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Abstract– We consider ad-hoc networks consisting of n wireless nodes that are located on

the plane. Any two given nodes are called neighbors if they are located within a certain distance

(communication range) from one another. A given node can be directly connected to any one of its

neighbors and picks its connections according to a unique topology control algorithm that is available

at every node. Given that each node knows only the indices (unique identification numbers) of its one-

and two-hop neighbors, we identify an algorithm that preserves connectivity and can operate without

the need of any synchronization among nodes. Moreover, the algorithm results in a sparse graph with at

most 5n edges and a maximum node degree of 10. Existing algorithms with the same promises further

require neighbor distance and/or direction information at each node. We also evaluate the performance

of our algorithm for random networks. In this case, our algorithm provides an asymptotically connected

network with n(1 + o(1)) edges with a degree less than or equal to 6 for 1 − o(1) fraction of the

nodes. We also introduce another asynchronous connectivity-preserving algorithm that can provide an

upper bound as well as a lower bound on node degrees.

Index terms—- Topology control, local algorithms, connectivity, degree-bounded graphs.

I. INTRODUCTION

A. Topology Control and its Objectives

Topology control is a powerful technique that is commonly used in ad-hoc wireless networks

to reduce interference, provide energy-efficient transmission, enable low-complexity routing, and
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so on [2]–[4]. It refers to the intelligent choice of connections between nodes so that the resulting

graph representation of the network (with nodes and direct node-to-node connections respectively

modeled as vertices and edges of the graph) satisfies certain properties such as connectivity.

We study the problem of topology control over plane networks with the disk-connectivity

model. Specifically, we consider networks consisting of n nodes that are indexed (and uniquely

identified) by the natural numbers 1, . . . , n with locations x1, . . . , xn ∈ R
2. A given node may

only be directly connected to any other neighboring node that is within a certain communication

range R > 0 in a bidirectional manner. As an example, a network consisting of 10 nodes with

no connections together with the communication range of Node 7 is shown in Fig. 1(a). Node

7 can be directly connected to any one of the nodes in its neighbor set {1, 3, 5, 6}.

R

9
10

8 2
6

3

4

1
5

7

(a) The network with no connections.
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(b) The Gilbert graph corresponding to the node locations

and the communication range illustrated in (a).
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(c) A possible topology (a spanning subgraph of the Gilbert graph) generated by some topology control algorithm.

Fig. 1: Instances of a network with 10 nodes. Physical locations of the nodes are kept fixed throughout (a)-(c). The

“exact” physical location of a given node is the center of the corresponding black disk.

A special case is when all nodes within communication range are directly connected [5],

which results in what we call the Gilbert graph (V , g(V)) with

g(W) � {(i, j) : i, j ∈ W , i < j, |xi − xj| ≤ R}, W ⊂ V . (1)

Throughout the paper, | · | is the Euclidean metric. We note that Gilbert graphs are also often
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called unit-disk graphs whenever R = 1 or with an appropriate normalization of node locations.

As an example, Fig. 1(b) shows the Gilbert graph corresponding to the setup in Fig. 1(a).

The primary goal of a topology control is then to provide a “good” spanning subgraph (V , E)
of the Gilbert graph (V , g(V)). In this context, it is usually agreed upon that a good topology

(V , E) should satisfy the following properties:

1) Connectivity: The network (V , E) is called connected if there is a path between any two

distinct nodes in V . It is clearly desirable to have a connected network so that information

from one node may be conveyed to another (possibly through multiple hops) even if

these two nodes are not directly connected. The algorithm/method that generates (V , E)
is called connectivity-preserving if (V , E) is connected whenever (V , g(V)) is connected.

Conversely, since (V , g(V)) is the largest feasible graph given the node locations, we note

that (V , E) can be connected only when (V , g(V)) is connected.

2) Constant Stretch Factors: Sometimes, the requirement of connectivity is further strength-

ened by imposing a low stretch factor as discussed in the following. Let us fix some α ≥ 0,

and assign the weight |xi−xj|α to every (i, j) ∈ g(V). The cost of a given path is defined

as the sum of the weights of the edges that appear in the path. For any i, j ∈ V with i �= j,

if the path with the lowest cost connecting Nodes i and j in (V , E) is no more than b times

that in (V , g(V)), we say that (V , E) has an “α-stretch factor” of b. The 0- and 1-stretch

factors are commonly referred to as hop- and distance- stretch factors, respectively. For

example, the network in Fig. 1(c) has a hop-stretch factor of 4: Two nodes that are h-hop

apart in Fig. 1(b) are no more than 4h-hops apart in Fig. 1(c). Note that even if a given

topology is connected, its (minimum) hop-stretch factor can be as large as n − 1, while

its α-stretch factors for α > 0 can be arbitrarily large. The stretch factors of a graph are

related to the energy required for transmission of information from one node to another

[6], [7]. It is thus desirable to have constant stretch factors that are as small as possible.

3) Sparseness: The network (V , E) is called a sparse network if |E| ≤ cn for some constant

c ≥ 0. A sparse network is desirable as the computational complexity of routing grows

with the number of edges in the network. We note that a Gilbert graph is, in general, not

a sparse network as it can have as many as 1
2
n(n− 1) edges.

4) Constant Maximum Degree: The degree of a Node i ∈ V is the number of nodes that are
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directly connected to Node i. The existence of nodes with high degrees is not desirable

in wireless networks due to several practical issues such as radio interference [8]–[10]. In

fact, in practice, a given wireless node can be connected to at most a finite number of

nodes at any given time, merely due to the fact that there can be at most a finite number

of non-interfering frequency bands. In some cases, physical limitations of wireless devices

themselves necessitate degree restrictions. Also, several communication standards have

“built-in” node degree constraints; for example, in Bluetooth networks, a master node can

be connected to at most 7 active slave nodes at a given time [11]. It is thus desirable that

the degree of every node in (V , E) is no more than a constant d ≥ 0 that is independent

of n. The maximum degree of a general Gilbert graph can be as high as n− 1. We also

note that a graph with constant maximum degree is also a sparse graph, but the converse

is not true in general.

Consider now the problem of generating good topologies with the four desired properties

listed above. The first two and the last two of the properties are mutually complementary. On

the other hand, satisfying any one of the first two properties together with any one of the last two

properties represent two contradicting goals. Also, in practice, it is unreasonable to expect the

topology to be generated and imposed upon by a decision center that has global knowledge on the

nodes’ physical locations and identities. Instead, the topology should ideally be generated locally

in a distributed fashion with every node picking its own connections using as little information

from its neighboring nodes as possible. The design of such practical topology control methods

has thus been a major avenue of research in the field of networking. We provide an overview

of some of the relevant literature next.

