A FRAMEWORK FOR THE DYNAMIC PROGRAMMING PRINCIPLE AND
MARTINGALE-GENERATED CONTROL CORRESPONDENCES

ROMAN FAY VISOVICH AND GORDAN ZITKOVIC

ABSTRACT. We construct an abstract framework in which the dynamic programming principle (DPP) can be
readily proven. It encompasses a broad range of common stochastic control problems in the weak formulation,
and deals with problems in the “martingale formulation” with particular ease. We give two illustrations; first, we
establish the DPP for general controlled diffusions and show that their value functions are viscosity solutions of
the associated Hamilton-Jacobi-Bellman equations under minimal conditions. After that, we show how to treat
singular control on the example of the classical monotone-follower problem.

1. INTRODUCTION

The goal of this paper is creating a probabilistic framework in which the dynamic programming principle
(DPP) can be easily proved. To be useful, such a framework needs to be sufficiently powerful, so as to
encompass as many stochastic control problems as possible, but also sufficiently simple, so that it is easily
applied in a given situation. On a deeper level, our intention is to identify the fundamental properties
stochastic control problems and their setups need to have in order for the DPP to hold. One of the many
interesting things about (proving) the DPP is that its validity depends both on topological/measure theoretic
properties of the underlying spaces (such as the Polish structure) and structural properties of the control
problem (such as the ability to concatenate controls). A large part of this paper is a study of their interplay in
the setting of filtered probability spaces and general formulations of stochastic-control problems.

Even though the dynamic programming principle has been introduced in the mid 20th century, or even
earlier, (we point the reader to [Zit14] for a short historical overview), research related to DPP - especially
in continuous time - underwent somewhat of a renaissance in the past several decades (see., e.g., [EK81],
[Bor89], [FS93], [ST02a], [STO2b], [BV10], [BT11] [BN12], [ET13a], [ET13b] and [Zit14]).

1.1. Our contributions. Our starting point is the paper [Zit14] which focuses on two specific control
problems and shows that they both satisfy the DPP. Therein, the so-called controlled Markov families
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(families of sets of probability measures indexed by the elements of a state space) are introduced, and DPP
is formulated as a natural analogue of the Markov property in that setting. That formulation helps identify
three separate properties (already present in the literature, see, e.g., [ET13b, NvH13, Zit14]) of a controlled
Markov family, called analyticity, concatenability and disintegrability, under which the DPP holds. On their
own, these three properties do not amount to much more than a rephrasing of the DPP without making it
much easier to establish. The present paper takes up the task of providing wide sufficient conditions for each
of these three and, thus, for the validity of the DPP.

1.1.1. Truncation- and truncation-concatenation spaces. We begin by introducing the structure of a truncated
space (T-space) which carries the structure of a “measurably-filtered space” with each F; generated by a
single, albeit, Polish-valued, random variable. Perhaps unexpectedly at first, virtually all (uncompleted)
concrete filtrations used in probability and stochastic control turn out to be T-spaces; moreover, we show that
some perks of canonical spaces C' and D (such as Galmarino’s test) extend to all T-spaces. Another added
benefit is that sigma-algebras F- corresponding to stopping times inherit the property of being generated by
a single, Polish-valued random variable. This observation simplifies many of our proofs and provides further
insight into the structure of T-spaces. Moreover, many natural constructions (such as products or subspaces)
work well in the T-space context. This is particular important for our purposes as control problems come in a
variety of forms, but are invariably built out of a smaller number of “probabilistic building blocks”. In the
same, categorical, worldview, a natural and useful notion of a morphism between T-spaces can be introduced.

If one adds a time-indexed family of binary operations to a T-space and imposes appropriate measurability
and compatibility requirements, one obtains the structure of a truncation-concatenation space (TC-space).
The idea is to abstract away the main properties that define the operation of concatenation in the context of the
DPP. In addition to the model case of pasting of (right-) continuous paths, many other forms of concatenation
are covered by TC-spaces. Indeed, while the state spaces of control problems typically involve the spaces
of (right-, left-, ...) continuous trajectories, the spaces of controls are much less regular and need a more
flexible framework. Just like in the case of T-spaces, one defines products, subspaces and structure-preserving
maps (morphisms) between TC-spaces. Morphisms into the model space Dg of cadlag trajectories play an
especially important role later when we deal with martingale-generated controlled Markov families.

Once TC-spaces are set up, control problems are represented by control correspondences, 1.e., correspon-
dences that map each element of the sample space into a set of probability measures on it. In this context,
one defines the notion of a value function of a control problem, as well as the properties of analyticity,
concatenability and disintegrability which, together, imply (an abstract) DPP. It is, perhaps, interesting to
note that no notion of a state is needed for the abstract DPP to hold. It can be introduced explicitly, as we
often do, but its role is abstractly taken over by the notion of compatibility used to define a TC space.

1.1.2. Martingale-generated control correspondences. Our central claim is that truncation-concatenation
spaces, together with a shift operator (which can be thought of as a partial inverse of concatenation and
plays a central role in the study of disintegrability), provide a convenient framework on which a variety of
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stochastic control problems can be posed and analyzed. Of course, the validity of the DPP will depend on the
nature of the problem itself, but, as we show in examples, this amounts to a verification of a small number of
easily checked intuitive conditions. Focusing mainly on control problems in their weak formulation, and the
derived control correspondences, we identify two important cases in which these conditions are especially
easy to check. One is when the probability of the future evolution is controlled directly, without the need for
an intermediate “control process”, as is the case, e.g., with pure singular-control problems. In the other, much
larger, family of cases, explicit control processes are typically present, but their structure is such that access
to the totality of all possible controlled dynamics is possible via a system of “well-behaved” constraints.
Such constraints are often expressible in terms of the (local) martingale property of a class of real-valued
cadlag processes. The control correspondences constructed in this way are said to be martingale-generated as
they correspond, loosely, to what is known as the martingale formulation of optimal control in the literature.
The second third of the paper focuses on martingale-generated control correspondences on TC spaces and
provides sufficient conditions on the structure of the constrains (by interpreting them as morphisms into the
model space Dp) for the DPP to hold.

1.1.3. Examples. The final third of the paper contains two examples meant to illustrate the versatility of
our framework. The first one is the classical controlled-diffusion case which we consider in the weak
formulation and place it in our setting as a martingale-generated control correspondence. We show that
sufficient conditions established in the previous section apply in this case, and conclude that the DPP holds
under minimal conditions on the coefficients and the form of the controls. We also demonstrate that value
functions of such control problems are viscosity solutions of the corresponding Hamilton-Jacobi-Bellman
equations, under slightly stronger conditions (continuity of coefficients and admissibility of locally constant
controls). This partially generalizes several recent results in the literature, such as the “stochastic Perron”
method of Bayraktar and Sirbu (introduced in [BS12]) or the work of Bouchard and Touzi on the “weak DPP”
(see [BT11]). The same class of problems - under a somewhat different set of assumptions - has already
been treated by the authors of [ET13a, ET13b]. Like the present paper, they rely on the ability to pose an
equivalent controlled martingale problem on a suitable canonical space and characterize the resulting control

correspondence using at most countably many test functions.

Our second example is of singular type, and features a mildly generalized Monotone-Follower problem.
Here, we not only show how to establish the DPP for a singular-control problem in our framework, but also
showecase its flexibility. Indeed, we split the variables into two groups and deal with one directly, and with the
other using the martingale-generated approach. These two are considered separate control problems (with
separate control correspondences) until the very last moment when they are easily merged.

1.2. Notation and conventions. Both probabilistic and analytic tools - which often come with less-than-
perfectly compatible notations and terminology - are used in this paper. For the convenience of the reader, we
outline some of our major choices and conventions below.
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Both probabilistic EF[X] and analytic [ G du notation for integration will be used. The former will appear
mostly in examples, and the latter in the abstract part.

Many of our probability spaces come with Polish (completely metrizable, separable) sample spaces and
Borel probability measures. When the Polish structure is present, measurability will always refer to the
associated Borel o-algebra, denoted by Borel(€2). The set of all probability measures on Borel(€2) is denoted
by Prob(2).

A subset A of a Polish space €2 is called analytic if it can be realized as a projection of a Borel subset of
Q x R onto §2. We remind the reader that analytic subsets of Polish spaces are closed under countable unions,
intersections and products, but not necessarily under complements. It will be important for us that each
analytic set is in the universal o-algebra - denoted by Univ({2) - i.e., the family of all sets which belong
to the completion (Borel(€2))}, for each p € Prob(£2). We refer the reader to [Sri98] for all the necessary
details concerning descriptive set theory (see also [BS78] for a thorough treatment of related topics in the
context of the dynamic programming principle).

We topologize Prob(§2) with the topology of (probabilist’s) weak convergence. This way, Prob(£2) becomes
a Polish space. The following well-known fact, proved in a standard way via the monotone-class theorem,
will be used throughout without mention: Let U and V' be Polish spaces and let f : U x V' — [0, 00| be a
Borel-measurable function. The map

U x Prob(V) 3 (z, u) — B*[f(z,-)] = /Vf(x,y)u(dy)
is Borel measurable.

A probability measure defined on Borel(£2) admits a natural extension to Univ(€2). Similarly, our kernels will
always be universally measurable. More precisely, for Polish spaces €2, ), a map v : Q x Borel(Q) — [0, 1]

is called a kernel if v(w, -) € Prob(Q2) for each w € Q and v(+, B) is a universally-measurable map on 2,

for each B € Borel(£2). Depending on the situation we use both notations v(w, -) and v, for the probability
measure associated by v to w.

A standard Borel space is, by definition, a measurable space which admits a measurable bijection to a Borel
subset of some R", whose inverse is also measurable (a bimeasurable isomorphism). All standard Borel
spaces of the same cardinality are bimeasurably isomorphic, and so, each standard Borel space can be given a
complete and separable (Polish) metric so that the induced measurable structure matches the original one.
With this in mind, we talk of standard Borel spaces when only the measurable structure is relevant, and about
Polish spaces when topological properties are required.

2. AN ABSTRACT SETTING FOR THE DYNAMIC PROGRAMMING PRINCIPLE (DPP)

Let the time set Time be either [0, co) or Ny. An overwhelming majority of applications will only use these
two time sets, so we do not aim for greater generality. We do note that the results of this section will hold for
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more general time structures (such as intersections with [0, co) of Borel-measurable additive subgroups of
R).

2.1. T-spaces (truncated spaces). We start with the definition of T-spaces - a class of filtered probability
spaces our analysis will be based on.

Definition 2.1 (T-spaces). A filtered measurable space (2, F,F = {F; }teTime) is called a T-space (or a
truncated space) if

(1) (Q,F) is a standard Borel space and F = \/;ctime Ft-

(2) there exists a family {7} }1eTime of maps 7} : 2 — € - called a truncation - such that
(a) (t,w) — Ty(w) is (jointly) measurable,
(b) Ty o Ts = Tsps for all s,t € Time, and
(c) Fi = o(1y) for each t € Time.

