoplast-specific paralogue of 
SlLCYB) (Vrebalov et al., 2002; Ito et al., 2008; Itkin et al., 2009; 
Vrebalov et al., 2009; Giménez et al., 2010; Fujisawa et al., 2011; 
Fujisawa et al., 2012; Fujisawa et al., 2013; Fujisawa et  al., 
2014; Martel et al., 2011; Bemer et al., 2012; Qin et al., 2012; 

Shima  et  al., 2013; Zhong et al., 2013). For the effects of each 
individual regulator, see Figure 2A.

These MADS-box proteins exert their effects over CBP gene 
transcription both directly by binding the promoters of some 
genes and indirectly by unknown mechanisms. Various studies 
have shown the promoter of SlLCYB to be bound by all four 
regulators; the promoter of SlPSY1 to be bound by TAGL1, RIN, 
and FUL1; the promoters of SlZ-ISO, SlCRTISO, and SlZEP by 
RIN, FUL1, and FUL2; the promoter of SlBCH by FUL1 and 
FUL2; the promoter of SlCYCB by TAGL1; and the promoter of 
SlLCYE by RIN (Ito et al., 2008; Itkin et al., 2009; Vrebalov et al., 
2009; Giménez et al., 2010; Fujisawa et al., 2011; Fujisawa et al., 
2012; Fujisawa et al., 2013; Fujisawa et al., 2014; Martel et al., 2011; 
Bemer et al., 2012; Qin et al., 2012; Shima et al., 2013; Zhong et al., 
2013; see Figure 2B for a graphical summary).

It should be mentioned that ChIP studies assessing RIN 
binding to target gene promoters have produced inconsistent 
results. Some studies have shown that the SlPSY1 promoter is 
bound by RIN (Martel et al., 2011; Zhong et al., 2013; Fujisawa 
et al., 2013), while others have not detected this interaction or had 
inconclusive results (Fujisawa et al., 2011; Fujisawa et al., 2012; 
Fujisawa et al., 2013). Also, though FUL1 has been shown to bind 
the promoter of SlPSY1 and promote its expression (Shima et al., 
2013; Fujisawa et al., 2014), one study in which FUL1 and FUL2 
were silenced showed that fruits did not have altered expression of 
SlPSY1 (Bemer et al., 2012). The loss of FUL1 function may have 
been compensated by RIN and TAGL1, and thus, its endogenous 
role in regulating carotenoid biosynthesis remains unclear.

Other CBP-regulating MADS-box genes in tomato that 
interact with or regulate the ripening quartet are SlMADS1, 
SlFYFL, and SlCMB1 (Figure 2). SlMADS1 and SlFYFL are 
both negative regulators of carotenoid biosynthesis, suppressing 
SlPSY1 expression (SlFYFL also suppresses SlPDS and SlZDS) 
(Dong et al., 2013; Xie et al., 2014). SlCMB1 promotes the 
expression of SlPSY1 and SlPDS, while suppressing SlCYCB, 
SlLCYB, and SlLCYE transcription (Zhang et al., 2018a).

Many other regulators play a role in CBP gene regulation 
during fruit ripening, especially those involved in hormone 
synthesis and signaling. SlAP2a (an APETALA2/ERF protein) 
positively regulates fruit ripening, promoting the expression 
of SlPSY1, SlCRTISO, SlBCH, and SlPDS1, and repressing 
SlZEP1 and SlCYCB (Chung et al., 2010; Karlova et al., 2011). 
The overexpression of Tomato Ethylene Response Factor 1 
(TERF1) induces SlZDS expression, perhaps via plastid-to-
nucleus retrograde signaling (Wu et al., 2019). Silencing 
LeHB-1 (encoding an HD-Zip transcription factor) inhibits 
fruit ripening and lycopene production, most likely through 
inhibition of ethylene biosynthesis (Lin et al., 2008). However, 
the transcript levels of CBP genes were not assessed in the 
LeHB-1 silenced lines.

NAC family transcription factors involved in ethylene 
biosynthesis also affect the transcription of CBP genes: SlNAC4 
positively regulates SlPSY1 and negatively regulates SlCYCB, 
SlLCYB, and SlLCYE (Zhu et al., 2014), while SlNAC1 has the 
opposite effect (Ma et al., 2014; Meng et al., 2016). SlNAC1 
has been shown by yeast one-hybrid assay to interact with the 
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promoters of SlPSY1 and ethylene biosynthesis genes (Ma 
et al., 2014).