B. Related Work

There has been numerous works on local construction of topologies with some or all of

the four desired properties as listed in Section I-A. Several well-known structured graphs have

been a source of inspiration for many of these studies. For example, topology control algorithms

have been inspired by Delaunay triangulations [12]–[16], Gabriel graphs [17]–[19], the minimum

spanning tree [7], [20], Yao graphs [17]–[19], [21], relative neighborhood graphs [18], [20], [22],

or maximal independent sets [23] and several new topologies have been discovered and analyzed
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in the process. There are also other approaches to topology control; for example, algorithms that

allow the adjustment of the communication ranges of each node have been investigated [24]. We

refer to [2]–[4] for a general detailed treatment of topology control including other algorithms.

One can conclude from the definitions in Section I-A that a constant stretch factor implies the

preservation of connectivity, and a constant maximum node degree implies sparseness. Hence,

the most difficult topologies to construct have been the ones with constant stretch factors and

maximum node degrees. In fact, existing algorithms that can provide such topologies (see, e.g.

[14], [17]) require each node to know its exact geographical location (e.g. via GPS) as well

as the locations of their neighbors and rely on several complex stages of message exchange

between neighboring nodes. Other works have considered scenarios where each node has limited

information about its neighbors. A notable algorithm is the XTC algorithm in [25], where each

node is assumed to only know its distance to its neighbors as well as a certain ordering of

its one- and two-hop neighbors. The XTC algorithm can provide a connected network with

constant maximum degree. Another example is the CBTC algorithm in [21] which can operate

with neighbor direction information at the nodes.

The availability of node geographical information (in the form of direction, distance, or both)

has been a common assumption in all the above works on topology control. The acquisition

and communication of geographical information, especially exact geographical information, are

however both non-trivial tasks in practice. It is thus desirable to drop the requirement of geo-

graphical information entirely and focus on algorithms that can operate only with neighborhood

information. Some of the effort in this context has focused on achieving sparse almost sure

connectivity instead of preserving connectivity whenever possible; see e.g. the k-Neigh protocol

of [26] that is based on [27], or the random Bluetooth networks analyzed in [28]. These works

do not consider node degree restrictions. On the other hand, an XTC-like algorithm that does

not rely on distance information has been proposed in [29], but it can only preserve connectivity

without any guarantees on sparseness or node degrees.

Another approach to position-unaware topology control is to utilize the connected dominating

set (CDS) [30]–[35] of the network. It has been shown in [33] that by using only neighborhood

information, one can construct connected sparse topologies via a minimum or close-to-minimum

CDS. It is not clear, however, how to obtain a degree-bounded topology using the idea of a
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CDS with neighborhood information only. For example, [16], [33], [34] require extra position

information at each node to obtain a CDS-based topologies with bounded node degrees.

Position-unaware topology control has also been a major focus of research on Bluetooth

scatternet formation [11] with several proposed algorithms such as BlueStars [36], BlueMesh

[37], BlueMIS [38], and BSF-UED [39]. Some of these algorithms can provide degree-bounded

topologies, but the degree bound holds for only the master nodes of the network and not for

all the nodes of the network. In this context, construction of network topologies with a constant

degree bound at every node and without position information at nodes has been described [38]

as “an interesting and major open problem in the area.” In fact, in this paper, we solve the very

same problem. Next, we describe the properties of our solution.

C. Our Contributions

In this work, we assume that each node only knows the indices of its one- and two-hop

neighbors without any extra geographical information. Under this restriction, we design a local

algorithm that preserves connectivity, results in a sparse network with at most 5n edges, and

meanwhile guarantees a constant maximum node degree of 10. With the same restrictions, to the

best of our knowledge, there is no existing local algorithm that can provide connectivity with

bounded degree. We also present an average case evaluation of our algorithm and show that the

algorithm can in fact preserve connectivity with the almost-optimal amount of n(1+o(1)) edges

and a degree less than or equal to 6 for 1−o(1) fraction of the edges. We also note that the same

algorithm can be applied to the scenario where the nodes are located on R
d, d ∈ {1, 2, . . .}, and

will similarly provide degree-bounded sparse connected topologies.

Our results show that neighborhood information by itself can provide several fundamental

properties that are desirable in ad-hoc wireless network topologies. One can however only achieve

so much with only neighborhood information. In fact, as we shall discuss in more details later,

it is not difficult to show that for any α > 0, no algorithm, even with a global knowledge

of the network neighborhood information, can provide a constant α-stretch factor and a sparse

network at the same time. Similarly, no algorithm can provide a constant hop-stretch factor and

a constant degree bound at the same time. We shall emphasize that there are many algorithms in

the existing literature that can guarantee connectivity with degree-bounded nodes and even finite
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stretch factors. Such algorithms were discussed in Section I-B. However, all of these algorithms

require position information at the networking nodes. What distinguishes this work from the

existing literature is that we present the first local algorithm that does not need any position

information and can preserve connectivity with degree-bounded nodes. We also introduce another

asynchronous algorithm that provides both an upper bound and a lower bound on node degree.

We note that part of this work [1] has been presented at the IEEE Wireless Communications

and Networking Conference in April 2017. Compared to [1], the current manuscript provides:

• the formal proofs for the average performance of the algorithm (the corresponding results

in Theorem 2 of this paper were merely stated in [1] without proof),

• a new section that discusses the achievability of stretch factors using only neighborhood

information together with new corresponding simulation results,

• comparisons with the existing algorithms in the literature such as XTC and k-Neigh,

• a new algorithm that provides a topology with guaranteed degree lower bounds, and finally,

• implementation details and communication complexity of our topology control algorithm.

D. Organization

The rest of the paper is organized as follows: In Section I-E, we introduce the notation and

conventions that will be used throughout the paper. In Section II, we present our topology control

algorithm and formally prove its properties. In Section III, we present an average case analysis of

our algorithm. In Section IV, we discuss the practicalities that are associated with our topology

control algorithm. In Section V, we investigate the achievability of constant stretch factors using

only neighborhood information. In Section VI, we consider the construction of robust graphs that

provide a degree lower bound in addition to a degree upper bound. In Section VII, we present a

numerical evaluation of our algorithms. Finally, in Section VIII, we draw the main conclusions.