For notational reasons, we always add the identity map 7', = Id to any truncation. Moreover, we often use
the alternative notation w<; for T3 (w).

2.2. First examples of T-spaces. All T-spaces are necessarily countably generated, so not every filtered
probability space can be endowed with the structure of a T-space. Nevertheless, as our examples below aim
to show, many spaces used in stochastic analysis and optimal stochastic control are natural T-spaces. When it
is necessary to make a distinction, we take Time = [0, co) and leave it to the reader to make the necessary
minor adjustments needed for the case Time = Ny. Once we describe various natural constructions involving
T-spaces in subsection 2.4 below, the reader will be able to produce many more examples.

2.2.1. The path space Dg. Let E be a Polish space, and let Dg denote the family of all cadlag functions
from Time to E. For t € Time, we define the truncation map 7; : Dg — Dg by

Ti(w)(s) = w(t A s) for s € Time, (2.1)

so that (2b) of Definition 2.1 holds. It is well-known that Dg is a Polish space under the Skorokhod
topology. The map 7} is Skorokhod-continuous, and therefore, measurable. Hence, as a Caratheodory
function, 7" : Time x  — € is (jointly) measurable. The filtration F; = o(7}),t € Time clearly coincides
with the (raw) filtration generated by the coordinate maps w +— w(t).

2.2.2. Path spaces Gg, Cg and Lipﬂjgxo. Analogous constructions can be performed on the space G of
left-continuous and right limited paths from Time to E, or on the space Cr of continuous paths. Both of
these are given the Skorokhod topology (and the induced Borel structure), which, in the case of C'g reverts
to the usual topology of locally uniform convergence. Unless specified otherwise, these spaces (and their
subspaces) will always be endowed with the standard truncation given by (2.1).
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We will also have use for the space LipﬂL{’xO consisting of all functions x : [0, 00) — R such that z(0) = xg
and |z(t) — x(s)| < L|t — s| forall s,t € [0,00). It is easy to see that LipHLQ’I0 is also a T-space with the
standard truncation.

2.2.3. The space L% and related spaces. Let A be a standard Borel space, let A be the Lebesgue measure
(or any other Radon measure) on [0, c0), and let A denote an equivalent probability measure on [0, c0) (e.g.,
A(dt) = et \(dt), when X is the Lebesgue measure). We define LY as the set of all A\-a.e.-equivalence
classes of Borel functions « : [0,00) — A. Given a bimeasurable isomorphism ¢ : A — [—1, 1] (which
exists thanks to the standard Borel property of A) we metrize L% by

d(e, B) = [[¢(a) = S(B)|I1 -

This way, €} = L% becomes a Polish space and a natural truncation on it is defined by

Olyy,s u <t
ﬂ(a) - {¢_1(0), u Z ¢

We note that the equivalence class of the right-hand side depends on « only through its equivalence class, and
that, while d and the induced Polish topology depend on the choice of ¢ and A, the resulting standard Borel
structure does not. The choice of this particular ¢ makes it easy to show that 7} is jointly measurable; indeed,
it will be continuous under d in both of its arguments.

Once the space IL% is constructed, one can easily show that many of subsets (such as the .” spaces when
A = R) are also T-spaces.

2.2.4. Spaces of measures. For a metrized Polish space U, let M* (U) be the family of all boundedly-finite
Borel measures on U, i.e,. those measures p such that u(B) < oo, as soon as B is a bounded Borel set.
There exists a metric on M7 (U), whose topology coincides with the topology of weak convergence when
restricted on measures supported by a fixed bounded set (see [DVI03, Section A2.6, p. 402] for the proof
of this and other statements about the space M7 (U') we make below). Under the full topology induced by
this metric, called the w?-topology, M# (U) becomes a Polish space. Moreover, a sequence { i, }nen in
M (U) converges if and only if [ f du, — [ fu for each bounded and continuous function f :  — R
which vanishes outside a bounded set. The Borel o-algebra on M7 (U) is generated by the evaluation maps
p — u(A), where A ranges over a family of all bounded Borel subsets of U/. The subsets M7 (U) and
MP(U) = Prob(U) of M7 (U), consisting only of finite or probability measures (respectively), are easily
seen to be Borel subsets of M# (), and, therefore, standard Borel spaces themselves.

For a Polish space E, we set Q@ = M*(U), where U = [0,00) x E and * € {#, f, p}. The truncation maps
are given by

p<i(A) = p(([0,1] x B)n A), fort € [0,00), 4 € 0,00) x .
With the filtration generated by the maps 73, it is clear that VF; is the Borel o-algebra on ). The only
remaining property from Definition 2.1 is (2a), for which it is sufficient to note that for any boundedly
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supported function f we have [ fdu<; = [ fliggxpdp. Indeed, it follows that (f,1) +— < is a
Caratheodory function as it is right continuous in ¢ and measurable in p.

2.2.5. Predictable truncations. In many the examples above, it is possible to define several different trun-
cations on the same underlying Polish space. For example, in the case of the canonical space Dy, we may

set
Wg, s<t
T;(w)(s) ={ ’ :
wi—y, s>t

It is easily checked that 7} is indeed, a truncation on Dg; we call it the predictable truncation.

2.3. Truncating at stopping times. Given a T-space (Q, F,F = {F;}tcTime), let the set of all stopping
times be denoted by Stop. The index set for the family of truncation operators can be extended to Stop by
setting

Tr(w) = Ty (w) for T € Stop and w € ,
where the convention that 7Tt is the identity map is used. As is the case with deterministic times, the notation
T (w) will often be replaced by the less cumbersome (and more suggestive) w<.
Proposition 2.2. Forallt € Time, w € Q, T,k € Stop and we have
(1) T and T, are measurable maps on Q) and T o T\, = Ty
(2) o(T;) ={A € F : T-1(A) = A}, and
“Ae€o(T,)” isequivalentto “w€A & we, €A

(3) 7(w) = 7(Tr(w)), and hence T is o (T;)-measurable

(4) o(T;) = Fr, where Fr ={A e F : An{r <t} € F,Vt € Time}

(5) Let (S,S) be a standard Borel space. An (F,S)-measurable map Z : Q@ — S'is (F,S)-measurable
ifandonlyif Z o T, = Z.

Proof.

(1) Measurability of 7', follows directly from the measurability of stopping times and the joint measur-
ability of (t,w) — T;(w) on (Time U {oo}) x Q. Applying Definition 2.1, part (2b) pointwise for
t =7(w)and s = k(w) gives T o Ty, = Trpy.

(2) By part (1) we have T;; = T, o T for each 7 € Stop, and so for any A € F, we have

A=T7'(B)forsome BEe F < A=T-(A).
Furthermore the condition A = T~ 1(A) is equivalent to:

weA & w<,reA
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(3) Fixw € Q,lett = 7(w), and let A = {7 = t}. Since 7 € Stop, then A € F; = o(T}). Combining

“4)

(&)

e F'~

part (2) with the fact that w € A implies 7;(w) € A. Therefore:

T(Trw) W) = 1(Th(w)) =t = 7(w)
For the forward inclusion, let A € o(T5). Thanks to (2) above, we have A = T.-1(A). Therefore for
all t € Time we have:

An{r <t} ={w e Q : T ,)(w) € A, 7(w) <t}
={weQ: Tpynlw) € A, 7(w) <t} = T LA N{r <t} e F,
where we used the fact that T n; = Tra; © T} is Fi-measurable. Therefore A € F,, and hence
o(Ty) C Fr.
For the backward inclusion, let A € F. By part (2), it suffices to show:
weA & w<,€A

First suppose w € A and lett = 7(w). Since A € F,,thenw € AN {r <t} € F;. Applying (2) to
An{r <t}givesw<, € AN{r <t} C A

For the other direction, suppose w<, € A. By part (3) we have 7(w<,;) = 7(w) and hence
w<r € AN{T <t} € Fi. Applying 2)to AN {7 <t} givesw e AN{r <t} C A
If Z = Z oT,, then Z is F-measurable as a measurable transformation of the F--measurable map
T;. Conversely, if Z is F,-measurable, the standard Borel property and the Doob-Dynkin lemma
guarantee the existence of a measurable map ¢ : 2 — S such that Z = ( o T’.. A composition with
T, yields that

Zol,=CoTl, 0T, =(oT, =727 ]

2.4. Constructions on T-spaces.

Next, we describe several natural notions and constructions on T-spaces, as well as various operations that
produce new T-spaces from the old ones. For the remainder of this subsection, let (2, F,F = {F; }teTime)
and (Q, F,F = {F; }+eTime) be two T-spaces, with truncations {7} }teTime and {7} }tcTime, respectively.

2.4.1. Structure-preserving maps. A useful structure-preserving notion in the case of T-spaces turns out to
be non-anticipation:

Definition 2.3. A measurable map F' : Q — () is said to be non-anticipating if it is (F;, F;)-measurable,
Y(F;) C F; foreach t € Time.

We have the following characterization using the truncation maps:

Proposition 2.4. A measurable map F : (Q, F) — (Q, F) is non-anticipating if and only if

TtoFoTt:TtoFforallteTime.



A FRAMEWORK FOR THE DPP 9

Proof. By Proposition 2.2 part (2) we have F; = U(Tt) = Tt_l(]:"), and by part (5) we have T; o F is
Fi-measurable if and only if Tt oFoT; = Tt o F'. Therefore for all £ € Time:

F_l(]}t) cCF < F_I(Ttil(]})) Cc F
& T, o0 Fis Fy-measurable
& TioFoT,=TioF O

Remark 2.5. One could also consider an alternative notion of a structure-preserving map where we require
that Ty o ' = F o T} for all t € Time. Proposition 2.4 and the fact that T; o T; = T3 imply that T-morphisms
are non-anticipating, but the converse is not true.

2.4.2. T-subspaces. We say that a T-space (Q, F,F = {ft}tenme) is a T-subspace of (0, F,F = {F; }+cTime)
if @ C Qand F; C F, forallt € Time. As the following result show, subsets preserved by truncation
inherit a structure of a T-space:

Proposition 2.6. Let (0, F,F = {F; }icTime) be a T-space, and let Q' be a measurable subset of ) with the
property that T, (') C Y, for all t € Time. Then the family {1} }+cTime given by T, = Ty|qy, is a truncation,
and the filtered space (Y, F',{F| }tcTime), givenby F' ={B € F : BC Q'}, F; = o(T{), t € Time, isa
T-space and a subspace of (2, F,F = {Fi }teTime)-

Proof. Clearly (Q, F') is a subspace of (€, F). To satisfy Definition 2.9 of T-spaces, note that part (1)
follows from the construction of €’ and F”, and the properties of part (2) are passed down from 7' to 7. [

Example 2.7. Truncation operators on Dg leave invariant several important measurable subsets of Dp.
Among the examples are

(1) Cg, the family of all everywhere continuous elements of D,

2) Dg(’, the family of paths in D which start from a point in Ej, and

(3) Dgr, the family of paths in Dg stopped once they hit the closed subset F' of E.

