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Abstract—We study a mobile wireless sensor network (MWSN)
consisting of multiple mobile sensors or robots. Three key factors
in MWSNs, sensing quality, energy consumption, and connec-
tivity, have attracted plenty of attention, but the interaction of
these factors is not well studied. To take all the three factors
into consideration, we model the sensor deployment problem
as a constrained optimization problem. Our goal is to find
an optimal sensor deployment (or relocation) to optimize the
sensing quality with a limited communication range and a specific
network lifetime constraint. We derive necessary conditions for
the optimal sensor deployment in both homogeneous and het-
erogeneous MWSNs. According to our derivation, some sensors
are idle in the optimal deployment of heterogeneous MWSNs.
Using these necessary conditions, we design both centralized and
distributed algorithms to provide a flexible and explicit trade-off
between sensing uncertainty and network lifetime. The proposed
algorithms are successfully extended to more applications, such
as area coverage and target coverage, via properly selected
density functions. Simulation results show that our algorithms
outperform the existing relocation algorithms.

Index Terms—Optimization, sensor deployment, coverage, het-
erogeneous, mobile wireless sensor networks, network lifetime.

I. INTRODUCTION

Mobile wireless sensor networks (MWSNs) are widely

employed in agricultural, industrial and military applications.

This is due to tremendous technical developments in wireless

communications, computation power, data processing and stor-

age. Agriculture gets numerous benefits from MWSNs by suc-

cessfully assigning mobile sensors to observe the surrounding

environments, for example temperature, humidity, and illumi-

nation. In industry, MWSNs can be used to monitor material

strength, water leak, and toxic gases. Besides, MWSNs are

also good tools to detect intruders. According to sensors’

functionality/capacity, MWSNs can be classified into homoge-

neous MWSNs and heterogeneous MWSNs. In homogeneous

MWSNs, extensively studied in the literature [2]–[31], sensors

share the same capacity, e.g., storage, computation power,

sensitiveness, communication radius, coverage radius, moving

efficiency, and battery. However, the heterogeneous WSNs

consist of sensors with different capacities [32]–[37].

One major challenge in both homogeneous and heteroge-

neous MWSNs is the deployment of nodes to optimize the

performance of the network. To evaluate the sensing quality,

the binary coverage model, in which each sensor can only
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cover a disk with radius Rs, is widely used in MWSNs [2]–

[12], [32], [33], [35]. There have been many coverage models

and deployment algorithms, for different sensing tasks, in the

literature; look at [2]–[4] and the references therein. Four

popular coverage categories are (i) area coverage, (ii) target

coverage, (iii) barrier coverage, and (iv) sensing uncertainty. A

natural sensing task is to maximize the area coverage, which

is formulated by the total area covered by sensors. In another

popular coverage model, target coverage, the specific target

locations are detected and reported by relocated sensors. In

this case, sensors or robots are required to collect detailed

information from the discrete targets. A full-target-coverage

is achieved if and only if every discrete target in the 2-

dimensional region is covered by at least one sensor. Sensors

in barrier coverage model move along the boundary to detect

intruders as they cross the border of a region or domain.

To obtain full-barrier-coverage, one should place sensors to

cover the whole barrier or boundary. Finally, the minimization

of sensing uncertainty requires sensors to form a Centroidal

Voronoi Tessellation (CVT). It is mainly used when there is no

specific target. The widely used sensing uncertainty model (see

more details in Section II) can be presented as a quantizer with

the sensing uncertainty as its distortion [2]–[10], [14]–[17],

[32]–[34]. In fact, MWSNs should be reconfigurable/flexible

to support different sensing tasks. However, to the best of

our knowledge, there is no unified framework that models a

variety of coverage tasks. In this paper, we will propose a

unified relocation model which can be applied to the above

four coverage tasks.

Connectivity is another important requirement in MWSNs.

In MWSNs, mobile sensor nodes are relocated to collect

physical information, such as magnetism, temperature, and

voice. The collected data is forwarded to the outside world

through access points (APs). Therefore, the collected data is

useless if it cannot be forwarded to the AP via single-hop or

multiple-hop communications. When sensors are connected by

wirelines, the connectivity is guaranteed automatically. But,

the connectivity is still a challenge in MWSNs where sensors

are communicating with each other through wireless channels.