E. Notation and Conventions

Given i, j ∈ V with i �= j, we say that Nodes i and j are two neighboring nodes, or simply

neighbors if |xi − xj| ≤ R. Throughout the paper, we will only consider simple graphs (i.e.,

undirected graphs with no self-loops or multiple edges) of the form (W ,F) with W ⊂ V and

F ⊂ g(W). Given any such graph/network (W ,F), and any two indices/nodes i, j ∈ W with
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i �= j, we say that Nodes i and j are directly connected in (W ,F) if (i, j) ∈ F . Note that

(i, j) and (j, i) will always represent the same edge.

A path p � (p1, . . . , p|p|) in the graph (W ,F) is a vector of distinct elements of W such that

|p| ≥ 2 and (pi, pi+1) ∈ F , ∀i ∈ {1, . . . , |P|−1}. We say that Nodes i and j are path-connected

in (W ,F) if there is a path p in (W ,F) with p1 = i and p|p| = j. A network (W ,F) is called

connected if there is a path in (W ,F) between any two distinct nodes in W . By definition, any

two nodes that are directly connected are also path-connected.

A connected component of (W ,F) is a connected subgraph (W ′,F ′) of (W ,F) such that

(i) for any i ∈ W ′ and j ∈ W −W ′, Nodes i and j are not path-connected in (W ,F), and (ii)

for any i, j ∈ W ′, we have (i, j) ∈ F =⇒ (i, j) ∈ F ′.

II. THE MAIN ALGORITHM

In this section, we present an algorithm that preserves connectivity and results in a sparse

network with at most 5n edges and a maximum node degree of 10. The setup in which the

algorithm operates is as follows: Initially, we consider a network without any connections.

The unique algorithm will be available to every node, and when “run,” will directly connect

its “host node” (i.e., the node that is running the algorithm) to a certain subset of its host’s

neighboring nodes. All the connections initiated by the algorithm will be bidirectional. Running

the algorithm at every node exactly once will result in the topology with the aforementioned

properties. Nodes will be able to run the algorithm in an arbitrary order, or simultaneously in a

completely asynchronous fashion.

Let us now present the algorithm itself. A key definition we need is the notion of a lesser

neighborhood of a node. For any i ∈ V , we define the lesser neighborhood of Node i as

Ni � {j : j ∈ V , j < i, |xi − xj| ≤ R}. (2)

Thus, the lesser neighborhood of Node i are neighbors of Node i whose indices are less than i.

We recall from Section I-A that the Gilbert graph generated by the vertex set W ⊂ V is

given by the graph (W , g(W)), where g(W) � {(i, j) : i, j ∈ W , i < j, |xi − xj| ≤ R}.

In other words, when all the nodes in W that are within communication range are directly

connected, we obtain the Gilbert graph (W , g(W)) generated by W . Consider now the Gilbert

graph (Ni, g(Ni)) generated by the lesser neighborhood of Node i. Let Ji denote the number
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of connected components of (Ni, g(Ni)). Since each connected component of a Gilbert graph

is necessarily also a Gilbert graph, we can list the connected components of (Ni, g(Ni)) as

(Nij, g(Nij)), j = 1, . . . , Ji, where Nij, j = 1, . . . , Ji are mutually disjoint subsets of Ni with⋃Ji
j=1 Nij = Ni. For any set A, let maxA denote the maximum element of the set A. Our

algorithm (at Node i) is then as shown as Algorithm 1.

Algorithm 1 The Main Topology Control Algorithm (at Node i)

1: Connect to all nodes in the set {maxNij : 1 ≤ j ≤ Ji}.

We have previously mentioned that the nodes may run the algorithm in arbitrary order as long

as each node runs the algorithm exactly once. In fact, it is easily observed that the order in

which the nodes run the algorithm does not affect the final topology as long as each node runs

the algorithm at least once. All the different possibilities in this context will lead to the same

final topology that we shall refer to as (V ,A).

A. An Example Run

We now demonstrate how the algorithm operates over the setup in Fig. 1(a). Suppose that

initially there are no connections in the network. We illustrate how the algorithm (when it runs

at Node 6) determines the direct connections to be initiated by Node 6. The lesser neighborhood

of Node 6 is given by N6 = {1, 2, 3, 4, 5}, as shown in Fig. 2(a). Note that Node 6 itself and

its “greater” neighbor Node 7 are not members of N6. The next step for Node 6 is to calculate

the Gilbert graph (N6, g(N6)) induced by N6. This graph is as shown in Fig. 2(b) and has

J6 = 2 connected components (N61, g(N61)) and (N62, g(N62)) where N61 = {1, 2, 5} and

N62 = {3, 4}. Finally, we have maxN61 = 5 and maxN62 = 4, so that Node 6 will initiate a

connection to Nodes 4 and 5. The corresponding two undirected edges that will be added to the

initial graph will be (4, 6) and (5, 6).

In fact, running the algorithm at each node at least once results in the final network topology

that we have previously shown in Fig. 1(c). For example, Node 1, having no lower neighbors

(J1 = 0), will not initiate a connection to any other node. On the other hand, for Node 2, we

have J1 = 1 with N21 = {1}, so that Node 2 will initiate a connection to Node 1. Hence, Node

1 in fact gets connected to Node 2, even though it is not Node 1 that initiates this connection.
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(a) Lesser neighbors N6 = {1, 2, 3, 4, 5} of Node 6.

They are illustrated as gray disks.
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(b) The Gilbert graph induced by the lesser neigh-

borhood of Node 6.

Fig. 2: The steps as to how Node 6 determines its connections using the algorithm.

B. Analysis of the Algorithm

We now analyze the properties of the resulting topology (V ,A) generated by the algorithm.

The following observation will be very useful for this purpose.

Lemma 1. In Algorithm 1, each node initiates at most 5 connections. In other words, Ji ≤ 5

for any i ∈ V (and for any given realization of node locations.).

Proof. Suppose that a given Node i initiates connections to both Nodes j1 and j2; see Fig. 3 for

an illustration. The obvious neighborhood conditions |xi−xj1 | ≤ R and |xi−xj2 | ≤ R hold. By

the design of the algorithm, we also have |xj1−xj2 | > R (As otherwise, if |xj1−xj2 | ≤ R, Nodes

j1 and j2 would belong to the same connected component, say Ni� for some � ∈ {1, . . . , Ji}
of the Gilbert graph generated by Ni. Then, since Node i initiates a connection to only one of

the nodes in Ni�, it would then be absurd that it connects to both Nodes j1 and j2.). The three

inequalities above imply that the edge xj1xj2 is the longest edge of the triangle xj1xixj2 . This

leads to the strict inequality θ1 > 60◦. Using the same arguments, we obtain θj > 60◦, ∀j ∈
{1, . . . , Ji}. Now, assume the contrary to the statement of the lemma and suppose Ji ≥ 6. We

have 360◦ = θ1 + · · ·+ θJi > Ji60
◦ ≥ 360◦. This is a contradiction that proves the lemma.