(4) D/? (D", DY), the family of all paths in Dy all of whose components are of finite variation (nonde-
creasing, nonincreasing)

5) Lipﬁ, the family of all Lipschitz continuous maps from [0, oo) to R, with the Lipschitz constant at
most L.

More examples can be produced by various intersections of the above sets.
2.4.3. Products. T-spaces behave well under prqducts, too. Indeed, thf: standard Borel space QO=0xQ
admits a natural truncation given by the family {7} };cTime of maps on €2 defined by

Ty(w, &) = (Ty(w), T())- (2.2)
The resulting T-space Q, together with the natural filtration generated by {Tt}tgime, is called the product of

the truncated spaces €2 and Q. It is not difficult to see that the same construction can be applied to countable
products of truncated spaces.
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2.4.4. State maps. A measurable map X : 2 — F, where FE is a Polish space is called a state map. Such
maps define a class of progressively measurable F-valued stochastic processes on {2 via

Xt((d) = X(Tt(W)),t € TimeU {OO},LU e
(where the convention T (w) = w is used). We can also write X, for X o T:- when 7 € Stop.
Remark 2.8. Our notion of a state corresponds intuitively to that used in the theory of Markov processes,
even though we insist upon assigning a state to each w € €. If one pictures 73 (w) as trajectory w stopped at t,

then X (w) is simply the “state” at which w is stopped. When w is not necessarily in the image of some 73,
we assign the state abstractly imagining it to be the “value of w(o0)”.

2.4.5. Actions on measures and kernels. For a probability measure . € Prob(2), and a stopping time
T € Stop we define the truncated measure /i<, as the push-forward of 4 via the truncation map 7.

Two analogous operations can be applied to kernels v from €2 to 2. We can truncate the second argument,
leading to the truncated kernel v< ., where, for each w € Q, v<.(w,-) is the truncation of the measure
v(w, ), as above. On the other hand, we can define the restricted kernel =" by truncating in the first
argument, i.e., by setting

v<"(w, B) = v(Ty(w), B).

That v=7 is, indeed, a kernel follows from the fact that a Borel measurable function (like 7,) between
two Polish spaces remains measurable under the pair of universal o-algebras (see [BS78, Proposition 7.44,
p. 172]).

2.5. TC-spaces (truncation-concatenation spaces).

Definition 2.9. A truncation-concatenation space (or a TC-space) is a truncation space (2, F,F =
{Fi}tcTime) together with a measurable subset C C Q x Time x (2 - called the compatibility set - and a
measurable map * : C — 2 - called the concatenation operator, such that the following conditions hold:

(1) forall w,w’ € Qand s,t € Time we have
(w,t,w') €C & (wer, t,w') €C & (w,t,we,) €C. (2.3)
(2) if (w,t,w") € C, then, for all s € Time we have

w W = wey W', as well as 2.4)
(WHr)eg =4 5 st 2.5)
N Wkt W<s—t, S>1

The action of the concatenation operator on the triplet (w, t,w’) € C is denoted by w *; w" and is usually
interpreted as an element of € “obtained by following w until time ¢, with w’ attached afterwards”. The set C
- the domain of * - may encode a compatibility relation necessary for the concatenation to be possible. The



A FRAMEWORK FOR THE DPP 11

set of all w’ € Q such that (w,¢,w’) € C is denoted by C,, +, and we say that w’ is compatible with w at ¢ if
w' € Cw t-

In many examples compatibility is established via a state map (as defined in subsection 2.4.4 above):

Definition 2.10. Given a TC-space (€2, F,F = {F; }+eTime) and a state map X, we say that the concatenation
operator

(1) factors through X if X;(w) = Xo(w') = (w,t,w’)€C,and
(2) is a factor of X if (w,t,w') eC = Xi(w) = Xo(w').

When needed, we also define w *o, w’' = w, declaring, implicitly, any two elements of {2 compatible at ¢t = oo,
so that C,, o = €2. This way, as in the case of the truncation spaces, the time-set Time can be extended to the
set of all stopping times by setting:

wkr W' = w sk W forw’ € Cy (- (2.6)
By Proposition 2.2, part (3), 7(w<,) = 7(w), and, so, the stopping-time analogue of (2.4) holds in TC spaces:

! ! / ! !
W*xr W =W *T(w) w = wST(w) *T(w) W = W<r *T(w<7) W = Ww<r *r W .

2.6. Examples of TC-spaces.

We go through the list of examples of T-spaces from subsection 2.2 and describe how a natural concatenation
operator can be introduced.

2.6.1. Strict concatenation on path spaces Dg and C'y. We consider the space Dy with the truncation
w<t(s) = w(s At). The strict concatenation operation e is given by

, w(s), s<t
[ ] s — 2.7
(weew) {w’(s—t), s>t &7

for w,w’ € Dp, where w and w’ are considered ¢-compatible if and only if w(t) = w’(0). To check that e is,
indeed, a concatenation is straightforward, and we only remark that the joint measurability of e (in all three of
its arguments) follows from the observation that, as a function of the inner argument ¢, it is right-continuous
in the Skorokhod topology. When applied on its compatibility set C, the operation e preserves continuity, so
it can be used to define a concatenation operator on Cg, as well. Finally, it is straightforward that

X(w) = hg(i)gfw(t)

defines an £ = R-valued state map with the property X;(w) = w(t) for t € Time and such that the
concatenation operator e factors through it.

Remark 2.11. Many subspaces of Dg, in addition to CF, are closed under the strict concatenation. The reader
will easily check that all the spaces in Example 2.7 have this property; it follows that they are TC-spaces
themselves.
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2.6.2. Adjusted concatenation on Dy and Cg. When E admits an additive structure, we can define another
concatenation operator on it, namely the adjusted concatenation operator *. It is given for w,w’ € Dy by

N w(s), s <t
(e e)s = {w(t) +uw'(s—t)—'(0), s>t, @9

with no restrictions on compatibility, i.e., with C = 2 x Time x €. It is clear that the strict and the adjusted
concatenation operators agree on the compatibility set of e, and that * can be restricted to C'’r without loosing
any properties required of a concatenation.

2.6.3. Spaces of measures. We define the concatenation operator * on the space 2 = M7 ([0,00) x E),
described in subsection 2.2 as follows. For u, i’ € €2, we set

(1 1)(A) = (((0,6) x B) N A) 44 ((([1,00) x B) 0 A) — t),

where B —t = {(xz,s — t) : (x,s) € B}, for B C [t,00) x E. No compatibility restrictions are imposed.
There should be no difficulty in checking that x satisfies all defining properties of a concatenation. We also
note that the same construction applies when M# is replaced by M.

In the case when MP is considered, the above operation does not preserve total mass. This cannot be fixed
by restricting compatibility, but can be overcome by defining another concatenation operation as follows:

(3 1)(A) = p(([0.1) x BY 0 A) + (1= wl(0.1) x B) ) ((([t00) x B) 1 4) 1),

2.6.4. IL& spaces. When the underlying measure A is the Lebesgue measure, we usually concatenate L%
functions as follows:

<t
(f*tg)u: fu’ Y= s
Ju—t, U >1

with no compatibility restriction.

2.7. Constructions and structure-preserving maps on TC spaces. Like T-spaces, TC-spaces come with
natural subspace and product constructions. Their properties extend those of naked T-spaces in a predictable
way, so we skip any further discussion. The following notion of a structure-preserving map on TC spaces
will play a major role in Section 3 below.

Definition 2.12. A measurable map F : Q — () between two TC-spaces, with concatenation operators * and
% (and compatibility sets C and C) is called a TC-morphism if

(1) F is non-anticipating, and
(2) forall t € Time, and all w,w’ € Q withw’ € C,; we have F'(w') € Cr(w),+ and

Flwxw') = F(w) % F(W).
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2.8. Concatenation of measures in TC-spaces.

The ability to concatenate elements of {2 extends to probability measures and kernels on 2. We say that a
measure i € Prob(€)) and a kernel v € Kern(2) on a TC-space are compatible at the stopping time 7 if

yST(CwyT(w)) =1, for p-almost all w.

w

When x* factors through a state map X, a sufficient condition for compatibility of p € Prob(2) and
v € Kern(Q2) at 7 is that

V5™ (Xo = X;(w)) = 1, for pralmost all w with 7 (w) < oc. (2.9)

Using the convention, as above, that Q x {oo} x @ C C, we also note that, given a stopping time T,
the set C; = {(w,w’) : (w,7(w),w’) € C} is a pullback of the Borel set C via the measurable map
(w,w") = (w, 7(w),w), and, therefore, itself measurable.

For 1 € Prob(€2) and a T-compatible kernel v € Kern(Q) let 1 ® v=" € Prob(Q x §2) denote the product
of 1 and the 7-restriction of v. The concatenation (. x v is then defined as the push-forward of this product
via the measurable map C; 3 (w,w’) — w 1 (w) w’. We note that the compatibility relation introduced above
implies that 4 ® v=7(C,) = 1, so that y *, v is, indeed, a probability measure. Moreover, we have

/G(w)(,u*TI/)(dw):/G(w*Tw’)(u®l/— ) (dw, du') /Gw* WY UET (A pldew),

for any sufficiently integrable random variable GG on 2. The compatibility condition (2.4) implies further that
/Gd(,u, *r U / Glwey *r W) VST (dw') pu(dw)

= // G(@ %, W) VST (dw ) p<r (d),

where p1<- is the push forward of p via T7.

(2.10)

2.8.1. Tail maps. Tail maps on TC-spaces will play an important role in the dynamic programming principle
and will model payoffs associated to controlled processes.

Definition 2.13. A measurable map G from a TC-space to a measurable space S is called a tail map if
G(wx w') = G(W') forall t € Time, allw € Q and all W’ € Cy . When S = R (S = R), a tail map is
called a tail random variable (extended tail random variable).

The tail property of random variables extends readily to stopping times in the following form:

Gw'), 7(w)< oo

Cllomre) = {G<w>, r(w) = oo,
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as long as w’ is compatible with w at 7. Combining this expression with (2.10) we obtain the following
equality, valid for each stopping time 7, probability i € Prob(£2), a T-compatible kernel v € Kern(£2), and a
sufficiently integrable tail random variable G:

/ Gd(p*,v) = / G(w<r) p(dw), (2.11)

where

Gw) = Gl ruymne) T [ G vald)Liri)<ocy-

2.9. Control correspondences.

Amap f: A — 28 where 28 denotes the power-set of B is called a correspondence from A to B, and
is also denoted by f : A — B. Its graph I'(f) C A x Bis givenby I'(f) = {(a,b) : a € A,b € f(a)},
and its image by Im(f) = U,ca f(a). A correspondence is said to be non-empty-valued if f(a) # () for all
a€ A

Definition 2.14. A non-empty-valued correspondence P : {2 — Prob(2), on a measurable space {2 is called
a control correspondence.