Additionally, overexpression of SlNAC1 increases the amount 
of ABA, potentially by providing the carotenoid precursors for its 
synthesis (Ma et al., 2014). In wild-type fruits, ABA production 
precedes ethylene production and may be an important trigger 
for ripening (Zhang et al., 2009). ABA application promotes 
several ripening processes, including carotenoid accumulation, 
by regulating transcription factors for ethylene biosynthesis 
and signaling (Mou et al., 2016). Another regulator related 
to ethylene–ABA is SlPti4 (also a member of the AP2/ERF 
superfamily). Silencing of SlPti4 enhances ABA production while 

decreasing ethylene production, which induces the expression 
of SlCYCB and the consequent color change from red to orange 
(Sun et al., 2018b). Finally, the zinc finger transcription factor 
SlZFP2 inhibits fruit ripening by negatively regulating ABA 
biosynthesis (Weng et al., 2015). SlZFP2-overexpressing fruits 
accumulate more β-carotene and lycopene compared to the wild 
type, but it is unclear whether SlZFP2 actually regulates CBP 
gene expression, as the transcript levels of CBP genes were not 
reported in this study (Weng et al., 2015).

Besides ethylene and ABA, other plant hormones are also 
involved in tomato fruit ripening, with complex actions and 
interactions. Auxin acts antagonistically to ethylene, delaying 
ripening. Exogenous application of an auxin inhibitor to 
tomato fruits produces an effect similar to ethylene application, 
indicating that perhaps the presence vs. absence of auxin, not 
ethylene per se, determines ripening in tomato (Su et al., 2015). 
RNA interference (RNAi) mediated silencing of two paralogues 
of Auxin Response Factor 2, SlARF2A and SlARF2B, caused 
downregulation of SlPSY1, SlPDS, and SlZDS and upregulation 
of SlLCYB1, SlLCYB2, and SlCYCB (Hao et al., 2015). Several key 
ripening genes (e.g., RIN, CNR, NOR, AP2a, TAGL1, FUL1/2) 
were also downregulated in these RNAi lines, indicating that 
SlARF2A/B may regulate CBP gene expression through the 
ripening factors.

Brassinosteroid (BR) application to pericarp discs induces 
lycopene formation (Vardhini and Rao, 2002). Transgenic lines 
overexpressing Brassinazole Resistant 1 (BZR1) have increased 
transcript levels of SlPSY1 and SlZDS (Liu et al., 2014). Cytokinins 
(CKs) are also involved in ripening: SlIPT4, which catalyzes the 
rate-limiting step of CK biosynthesis, represses the expression of 
SlPSY1 and SlPDS, while upregulating the expression of SlZ-ISO 
and SlZDS (Zhang et al., 2018b). Given that both BR and CK are 
isoprenoids synthesized using precursors from the MEP/MVA 
pathways, it is perhaps not too surprising that their biosynthesis 
and signaling affect carotenoid biosynthesis (Sakakibara, 2006; 
Andrade et al., 2017). Another hormone, jasmonic acid (JA), 
promotes lycopene accumulation and CBP gene expression, 
even in ethylene-insensitive mutants (Liu et al., 2012), but the 
mechanism is unknown.

Light is also an important regulator of CBP genes during 
tomato fruit development. Interestingly, the shading response 
seen in Arabidopsis leaves is utilized in tomatoes for fruit ripening. 
In an in vivo ChIP assay, SlPIF1a binds to a PBE-box located in 
the promoter of the tomato SlPSY1 gene to repress its expression. 
This repression is only maintained when the R/FR light ratio is 
low. In an elegant experiment, Llorente et al. (2016) showed that 
the presence of chlorophyll in the immature green fruit pericarp 
acts as a self-shading mechanism, giving a low R/FR ratio. When 
developmentally triggered degradation of chlorophyll begins, the 
R/FR ratio increases, and SlPSY is de-repressed by phytochrome-
mediated degradation of SlPIF1a.

Other light signaling components have been examined 
in tomato fruits. Mutations in the high pigment genes HP1 
(DDB1) and HP2 (DET1) give increased amounts of chlorophyll 
in immature fruits and increased amounts of carotenoids in 
mature fruits (Mustilli et al., 1999; Levin et al., 2003; Lieberman 
et al., 2004). DDB1 and DET1, which are known to interact 