The following theorem is then the main result of this paper.

Theorem 1. The graph (V,A) is connected if and only if the Gilbert graph (V, g(V)) is connected.

Moreover, we have |A| ≤ 5n and the degree of each node in (V ,A) is no more than 10.
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Fig. 3: Figure for the proof of Lemma 1.

Proof. For the statement regarding connectivity, we only need to prove the “if” part with the

“only if” part being trivial. Suppose (V , g(V)) is connected. Then, for any given two nodes in V ,

there is a path in (V , g(V)) that connects these two nodes with each edge in the path consisting

of two neighboring nodes. To show that (V ,A) is connected, it is thus sufficient to show that

any two neighboring Nodes i and j are path-connected in (V ,A). To prove this, we may assume

that i < j without loss of generality. First, note that if i = j − 1, then, by design, Node j will

initiate a connection to Node i and Nodes i and j will be path-connected. Otherwise, ∃k ∈ V
with i < k < j such that (i) Node j initiates a connection to Node k, and (ii) there is a path

p in (V , g(V)) connecting Node k to Node i such that the index of each node in p is no more

than k ≤ j − 1. It is then sufficient to show that any two distinct neighbor nodes that appear in

p are path-connected in (V ,A). On the other hand, to prove this latter claim, it is sufficient to

show that any two neighboring Nodes i′, j′ with i′ < j′ ≤ j − 1 are path connected in (V ,A).

By above arguments, we have established the following statement: Any two neighboring Nodes

i and j with i < j are path-connected in (V ,A) if either i = j−1 or any two neighboring Nodes

i′ and j′ with i′ < j′ ≤ j − 1 are path-connected in (V ,A). This statement describes a finite

descent that immediately leads to the path-connectedness of Nodes i and j. In fact, applying the

statement on itself, any two neighboring Nodes i and j with i < j are path-connected in (V ,A)

if either i = j − 1, or i = j − 2, or any two neighboring Nodes i′ and j′ with i′ < j′ ≤ j − 2

are path-connected in (V ,A). Hence, any two neighboring Nodes i and j with i < j are path-

connected in (V ,A) if i = j−k for some natural number k, which is clearly true. This concludes

the proof of the claim on connectivity.

We now prove the rest of the claims. The inequality |A| ≤ 5n follows immediately as each
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node initiates at most 5 connections by Lemma 1. We now prove the degree bound. Let i ∈ V .

By design, a node with a lower index (< i) cannot initiate a connection to Node i. On the other

hand, Node i itself initiates at most 5 connections. To show a maximum node degree of 10, it

is thus sufficient to show that there are at most 5 nodes with a higher index (> i) initiating a

connection to Node i. Assume the contrary and suppose there are 6 or more such nodes. Two

of these nodes, say Nodes j and k (with j < k without loss of generality) should then be within

communication range as well as being within range of Node i. This implies {i, j} ⊂ Nk� for

some � ∈ {1, . . . , 5} with i /∈ Nk�′ and j /∈ Nk�′ for �′ �= �. Since maxCk� ≥ max{i, j} = j > i,

and i /∈ Nk�′ for �′ �= �, we have, in fact, maxNk� �= i for every �. This contradicts the fact that

Node k initiates a connection to Node i and thus proves the degree bound.

The degree bound of 10 is tight in the sense that there are certain realizations of node locations

for which the resulting topology (V ,A) has a node with degree 10. A minimal example is with

11 nodes, x6 = [0 0], and xi = R[cos iπ
5

sin iπ
5
], i ∈ {1, . . . , 11} − {6}. It does not seem to be

as trivial, however, to find node locations that result in as much as 5n edges. In fact, as we

show in the next section, the number of edges in most connected topologies that are generated

by the algorithm is closer to n than 5n. We will also show that the maximum node degree in

most networks generated by the algorithm is 6.

Several variations of Algorithm 1 can be envisioned. Some of these variations also provide

useful insights on how and why the algorithm provides a degree-bounded topology and preserves

connectivity at the same time. In this context, we discuss here the variant where Node i connects

to one arbitrary node in each of the sets Nij, j = 1, . . . , Ji instead of connecting to the nodes

maxNij, j = 1, . . . , Ji with the maximum indices. Using the same arguments as in the proof of

Theorem 1, it is straightforward to show that the variant algorithm preserves connectivity and

provides a sparse graph with at most 5n edges. However, it does not provide a degree-bounded

graph in general: Suppose all n nodes are mutually within communication range. Running the

variant algorithm, all nodes (except Node 1) may decide to connect to Node 1, resulting in a

degree of n− 1 at Node 1 in the final network topology.

The variant algorithm demonstrates that connecting to each disconnected component of the

Gilbert graph induced by the lesser neighborhood of a node (as in our algorithm) provides

sparsity and preserves connectivity. Such a connection strategy is, however, not enough to provide
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a degree-bounded topology. The connections should be done in an intelligent manner so as not

to overwhelm a given node with too many connections. In Algorithm 1, this is done through

connecting the node with the maximum index in a given component.

As a final remark, we note that Theorem 1 can be applied and extended to networks in higher

(or lower) dimensions, i.e. for networks in R
d for any d ≥ 1 with the same disk-connectivity

model. In fact, let μd denote the maximum number of points that can be packed in the unit ball

in R
d such that any two given distinct points are more than one unit apart. We have μ1 = 2,

μ2 = 5 (as shown in Lemma 1), and it is not difficult to show that μd is finite for any d ≥ 3. The

exact same algorithm generates a connectivity-preserving topology with at most μdn edges with

a maximum node-degree of 2μd. In fact, similar results can be proved for connectivity models

different than the disk model provided that the model admits a similar packing property.

III. AVERAGE CASE EVALUATION

Algorithm 1, in the “worst cases,” results in a topology with 5n edges and a maximum node

degree of 10. However, numerical results suggest that for most realizations of node locations,

the resulting topology is in fact much sparser and most nodes have a degree less than or equal

to 6. We present an analytical justification of this phenomenon using random graphs.

In this section, we let the node locations x1, . . . , xn be independent and uniformly distributed

on [0, 1]2 (instead of being arbitrary fixed points in R
2 as has been the case in previous sections).