Given a control correspondence P, a universally measurable random variable G is said to be P-upper semi-
integrable, denoted by G € £L170(P), if G+ € L£1(u) for each yu € Im P. To each control correspondence
P and each G € L179(P) we associate the value function v : ) — [—o0, o], given by

v(w) = sup /Gd,u. (2.12)

2.10. Three key properties.

There are three key properties that control correspondences must satisfy in order for our main results to apply.
These properties appear in [Zit14] in a similar terminologial setting, but have been considered and understood
in the literature in diffferent forms long before that (see [ET13a, NvH13] for two recent formulations). We
recall that a universally measurable P-selector (or, simply, a P-selector) is a (universally measurable)
kernel form €2 to Prob(€2) with the property that v(w) € P(w), for each w; the family of all P-selectors is
denoted by S(P).

Definition 2.15. A control correspondence P on standard Borel space {2 is called
(1) analytic if its graph I'(P) is an analytic subset of the (standard Borel) space §2 x Prob(f2).
A control correspondence P defined on a TC space (2, F,F = {F; }1eTime) i said to be

(2) concatenable if for each w € Q, p € P(w), v € S(P), and each stopping time 7, v is T-compatible
with p and

pxrv € Pw).
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(3) disintegrable if for each w € Q, u € P(w) and a stopping time 7 there exists v € S(P) such that v
is u-compatible at 7 and

W= [ *r V.

Remark 2.16. It follows directly from the definitions of analyticity, concatenability and disintegrability that
the following, useful, implications hold for any sequence of control correspondences { Py, },cn on the same
Borel space 2. Let N, P,, and U,, P,, be the intersection and the union, defined pointwise, on {P,, } ,en-

(1) If each P, is analytic, then so are U, P, and N, P,,.
(2) If each P, is concatenable, then so is N, P,,.
(3) If each P, is disintegrable, then so is U, Py,.

We state for completeness the following result which will be used in the sequel, and the proof of which follows
almost verbatim the argument in [Zit14, Theorem 2.4, part 1., p. 1605], which, in turn, is a reformulation of the
standard argument available, for example, in [BS78]. We remind the reader of the convention 400 —e = 1/e,
fore > 0.

Proposition 2.17 (Universal measurability of value functions). Suppose that ) is a standard Borel space,
P an analytic control correspondence, G € L17°(P) and that v is the associated value function, given by
(2.12). Then v is universally measurable and for each £ > 0 there exists a (universally measurable) selector
ve € S(P) such that

v(w)feg/Gdyj, forallw € Q.

2.11. An abstract version of the dynamic programming principle.

We are ready to state the most abstract version of the DPP that holds in our setting. A more directly applicable
- and more familiar-looking - version, based on the notion of a state map will be given below. The ideas in the
proof are entirely standard. In fact, our setting is constructed as the most flexible one where this proof can be
applied. We provide the details for the reader’s convenience.

Theorem 2.18 (DPP). Let P be an analytic control correspondence on a TC space Q, G € L'=°(P) a tail
random variable, and v the associated value function, given by (2.12). Then,

(1) If P is concatenable, then for each w € §2 and each stopping time T we have

v(w) > sup / (v 0Tl cony + Gl{T:oo}) du (2.13)
HEP(w)
(2) If P is disintegrable, then for each w € ) and each stopping time T we have

v(w) < sup / volrle ot + Gl —ooy ) du (2.14)
(w) Jup ( {r<oo} { })
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Proof. Suppose, first, that P is concatenable and pick w € €2, ;1 € P(w) and a stopping time 7. Given € > 0,
Proposition 2.17 guarantees the existence of an e-optimizing selector v°, i.e., such that v° = [Gdv;, >
v(w) — ¢, for each w € ). We construct the measure ' by concatenating ;. and v at 7. The assumptlon of
concatenability implies that they are compatible and that i/ € P(w). Therefore,

@z [Gd' = [ Gl ) = [[ Gl s ') 057 (d) ()
_// N0y + G0y (ST () )

> / (G@) L rwymoc) + (VW) = €)1 (r(w)<o0) ) 1),
which implies (2.13).

In the disintegrable case, we pick e > 0, w € Q, 7 € Stop and choose p® € P(w) such that v(w) — e <
J G duF. By disintegrability, we can write u = u *, v for some v € S(P), and so

vw) =2 < [ Gl e v) = [ (G sy + Lpaony ([ GET() ) il
< / (G Loy + 0(@<r) Ly cocy ) pld). 0

2.11.1. State maps and factoring. We remind the reader that, as defined in subsection 2.4.4, a state map
X : Q — FE is simply a measurable map from a T-space to a Polish space F, and that X is a shortcut
for X o T, for 7 € Stop. Just like (concatenation) compatibility may factor through X, so can a control
correspondence:

Definition 2.19. A control correspondence P on (2 is said to factor through a state map X if there exists
a correspondence P : E — Prob(Q) such that P(w) = P(X (w)) C Prob(Q), i.e., the following diagram
commutes:

O—=* L F

l» / (2.15)

Prob(2

A very simple, but important, consequence of the existence of a state map through which the control
correspondence P factors is that in that case, v factors through it as well. Indeed, the function v : £ —
[—o00, 00], given by v(z) = sup,,cp(,) J G du, then has the property that v(X (w)) = v(w) and, under the
conditions of Theorem 2.18, satisfies
7‘_}(33) < (Z) sup /(1_)(XT)1{T<OO} +G1{T:oo}) d/’é
HeEP(x)
for all € Im X, and all stopping times 7 € Stop.
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3. MARTINGALE-GENERATED CONTROL CORRESPONDENCES

Our next task is so take the abstraction level down a notch and study a class of control correspondences
defined via a family of martingale conditions. These correspondences generalize the standard martingale
formulation in the theory of stochastic optimal control and are defined via a family of structure-preserving
maps into the model space space DY of R-valued cadlag paths x : Time — R with z(0) = 0.

3.1. Canonical local martingale measures.

With the T-space structure of Dy described in subsection 2.2, each non-anticipating map F' from a T-space
(Q, F,F = {Fi}tcTime) into Dg induces a sequence { "} of non-anticipating maps

F{* = F,pp, where 7,7 (w) = inf{t > 0 : |[Fy(w)| > n} An. (3.1)
When the choice of F is evident from context, we may drop the superscript and write 7,, = 7.

Definition 3.1. A probability measure 1 € Prob(£2) is said to be a canonical local-martingale probability
for F' if the stochastic process { F{*(-) }teTime is @ martingale under (u, IF) for each n € N. The set of all
canonical local martingale probabilities for F is denoted by Moc,

Remark 3.2. The notion of a canonical local martingale differs from the standard notion of a local martingale
in that it requires that the reducing sequence takes a particular form, namely that of the sequence of space-time
exit times. This requirement is nontrivial, as it is known that there are local martingales that cannot be
reduced by this particular sequence (see [Str77, Lemme 2.1., p. 57]). On the other hand, this notion suffices
for many applications; indeed for continuous processes (or processes with jumps bounded from below) the
notions of a canonical local martingale and that of a local martingale coincide.

With the notion of a canonical local martingale probability under our belt, we can define a large class of
control correspondences. Housed on T-spaces, they need two ingredients to be specified: 1) a family of D
of non-anticipating maps from 2 — Dg, and 2) a state map X from {2 to a Polish space E. Once these are
specified, for x € E we define

P(x) = ﬂ MIlee {,u € Prob(Q) : X ==z, p—a.s.}, (3.2)

FeD

where, as usual, X is the shortcut for X o 7. The (D, X )-generated control correspondence P =
P(D, X) : Q — Prob(Q) is then defined by

P(w) = P(X(w)) forw € Q,
so that it naturally factors through X.
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3.2. Sufficient conditions for analyticity.

The ubiquitous Polish-space structure woven into all the ingredients of our setup makes it possible to give
widely met sufficient conditions on the family D such that the resulting (D, X )-correspondence becomes
analytic. The countability condition we impose on D is not the weakest possible, but since it holds in most
relevant examples, we only comment on some possible routes towards establishing weaker versions in Remark
3.5 below.

Proposition 3.3. Let D be a countable family of non-anticipating maps from a T-space 2 to Dy and let
X : Q — FE be a state map. Then the (D, X)-generated control correspondence P is analytic.

The proof is based on a modification of [Zit14, Lemma 3.6, p. 1611], where
QStop = {qlA +7lge : g <reQTime A € Hq}

with QTime denoting a countable dense set in Time, and {Hq}qEQTime a collection of countable 7-systems
such that o(II;) = F, for all ¢ € QTime. The exact choice of QTime or {II; },cQTime is unimportant, as
long as it is fixed throughout.

Lemma 3.4. For each non-anticipating map F, we have
Ml = (V{p € Prob(Q) : Fy, B € L' (1) and B*[F'14] = B [Fy'1.4]} (3.3)

where the intersection is taken over alln € N, ¢ < r € QTime and A € 11,

Proof. The inclusion M*1°¢ C ... is straightforward. Conversely, let ;2 € Prob(Q) be an element of the
right-hand side of (3.3). We first show that ¢, € Mg%me, where Mg%me denotes the set of all u € Prob(€2)
with the property that { F}" };cQTime i @ u-martingale with respect to {F: }+cQTime- That is an immediate
consequence of the equalities of expectations under p on the right-hand-side of (3.3). Considered over all
A € Il,, with ¢ < r € QTime, they amount to E*[F"|F,] = I, a.s., by 7-A-theorem.

It remains to argue that F" is a y-martingale on entire Time. Assuming, without loss of generality, that
Time = [0, 00), we start by picking s € Time\QTime and r € QTime with r > s. The backward martingale
convergence theorem implies that

EA[F)|Foy] = 2, peas.
Since F™ is non-anticipating, F}' is Fs-measurable and we may replace F,4 by F; in the equality above.
Finally, for ¢ € Time with ¢ > s, we approximate Fy’ by a sequence {F]! }en With 7, N\, t and
rm € QTime, to conclude that F'" is, indeed, a martingale under . (Il

Proof of Proposition 3.3. For each r € Time, the coordinate maps are Borel measurable on Dg and, so,
wu— EF[F,1 4] is Borel on €. It is easy to see that the family of probability measures under which a given
real-valued Borel map is integrable is also a Borel set, so it follows that M is Borel for each F. The
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countability of D guarantees that Npep M7, as well. Finally, the graph of P is analytic (in fact Borel) as
it is given as an intersection of Borel sets

F(P):{(w,,u) : M(XO:XO(w)) :1}m (Qx N MF>. O
FeD
Remark 3.5. When D is not countable, the set N FGDMF loc is not necessarily Borel measurable (or even
analytic) in general. The situation is somewhat more pleasant when D admits a structure of a Borel space
with the property that the maps
D> F — EF[F,],r € Time,

are measurable for each probability measure 1 € Prob(€2). In that case, the intersection Npep M1 can be
represented as a co-projection

{1 € Prob(Q) : VF € D, (F,pu) € M}

of the Borel set M = {(F, 1) € D x Prob(Q) : pu € M™c}  Unlike projections, the images of co-
projections are co-analytic, but not necessarily analytic sets. Not everything is lost, however, as we usually
know a great deal more about the set M, other than the fact that it is a Borel set. Indeed, the countable case of
Proposition (3.3) corresponds to the measurable-selection theorem of Lusin for sets with countable sections
(see [Sri98, Theorem 5.7.2, p. 205]). On the other side of the spectrum are measurable-selection theorems
with large sections (see Section 5.8 in [Sri98]), which can be used for certain uncountable D.