A common communication model [3], [11]–[13] assumes that

each sensor node is able to communicate with sensors in a

limited communication range Rc.

Energy efficiency is another key issue in MWSNs, as most

sensors have limited battery energy, and it is inconvenient or

even infeasible to replenish the batteries of numerous densely

deployed sensors [18]. In general, the energy consumption of a
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device includes communication energy, data processing energy

[38], sensing energy, and movement energy. In fact, sensor

movement has a much higher energy consumption compared

to other types of energy [19], [20], and then dominates the

energy consumption. Guiling et al. [39] study the optimal

angular velocity and the optimal acceleration to minimize the

energy consumption for motion. Simulation results in [39]

show that the energy consumption for one-step motion with

the optimal angular velocity setting is approximately linear to

the movement distance. In fact, the linear movement energy

consumption is a popular assumption and widely adopted in

the literature [21]–[23], [36], [40]. Total energy consumption

and network lifetime are two common energy-related mea-

sures. But, network lifetime maximization, which balances the

energy consumption among sensors, is a more common and

challenging problem because it takes into account the available

battery power of sensors.

A. Related Work
A huge body of literature exists on energy-efficient sensor

relocation. However, most of the papers in the literature

consider one or two key metrics rather than all the three

(sensing quality, connectivity, and energy efficiency) together.

Moreover, there is no unified framework that can support

different coverage models.

References [21]–[23], [35], [36] study the energy saving

with a full-area-coverage guarantee. Hungarian Algorithm is

applied to minimize the total energy consumption after the

full-area-coverage is achieved by Genetic Algorithm [21].

Note that the above method put sensing quality as the first

priority, and the energy efficiency is merely the secondary

objective. To provide a flexible and fair trade-off between

area coverage and energy consumption, virtual force based

algorithms, HEAL [22], VFA [23], [35], and DSSA [36],

are proposed. Besides, a variant of VFA is designed in [35]

to maximize the area coverage in a heterogeneous MWSN.

However, connectivity is not considered in [22], [23], [35],

[36].

Sensor relocation for target coverage and barrier coverage

is also well studied. Rout et al. [24] design a virtual-force

based algorithm, OATIDA, to obtain both full-target-coverage

and full-connectivity on a region with obstacles, while energy

consumption is ignored. Chen et al. [25] propose a two-phase

algorithm to achieve full-target-coverage with minimum total

energy consumption, but connectivity is not taken in to ac-

count. Similarly, Njoya et al. [26] design an evolutionary-based

framework to make the trade-off between target coverage

and network lifetime while the connectivity issue is ignored.

Liao et al. [27] investigate how to deploy mobile sensors

with minimum total energy consumption to form a MWSN

that provides both full-target-coverage and full-connectivity.

Although all three factors are considered in [27], full-target-

coverage and full-connectivity are implemented sequentially,

which requires redundant sensors. On the other hand, the

existing literature on barrier coverage also seeks the perfect

sensing quality, i.e., full-barrier-coverage. Chen et al. [28]

focus on 1-dimensional barriers, and then provide an energy-

efficient relocation plan to obtain full-barrier-coverage. In [29],

a greedy algorithm with binary search is applied to achieve

maximum network lifetime and 2-dimensional full-barrier-

coverage simultaneously. A faster algorithm which achieves

the same purpose as [29] is provided in [30]. Still, the above

sensor relocation algorithms designed for barrier coverage

ignore the connectivity requirement.

Sensor relocation for sensing uncertainty (or CVT model)

has also been investigated in the literature. Li et al. [9] explore

directional sensors whose sensing uncertainty varies among

different directions, and then design two iterative algorithms

to optimize the sensor deployment. But, energy consumption

is not taken into their objective function. Taking both con-

nectivity and sensing uncertainty into account, our previous

work [33] proposes the necessary conditions for the optimal

sensor relocation in heterogeneous MWSNs. Unfortunately,

another key metrics, energy consumption, is not taken into

consideration. In [10], the authors propose two algorithms,

Lloyd-α and DEED, to minimize sensing uncertainty with

a movement related penalty function. Note that one has to

manually adjust the parameter α (or δ) for Lloyd-α (or DEED)

to satisfy a specific energy constraint. To overcome this

weakness, two Lloyd-like algorithms without any intermediate

parameter are proposed in the conference version of this

paper [1]. These two algorithms can be employed to minimize

sensing uncertainty with a total energy constraint or a network

lifetime constraint. However, our previous work [1] does not

consider the connectivity requirement.