For any given fixed realization of node locations, we may simply run our algorithm to obtain one

fixed topology corresponding to the given locations. The random nature of the node locations

however means that the resulting topology (V ,A) will also be random. We are then interested in

the properties of the now-random graph (V ,A) (We use the same notation for fixed and random

graphs as the difference will be obvious from the context.).

For the random Gilbert graph (V , g(V)), Penrose [40] has shown the extremely precise result

that if R2 = logn+α
πn

, then

Pr((V , g(V)) is connected) → e−e−α

(as n → ∞). (3)

Here, Pr(·) represents the probability of an event, log(·) is the natural logarithm, and e is the base

of the natural logarithm. In particular, Pr((V , g(V)) is connected) → 1 if and only if α → ∞.
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We consider here random networks with communication radii just asymptotically above the

connectivity threshold obtained by Penrose. Our main result is the following theorem.

Theorem 2. Suppose R2/( logn
n

) → ∞, and consider the random network (V ,A). Then,

∀ε > 0, Pr(|A| ≥ (1 + ε)n) → 0. (4)

Moreover, let d≤6 denote the fraction of vertices in (V ,A) with degree no more than 6. We have

∀ε > 0, Pr(d≤6 ≥ 1− ε) → 1. (5)

Proof. For any given Node i with index i > βn, where 0 < β < 1, let Eij be the event that the

jth Circular Sector Si,j of Node i does not contain a node with index less than βn (See Fig. 4

for the definition and the illustration of the circular sectors of a given node.). Ignoring the edge

effects (which can be shown to not change the final results), we have

Pr(Eij) =
(
1− πR2

12

)βn

, ∀j ∈ {1, . . . , 12}, ∀i > βn. (6)

Now, let Ei be the event that Node i (with, again, i > βn) has a circular sector that does not

contain a node with index less than βn. By a union bound, we have

Pr(Ei) ≤ 12

(
1− πR2

12

)βn

, ∀i > βn. (7)

Consider now the connections initiated by Node i when it runs the algorithm. Given the com-

plement of event Ei, for any j ∈ {1, . . . , 12}, Sector Si,j of Node i contains at least one node,

say Node si,j , with si,j < βn. Now, note that any two given nodes in any sector are clearly

neighbors. Moreover, for any given j ∈ {1, . . . , 12}, Node si,j is necessarily a neighbor of the

nodes of its neighboring sectors. In particular, Node si,1 is a neighbor of Nodes si,2 and si,12,

Node si,2 is a neighbor of Nodes si,1 and si,3, and so on. These imply that the Gilbert graph

induced by the lower neighborhood of Node i has only one connected component, so that Node

i initiates only one direct connection provided that i > βn and event Ei does not occur. On

the other hand, since at most 5 other nodes can initiate a direct connection to Node i (this was

proved as part of the proof of Theorem 1), the degree of Node i will be at most 6 in all of the

final topologies where Ei does not hold.

If, further, event
⋃n

i=βn Ei does not occur, the network will have at most 5βn + (n − nβ)

edges (at most 5 direct connections are initiated by nodes with indices less than βn, and only
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Fig. 4: The circular sectors around the location xi of Node i that are used in the proof of Theorem 2. Each sector

includes its boundary. The central angle of each sector is equal to 30◦.

1 direct connection is initiated by nodes with indices greater than βn), with (1− β)-fraction of

its nodes having degree no more than 6. To prove the theorem, it is thus sufficient to show that

Pr(
⋃n

i=βn Ei) → 0 with a suitable choice of β such that β → 0. In fact, using a union bound,

and letting β = 24
π

logn
nR2 , we have β → 0, and

Pr

(
n⋃

i=βn

Ei
)

≤ 12n

(
1− πR2

12

)βn

∼ 12n exp

(
−πR2βn

12

)
∼ 12

n
→ 0, (8)

where ∼ represents asymptotic equivalence. For the first equivalence, we have also assumed

R2 → 0 without loss of generality (A network with a larger R cannot have more edges or larger

node degrees.). This concludes the proof.

Hence, on average, Algorithm 1 provides an extremely sparse connected network with n(1 +

o(1)) edges with a degree less than or equal to 6 for 1− o(1) fraction of the nodes.

IV. ALGORITHM IMPLEMENTATION

In this section, we discuss the issues related to the implementation of Algorithm 1. We begin

by describing a protocol for the implementation of the algorithm.

A. A Protocol for Algorithm Implementation

For the algorithm to work correctly, a given Node i in the network only has to know its

lesser neighbors Ni and the lesser neighbors Nj of each one of its lesser neighbors j ∈ Ni.

We weaken this statement by saying that each node only has to know its neighbors and the
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neighbors of its neighbors, i.e., its one- and two-hop neighbors. One way to implement the

algorithm may then be via the following protocol that incorporates three rounds of inter-node

communications: In the first round, each node may broadcast a “Hello” message (together with

its index information) so that each node acquires the knowledge of its neighboring nodes. In the

second round of communications, each node broadcasts the indices of its neighbors so that each

node can also acquire the indices of each one of its neighboring nodes. Each node may then

run the algorithm to determine the set of nodes to connect to; this step does not require any

inter-node communication. In the final and third round of communications, each node broadcasts

the indices of the nodes it has decided to connect to. Once the corresponding connections are

established, the final topology is complete.

B. Communication Complexity

The communication overhead of the above protocol can also be analyzed in an average sense.

Suppose the n nodes are distributed uniformly at random on [0, 1]2, as in Section III. The index

of each node can be represented via a binary word of length O(log n) bits. In the first round of

communications, the message of each node is thus O(log n) bits, for a total of O(n log n) bits

over the entire network. Given that the nodes are distributed on [0, 1]2, each node has O(nR2)

neighbors on average, resulting in a per-node message length of O(n log nR2) bits on average

for the second round of communications. Finally, as each node initiates at most 5 connections by

Lemma 1, the per-node message length is O(log n) bits for the third round of communications.

Each node thus sends a total of O(log n(1 + nR2)) bits in total during the topology formation

phase. In particular, setting R2 = logn+α
πn

for some α → ∞ and α ∈ o(log n), the network is

asymptotically almost surely connected according to (3), and the per-node message length to

establish the topology is O(log2 n) bits. Hence, the average per-node communication complexity

for the establishment of the network topology is only polylogarithmic in the number of nodes.