3.3. Sufficient conditions for concatenability. Having discussed analyticity, we turn to the second major
assumption of our abstract DPP theorem, namely concatenability. It is not hard to see that without additional
requirements on D, no (D, X )-generated control correspondence should be expected to be concatenable. A
natural requirement, as we will see below, is that the maps F' be TC-morphisms, introduced in Definition
2.12 above. Moreover, the target space for these TC-morphisms will be DI% - a model space for (the laws of)
local martingales. We remind the reader (see section 2.6 above) that Dr comes with two different natural
concatenations, namely the strict one (e) and the adjusted one (x). We will only work with the adjusted one
in this section, but, in order to avoid any confusion, we will write (Dg, %) and (D%, %) throughout.

Definition 3.6. A map F' : 2 — Dy is said to be canonically locally bounded if there exists a sequence
{M,, } nen of positive constants so that

|F"(w)¢] < M, forallw € Q,t € Time. (3.4)

A simple sufficient condition for canonical local boundedness is that the jumps of F' (when seen as a stochastic
process on §2) are uniformly bounded.

Proposition 3.7. Let D be a family of canonically locally bounded TC-morphisms into (DI%, %), and let X
be a state map. Then the (D, X)-generated control correspondence P is closed under concatenation.

The proof is based on the several lemmas. We omit the straightforward proof of the first one.
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Lemma 3.8. Suppose that F' is a T'C-morphism into (Dg, ). For all stopping times k we have
Frit(w sy ) — Feps(w ) = F(W') — Fs(W')

orall w € Q with k(w) < 00, W' € C,, () and all s,t € Time.
7( )

Our second lemma gives a convenient characterization of canonical local martingales. We use Stop, as in the
case of T-spaces, to denote the set of all Time-valued (raw) stopping times. We also write Y™ = Y™, where
T, = inf{t > 0 : |Y;| > n} A n, and note that all sampled values of Y in the statement are well-defined
thanks to the fact that each Y™ is constant after t = n.

Lemma 3.9. Let (2, F,F = {F; }+eTime, P) be afiltered probability space, {Y; }1cTime a cadlag and adapted
process, and k a stopping time with Y,* € L for each n € N. Then, the following two statements are
equivalent

(1) Y is a canonical local martingale.
(2) G € L! and E[G] = 0 for all
Ge |J AT () uxze(y),
neN

where the countable sets X=" and XZ* are given by

Xngn(y) — {Y” — Yﬁn 1T E QStOP}a

TAK

x75(Y) = {¥}, — Y : 7 € QStop}.

Proof. (1) = (2) Assuming that Y is a canonical local martingale, each Y™ is martingale constant after
t = n, and therefore a uniformly-integrable martingale. Stopping times in QStop are bounded, so, by the
optional sampling theorem, (2) holds.

(2) = (1) Suppose that (2) holds and that n € N is fixed. We take the advantage of the fact that Y is cadlag
to conclude (as in the proof of Lemma 3.4) that it suffices to show that Y™ is a martingale on QTime. For
that, in turn, we choose 7 € QStop, so that 7 = pl4 + g1 4c for some p < ¢ € QTime and A € I, and note
that

V=V = (Ve =Y + (Ve = Y0,

T K

Since Y%, —Y" € XSEYR,  — Y € X2F and Y," € L!, we conclude that Y* € L' and that E[Y}"] =
E[Y,"]. Tt follows that the value of E[Y"] does not depend on the choice of 7, making Y into a martingale.

O
Lemma 3.10. Let ) be a TC-space and k, T € Stop such that k < 7. For w € Q we define 7/, by

W) = T(w#x W) — K(w), kK(w) <ooandw' € C, ()
¢ 400, otherwise,
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Then the map (w,w’) — 7/, (W) is jointly measurable, 7/, € Stop for any fixed w € Q, and T(w *, w') =
K(w) + 7, ().

Proof. By construction, we clearly have 7(w *, w’) = k(w) + 7/, (w’). With the convention that 7(w *, w') —
k(w) = oo when k(w) = 0o, we note that 7/ can be expressed as:

7/ (W) = (+00)1ee(w, k(w),w') + (T(w *, W) — K(w))1le(w, k(w),w)

and is hence jointly measurable. It remains to argue that 7/, is a stopping time. We fix w €  with
k = k(w) < oo, and for s € Time define
A={" €Q: 7)) <s}={w €Chp : T(wxw') < s+ k}.

By Proposition 2.2, part (1), it will suffice to show that T, }(A) = A, i.e., for w’ € Q we have (a) < (b),
where

(a) W € Cyp and 7(w * w') < s+ k, and
(b) (w')<s € Cy i and 7(w g, (w%s)) < s+ k.

The first, compatibility-related, parts of statements of (a) and (b) are equivalent to each other by the
assumptions in (2.3) of Definition 2.9. To deal with the inequalities involving 7 we use Proposition 2.2, part
(2), as well as the assumption 2.5 of Definition 2.9 to conclude that

T(w ) (w’Ss)) <s+k& T((w *p (w'gs))gerk) <s+k<& T((w %) w/)§5+k) <s+k

@T(w*kw'>§s+k. O

Proof of Proposition 3.7. Let P be the (D, X )-generated control correspondence as in the statement, and let
wo € Q, 1 € P(wo), akernel v € S(P) and a stopping time « be given.

First, we argue that v is k-compatible with p. By the definition of P, we have v,,(X¢ = X(w)) = 1 for
each w € €. After a composition with T}, we get v5"(Xo = X, (w)) = 1 for each w € Q, which implies
compatibility, according to the criterion of (2.9).

Next, we show that i/ = u *, v € P(wp). Part (2) of Definition 2.9 makes it clear that for z = X(wp) we
have 1//(Xo = x) = 1. Therefore, we need to argue that i/ € M, for each F' € D. By Lemma 3.9, this
is equivalent to checking [ G d(u *, v) = 0 for all G € U,enX,="(F) U XZ%(F). We fix n € N and treat
the two cases separately:

1. G € X=%(F): In this case there exists 7 € QStop, such that G(w) = FCpm) () (w) — Flw) (w). By

Definition 2.9, part (2), we have (7 A k)(w *, w') = (7 A k)(w) and K(w *, W) = K(w), so that, by the
non-anticipativity of " (which follows from the non-anticipativity of F"), we have

K(w

G(w ks W) = F7 pe) () (@ s @) = i) (W s w') = FL 00 (@) = Fiy (@) = G(w).
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Since G is bounded (since so is F'™) we have
/Gd,u' = // G (w *, w') VSF(dw') p(dw) = /G(w) p(dw) =0,

where the last equality follows from the fact that € MToc,
2. G € XZF(F): Let T € QStop be such that G = F?,, — F™. Then

[ FRoc@) = @) i) = [ 17,y () (F(w) = F2 () ()

= [ 1oy () Firnryon(@) = Fuw) ' (d)

Note that (7 A 7,) V k > K, and let 7/ be as in Lemma 3.10 (applied to (7 A 7,,) V k). Also note
that by Proposition 2.2, {7, > k} € F, = o(T}). Therefore 1, -,y is o(T})-measurable and so
15 (W ke W) = 14 s (W<k) = 17,543 (w). Continuing with the equalities from above, we have

[ PR = B2l (d) =
= [ 10 ) Futo s (0 206 = Feleo 1)) va(de ()

— [ Loy ) Fry () = Fofe)) vl yu(do) = [ [ 15,y (@) Py () v (i ().

where the last equality used the TC-morphism assumption together with Lemma 3.8. With M,, given by
(3.4), | F| is bounded on [0, 7] by 2Ms,, when w € {x < 7}, By the canonical local martingale property,
we have [ F,/ (') v, (dw’) for each w € {x < 7,,}. Thanks to boundedness, again, the integral [ G dy’ can
be computed as an iterated integral [ 1y, . (w) [ Fry (W) vy(dw')p(dw) and, so, [ G dy' = 0. O

3.4. Sufficient conditions for disintegrability.

3.4.1. Shift operators. The key to disintegrability for martingale-generated control correspondences is the
existence of a shift operator, as described below. It plays the role of a partial inverse of the concatenation
operator in the second argument.

Definition 3.11. A measurable map 6 : Time x 2 — () is said to be a shift operator if for all w € (,
t,s € Timeand w’ € Cy

(D) Gt(w) € Cw,t and w *; Ht(CU) = w,

2) (0:(w))<t+s = (Or(wss))<trs

Remark 3.12. Since F; = o(T;) on €2, then part (2) of Definition 3.11 is equivalent to the (Fs, Fyts)-
measurability of 6; for all ¢, s € Time, i.e.,

Vt,s € Time: 9;1(]:,5+8) C Fs
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The stopping-time version of a shift operator 6 is defined in the natural way

HT((’U) = 97’(0_}) (W),
where, for definiteness, we set 0, (w) = w, for all w. This way, 6, : Q — 2 is Borel measurable and retains
the property that w *; 0 (w) = w, for all w € Q and T € Stop.

Lemma 3.13. For any k, o € Stop, the following is also a stopping time:

T(w) = k(w) + (0 (w))

Proof. Fix any t € Time and w € Q. In order to show {7 < t} € F, it is enough to show that 7(w) < ¢
if and only if 7(w<¢) < t. Applying Proposition 2.2 to ¢ and using part (2) of the definition of 6 gives the
following equivalence:

T(w) <t 0(fyw)(W) <t —r(w)
& 0((0x(w) (W) <t—rw)) <t — k(W)
& 0((Op) (Wst)) <t—r(w) <t — K(w)

& 00w (w<t)) <t — K(w)

First suppose 7(w) < t. Since & is a stopping time and x(w) < 7(w) < ¢, then k(w) = K(w<;). Together
with the above equivalence, this implies:
T(w<t) = K(w<t) + 0 (O, (W<t))
= K(w) + U(Qm(w) (wﬁt)) <t

For the other direction, suppose 7(w<¢) < t. Since & is a stopping time and x(w<¢) < T(w<¢) < t, then
k(w<t) = K(w). Therefore:

K(w) + 0 (Oxw)(we<t)) = K(w<t) + 0 (Or(oe,) (W<t)) = T(w<e) <,
which implies 7(w) < ¢ by the equivalence above. O

Proposition 3.14. Let (0, F,F = {F;}tcTime) be a TC-space with concatenation operator x, on which a
shift operator 0 is defined. Suppose each F € D is a canonically locally bounded TC-morphism into (DY, %),
and that x is a factor of X. Then, for each wy € 0, u € P(D, X)(wy), and r € Stop there exists a version
x > Uy of the regular conditional probability 11(0,, € -| X, = x) such that for v = v o X we have

v e S(P)and p ., v = p.
In particular, P(D, X) is disintegrable.