FIGURE 2 | Transcriptional regulation of CBP genes in tomato fruits: 
“ripening quartet”–related proteins. (A) The regulation of CBP genes 
in tomato fruits. The carotenoid biosynthesis pathway is in black, with 
carotenoid biosynthesis genes indicated in dark blue. Carotenoid regulators 
discussed in the paper are shown in light blue. Green arrows indicate 
positive regulation, while blunt red arrows indicate negative regulation. Solid 
lines show direct interactions, while dotted lines show indirect/unknown 
interactions. Inset: protein–protein interactions between “ripening quartet” 
regulators. (B) Venn diagram showing the direct binding of TAGL1, RIN, 
FUL1, and FUL2 to CBP gene promoters.
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with PIF1/HY5 and regulate their protein levels in Arabidopsis 
leaves, do not appear to strongly affect the expression of CBP 
genes in tomato fruits. The high pigment levels are probably 
due to changes in plastid size and/or number that increase the 
storage capacity of carotenoids. CBP gene expression has been 
shown to be slightly altered in tomato det1 mutants compared to 
wild type: in a transcriptome study, SlPSY1, SlPDS, and SlLCYB 
transcript levels were all slightly elevated in immature fruits, 
while SlCYCB transcript levels were reduced. At the mature 
red stage, SlPSY1, SlZDS, and SlCYCB were upregulated, but 
carotenoid biosynthesis is not at peak levels in mature fruit, 
and thus, these differences may not be developmentally relevant 
(Kolotilin et al., 2007).

Another light-responsive CBP regulator in tomato is SlPRE2, 
an atypical bHLH transcription factor whose expression is 
repressed in high light. When SlPRE2 is overexpressed, it 
alters the growth of stems and leaves, promotes hypocotyl 
elongation, and downregulates chlorophyll biosynthesis genes 
as well as SlPSY1, SlPDS, and SlZDS. Transcript levels of HY5 

are also reduced, which could explain the low level of SlPSY1 
transcripts (Zhu et al., 2017a).

Other proteins appear to indirectly affect the transcription 
of CBP genes through plastid processes. Overexpression of the 
B-box protein BBX20 increases the chlorophyll and carotenoid 
content in tomato leaves and fruits, inducing SlPSY1 and SlVDE 
expression. BBX20 was found to bind to a G-box in the SlPSY1 
promoter in vitro and interacts with DET1. Carotenoid content 
is probably enhanced because of both the increase in SlPSY1 
expression and an increased number of chloroplasts. BBX20 
overexpression does not affect carotenoid accumulation or CBP 
transcription in flowers, indicating that distinct mechanisms 
operate in fruits and flowers (Xiong et al., 2019).

The Clp protease ClpR1 enhances transcript levels of 
SlLCYB, SlCYCB, and SlCYP97C11. This gene probably affects 
the transcription of carotenoid biosynthesis genes through its 
contributions to the chloroplast-to-chromoplast transition 
(D’Andrea et al., 2018). The Stay Green 1 (SGR1) protein 
represses SlPSY1 expression (although the effect appears 
minor). When SGR1 is knocked down, fruits have lower PIF1 
expression and altered ethylene signal transduction. SGR1 
also interacts directly with SlPSY1 protein, and knockdown of 
this gene induces early chloroplast-to-chromoplast transition, 
indicating that this gene has many regulatory functions (Luo 
et al., 2013).

Epigenetic regulation is also crucial to fruit ripening and 
carotenoid biosynthesis in tomato. Zhong et al. (2013) showed that 
about 1% of the tomato genome shows differential methylation 
during fruit ripening by chemically inhibiting methyltransferases. 
For a review on epigenetic controls in tomato fruit ripening, see 
Giovannoni et al., 2017; for a review on epigenetic control of 
carotenoid biosynthesis, see Arango et al., 2016.

Colorless non-ripening (Cnr) tomato mutants do not 
express SlPSY1 (Thompson et al., 1999, Eriksson et al., 2004) 
and thus do not produce lycopene. The CNR locus was shown 
to be a SQUAMOSA Promoter Binding Protein–like (SPL) gene, 
with the causal mutation occurring in the promoter. This 
mutation was an epimutation, with increased methylation 
in mutants (Manning et al., 2006). When wild-type tomato 
fruits are treated with a methylation inhibitor, they produce 
early-ripening red sectors (which have unmethylated CNR 
promoters). The sectors that remain green also remain 
hypermethylated, suggesting that methylation of ripening 
genes acts as a developmental block. SlPSY1 transcripts were 
isolated from early-ripening sectors, suggesting that this fruit 
ripening mechanism is upstream of carotenogenesis and other 
ripening processes (Zhong et al., 2013). The CNR SPL gene 
might be a conserved carotenoid regulator across species. 
Constitutive expression of AtmiR156b (which silences AtSPL3, 
a CNR SPL homologue; Wang et al., 2009) produces excess 
amounts of lutein and β-carotene in Brassica napus seeds, 
though CBP gene expression was not assessed (Gandikota et 
al., 2007; Wei et al., 2010; Arango et al., 2016). None of the 
CBP genes has a sequence complementary to AtmiR156b, so 
this increase in carotenoids is indirect (Wei et al., 2010), likely 
through the SPL gene.