C. Node Identification

We also note that in practice, a node may not carry any “index information,” at least not

necessarily in the form of a natural number ranging from 1 to n. Instead, each node may have a

unique identification number (or a unique address) that can be used for indexing purposes. These
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identification numbers can be ordered, for example, lexicographically. Instead of the natural num-

bers with their standard order, the same algorithm can then operate over the node identification

numbers with their lexicographical order. Hence, the (likely) possibility of “unnatural” node

indices does not affect the way the algorithm operates or the final results. In general, we assume

that each node is assigned its unique identification number during manufacturing, in a manner

similar to the assignment of media access control (MAC) addresses. Hence, a separate algorithm

for node identification number assignment is not necessary.

V. THE UNACHIEVABILITY OF CONSTANT STRETCH FACTORS USING NEIGHBORHOOD

INFORMATION

We have shown the existence of a local topology control algorithm that can preserve connec-

tivity with constant bounded maximum node degree using only one- and two-hop neighborhood

information. All the previous algorithms with the same promises in addition require geographical

information (in the form of neighbors’ distance/direction). As we have mentioned in Section I-B,

some of these algorithms also guarantee constant α-stretch factors, which provide a stronger

notion of connectivity. Unfortunately, in the case of our algorithm, for any α ≥ 0, one can

construct a specific realization of node locations such that the α-stretch factor of the resulting

topology can be made arbitrarily large. However, the stretch factors may be low with high

probability, as we will show numerically in the next section. This begs the question of whether

or not there exists another (better) algorithm that similarly uses only neighborhood information

and can provide constant stretch factors with bounded node degrees. In this section, we answer

this question in the negative: There are no such algorithms even if one assumes global knowledge

of neighborhood information.

Let us first define the α-stretch factors in a formal manner. Let us fix some α ≥ 0, and assign

the weight |xi−xj|α to every (i, j) ∈ g(V). We can then model the cost of communicating from

Node i to Node j on a given spanning subgraph (V , E) of (V , g(V)) via the quantity

cα(i, j; E) � min
p

|p|−1∑
i=1

|xpi − xpi+1
|α, (9)

where the minimization is over all paths in (V , E) connecting Nodes i and j. We let cα(i, j;V , E) =
∞ if Nodes i and j are not path-connected in (V , E). We say that the topology (V , E) has an

α-stretch factor of t if cα(i, j; E) ≤ tcα(i, j; g(V)) for every i, j ∈ V with i �= j.
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Let E denote the collection of all possible sets of edges given the vertex set V . A centralized

(and deterministic) control of topology can then be modeled as a mapping f : E → E with

the property that for every E ∈ E, we have f(E) ⊂ E . Operationally, we assume that a control

center can somehow have access to (only) the entire neighborhood information g(V), and declares

(V , f(g(V)) as the final topology. We have the following result regarding the hop-stretch factors.

Theorem 3. Suppose that f preserves connectivity and results in constant maximum node degree

of d > 0. Then, f cannot provide a constant hop-stretch factor.

Proof. Suppose all the nodes are located within each other’s communication range. Then, g(V)
is the complete graph Kn of n nodes where all the nodes are within 1 hop of each other. Consider

now the topology f(Kn) generated by f . There are n−1 nodes that are at least 1 hop away from

Node 1. Moreover, due to the degree bound provided by f , there are at least n−d−1 nodes that

are at least 2 hops away from Node 1, and in general, at least n− (1+d+ · · ·+dk−1) nodes that

are at least k hops away from Node 1. Hence, for any k and d, if n > 1 + d+ · · ·+ dk−1, there

exists a node with index i ∈ V such that Node i is k hops away from Node 1 in (V , f(Kn)).

On the other hand, Nodes i and 1 were only 1 hop apart in the graph (V , Kn). The hop-stretch

factor with f is thus at least k. The result now follows immediately as for any d, k can be made

arbitrarily large by considering a sufficiently large n.

A stronger version can be proved in the case of the α-stretch factors for α > 0.

Theorem 4. Suppose that f preserves connectivity but with one or more edges missing from the

Gilbert graph. Then, for any α > 0, the mapping f cannot provide a bounded α-stretch factor.

Proof. Suppose all the nodes are located on a disk of radius εR centered at the origin for some

ε > 0. We have g(V) = Kn. Let (i, j) denote one of the missing edges in (V , f(Kn)). Now,

if (i, j) is not path-connected in (V , f(Kn)), we have cα(i, j; f(Kn)) = ∞. The claim of the

theorem then follows immediately as obviously, cα(i, j; g(V)) ≤ (2ε)α and thus cα(i, j; g(V)) is

finite. Otherwise, let P denote the set of all paths in (V , f(Kn)) that connect Node i to Node j.

Choose a node k /∈ {i, j} in the path with the minimum cost in P . Consider a change of locations

where we move Node k to [R 0] while keeping all the other nodes’ locations fixed. We again have

g(V) = Kn in this case, and the resulting topology is thus the same topology (V , f(Kn)) when
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all the nodes were located at the origin. However, we now have (for the new node locations)

cα(i, j; f(Kn)) > |xi − xk|α + |xk − xj|α = 2Rα(1 − ε)α while cα(i, j; g(V)) ≤ (2ε)α. The

α-stretch factor provided by f is then at least
2Rα(1−ε)α

(2ε)α
, which can be made arbitrarily large by

choosing a sufficiently small ε. This concludes the proof.

VI. CONSTRUCTING GRAPHS WITH DEGREE LOWER BOUNDS

In practice, it is also important to construct a robust graph, by e.g. providing a lower bound

on the node degrees as well as an upper bound. This way, if a certain subset of communication

links is broken, one can potentially use the remaining links to reach one node from another.

Suppose that the degree of each node in a connected Gilbert graph (V , g(V) is at least δ ≥ 1.

In the following, we provide an asynchronous algorithm that preserves connectivity, and provides

a lower bound of δ and a constant upper bound on the degree of every node. In this context,

one naive algorithm that comes to mind is for each node to randomly add edges to guarantee a

degree lower bound of δ after running Algorithm 1. Unfortunately, this approach does not lead

to a constant upper bound on the degree of the networking nodes.

Let N i � {j : j ∈ V , j > i, |xi − xj| ≤ R} denote the greater neighborhood of Node i. We

then consider the algorithm whose steps are provided in Algorithm 2. First, as shown by Line

1 of the algorithm, Node i chooses the same nodes to connect to as in Algorithm 1. Next, in

Lines 2 and 3, the remaining lesser neighbors are added to the list Ci of the nodes that Node i

will connect to, until the eventual degree of the node, |Ci|, is guaranteed to be at least δ. The

priority is given to the lesser neighbors with the highest index. Often, the set of lesser neighbors

are not enough to satisfy the degree lower bound, in which case we add the greater neighbors

of Node i via Lines 4 and 5. This time, the neighbors with the smallest index are given priority.