B. Our Contributions
In this paper, we study the sensor relocation problem in

MWSNs and make the following contributions: (1) A uni-

fied optimization framework for different coverage models is

provided that takes three key metrics, sensing quality, con-

nectivity, and energy consumption, into consideration. (2) By

providing analytical necessary conditions, we design central-

ized and distributed Lloyd-like algorithms to optimize sensor

relocation with (i) network lifetime constraints and (ii) limited

communication ranges.

The rest of the paper is organized as follows. We first

introduce the system model and formulate the problems of

sensing, energy consumption, and connectivity in Section II.

In Section III, we discuss centralized sensor deployments for

MWSNs considering the network lifetime and communication

range. In Section IV, we propose a distributed algorithm to

relocate sensors such that the required network lifetime and

full-connectivity are fulfilled during the relocation. The algo-

rithm complexity and communication overhead are analyzed

in Section V. After that, we extend the proposed algorithms

to other self-deployment scenarios in Section VI. Finally, we

present numerical simulations in Section VII and conclude our

work in Section VIII.

II. SYSTEM MODEL

Let Ω ∈ �2 be a convex target region including its interior.

Given N sensors in the target area Ω, sensor deployment

before and after the relocation are, respectively, defined by

P0 = (p01, . . . , p
0
N ) ⊂ ΩN and P = (p1, . . . , pN ) ⊂ ΩN ,

where p0n is Sensor n’s initial location and pn is Sensor n’s

final location. Let IΩ = {1, . . . , N} be the set of sensors in

the MWSN. A cell partition R(P) is defined as a collection

of N disjoint subsets, {Rn(P)}n∈IΩ , whose union is Ω. We
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assume that Sensor n only monitors the events that occurred

in its cell partition Rn(P), ∀n ∈ IΩ. Let ‖ · ‖ denote the

Euclidean distance, card(A) be the number of elements in

set A, ∂W be the boundary of a region W ⊂ Ω, and

B(c, r) = {ω| ‖ω − c‖ ≤ r} be a ball centered at c with

radius r.

In the binary disk communication model [2]–[9], [20]–

[22], two sensor nodes can establish reliable communications

within one hop if and only if the distance between the two is

smaller than Rc, where Rc is referred to as the communication

range. We define the access point (AP) as the sensor node

that can communicate with the outside information world.

Without loss of generality, we assume that Sensor 1 acts as

the AP. Other sensor nodes can transfer data outside if and

only if there exist paths from the sensors to the AP. Each

path consists of a sequence of sensor nodes where each hop

distance is smaller than Rc. Sensor nodes that are connected

to the AP via one-hop or multi-hop communications construct

the backbone network. Let S(P) be the backbone network

when the sensor deployment is P. The sensors in S(P) are

referred to as active sensors while the sensors outside of S(P)
are referred to as inactive sensors. Accordingly, we define the

active sensor deployment, H(P), as the vector of locations

of active sensors. In particular, we have P = H(P) and

card(S(P)) = n when S(P) includes all sensor nodes. If

all sensors are included in the backbone network, we call the

network fully connected. Otherwise, the network is divided

into several disconnected sub-graphs. For convenience, we

assume that the initial sensor deployment constructs a fully

connected network, i.e., P0 = H(P0).

To evaluate the sensing uncertainty in heterogeneous

MWSNs, we consider the distortion function [32]–[34] defined

by

D(P) =
N∑

n=1

∫
Rn(P)

ηn‖pn − ω‖2f(ω)dω, (1)

where the sensing cost parameters ηn ∈ (0, 1] are constants
that depend on Sensor n’s characteristics, e.g. sensitivity, and

f(ω) : Ω → �+ is a spatial density function that reflects the

frequency of random events taking place over the target region.

In homogeneous MWSNs, sensors have identical parameters,

i.e., ηn = η, ∀n ∈ IΩ. Note that the sensing uncertainty is

only determined by the final deployment P.