FIGURE 3 | Transcriptional regulation of CBP genes in tomato fruits: other 
proteins. The regulation of CBP genes in tomato fruits. The carotenoid 
biosynthesis pathway is shown in black, with carotenoid biosynthesis genes 
indicated in dark blue. Carotenoid regulators discussed in the paper are 
shown in light blue. Green arrows indicate positive regulation, while blunt red 
arrows indicate negative regulation. Solid lines show direct interactions, while 
dotted lines show indirect interactions.
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Another epigenetic regulator, the tomato histone deacetylase 
gene SlHDA3, negatively regulates SlPSY1 expression, while 
positively regulating SlCYCB, SlLCYB, and SlLCYE. Ethylene 
biosynthesis genes and cell wall metabolism genes were also 
negatively regulated by SlHDA3, as were RIN, Cnr, and TAGL1 
(Guo et al., 2018).

Other Climacteric Fruits
Putative transcriptional regulators have also been identified in 
other climacteric fruits (Figure 4). In papaya (Carica papaya), 
in vitro and dual luciferase assays in a heterologous host (i.e., 
tobacco) showed that the ethylene response protein CpEIN3a 
binds to and activates the promoters of CpPDS4 and CpBCH. 
Further, its interacting partner CpNAC2 binds to and activates 
the promoters of CpPDS2, CpPDS4, CpZDS, CpLCYE, and 
CpBCH. The interaction between CpEIN3a and CpNAC2 
increases activation of these genes (Fu et al., 2017). Also in 
papaya, the NAC family transcription factor CpNAC1 has 
been shown to bind to the CpPDS2 and CpPDS4 promoters in 
vitro and activate them in transient assays in tobacco (Fu et al., 
2016). Two other papaya transcription factors, CpbHLH1 and 
CpbHLH2, bind to the promoters of CpCYCB and CpLCYB in 

vitro and in tobacco transient assays, with CpbHLH1 acting as 
a repressor and CpbHLH2 as an activator (Zhou et al., 2019). 
However, the endogenous functions of these papaya genes are 
unknown.

In kiwifruit (Actinidia deliciosa), a promoter screen identified 
AdMYB7 (among other MYBs) as a putative regulator of 
AdLCYB. The authors confirmed interaction between AdMYB7 
and the AdLCYB promoter in a gel mobility shift assay. When 
AdMYB7 was overexpressed in tobacco in a transient assay, the 
carotenoid content increased twofold. Stable overexpression of 
this gene in tobacco gave increased expression of NbPSY, NbPDS, 
NbZDS, NbLCYB, NbLCYE, and chlorophyll biosynthesis genes 
(Ampomah-Dwamena et al., 2019).

Non-Climacteric Fruits
Watermelon (Citrullus lanatus) fruits, like tomatoes, accumulate 
lycopene. However, they are non-climacteric, meaning that 
their ripening process is not concurrent with a spike of 
ethylene production and cellular respiration. The expression 
of watermelon homologues of CNR, SlAP2a, and SlERF6 was 
correlated with ripening and carotenoid biosynthesis; however, 
that of RIN, TAGL1, NAC-NOR, DET1, DDB1, and CUL4 was 
not (Grassi et al., 2013). This suggests that some regulators might 
be common to carotenoid-accumulating fruits, while others are 
potentially involved in other aspects of ripening, such as ethylene 
biosynthesis/perception and light sensing/plastid transition.

In citrus, a yeast one-hybrid screen using the promoters of 
CsLCYB1 and CsLYCB2 identified the MADS-box gene CsMADS6 
(a homologue of TAGL1), which is expressed in flowers and 
fruits. Overexpression of CsMADS6 in citrus calli gave increased 
expression of CsPSY, CsPDS, CsCRTISO, CsLCYB2, and CsBCH, 
while transcription of CsLCYE was repressed. Additionally, the 
transcript levels of citrus HY5 and RAP2.2 homologues increased, 
while PIF1 levels were reduced (RIN and FUL are not expressed 
in citrus calli). CsMADS6 can bind the promoters of CsPSY and 
CsPDS in vitro to activate them (Lu et al., 2018). Another citrus 
gene, the R2R3-MYB CrMYB68, has been shown to directly and 
negatively regulate CrBCH2 by Electromobility Shift Assays and 
dual luciferase assays, but the endogenous function of this gene 
in citrus is unknown (Zhu et al., 2017b).