In particular, for δ = 1, Algorithm 2 is identical to Algorithm 1. The following theorem

provides the properties of the topologies generated by Algorithm 2 for a general δ ≥ 1.

Theorem 5. Suppose that the n-node graph (V , g(V)) is connected with a degree of di at Node

i, where i ∈ {1, . . . , n}. Then, the topology generated by Algorithm 2 is connected with at most

max{δ, 5}n edges. Moreover, for any given i ∈ {1, . . . , n}, the degree of Node i is at least

min{di, δ} but no more than max{δ, 5}+ 10δ.
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Algorithm 2 Algorithm for Minimum Degree Guarantee (at Node i)

1: Ci ← {maxNij, 1 ≤ j ≤ Ji}.

2: while |Ci| < δ and Ci �= Ni do

3: Ci ← Ci ∪ {max(Ni − Ci)}.

4: while |Ci| < δ and Ci �= Ni ∪ N i do

5: Ci ← Ci ∪ {min(N i − Ci)}.

6: Connect to all nodes in the set Ci.

Proof. Algorithm 2 contains all edges that are provided by Algorithm 1 due to Line 1. Therefore,

since Algorithm 1 provides a connected topology, so does Algorithm 2. The proof of Theorem

1 shows that Line 1 results in a set Ci with cardinality at most 5, while Lines 3 and 5 add new

nodes to Ci (one at a time) until |Ci| ≥ min{di, δ}. Therefore, |Ci| ≤ max{δ, 5}. This implies that

there are at most max{δ, 5}n edges in the final topology. We now provide the degree bounds.

The fact that the final topology provides a degree lower bound of min{di, δ} at every node is

obvious by the design of the algorithm. We thus prove the degree upper bound. First, note that

a given node initiates at most max{δ, 5} connections. We now determine the maximum number

of nodes that establish a connection to Node i. We argue that there can be at most 5δ greater

neighbors of Node i that connect to Node i. Assume the contrary. One can then find δ+1 greater

neighbors of Node i with indices j1, . . . , jδ+1 that are all mutually within communication range

and connect to Node i. Without loss of generality, suppose i < j1 < · · · < jδ+1. Since Node

jδ+1 connects to Node i, it also necessarily connects to Nodes j1, . . . , jδ. There are now two

possibilities when the algorithm is run on Node jδ+1. The first possibility is that the connection

to Node jδ is made via Line 1, and the remaining δ connections to Nodes i, j1, . . . , jδ−1 are

made via Line 3 of the algorithm. This leads to a contradiction as Line 3 cannot increase the

node degree beyond δ. The second possibility is that all δ+1 connections to Nodes i, j1, . . . , jδ

are made via Line 3 of the algorithm, which leads to a similar contradiction. A similar argument

shows that there can be at most 5δ lesser neighbors of Node i that connect to Node i. As a

result, the degree of each node in the final topology is no more than max{δ, 5}+ 10δ.

In particular, if the degree of every node in the Gilbert graph is at least δ, then Algorithm 2
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provides a degree lower bound of δ at every node, as desired. An interesting direction for further

research is to find a better algorithm that improves the degree upper bound in Theorem 5, as for

example, for δ = 1, Theorem 1 provides a better degree upper bound.

VII. NUMERICAL RESULTS

In this section, we present numerical simulations that confirm our analytical results and provide

additional insights. We have run Algorithm 1 on a network with n = 1000 nodes and initially

no connections. Nodes are located independently and uniformly on [0, 1]2. We have considered

the choices πR2 = N
n

for N ∈ {10, 20, 30}. The parameter N can be thought as a quantification

of “node density” as any given node of the network then has roughly (ignoring the edge effects)

N neighbors on average. Regarding our specific choices for N , we note that the probabilities of

connectivity for the associated Gilbert graphs are approximately 0.5654, 0.9922, and 0.9996 for

the choices N = 10, N = 20, and N = 30, respectively. These values were obtained numerically

by averaging over at least 5000 node location realizations. Hence, the three different choices

for N represent the three different scenarios of “mostly-disconnected,” “usually connected,” and

“almost-always connected” networks.

In Fig. 5, we show the cumulative distribution functions (CDFs) of the normalized number of

edges
|A|
n

for different values of N . In all the node location realizations we have simulated, the

number of edges of the network never exceeded 1.14n or went below 1.02n for any choice of

N . These observations are in agreement with the inequality |A| ≤ 5n as proved by Theorem 1.

In addition, the fact that the number of edges are very close to n for any N is in agreement with

Theorem 2, where we proved that the algorithm usually generates topologies with n(1 + o(1))

edges, especially when N is large. In fact, if N were equal to infinity, all the nodes would be

within the range of each other, and the algorithm would generate the line topology with only

the n edges (1, 2), (2, 3), . . . , (n− 1, n).

In Fig. 6, we compare the number of edges provided by Algorithm 1 with other algorithms or

topologies for a node density of 20. We consider the topologies generated by the XTC algorithm

[25], Algorithm 2 with δ = 2, the k-Neigh algorithm [26] for k = 6, and the Gilbert graph. XTC

is a powerful algorithm that can provide a degree-bounded topology with constant stretch factors.

However, it requires neighbor distance information at the nodes. We recall from Section VI that
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Fig. 5: The CDFs of the normalized number of edges
|A|
n for different node densities with Algorithm 1.

Algorithm 2 for δ = 2 guarantees (if at all feasible) a degree lower bound of δ = 2 at every node,

and a degree upper bound of 25. In particular, for δ = 1, Algorithm 2 is equivalent to Algorithm

1. According to the k-Neigh algorithm, each node connects to k of its closest neighbors. The

k-Neigh algorithm provides sparse topologies with typically low-degree nodes. However, it also

requires neighbor distance information, and is not guaranteed to preserve connectivity. We have

considered the choice k = 6 for fairness in terms of the probability of connectivity: For k = 6,

the k-Neigh algorithm provides connectivity with probability 0.9904, which is a negligible loss

compared to the probability 0.9922 of connectivity of the Gilbert graph. For k = 5, the probability

of connectivity with k-Neigh drops to 0.9681.