However, as explained previously, when the communication

range Rc is limited, some sensor nodes cannot transfer their

data back to the AP. As a result, only the sensor nodes in the

backbone network can contribute to the sensing and therefore

the performance should be revised as

D(P) =
∑

n∈S(P)

∫
Rn(H(P))

ηn‖pn − ω‖2f(ω)dω, (2)

The optimal partition for the performance function (2) is

Multiplicatively Weighted Voronoi Diagram (MWVD) [33],

which can be applied to both homogeneous and heterogeneous

MWSNs. The MWVD of Ω generated by P is the collection

of sets {Vn(P)}n∈IΩ defined by

Vn(P)={ω∈Ω|ηn‖ω−pn‖2≤ηm‖ω−pm‖2, ∀m∈IΩ}. (3)

In particular, the MWVD for homogeneous MWSNs de-

generates to the Voronoi Diagram [32]. From now on, we

use V(P) = {Vn(P)}n∈IΩ
to replace partition R(P) =

{Rn(P)}n∈IΩ
. Placing (3) back to (2), we can rewrite the

distortion as

D(P) =
∑

n∈S(P)

∫
Vn(H(P))

ηn‖pn − ω‖2f(ω)dω. (4)

The same distortion can also be applied to formulate the
communication energy consumption among densely deployed

sensors where the f(·) presents the sensor density function

[18]. Next, we review a classic energy consumption model

for the mobile sensor networks. Since the sensor movement

dominates the power consumption, we only consider the

power consumption for sensor movement. As we mentioned in

Section I, the energy consumption for one-step movement is

linearly related to the moving distance. Therefore, the energy

consumption for Sensor n moving from a to b can be defined

[21]–[23], [36], [39], [40] as

En(a, b) = ξn‖b− a‖, (5)

where the moving cost parameter ξn is a predetermined

constant that depends on Sensor n’s energy efficiency.

III. CENTRALIZED SENSOR DEPLOYMENT WITH A

NETWORK LIFETIME CONSTRAINT

In a centralized sensor deployment scenario, a fusion center

or base station collects global information (all sensor locations

and parameters) and then computes and determines the final

destinations for the sensors. After receiving the decisions from

the fusion center, sensors move to their final destinations

directly. It is self-evident that this point-to-point relocation is

the most efficient strategy in terms of energy consumption.

A. Problem formulation
Since sensors move to their final destinations directly, the

energy consumption for Sensor n is formulated as

En(P) = En(p
0
n, pn) = ξn‖pn − p0n‖, (6)

where pn is Sensor n’s final destination. Our main goal is

minimizing the sensing uncertainty defined by (4) given a

constraint on the network lifetime T . To guarantee a required

network lifetime, each sensor should be assigned an energy

threshold (or maximum movement distance) for relocation

[28]–[31]. Therefore, the corresponding constrained optimiza-

tion problem, which is referred to as Problem A, is
minimize

P
D(P) (7)

s.t. En(P) ≤ γn, n ∈ IΩ, (8)

where γn is the maximum energy consumption of Sensor n.

Let en be the battery energy of Sensor n at the initial time

and β (watt) be Sensor n’s power consumption (which is

dominated by communication, sensing, and computation) after

the relocation. To ensure the network lifetime, T , we have

minn (en − En(P)) ≥ βT , and thus γn = en − βT, n ∈ IΩ.

B. The Optimal Sensor Deployment
Lemma 1. Given a fully connected initial deployment, i.e.,
P0 = H(P0), the optimal deployment P∗ for Problem A in
a homogeneous MWSN is also fully connected, i.e., P∗ =
H(P∗).
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The proof is provided in Appendix A.

According to Lemma 1, homogeneous networks should

keep connectivity after optimal sensor movements as long

as the initial deployment is fully connected. To analyze the

network connectivity, we introduce two important concepts:

desired region (DR) and feasible region (FR). Let I ⊆ IΩ
be an arbitrary sensor set. For convenience, the sensors in I
and IΩ − I are referred to as internal and external sensors,

respectively. For each sensor, n, the set of all locations

of n that result in a connected I is called the DR of n.