Flowers
The coordinated transcriptional regulation of CBP genes is 
largely responsible for the coloration of carotenoid-pigmented 
flowers (e.g., Corona et al., 1996; Moehs et al., 2001; Chiou et al., 
2010; Dalal et al., 2010; Yamagishi et al., 2010; Yamamizo et al., 
2010; Ohmiya, 2013; Zhang et al., 2015; Kishimoto et al., 2018; 
Wang and Yamagishi, 2019). However, very few genes regulating 
the transcription of CBP genes in flowers have been identified 
(Figure 5). Notably, none of the regulators involved in tomato 
fruit ripening dramatically affect flower petal color, even though 
tomatoes have carotenoid-pigmented flowers. This is probably 
because fruit and flower carotenoid biosynthesis are differentially 
regulated: while tomato fruits accumulate lycopene, the main 
carotenoid components in tomato flowers are the xanthophylls 
violaxanthin and neoxanthin (Galpaz et al., 2006). Most flowers 

FIGURE 4 | Transcriptional regulation of CBP genes in other fruits. The 
regulation of CBP genes in citrus, peach, papaya, and orange kiwi. The 
carotenoid biosynthesis pathway is shown in black, with carotenoid 
biosynthesis genes indicated in dark blue. Carotenoid regulators discussed in 
the paper are shown in light blue. Green arrows indicate positive regulation, 
while blunt red arrows indicate negative regulation. Solid lines show direct 
interactions, while dotted lines show indirect/unknown interactions.
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studied to date primarily store xanthophylls and/or β-carotene 
(Ohmiya, 2011).

The F-box protein CORONATINE INSENSITIVE 1 (COI1) is 
necessary for the perception of jasmonic acid JA. In addition to 
its many other functions, COI1-mediated JA signaling has been 
implicated in the production of floral and extrafloral nectar. 
Silencing of COI1 in Nicotiana tabacum not only suppresses 
nectar production in flowers but also decreases the amount of 
β-carotene in the floral nectary. The expression of NtPSY, NtZDS, 
and NtLCYB was reduced in the COI1-silenced lines during 
carotenoid accumulation (and persisted throughout development 
for NtPSY). Silencing COI1 also strongly downregulated the 
R2R3-MYB gene MYB305 in floral nectaries, suggesting that 
COI1 works upstream of this gene (Wang et al., 2014). It was 
previously shown that RNAi knockdown of MYB305 causes the 
loss of β-carotene in floral nectaries (though gene expression 
of the CBP genes was not analyzed) (Liu et al., 2009). MYB305, 
then, may mediate the transcriptional regulation of NtPSY, 
NtZDS, and NtLCY.

In the monkeyflower species Mimulus lewisii, an R2R3-MYB 
gene called Reduced Carotenoid Pigmentation 1 (RCP1) positively 
regulates all of the CBP genes expressed in flowers, contributing 
to the bright yellow coloration of the floral nectar guides (Sagawa 
et al., 2016). Although this seems like a promising global regulator 

for carotenoid biosynthesis in flowers, the DNA binding site/s of 
this transcription factor is/are yet to be determined. It is unknown 
whether RCP1 directly or indirectly activates transcription of the 
CBP genes. Another gene from monkeyflowers, RCP2, is also 
necessary for carotenoid biosynthesis in petals. RCP2 codes for a 
tetratricopeptide repeat protein that promotes the expression of 
the entire CBP, apparently through the regulation of chromoplast 
formation (Stanley et al., 2017). It appears that chromoplast 
defects in rcp2 mutants are somehow conveyed to the nucleus 
through retrograde signaling, which reduces transcription of all 
CBP genes. Again, the mechanism for this coordinated regulation 
of carotenoid biosynthesis genes is still unknown, and almost 
certainly indirect.

Seeds
Seed carotenoids are critical for ABA biosynthesis and seed 
dormancy, as well as protecting seeds from ROS damage. 
Therefore, carotenoids contribute to successful germination 
(Howitt and Pogson, 2006). In Arabidopsis and Nicotiana 
plumbaginifolia, it has been shown that ZEP transcript levels 
increase during seed development, peaking just before the 
accumulation of ABA (Audran et al., 1998; Audran et al., 2001).

Very few transcriptional regulators of seed carotenoid 
biosynthesis have been identified (Figure 6). In maize, the 
endosperm P-box and AACA motif regulatory sequences are FIGURE 5 | Transcriptional regulation of CBP genes in flowers. The 

regulation of CBP genes in Nicotiana tabacum and Mimulus species. 
The carotenoid biosynthesis pathway is shown in black, with carotenoid 
biosynthesis genes indicated in dark blue. Carotenoid regulators discussed in 
the paper are shown in light blue. Green arrows indicate positive regulation, 
while blunt red arrows indicate negative regulation. Dotted lines show 
indirect/unknown interactions.