We can observe from Fig. 6 that with probability 0.99, Algorithm 1 provides the sparsest

topology with (at most) 1.07n edges, followed by the XTC algorithm with 1.27n edges, Al-

gorithm 2 for δ = 2 with 1.88n edges, k-Neigh for k = 6 with 3.59n edges, and finally the

Gilbert graph with 9.64n edges. Thus, Algorithm 1 provides around 9-fold reduction for the

required number of edges for connectivity compared to the Gilbert topology. Also, compared to

its closest competitor XTC, our algorithm reduces the required number of edges for connectivity

by around 100× 1.27n−1.07n
1.27n

≈ 16 per cent. Moreover, unlike XTC, the reduction comes without

the need for the extra neighbor distance information at networking nodes.
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Fig. 6: The CDFs of the normalized number of edges
|A|
n for different algorithms and N = 20.

In Fig. 7, we show the probability mass functions (PMFs) corresponding to the degree of a

given node of the network for different values of N . More specifically, let I have a uniform

PMF on the set {1, . . . , n}. For a given N , the corresponding PMF at a given degree d in Fig.

7 is then the probability that Node I has degree d in the final network topology provided by

Algorithm 1. We can also observe that almost all the nodes in the network have a degree of 6 or

less, which is in agreement with Theorem 2. Also, the fraction of nodes with degree 2 increases

as N increases, and we expect it to approach to 1 as N → ∞ as a result of the aforementioned

convergence to line topology.

We show the PMFs of the degrees of individual nodes and the corresponding expected node

degrees in Fig. 8 for the special case N = 20. We can observe that nodes with lower or higher

indices are more likely to have lower degrees. In fact, by design, the only way for a low-indexed

node to “gain” degree in Algorithm 1 is by receiving connections from a higher-indexed node,

and there can be at most 5 such connections. Likewise, the only way for a high-indexed node

to gain degree is by establishing connections to lower-indexed nodes. Similarly, there can be at

most 5 such connections. On the other hand, a medium-indexed node can potentially have many

higher-indexed nodes as well as many lower-indexed neighboring nodes, implying a potential

degree of 10 in the final topology. Thus, intuitively, a medium-indexed node should typically have
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Fig. 7: The PMFs of the degree of a given node for different node densities with Algorithm 1.

a larger average degree compared to a low- or high-indexed node. Fig. 8 verifies this intuition.
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Fig. 8: The expected value and the PMF of node degrees for different node indices using Algorithm 1 and N = 20.

In Fig. 9, we compare different algorithms with respect to their PMFs corresponding to the

degree of a given node of the network. We consider a node density of N = 20. Algorithm 1

provides the minimum possible average node degree of 2.12, followed by an average degree of
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2.50 provided by XTC. Compared to the average of 18.63 for the Gilbert graph, Algorithm 1

provides a 9-fold reduction on the node degree.
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Fig. 9: The PMFs of the degree of a given node for different algorithms and N = 20.

Fig. 10 shows the PMFs of the maximum node degree of the network for Algorithm 1 and

different node densities. According to Theorem 1, the PMFs should only take values on the set

{0, . . . , 10}. In fact, for every value of N , we have not observed a single realization of node

locations where the maximum node degree is 8 or higher. Such realizations obviously exist (see

Section II); Fig 10 rather suggests that they correspond to very rare events. Fig. 11 provides the

comparison of different algorithms in terms of the PMFs of the maximum node degrees. We

can observe that the maximum degree with Algorithm 1 is more likely to be 5 compared to a

maximum degree of 4 with XTC. The price to pay to guarantee a minimum degree of 2 via

Algorithm 2 is to increase the maximum node degree to 7 with high probability.

In Fig. 12, we show the CDFs of the α-stretch factors associated with two given distinct nodes

of the network for α ∈ {0, 1, 2} (hop-, distance-, and power-stretch factors) and N ∈ {10, 20, 30}.

Specifically, let (I1, I2) have a uniform PMF on the set {(i, j) : 1 ≤ i < j ≤ n}. Given N

and α, the corresponding CDF evaluated at a given stretch factor t in Fig. 7 is then given by

Pr[cα(I1, I2;A) ≤ tcα(I1, I2; g(V))].
We can observe that all the CDFs remain less than 1 at every finite stretch factor. This means
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Fig. 10: The PMFs of the maximum node degree for different node densities using Algorithm 1.
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Fig. 11: The PMFs of the maximum node degree for different algorithms and N = 20.

that the algorithm cannot provide a constant α-stretch factor for any α ≥ 0. This result is

not surprising as by Theorems 3 and 4, any topology control algorithm that solely relies on

neighborhood information will necessarily have unbounded stretch factors. Still, we can observe

that our algorithm keeps the stretch factors low with high probability, at least for some cases
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of α and N . For example, for the network with N = 20 that is connected for more than 99%

of the time, any two nodes that are h hops away in the Gilbert graph will be no more than 5h

hops away in (V ,A) for more than 90% of the time.
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Fig. 12: The CDFs of α-stretch factors for different node densities with Algorithm 1.

Comparison of different algorithms in terms of their stretch factors are provided in Fig. 13.

Typically, algorithms that result in more edges provide a better stretch factor distribution. For

example, the k-Neigh algorithm outperforms all other algorithms for the case α ∈ {1, 2}. XTC

also provides very good performance for α ∈ {1, 2} despite providing a very sparse topology: It

is only slightly worse than the k-Neigh topologies, outperforms the denser topologies provided

by Algorithm 2 for δ = 2, and significantly outperforms the sparser topology of Algorithm 1.

Interestingly, for α = 0, Algorithm 1, despite inducing a sparser topology compared to XTC,

outperforms XTC by a significant margin for a wide range of stretch factors. Algorithm 2 for

δ=2 outperforms even the much denser k-Neigh topology in certain cases. Therefore, Algorithms

1 and 2 can provide very good performance especially in terms of the 0-stretch factors.

VIII. CONCLUSIONS

We have studied the problem of topology control in wireless ad-hoc networks consisting of

n nodes that are located on the plane. We have considered the disk-connectivity model where
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Fig. 13: The CDFs of α-stretch factors for different algorithms and N = 20.

any two given neighboring nodes that lie within a certain communication range can be directly

connected. We have addressed the fundamental problem of generating network topologies with

the practically-relevant graph-theoretical properties such as connectivity or degree-boundedness.

We have observed that all the previous work in the literature require detailed geographi-

cal/locational information at each node to achieve these desired properties. We have shown

that, in fact, a sufficient condition to achieve degree-bounded connectivity is just for each node

to know the identification numbers of its one- and two-hop neighbors - no distance/directional

information is needed whatsoever. Our corresponding local topology control algorithm guarantees

a connected network with 5n edges and a maximum node degree of 10. We have shown that for

most networks, these numbers are in fact much lower. We have also designed an algorithm that

can provide an upper bound as well as a lower bound on node degrees.
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