An internal sensor’s DR for sensor set I is defined as the

region in which if the sensor is placed, the sensors in I
are connected. As a special case, if an internal sensor’s DR

is empty, the sensors in I cannot construct a connected

network. Without the internal sensor, n ∈ I, the rest of

the internal sensors, I − {n}, consists of Kn(P, I) disjoint

components: Un1(P, I), Un2(P, I), · · · , UnKn(P,I)(P, I),
where the sensors in each component are connected and⋃Kn(P,I)

k=1 Unk(P, I) = I − {n}. The internal sensors

are connected if and only if Sensor n connects to all

{Unk(P, I)}s. Thus, internal sensors’ DRs for set I are

formulated as

Dn(P, I) =
Kn(P,I)⋂

k=1

⎡⎣ ⋃
j∈Unk(P,I)

B (pj , Rc)

⎤⎦ , ∀n ∈ I. (9)

Although we represent DRs as functions of P for conve-

nience, Sensor n’s DR is in fact determined by all sensors

except itself. For an internal sensor n ∈ I, the condition

pn ∈ Dn(P, I)1 guarantees that all internal sensors can

communicate with each other. In particular, if the AP is

included in I, we have I ⊆ S(P). In addition, it is trivial

to show that for two sensors m,n ∈ I, pm ∈ Dm(P, I) is

equivalent to pn ∈ Dn(P, I).
An example for 12 sensors with Rc = 1 is illustrated in Fig.

1a. The internal sensor set I is defined as all sensors, i.e., I =
IΩ = {1, . . . , 12}. Consider n = 1, to calculate D1 (P, IΩ),
the rest of the sensors are divided into K1 = 2 compo-

nents U11 = {2, 3, 4, 5, 6, 7} and U12 = {8, 9, 10, 11, 12}.

According to the definition of DR, the green overlap be-

tween the cyan region
[⋃7

j=2 B (pj , Rc)
]

and the yellow

region
[⋃12

j=8 B (pj , Rc)
]

in Fig. 1a constructs Sensor 1’s DR,

D1 (P, IΩ). Obviously, if p1 is placed within D1 (P, IΩ), all

12 sensors can communicate with each other. However, if the

internal sensor set I is defined as {1, 4, 5, 6, 9, 10, 11}, the

corresponding DR for Sensor 1 will be empty, indicating that

the sensors {1, 4, 5, 6, 9, 10, 11} cannot construct a connected

network.

Next, we define W (P, I) � ⋃
n∈IΩ−I B (pn, Rc). It is self-

evident that the internal sensors placed in W (P, I) connect

to at least one external sensor. As a result, the sensor set I
is the exact backbone network if and only if 1 ∈ I and pn ∈
Dn(P, I)⋂Wc (P, I), where Wc (P, I) = Ω−W (P, I) is

the complement of W (P, I). In what follows, we take the

energy constraints (8) into account, and propose the concept

1Remark: When Sensor n is placed in its DR for I, some external sensors,
m ∈ IΩ − I, may also connect to internal sensors.

of FR defined by

Fn(P, I) � Dn(P, I)
⋂

B

(
p0n,

γn
ξn

)
, n ∈ I, (10)

where the energy constraint, ξn‖pn − p0n‖ ≤ γn, is satisfied

by the condition pn ∈ B

(
p0n,

γn

ξn

)
.

The example of FR for Sensor 1 is illustrated in Fig.

1a. The magenta circle demonstrates Sensor 1’s movement

range B

(
p01,

γn

ξn

)
. Then, the intersection of green regions and

the magenta circle in Fig. 1a is Sensor 1’s FR, F1 (P, IΩ).
Obviously, if p1 is placed within F1 (P, IΩ), we have (a) all

12 sensors can communicate with each other and (b) Sensor

1’s energy constraint is also satisfied.
Note that pn ∈ Fn(P, I) implicitly implies that Fn(P, I) �=

∅. Accordingly, the set of deployments that not only constructs

the backbone network S (P) = I but also satisfies the energy

constraints can be formulated as

Γ (I) = {P|1 ∈ I, pn ∈ Fn(P, I)
⋂

Wc (P, I) , ∀n ∈ I}.
(11)

Based on the aforementioned concepts, we propose the fol-

lowing necessary condition for the optimal deployment.