FIGURE 6 | Transcriptional regulation of CBP genes in roots. The regulation 
of CBP genes in root tissues. Icons indicate the species (carrot, cassava, 
maize, rice, and Arabidopsis). Developmental and environmental cues are 
shown in purple. The carotenoid biosynthesis pathway is shown in black, 
with carotenoid biosynthesis genes indicated in dark blue. Carotenoid 
regulators discussed in the paper are shown in light blue. Green arrows 
indicate positive regulation, while blunt red arrows indicate negative 
regulation. Dotted lines show indirect/unknown interactions.
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bound by P-box binding factor (PBF) and GAMYB proteins, 
respectively. The ZmBCH2 promoter contains both elements 
and is bound in vitro by PBF and GAMYB (Jin et  al., 2019). 
A transient assay in maize showed that overexpression of 
each transcription factor alone increased ZmBCH2 transcript 
levels, but together, the effect was not additive. This regulation 
of ZmBCH2 is probably tied to ABA biosynthesis, and not 
carotenoid accumulation, as maize seeds accumulate lutein (a 
separate branch of the pathway).

It is perhaps surprising that so little is known about CBP 
transcriptional regulation in seeds, given the developmental and 
economic importance of seed carotenoids. This may be because 
many carotenoid-containing seeds primarily accumulate lutein 
(e.g., wheat, maize, millet, sunflower, pumpkin, canola), and 
the regulation of the α-carotene branch of the pathway is little 
understood (Howitt and Pogson, 2006). Additionally, promoter 
screens for late pathway carotenoid biosynthesis genes are rarely 
performed and/or reported, perhaps due to a biased focus on 
early pathway genes like PSY.

Roots
Although most roots do not produce carotenoids in appreciable 
amounts, the CBP is active to provide the precursors for ABA 
biosynthesis (Rock and Zeevaart, 1991; Bartley and Scolnik, 1995). 
ABA induces expression change of stress-related genes in response to 
dehydration (reviewed in Shinozaki and Yamaguchi-Shinozaki, 2007). 
Thus, the transcriptional regulation of carotenoid biosynthesis is 
key to water stress responses in plants. Additionally, some crop 
plants (e.g., sweet potatoes and carrots) accumulate large amounts 
of carotenoids in storage roots, where developmental signals 
regulate CBP genes over the course of root maturation.

Abiotic Stress Responses
Because roots are responsible for water and nutrient acquisition, 
root tissues must be able to respond to environmental cues. Of 
particular relevance to carotenoid biosynthesis is the sensing 
of and response to drought and salt stress (Figure 6). These 
mechanisms are related and overlapping (Zhu, 2002) and will 
thus be considered together. Rice (Oryza sativa) and maize 
each have three PSY paralogues, one of which (PSY3) appears 
to be strongly inducible by drought, salt, and exogenous 
ABA application. OsZEP and ZmBCH are also moderately 
upregulated by these stressors in rice and maize, respectively 
(Welsch et al., 2008; Li et al., 2008b).

In cassava (Manihot esculenta), there are also three copies 
of PSY. However, MePSY3 is expressed at extremely low levels, 
and its transcription is not affected by salt or drought stress. 
Instead, MePSY1 and MePSY2, which are normally expressed in 
photosynthetic tissues, are upregulated in roots to mediate the 
salt/drought response (Arango et al., 2010).

In Arabidopsis, which has only one PSY gene, salt stress 
upregulates AtPSY in the root but not the shoot. There is also 
a root-specific increase in the transcript levels of AtBCH1, 
AtBCH2, and AtZEP, but not other CBP genes. It was speculated 
that ABA signaling transcription factors might bind the AtPSY 
promoter preferentially in the root (Ruiz-Sola et al., 2014).

It appears that the transcriptional regulation of PSY is a 
conserved mechanism for drought/salt stress response in 
plants. When multiple paralogues of PSY are present in a 
genome, there may be specialization in function, perhaps 
mediated by differences in cis-regulatory elements (CREs). 
In cases where no specialization is evident, PSY regulation is 
tissue-specific: in both cassava and Arabidopsis, salt/drought 
stress upregulates PSY specifically in the root, with leaves 
exhibiting no change in PSY mRNA levels. Some downstream 
genes in the β-carotene branch of the CBP (which leads to 
ABA) are also altered by drought/salt stress, but the affected 
genes appear to be species-specific, with no later pathway 
genes being consistently responsive.

Storage Roots
In carrots (Daucus carota), the expression levels of most CBP 
genes (DcPSY1/2, DcPDS, DcZDS1/2, DcLCYE, DcLCYB, and 
DcZEP) increase over root development in several different 
carrot cultivars, including white carrots, which ultimately do 
not sequester carotenoids (Clotault et al., 2008). White carrots 
overexpressing a bacterial orthologue of PSY (crtB) in roots had 
significantly increased carotenoid levels (though not nearly as 
much β-carotene as orange carrots, suggesting that other factors 
also mediate this process) (Maass et al., 2009). This demonstrated 
that transcriptional regulation could play an important role in 
carotenoid accumulation in carrot roots.