Proof. Having fixed a shift operator 8, we pick wg € Q, u € P(wp) and x € Stop. For a stopping time
o € QStop and define

on(w) = (o A1) (w)
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T(w) = K(w) + 0 (bx(w))
so that 7 is a stopping time by Lemma 3.13. Since F is a TC-morphism into (D, ) Lemma 3.8 implies that
Fr(w) = Fe(w) = Fm—an(eﬁ)(w i Oxw) — Fr(w) = Iy, (0xw) = F (0,w).

The same Lemma implies that |F'| is bounded by |F,| + M, on the entire stochastic interval [0, 7]. In
particular, for A, = {|Fj| < m} we have

14, Foy 00 = 1a,, (Fr = Fi) = 14, (FeMe — preit).
Since F™ M is a bounded martingale under i, for any bounded measurable function H on E we have

J H(X (w<k))1a,, (w)F2(0.w) p(dw) = 0, and, given that F™™ is bounded, we can pass to the limit m — oo
by the dominated convergence theorem to obtain

[ HOX @) P 6) () =, (3.5)

for all bounded and measurable H. With v, denoting a version of the regular conditional distribution of 6,
given X, = x, we then have

0= [ HX@a)F (bu)pldw) = [[ H() P2 ) 7a(d) ux, (do),
where px, is the p-distribution of X . Since H is arbitrary, it follows that
/F;‘ dvy = 0 for px, -almostall x € E, (3.6)

for all o € QStop and all n € N. Since QStop is countable, there exists a set N7 € Borel(E) such that
wx, (N1) = 0, and the equality in (3.6) holds for all z € F \ N7 and o € QStop. Therefore ,, € MErloe
forallz € £\ V.

Since * is a factor of X, we have X (T, (w)) = X¢(0x(w)) for all w, and so

L= / L{Xo (w)=Xo (w )} () :/ L{a=Xo ()} Vo (o) x. (),

This implies that there exists another zero set Ny € Borel(E) such that px, (V) = 0 and Xy = z, U5-a.s.
for all z € E \ Na. Hence, 7, € P(x) (where P(z) is defined in (3.2)) for all = ¢ N7 U N>. By picking a
selector 7 of P (which is nonempty by Proposition 2.17) and using it to set the values of 7, on N U N, we
can arrange that 7, € P(z), forall z € E. O

3.5. The main result for martingale-generated control correspondences.

Theorem 3.15 (DPP for martingale-generated control correspondences). Let (2, F,F = {F; }+eTime) be a
TC-space with concatenation operator x and a shift operator 0. Suppose that X is a state map from <) to
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a Polish space E such that x is a factor of X, and that D is a countable collection of canonically locally
bounded TC-morphisms from (Q, x) into (DY, x). Let P = P(D, X), i.e.,

P(x) = ﬂ Mo {,u € Prob(Q) : Xy ==z, u-a.s.}
FeD

P(w) = P(X(w)) forw € Q,

let G € LY7°(P) be a tail random variable, and let the value function v be given by

Then forallw € Q, x € E, and T € Stop we have:

6(37) = sup / (7_)(XT)1{T<00} + Gl{TIOO}) dp
HEP(x)

Proof. Use Propositions 3.3, 3.7, and 3.14 to get the analyticity, concatenability, and disintegrability (respec-
tively) of the control correspondence (D, X ). Then apply Theorem 2.18. O

4. APPLICATION 1 - CONTROLLED DIFFUSIONS IN THE WEAK FORMULATION

4.1. Problem formulation and the main result.

Throughout this section we fix the following:
(1) anonempty open set O in R™ and set £ = Cl O (the state space),
(2) anonempty standard Borel space A, (the control space),

(3) Borel measurable functions 5 : E x A — R"and o : £ x A — R™*" (the coefficients),
(4) a Borel measurable function g : E — [—00, o] (the objective function).

We remind the reader that C'pso denotes the set of all continuous trajectories with values in E that get
absorbed once they hit the boundary 0O.

4.1.1. Weak solutions to controlled SDEs. With Einstein’s convention of summation over repeated indices
used throughout, we start by making precise what we mean by a controlled diffusion.

Definition 4.1 (Weak solutions to controlled SDEs). A probability measure p on Croo is said to be a weak
solution of the controlled SDE

def = B'(&, ar) dt + o}, (&, o) AW, & =, 4.1

with absorption in 9O - denoted by 11 € L(f3, o) - if there exists filtered probability space (€2, F, { Ft }1e(0,00)5 P)
on which three stochastic process {W; }1c(0,00)> 1€t }tc[0,00) @0d {0t }1e[0,00) are defined, such that:

(1) W is an R" valued {F;}¢[0,o0)-Brownian motion,
(2) ¢ is adapted and £(w) € Coo for all w,
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(3) ais A-valued and progressively measurable,

4) fg |ﬁi(§u, )| du+ fg(o,i(éu, ay))? du < 0o, a.s. foralli, kand t > 0,

5) & =a+ fot BH(&w, ) du + fg U,i(fu, o) dWE, as., forall t € [0, 750], where
Too = inf{t > 0 : & € 00}, and

(6) 1 is the law of . on C'poo.

4.1.2. The stochastic optimal control problem. Given x € F and p € L*(3,0), we set
J(p) = EMG(E)] where G(€) = lim inf g(&), (4.2)
[e.e]

with ¢ denoting the coordinate map on C oo, where we assume that g is such that E#[G(€)] < oo for all
W € UpepL® (B, 0). The value function of the associated control problem is then given by

v(x)= sup J(u), z€E. 4.3)

REL(B,0)

Remark 4.2. By choosing the state process & appropriately, this setup includes various common formulations
of optimal stochastic control, including problems on a finite horizon (when E = Ej x [0, 7] and the last
component plays the role of time) with terminal and/or running costs, discounted problems and stationary
problems.

4.1.3. DPP for controlled diffusions.

Theorem 4.3 (A dynamic programming principle for controlled diffusions - the weak formulation). Suppose
that,

(1) there exist locally bounded real functions B :E —>Rand 6 : E — R such that
|8 (z, )| < B(x) and |0} (z, )| < 6(x) for all a € A,

(2) for each x € E we have L(3,0) # (), and
(3) J(p) > —oc for each pn € L* (B, 0).

Then, the value functionv : E — (—00, 00| is universally measurable and satisfies the dynamic programming
principle:

v(r) = sup EY[v(&)1reno) + G(§ ) r=ne}]; forallx € E,
neLl*(B,0)
for each (raw) stopping time T on Cgoo.

Remark 4.4.

(1) Condition (1) in Theorem 4.3 is far from necessary. It is there to ensure existence and is placed
mostly for convenience. It can be replaced by a different condition or relaxed by choosing a different
control part Q¢ of the universal space 2% in the proof below.
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(2) A very important feature of our control problem is that the law of the controlled process depends on
the process « only through its Lebegue-a.e.-equivalence class (as a function of t), i.e., it is enough to
think of « as an LY-random variable. This feature which is rarely stressed in the literature, allows us
to construct a Polish setup for the problem, and consequently, prove the DPP.

4.2. Proof of Theorem 4.3.

Our proof of Theorem 4.3 consists of two steps. In the first one, we observe that the family £%(3, o) can
be manufactured by varying admissible controls on a single, universal, filtered probability space, and that
it admits a martingale characterization there. In the second one we show that this equivalent setup fits our
abstract framework of Section 3 so that Theorem 3.15 can be applied.

4.2.1. Construction of a universal setup. Let Q% = ILOA be the space of all Lebesgue-a.e equivalence classes
of A-valued Borel functions from [0, 00) to A, and let Q¢ be the subspace Cpoo of the canonical space
Cgn. Both can be given the structure of a filtered measurable space, namely (Q%, F*, F* = {Ff}cTime)>
(QF, FEFE = {]-"f}teﬂme), as described in more detail in subsection 2.2 and in Example 2.7. We define the
(universal) filtered measurable space (Q°¢, Fo¢ F¢ = {F* 6}te-rime) simply as their product. In particular
F ¢ = F® ]-“f . It will be used in the second step that Q°¢ is, in fact, a T-space - the product of T-spaces
Q% and QF.

Let Coord = {z;,z;x; : 1 <4,j < n} be the family of coordinate functions and their products on R", and
let QCoord denote an arbitrary, but fixed throughout, countable family of bounded C2-functions on R™ such
that for each f € Coord and each compact set X' C R" there exists f € QCoord such that f = f on K.
Also, for f € C? and a € A we define the G°f by

(gaf)(x) = /81<$7 a’)alf(x) + %’Yij((% x)aljf(x)7 with 7“ = Zk O—Iicai7

Proposition 4.5 (A martingale characterization of weak solutions to controlled SDEs). The following two
statements are equivalent for a probability measure | on Cgoo:

(1) pis a weak solution to the controlled SDE (4.1) with absorption at 0O starting at x, and
(2) there exists a probability measure [i on Q¢ whose Q¢-marginal is pu such that
(a) & = x, p-a.s.,
(b) [ 1B (Eu, )| du+ [i(oh(Euy))? du < oo for all i,k and t € [0, Tp0), fi-a.s., and
(c) for each | € QCoord, f(&) — f(&0) — J&"™ GO f(&u) du is an ({F{} (o o0y, f1)-local

martingale.

If (1) holds, then (2c¢) is true for all f € C*(E).

The proof follows, almost verbatim, the steps in the standard proof of the equivalence in the non-controlled
case (see, e.g., Proposition 4.6, p. 315, [KS91]) so we omit the details. The only observation that needs to
be made is that « is not a stochastic process in the classical sense. This difficulty can be circumvented by
considering appropriate versions as in the following lemma. We remind the reader that an A-valued process
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{@t}te[o,oo) is considered progressively measurable if {¢(54t)}te[o,oo) is progressively measurable for each
Borel measurable ¢ : A — [—1,1].

Lemma 4.6. There exists an {F, g},56[0700)-progressively measurable process {i }1e(0,00) With values in A
such that {64 (w) }+>0 is a Leb-a.e.-representative of the coordinate map o(w) for each w.

Conversely, let (£, a) be a pair consisting of a continuous process & with values in R"™ and an A-valued
progressive process c defined on some filtered probability space (2, {Fi }1e(0,00): > P). Then (&, o) admits
an Q-distribution, i.e., a probability measure i on Q° such that the P-distribution of fot o(u, &y, o) du
coincides with the p-distribution of f[o,t] o(u, o, &) d, for each bounded and measurable ¢ and all t > 0.