Theorem 1. Let P∗=(p∗1,. . ., p
∗
N ) be the optimal deployment

for Problem A. The necessary conditions for the optimal
deployment are
(i) cn(P∗) /∈ [Fn(P

∗,S(P∗))
⋂W(P∗,S(P∗))] , ∀n∈S(P∗)

(ii) p∗n=

⎧⎨⎩cn(P
∗), if (a)

arg min
q∈∂Fn(P∗,S(P∗))

‖q−cn(P
∗)‖, if (b) , ∀n∈S(P∗)

(a): cn(P∗)∈ Fn(P
∗,S(P∗))

⋂Wc(P∗,S(P∗))
(b): cn(P∗)∈ Ω− Fn(P

∗,S(P∗))

The proof is provided in Appendix B.
According to Theorem 1, if n is a sensor in the backbone

network S(P∗), its optimal location, p∗n, is either at the

centroid cn(P
∗) or on the boundary of Fn(P

∗,S(P∗)). Note

that Theorem 1 only provides the necessary conditions for

the sensors in the backbone network S(P∗) because sensors

that are not in the backbone network make no contribution to

the distortion (4). In particular, by Lemma 1, all sensors in

homogeneous MWSNs should be included in the backbone

network, i.e., S (P∗) = IΩ, and therefore the necessary

conditions in Theorem 1 can be extended to all sensors in

homogeneous MWSNs. Since there are no inactive sensors

in homogeneous MWSNs, we have W(P∗,S(P∗)) = ∅.

Then, the necessary conditions for the optimal deployment

in homogeneous MWSNs can be refined as

p∗n=

⎧⎨⎩cn(P
∗), if cn(P

∗)∈ Fn(P
∗, IΩ)

arg min
q∈∂Fn(P∗,IΩ)

‖q−cn(P
∗)‖, if cn(P

∗) /∈ Fn(P
∗, IΩ) , ∀n∈IΩ

(12)
With the help of the necessary conditions in Theorem 1, we

design centralized Lloyd-like algorithms to find the optimal

sensor deployment with a network lifetime constraint in the

next subsection.

C. Centralized Lloyd-like Algorithms
To optimize the sensor deployments in homogeneous and

heterogeneous MWSNs, we propose two centralized Lloyd-

like algorithms: Centralized Constrained Movement Lloyd
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(a) (b) (c)

Fig. 1: Example1: (a) DR and FR for Sensor 1; (b) ADR and AFR for Sensor 1; (c) SDR and SFR for Sensor 1; DR, ADR, and SDR are shown by green.
FR, AFR, and SFR are shown by the intersections of green regions and the magenta circles. Communication ranges, movement range, and Connections are,
respectively, denoted by black doted curves, magenta solid curve, and red lines.

(CCML) Algorithm and Backward-stepwise Centralized Con-

strained Movement Lloyd (BCCML) Algorithm. CCML Algo-

rithm, which is designed for homogeneous MWSNs, keeps all

sensors in the backbone network. Based on CCML Algorithm,

BCCML Algorithm recursively selects the optimal sensor set

to construct the backbone network for heterogeneous MWSNs.

1) CCML Algorithm: According to our analysis in Section

III-B, Sensor n’s movement should be restrained within its

desired region, Dn(P, IΩ), in order to keep full-connectivity,

i.e., I = IΩ. Since the desired region is primarily influenced

by the neighboring sensor nodes, we can approximate it by

D̃n(P, IΩ) =
Kn(P,I)⋂

k=1

⎡⎣ ⋃
j∈Unk(P,IΩ)

⋂Nn(P)

B (pj , Rc)

⎤⎦ , (13)

where Nn(P) is the set of Sensor n’s neighbors. Then, FR is

approximated by

F̃n(P, IΩ) = D̃n(P, IΩ)
⋂

B

(
p0n,

γn
ξn

)
(14)

Note that the approximation in (14) can be calculated locally,

but to calculate the exact feasible region, one needs global

information. The above two approximations are referred to as

approximated desired region (ADR) and approximated feasible

region (AFR). The examples of ADR, and AFR for Sensor

1 are illustrated in Fig. 1b. Different from the DR shown

in Fig. 1a, the ADR only considers Sensor 1’s neighbors,

N1 = {2, 3, 12}. Thus, the green overlap between cyan region[⋃3
j=2 B (pj , Rc)

]
and yellow region B (p12, Rc) in Fig. 1b

construct Sensor 1’s ADR, D̃1 (P, IΩ). Then, the intersection

of the green region and the magenta circle in Fig. 1b is Sensor

1’s AFR, F̃1 (P, IΩ). Note that Sensor 1’s FR in Fig. 1a

consists of two disconnected regions while Sensor 1’s AFR

in Fig. 1b is a connected region.