In Fuentes et al. (2012), carrot roots were grown either 
underground or in light, and the mRNA levels of multiple 
CBP genes were assessed. Light-grown carrots accumulated a 
carotenoid profile similar to that of leaves, while dark-grown 
carrots accumulated mostly β-carotene. The expression patterns 
of most CBP genes mirrored these changes, with the exception of 
DcZDS1 and DcLCYB2 (which were not affected by treatment) 
and DcLCYE (which actually increased in both treatments). 
As proposed before, transcriptional regulation alone cannot 
account for these differences. It is important to note that light 
induced the formation of chloroplasts instead of chromoplasts, 
which indicates that plastid-to-nucleus retrograde signaling may 
somehow regulate CBP gene expression.

So Many Regulators, So Little Consensus
A fairly large number of putative transcriptional regulators 
of carotenoid biosynthesis have been identified from various 
species and tissue types (Table S1), mostly in the past decade. A 
conundrum emerges from this otherwise exciting progress: why 
so many candidate regulators but so little consensus? Almost 
every tissue type in every species studied to date seems to utilize 
a different group of transcriptional regulators for carotenoid 
biosynthesis. Perhaps it is not too surprising that the CBP is 
differentially regulated in various tissue types, as carotenoids 
serve very different functions in different organs (e.g., in leaves 
as essential components of the photosynthetic apparatus vs. in 
flowers and fruits as secondary metabolites), but it is puzzling 
that each species seems to have evolved its own carotenoid 
regulators. In our opinion, this conundrum exists at least in part 
because of the following challenges:
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	(1)	The endogenous functions of some of these putative 
transcriptional regulators have not been verified through 
knockout or knockdown experiments (e.g., CpEIN3a, 
CpNAC1/2, CrMYB68, CsMADS6, CpbHLH1/2, AdMYB7, 
ZmPBF, ZmGAMYB). These regulators were usually identified 
through transcriptome-based co-expression analyses or yeast 
one-hybrid screens using promoters of CBP genes. Interactions 
between these regulators and their DNA binding sites in the 
CBP gene promoters were often tested by in vitro gel shift assays 
and/or dual luciferase assays. Sometimes these regulators were 
further characterized by transient or stable overexpression 
in a heterologous host (e.g., tobacco). However, one should 
be cautious when interpreting these results, as heterologous 
expression can sometimes be uninformative or even 
misleading (Kramer, 2015). Before knockout or knockdown 
data become available, we think these genes should be regarded 
as “candidate” instead of bona fide carotenoid regulators.

	(2)	Most putative regulators were identified from ripening 
fruits, especially tomato (e.g., TAGL1, RIN, FUL1, FUL2, 
SlMADS1, SlNAC4, SlAP2a, SGR1, SlHDA3), making it 
very difficult to disentangle these regulators’ influence on 
carotenoid biosynthesis from their other ripening roles, 
which are largely mediated through ethylene signaling. In 
fact, most of the putative carotenoid regulators identified 
in tomato are components of the ethylene signaling 
network (Li et al., 2019). Therefore, it would not be 
unexpected if these tomato fruit ripening genes do not 
regulate carotenoid biosynthesis in other tissue types or in 
non-climacteric fruits.

	(3)	Current major model systems for carotenoid regulation are 
somewhat unusual or at least not representative. For example, 
the best genetic model system, Arabidopsis, does not produce 
chromoplast-containing tissues. The foremost fruit model, 
tomato, accumulates lycopene and is climacteric, whereas 
fruits of many other plant species (e.g., orange, papaya) 
accumulate abundant downstream products (e.g., β-carotene 
and xanthophylls). These limitations raise the question 
whether the knowledge gained from these systems is widely 
applicable to other plant species.

	(4)	Minimal effort has been put into testing whether the 
function of a certain regulator identified from one species 
is conserved in another species. So far, only the PIF1/HY5 
regulatory module has been shown to play a role in carotenoid 
biosynthesis during both Arabidopsis photomorphogenesis 
and the onset of tomato fruit ripening. Even in this case, it is 
unclear whether PIF1/HY5 function at the onset of tomato 
fruit ripening is an ancestral feature of all fleshy fruits or was 
accidentally co-opted from the photomorphogenesis network 
just in tomatoes.

In addition to these challenges, there are also many gaps in 
our understanding of transcriptional regulation of carotenoid 
biosynthesis. For example, we know very little about what 
regulates most CBP genes downstream of PSY in photosynthetic 
tissues, even in Arabidopsis; we know virtually nothing about 
the transcriptional regulators of CBP genes in the roots of 
any model systems; we know only three regulators in flowers 

(i.e., COI1/MYB305, RCP1, and RCP2), and even for these, we 
know nothing about their functional mechanisms; we know a 
variety of phytohormones affecting CBP gene expression, but we 
do not know which transcriptional regulators relay their signals 
to CBP genes.