Proof. Let ¢ be an isomorphism (a bimeasurable bijection) between A and the closed interval [—1, 1]. Given
a(w) € LY(]0,00), A), we define & by
t
a(t) = ¢_1(lim inf @?(w)) where @} (w) = %/ ¢ (o (w)) du.
(

n—oo t— 1/n)+

It is straightforward to check that &(w) is a representative of «(w) for each w. Moreover ¢(&) (and, therefore,
«) is a progressively-measurable process, as a pointwise limit of continuous adapted processes.

For the converse, and under the assumptions of the second part of the Lemma, let iz be the pushforward of P
via the map ® : Q — Q°¢ defined as follows:

B(w) = ((&(@))iz0, aw)),

where a(w) is the Leb-a.e.-equivalence class of (o (w));>0. (Progressive) measurability of o guarantees that
® is a measurable map. The equality of the distributions of two integrals in the statement is then a simple
consequence of the monotone-class theorem. g

4.2.2. An application of the abstract DPP. Proposition 4.5 allows us to reformulate our control problem
so as to fit the setting of the first part of our paper. Indeed, it states that the value function v(z) can be
represented as
o(x) = sup EMG(E)]
REP(x)

where 75(90) is the family of all probability measures on Q¢ such that (2a), (2b) and (2¢) hold, and our job is
to show that it is, in fact, a martingale generated control correspondence which satisfies all the requirements
of the abstract Theorem 3.15.

Thanks to the discussion and examples in subsections 2.4 and 2.6, the space Q2% admits a natural structure
of a TC-space, with the strict concatenation used for the &£ component. The map X : Q¢ — E, given by
X (&, ) = liminfy_, » & computed componentwise, and suitably measurably altered to take values in F and
when the limits inferior take infinite values, so that X (£, o) = &. Given that the concatenation operator in «
requires no compatibility conditions, and the one in £ is strict, the product concatenation operator * factors
through X (and is a factor of X). Also, there is a naturally-defined shift operator 6 on Q°%.
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Condition (1) of Theorem 4.3 takes care of the integrability condition (2b) of Proposition 4.5, so we can
conclude that we are, indeed, dealing with a martingale-generated control correspondence with the state map
X, generated by the family D which consists of (well-defined) maps of the form

Flo, = f6) -~ 1) — [ " fe)du

with f ranging through the countable set QCoord. The last thing we need to check, before we can apply
Theorem 3.15, is that each such F is a TC-morphism into (D$,*). We fix f € QCoord, and note that
the corresponding functional F’ clearly takes values in Dﬂ% and that it is non-anticipating. To establish the
TC-morphism property let us fix s, € Time and w,w’ € Q% such that w is compatible with ' at t. The
case of s < t is straightforward, so suppose s > t. Since the £ component uses the strict concatenation
operator, then & (w) = &y (w'), and furthermore:

Tpo(W) <t & §w) €0 & HW) €0 & Tho(W) =0

Combining this with the properties of concatenation gives:
SATHO

SAToO
L g p e m ) du = 1o @) [ G w10 du

AToO tATHO

, (s—t)ATa0 N ,
s @) [ @Sl du

(s—t)ATo0
- /0 GO f(Eu(w')) du

Putting everything together gives:

Flwsiw')s = f(&s(w e w')) — f€o(wt w)) — /03”8‘9 G f(€u(w * ') du
(f(&(w ke w')) — f(€o(w* W) — /Ot/\mo G f(Eu(w ¢ W) du)
f(estoma)) = f@wo ) — [ G f(euion ) du)

NToO

.
= (5(@) - @) - [ G p(euw) du)

(s—t)ATo0
+( Flenw) = Fleow) - /0 G f(€(w)) du)
=F(w); + F(w Nies = (F(w) *¢ F(w'))s

4.3. Viscosity solutions.

We conclude this example by showing how our result can be applied to show that value functions of stochastic
control problems are viscosity solutions to the associated Hamilton-Jacobi-Bellman equations under weak
conditions. In particular, we do not require that the equation itself admit an a-priori solution, or that any
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solution is smooth or unique (i.e, that the comparison principle hold). Our results, in particular, imply some
of the results in [BS13], [BT11] and the follow-up papers under weaker assumptions. We note that the lack of
any strong ellipticity allow us keep assuming, without loss of generality, that the problem is time-independent;
time can be incorporated as just another (space) variable with linear dynamics and the terminal condition
imposed as part of the boundary condition.

For a C? function ¢ : O — R we define the Hamiltonian Hy : O — (—o0, o] by

He(w) = sup Gp(w) = sup (8'(x, @) s, () + 377 (2, 0) 00y, () ).
a€A acA

4.3.1. The viscosity property of the value function.

Definition 4.7. Let v be a real-valued function defined in a neighborhood V of a point z € O, and let v, and
v* denote its lower and upper semicontinuous envelopes, respectively. We say that v is a

(1) viscosity supersolution of the equation Hv = 0 at z if Hp(z) < 0 for each ¢ € C?(V) with the
property that ¢(Z) = v, (Z) and p(z) < vi(z) forxz € V\ {z}, and

(2) viscosity subsolution of the equation Hv = 0 at 7 if Hp(z) < 0 for each p € C%(V) with the
property that ¢(Z) = v*(z) and p(z) > v*(x) forx € V \ {z} .

A function which is both a viscosity supersolution and a viscosity subsolution is called a viscosity solution
to Hv =0 at z.

For z € R" and r > 0 we define
T =1inf{t >0 : d(x,&) >r} A,
where d denotes the Euclidean distance on R”, so that 7" is a raw stopping times on Q°%.

Theorem 4.8. Given & € O, suppose that there exists a neighborhood V of x in O such that

(1) (availability of DPP) the assumptions of Theorem 4.3 hold and v is finite on V),

(2) (continuity of coefficients) x — [3'(x,a) and x — o}.(x,a) are continuous functions on 'V for all
a € A,

(3) (admissibility of locally constant controls) there exists a constant v > 0 such that for each x € V
and a € A there exists a control process {ait }1(0,00) and an associated weak solution {&t},(0,00) of
the controlled SDE (4.1) with £y = x (defined on some filtered probability space) such that

ar =a fort €0,7] a.s., whereT =inf{t >0 : d(&,x) >r} Ar.

Then the value function v is a viscosity solution to Hv = 0 at x.

Proof. We split the proof into two parts, in which we establish the supersolution and the subsolution property
of v separately.
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The supersolution property. We take ¢ € C? which touches v, at Z from below, i.e. v.(Z) = o(7) and
o(x) < v«(z) for x # z This implies that there exists a sequence {x, } men such that

v(m) < p(@m) + = and d(z, 7) < L. (4.4)

Suppose, for contradiction, that H¢(Z) > 0. Then there exists a € A such that (G%¢)(Z) > 0. Since G%p is

continuous in z, there exist constants € > 0 and r > 0 such that (G*¢)(x) > € when d(z, z) < r. Using the

fact that p(z) < v.(x) as soon as x # z and that the function v, — ¢ is lower semicontinuous, we find that
d = min{v.(z) — p(x) : d(z,z) =71} > 0.

For each m € N, let u,, be the law of the weak solution {ft}te[()m) described in part 3 of the statement,
where we assume, without loss of generality, that the same constant » > 0, as above, can be used. Proposition
4.5 and the local nonnegativity of G%p — € imply that (&) — €t is a bounded fi,,-submartingale under fi,,
on [0, 7"%]. Therefore, with 7 = 7"°* and for m > 1/r, we get
P(@m) < EP[(&r) — e7] < M [p(6) L rany] + B [(9(6r) — er)Lirmyy]
< B [(04(6r) = 0)Lirany] + EF [(vi(&r) — er) 1]
< EF™ v (&r)] — min(d, er).

Using the dynamic programming principle of Theorem 4.3 and the relation (4.4) above, we finally obtain

v(@m) = 7 +min(d,er) <E[o (&) SEFu(E)] < sup EMu(ér)] = v(@m),
peELM (B,0)

and reach a contradiction by taking m large enough.
The subsolution property. We pick ¢ € C? which touches v* at Z from above, i.e. v*(Z) = () and
o(x) > vy(z) for x # . As in the first part of the proof, this implies that there exists a sequence {Z, } men
such that

v(m) = p(xm) — = and d(zm, z) < L. 4.5)
Suppose, for contradiction, that Hp(z) < 0. Being representable as a supremum of continuous functions,
H  is upper semicontinuous, and so there exist constants > 0 and £ > 0 such that Hy(x) < —¢ for all =
with d(x,z) < r. Using the fact that ¢(z) > v*(x) as soon as = # & and that the function ¢ — v* is lower
semicontinuous, we find, as above, that

d = min{p(z) —v*(z) : d(z,z) =71} > 0.
Let the laws (14, ) men be defined as in the first part of the proof, so that under each i, the process p(&;) + &t
is supermartingale on [0, 7"7]. It follows that, with 7 = 7%, we have
p(rm) = E[p(&r) + et] = BX[(0(&r) + em)1r=ry] + EX[(0(&7) + €7) 17y
> EF[(v* (&) + 0)1r=ny] + B*[(@(&7) + er) 17 <py] = EX[v(&r)] + min(d, er)

We take a supremum over all y € P on the right hand side and use the DPP to conclude that ¢(x,,) >
v(Zm) + min(d, er) for all m - a contradiction with (4.5). O
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5. APPLICATION 2 - SINGULAR CONTROL PROBLEMS

5.1. The Monotone-Follower Problem. We show how singular control problems fit our framework on the
example of the celebrated Monotone Follower Problem (first formulated by Bather and Chernoff [BC67],
analyzed rigorously by Karatzas and Shreve in [KS84] and studied in many papers since). Formally, the
Monotone Follower Problem asks for a minimal cost incurred while controlling a Brownian motion W by
adding to it a non-decreasing left-continuous process a.. The cost is typically given by

E [/O F(t)day + g(Wr — ar) + /0 Wt W, — ag)dt]

where g and h model the deviation of the controlled trajectory W + « from the desired optimal position and
f plays the role of “fuel” cost.

5.2. Formulation in our framework. To make it easier to focus on the issues pertinent to the proof of
the DPP, we generalize the problem to a degree. The continuous variables, such as time, running cost or
the Brownian motion from the above description will be replaced by a general, multidimensional diffusion.
This will not only allow us to reuse many of the conclusion of the previous section, but also to get a clearer
understanding of the role different parts play as far as DPP is concerned.

5.2.1. The space Q. Givenm,n € N, let O C R™"" be a nonempty open set with closure £ = C1 O, which
will play the role of our state space. Let Cg and Gr denote the canonical spaces of all continuous and caglad
paths, respectively, with values in R, and let GHTg denote the subset of Gr consisting of nondecreasing paths.
Let QX denote the space of paths in ' x (Gﬂg)” with values in F, absorbed upon entry in 0O, i.e. stopped
at the canonical stopping time

To0(w) = inf{t >0 : w(t) € IO} forw € Q.