Now, we provide the details of CCML Algorithm. Like

Lloyd Algorithm, the proposed algorithm iterates between

two steps: (1) Partition optimization: Partitioning is done by

MWVDs; (2) Location optimization: each sensor moves to the

closest point to its centroid cn(P) within F̃n(P, IΩ). More

details about CCML Algorithm are shown in Algorithm 1.

Algorithm 1 Centralized Constrained Movement Lloyd Algo-

rithm

Input: Target area Ω; Probability density function f(·); the

initial sensor deployment P0; the required network life-

time T ; the stop threshold ε; the communication range

Rc.

Output: Sensors deployment P; Distortion D(P).
1: Calculate the energy constraints {γn}n∈IΩ in terms of T
2: Initialize sensor deployment P = P0

3: do
4: Calculate the old distortion Dold = D(P)
5: Do multiplicatively weighted Voronoi partition

6: for n = 1 to N do
7: Calculate the feasible region {Fn(P, IΩ)}
8: Calculate the critical point q, closest point to

cn(P) within {Fn(P, IΩ)}
9: Update sensor deployment pn = q

10: Calculate the new distortion Dnew = D(P)
11: end for
12: while Dold−Dnew

Dold
> ε

Theorem 2. CCML Algorithm is an iterative improvement
algorithm, i.e., the distortion decreases at each iteration and
converges.

Proof: CCML Algorithm is an iterative improvement

algorithm only if both steps in CCML Algorithm do not

increase the distortion (4) subject to the constraints (8). In

Section II, we have proved that MWVD is the optimal cell

partition for a given deployment. Therefore, Step (1) of CCML

will not increase the distortion. During Step (2) of CCML, the

cell partition is fixed as MWVD. In Appendix A, we show that

Sensor n’s optimal location should minimize its distance to the

centroid cn(P) when the cell partition is fixed. In addition, by

the analysis in Section III-B, Sensor n’s movement should

be restricted in F̃n(P, IΩ) in order to guarantee both (i)

energy constraints (8) and (ii) full-connectivity which has

been proved (in Lemma 1) as a necessary condition for the
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optimum solution. Accordingly, Step (2) of CCML will not

increase the distortion. Therefore, CCML Algorithm is an

iterative improvement algorithm. Furthermoer, the distortion

has a lower bound 0. As a result, the distortion of CCML

Algorithm is non-increasing with a lower bound, indicating

that the distortion converges.
2) BCCML Algorithm: Sensors with low-battery energy

have small energy to spend on motion, which results in small

movement ranges. To keep the connection with a low-battery

node, e.g., Sensor n, the neighboring sensors’ movements will

be restricted by the limited communication range of Sensor

n, even if Sensor n’s neighbors have access to large battery

energy. In this case, if Sensor n is not used in the MWSN,

the neighboring sensors will have more freedom to move and

probably further decrease the overall distortion. Given the

current sensor set I, sensors that decrease the distortion when

removed from I are referred to as bottleneck sensors. To select

the optimal sensor set as our backbone network, BCCML

Algorithm starts with all sensors and repeatedly eliminates

the least significant bottleneck sensor in terms of reducing the

distortion until no bottleneck sensor is left. Intuitively, a bottle-

neck sensor n should satisfy the following conditions: (i) After

eliminating n, the rest of sensors in I should be connected,

i.e., Kn(P, I) = 1 and Un1(P, I) = I−{n}. In other words,

Sensor n is a leaf node in the network. Otherwise, the network

will be divided into multiple sub-graphs after eliminating n,

and then fewer sensors will be used in the sensing task. (ii)

Sensor n should already run out of its movement energy,

i.e., ξn‖pn − p0n‖ = γn. (iii) At least one of its neighbors

has redundant energy, i.e., ∃m ∈ Nn, ξm‖pm − p0m‖ < γm.