FUTURE PERSPECTIVES

The challenges and knowledge gaps discussed above present 
wonderful opportunities for future carotenoid research. We 
think the following research directions will be fruitful in 
understanding how carotenoid biosynthesis is controlled at the 
transcriptional level:

	(1)	Testing the function of known putative carotenoid regulators 
(Table S1) across multiple species with well-developed 
genetic/genomic resources and functional tools. For example, 
generating knockdown transgenic lines or Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR) mutants of 
the SDG8 orthologue in readily transformable species like 
tomatoes or monkeyflowers would be a straightforward way 
to test whether the role of this gene in CRTISO regulation is 
conserved across angiosperms or just an oddity in Arabidopsis. 
Likewise, it would be interesting to generate knockdown/
knockout lines of RCP1 or RCP2 in tomatoes to see whether 
tomato flower color changes.

	(2)	Identifying regulators of late pathway CBP genes using 
promoter screens. The recent study in maize (Jin et al., 
2019) where two new regulators were identified using the 
ZmBCH2 promoter is a good example. Besides traditional 
yeast one-hybrid screens, recently developed methods 
such as CAPTURE (CRISPR Affinity Purification in 
siTU of Regulatory Elements) can be used to identify 
both transcription factors and chromatin remodelers 
at a particular promoter site with high specificity (Liu 
et al., 2017).

	(3)	Discovering key CREs of the CBP genes in various species. 
Databases such as PLACE (Higo et al., 1999) and PlantCare 
(Lescot et al., 2002), in conjunction with phylogenetic 
shadowing methods (Blanchette and Tompa, 2002), are 
extremely useful in predicting CREs in silico. Additionally, 
for species that are transformable, a powerful new way to 
discover CREs in vivo is CRISPR/Cas9 genome editing with 
multiple guide RNAs targeted to a gene promoter (e.g., eight 
guide RNAs in Rodríguez-Leal et al., 2017). This method 
can generate a wide range of mutant alleles with deletions 
of various lengths within the promoter region; and because 
this method does not rely on a priori knowledge of sequence 
motifs, it allows the discovery of novel CREs.

	(4)	Integrating multi-omics data (genomics, transcriptomics, 
proteomics, metabolomics, etc.) towards a more comprehensive 
understanding of CBP gene expression. With the rapid 
advances in generating large quantities of high-quality data as 
well as sophisticated bioinformatics methods and analytical 
tools, the systems biology approach will allow us to uncover 
correlations between metabolome and transcriptome profiles, 
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to identify candidate transcriptional regulators of biosynthetic 
genes in co-expression modules, and to map regulatory 
network interactions (e.g., Amiour et al., 2012; Maruyama 
et al., 2014; Balazadeh et al., 2014; Larsen et al., 2016). We 
envision that this integrative approach will be particularly 
helpful in elucidating the “missing” regulators that relay 
various hormone cues to CBP genes. There are many “omics” 
resources and databases that could be used for these purposes 
(Mochida and Shinozaki, 2011; Rai et al., 2017), but there are 
also many challenges to integrating such data. Experimental 
design and data quality/curation must be taken into account 
when combining multiple omics resources (Cavill et al., 2016; 
Helmy et al., 2016).

	(5)	Broadening the diversity of “model” systems. For example, 
citrus would be an excellent system to complement the 
existing tomato fruit model because it is non-climacteric 
and accumulates various carotenoids beyond lycopene. In 
addition, carotenoid-containing, embryogenic citrus calli 
can be readily produced and transformed (Lu et al., 2018), 
making them a powerful tool for rigorous tests of gene 
function. As high-quality genome assemblies and genome 
editing technologies become more and more accessible, it 
is not difficult to envision the development of even brand-
new model species with interesting/economically important 
carotenoid phenotypes in the near future.

We believe that these research avenues will lead to many 
more exciting discoveries in the coming years, which will 
not only contribute new knowledge on the transcriptional 
regulation of carotenoid biosynthesis but also likely have 
a significant impact on carotenoid biofortification of crop 
plants. So far, most of the efforts towards enhancing carotenoid 
biosynthesis or engineering novel carotenoid products in 
staple crops have focused on CBP genes (e.g., aSTARice; Zhu 

et al., 2018). However, effective biofortification often requires 
transferring multiple CBP genes simultaneously to the host 
plant and expressing these transgenes in a coordinated fashion, 
the latter being a particular challenge in metabolic engineering 
(Nielsen and Keasling, 2016). Building both transcriptional 
regulators and CBP genes into a synthetic biology framework 
will allow us to better coordinate the expression of multiple 
CBP genes, to make quantitative predictions of metabolic flux, 
and to rationally design optimal genetic circuits with maximal 
phenotypic outputs.
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