With the control component taking value in 2% = GEE, the space 2 is defined as the subset of QX x Q2
consisting of those paths (X, a) stopped once X hits 0. Equivalently, Q is the set of paths in Q¥ x Q°
that get absorbed once the coordinate map (X, «) enters the set 0O x R. We overload the notation 790 to
denote the hitting time of 0O x R, when considered as a stopping time on 2.

The first n coordinate maps on €2 (corresponding to continuous paths) are denoted by Y, the next m
(corresponding to left-continuous paths) by Z and the last one by «, so that w(t) = (Yi(w), Zt(w), ar(w)),
forw e Qandt > 0.

5.2.2. The T-space, TC-space structures. We use the standard truncations on each of the components of 2.
To see that €2 carries a natural structure of a T-space, we simply need to combine the discussion in paragraph
2.2.2 in subsection 2.2 with the product construction of paragraph 2.4.3. It can be upgraded to a TC-space by
equipping it with

(1) the strict concatenation operator e, as defined in equation (2.7) in subsection 2.6.1, on QX (.e., for
the first m + n coordinates), and
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(2) the adjusted concatenation x, as defined by (2.8), on Q% = GTR (for the last coordinate).

The so-obtained concatenation on 2 will be denoted by x = (e, %).

5.2.3. The state X and the cost functional G. Let
lim : QR 5
be a "Banach limit", i.e., a map with the following properties:

(1) Its value on the trajectory w coincides with the pointwise limit lim;_,~, w(¢) whenever this limit
exists; in particular, it equals the value at which w is absorbed, when absorption happens.

(2) It returns a value in F in a Borel measurable way.

(3) It is invariant under the action of the shift operator.

A fairly general construction of such a map on spaces of right-continuous trajectories can be found in [Zit14,
Lemma 3.12, p. 1614]. A closer inspection of the proof reveals that the right-continuity assumption can be
replaced by the assumption of left continuity, and that the conclusion of the theorem applies to the present
setting. Given such a map lim, we simply define

X (w) = limw® forw = (w¥,w®) € Q.

In agreement with the definition of the coordinate maps Y; and Z; above, we split the first n and the last
m coordinates of X into Y and Z, i.e. X(w) = (Y (w), Z(w)). This way, since we are working with the
standard truncation, we have

Xi(w) = X(w<t) = (Y(wst), Z(w<r)) = (Ye(w), Zi(w))-
With X defined, the cost function G is simply a Borel function of X:
G(w) = g(X(w)), (5.1)

where we assume throughout that g is nonnegative so as not to need to pay attention to integrability conditions
in the sequel. Much less restrictive assumptions are also possible.

5.2.4. The control correspondence P. The control correspondence describing our monotone-follower prob-
lem will naturally factor through the state map X, so we define the family (ﬁx)xe £, and use it to construct
the control correspondence in the usual way P(w) = fX(w). Heuristically, the dynamics of the state
X = (Y, Zt) under P” for x € E can be described as follows: Y is a diffusion on R”, with coefficients

depending on X, absorbed once X; hits 0O. The left-continuous component Z “moves” as follows
dZt = C(Y;g) dOét, (52)
where c is a vector of m nonnegative and continuous functions.

To simplify the exposition, we express P as an intersection of two control correspondences P and P;, where
P “constrains” the motion of continuous portion Y and P; the left-continuous portion Z, of the state process
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X. To define P, we follow the approach of section 4 and consider a family D, of maps from 2 to Cr C Dg
given by

tAToo (W)
Pl (W), = f(Yi(w)) — f(Yo(w)) — /0 G4 (Y, (w)) du,

where f ranges through the set QCoord as in the second paragraph of section 4.2.1, and G* is a differential
operator of the form

(G* ) () = B'(y, )i f () + 327 (y,2)055f (), with =9 = ¥ o,

with coefficients 5 and ¢ measurable, locally bounded and globally Lipschitz in y. These conditions are
imposed to ensure that the control correspondence P, generated by (D, X) is well-defined and non-empty.

We note here that the dependence of any F’ on « is trivial; that means that even though we think of « as a
control, its influence on F' factors entirely through the left-continuous process Z and does not show up in
P... To describe how Z depends on «, we need to introduce the control correspondence P;. To describe it
rigorously, we first need to agree on how to define the integral with respect to a left-continuous process in
(5.2) above. Such a construction has been carried out already in [KS84, Remark 5.3., p. 873]; we simply
exhibit parts of their discussion for the convenience of the reader. Given a nondecreasing caglad function
o : [0,00) — R, we define the cadlag function at : [0,00) — R by setting o := a4 = inf,~; a. Fora
locally bounded Borel function v : [0, 00) — R, we define

t 0, t=0,
/ ~v(u) doy, := (5.3)
0 Y(0)Aag + [ v(w) dag;, >0,

where Aagy = ozg — o and the integral on the right-hand side is the Lebesgue-Stieltjes integral with respect
to the measure induced by o™ on (0, ). We immediately observe that the function (; = f(f ~(u) day, is caglad

and satisfies CS_ = v(0)Acap. We also record, for later use, the following characterization:

Lemma 5.1. Suppose that o € GHE and that v : [0,00) — R is continuous. For ( € GHE, the following two
conditions are equivalent

(1) ¢ =Co+ Jov(u)day, and
(2) Ao+ = v(0)Ac+ and for all rational 0 < r < s and eachn € N there exist rationals p, q € (1, s)
such that

(v(p) = P)lef —af) <GF = < (9(a) + 3l = af). (5.4)
Proof. Thanks to right continuity of (T, (1) above is equivalent to Ay = v(0) A and
¢ = [ aw)daf (5:5)
(07']

Using the right continuity of o and the continuity of v (which guarantees the equivalence between the
Riemann-Stieltjes and the Lebesgue-Stieltjes integration in this case) we conclude that the equality in (5.5) is
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equivalent to
Vu < v e (0,00), ( i[nf }v(t)> (af —af) <G = ¢ < ( sup v(t)> (o — ).
tefu,v teu,v]

Thanks to the right continuity of o™ and ¢, this is easily seen to be equivalent to (second statement in ) (2)
above. U

Given a continuous function ¢ : R™ — R", for z € E we define
Pi(xz) = {p € Prob(Q) : Xg =12, Z = Z —|—/ c(Yy) doy, p— as.}
0
where the left-continuous integral is interpreted component-wise. We set P(z) = P.(z) N P;(z) and define

the value function of the associated control problem by

v(z) = inf EHM[G], x € E. (5.6)
HEP(z)

Remark 5.2. To see how the classical monotone-follower fits into this framework, we take Y = (7', W, H)
and Z = (L, C), where, informally, the components have the following dynamics:

dly = —dt, time-to-go,

dW; = dWy, Brownian motion

dHy = h(=Ty, Wy, Ly) dt, running cost

dL; = day, position of the follower, and
dCy = f(Ty) doy, fuel cost,

where f and h are nonnegative and continuous. The state space F is defined by £ = Cl O, where
O = (—00,0) x R x (0,00) x (0,00) x (0, 00),

so as to keep the components H and C' nonnegative. This will also make sure that the state process will exit
E when (and only when) T; = 0. A typical cost functional G will be of the form G(X) = H + C + g(W, L),
where g is a nonnegative Borel function.

5.3. The Dynamic Programming Principle. With all the components of our framework in place, we are
ready to prove the following result:

Proposition 5.3 (DPP for the monotone-follower problem). Given the setting described above, the value
function v : E — (—00, 00| is universally measurable and satisfies the dynamic programming principle
v(x) = sup E*[v(X7)l{rco) + Glir—o0y], forallz € E,
peP”

for each (raw) stopping time T on Croo.
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Proof. As in the previous section, we establish three key properties, namely, analyticity, concatenability and
disintegrability, and use Theorem 2.18. The additional requirement that G be a tail random variable follows
directly from the fact that it was defined in (5.1) using a “Banach limit”, i.e., in a shift-invariant way. The
membership in the class £°~!(P) of lower semi-integrable random variables is guaranteed by the assumption
that the function g in (5.1) is bounded from below.

Analyticity: To establish the analyticity of P it will be enough to show that both P and P; are analytic (see
Remark 2.16). All the maps in D, are clearly non-anticipating and take values in Cg C Dg, so we can apply
Proposition 3.3 to conclude that P, is analytic.

The analyticity of P;, follows from Lemma 5.1. Indeed, it expresses P; as a result of a countable collection
of Borel-preserving operations on cylinders.

Concatenability: Just like in the case of analyticity, Remark 2.16 allows us to prove concatenability of P by
proving it separately for P, and P;. Starting with P, we simply note that the maps F/ in D, are C-valued
and therefore canonically locally bounded. Their TC-morphism property is established exactly like in section
4.2.2 above, so we can use Proposition 3.7 to conclude that P, is closed under concatenation.

Next, we turn to the concatenability of P;. Givent > 0 let w,w’ € € be such that

(1) Xo(w') = X¢(w),
(2) C(w) = [y c(Yu(w)) doy(w), and
(3) C(w') = Jo c(Yu(w")) daw(w’),

We note that these properties hold for (w,w’) with probability 1, under ;1 ®; v. Using the fact that * is strict
in the first m + n components and adjusted in «, we observe that for s > ¢ we have

Colw #10) — Chp (w1 &) = Cs_y(w') — Cop (') = /( oy (&) dei] () =

— [ V(W) dat, () = / (Vi (w 4 o)) dat (w 5 o),
(t.5) (t,5)
as well as

Ci (w1 &) — Cilw e ') = Cou (o) — Co(w) = e(Yo()) (a4 (&) — ap(w))
= c(YVy(w *¢ ') (s (w *¢ ') — g (w x4 W)).
These two observations make it straightforward to complete the proof of the concatenability of P;.

Disintegrability: While disintegrability cannot be established by showing it for P. and P; separately, we
can use Proposition 3.14, whose conditions are easily shown to hold in the present setting, to perform most
of the work for us. Indeed, given wg € 2 and p € 5c(w0) and k € Stop, it states that there exists a
version x — v, of the regular conditional probability u(6, € -| X, = x) with the following two properties:

) v e S(P.) and 2) u = p *, v, where v = v o X. In order to complete the proof, we need to show
that a version of v with v € S(P;), can be constructed. Let A denote the set of all w € (2 such that
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Z(w) — Zo(w) = [y c(Yu(w)) doy(w). For any z € E and any u € P(z) we have u(A) = 1. Therefore, by
the concatenability property established above, we have

1= [ta@ o) = [ [ 1alw s, o @enldo) < [ [ 14z (dex, (do)

and, so, there exists a N7 € Borel(E) with px, (N1) = 0 and such that for x € E \ N7 we have v;(A) = 1.
Similarly, 7,(Xo = z) = 1 for all x € E \ Ny, where N3 is a px, -null set in Borel(E). It remains to
redefine 7 on AV; U N3 so that v € S(P.) N S(P;). This is easily achieved by picking an arbitrary selector
V' € S(P.NP)) and setting setting 7, = /), for all z € N7 U N5. O
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