The above three conditions are referred to as the bottleneck

criterion. To speed up the computation, BCCML Algorithm

merely eliminates bottleneck sensors satisfying the bottleneck

criterion. The details of BCCML Algorithm are shown in

Algorithm 2.

IV. DISTRIBUTED SENSOR DEPLOYMENT WITH A

NETWORK LIFETIME CONSTRAINT

A. Problem formulation

In the distributed scenario, there is no fusion center, and

sensors determine their own destinations. In general, sensors

are supposed to only collect neighboring information (the

locations and parameters of its neighbors and itself). As we

discussed in Section III, the most energy-efficient relocation

strategy is moving a sensor from its initial location to the

final destination in one step. Unfortunately, this one-step

relocation strategy requires global information and cannot be

implemented in a distributed scenario. In fact, the distributed

sensor relocation methods in the literature are categorized

into continuous and discrete time systems [3]–[10], [14]–

[17], [33]. In the continuous time systems2, sensors keep

communicating with their neighbors during continuous move-

ments. Then, dynamic systems are widely used to control

2Remark: The energy formulation (5) works for a one-step movement where
the optimal velocity and acceleration is determined by the distance [39].
However, the movement in continuous time systems is not step-wise and
the corresponding motion energy is a function of velocity [14]. Thus, the
energy model in this paper cannot be applied to continuous time systems.
The continuous sensor relocation in MWSNs is an interesting future work.

Algorithm 2 Backwards-stepwise Centralized Constrained

Movement Lloyd Algorithm

Input: Target area Ω; probability density function f(·); the

initial sensor deployment P0; the required network life-

time T ; the stop threshold ε; the communication range

Rc.

Output: Sensors deployment P; Distortion D(P).
1: Calculate the energy constraints {γn}n∈IΩ in terms of T
2: Initialize sensor set I = IΩ
3: Run CCML: [P, D(P)] =

CCML(Ω,P0, Rc, {γn}n∈IΩ
, f(·), ε, I)

4: for k = 1 to N − 1 do
5: Identify bottleneck sensor set Ib by checking the

bottleneck criterion

6: LSS = null
7: for i ∈ Ib do
8: Generate a temporary sensor set Î = I − i
9: Run CCML: [P̂, D(P̂)] =

CCML(Ω,P0, Rc, {γn}n∈I , f(·), ε, Î)
10: if D(P̂) < D(P) then
11: Update the least significant sensor (LSS):

LSS = i, P = P̂
12: end if
13: end for
14: if LSS �= null then
15: Eliminate the least significant sensor: I = I−LSS
16: else
17: break

18: end if
19: end for

sensors’s first order dynamics, velocity, and/or second order

dynamics, acceleration [7], [8], [14]. However, in the discrete

time system, sensors only communicate with their neighbors

at some discrete time instances, and their relocation is divided

into multiple steps [10]. Regarding the discrete nature of the

relocation, the sensors should be synchronized with each other

in some fashion. Some iterative algorithms, such as Lloyd-

like algorithms and virtual-force based algorithms, have been

applied to this scenario [9], [10], [15]–[17], [33], [34]. To

reduce the communication costs during the relocation, we use

a discrete time system to control sensors’ movements.

In what follows, we concentrate on the sensor relocation

with multiple stops. The sensor deployment at the k-th stop is

defined by Pk = (pk1 , . . . , p
k
N ) ⊂ ΩN , where pkn is Sensor n’s

location at the k-th stop. Let K be the maximum number of

stops (iterations) for each sensor. For convenience, each sensor

is extended to have K stops. For a sensor with J physical

stops, e.g. Sensor n, its redundant stops are extended as pkn =
pJn, ∀k ∈ {J +1, . . . ,K}. In particular, P0 = (p01, . . . , p

0
N ) ⊂

ΩN and PK = (pK1 , . . . , pKN ) ⊂ ΩN are the initial and final

deployments, respectively. Sensor n’s total movement distance

is
∑K

k=1 ‖pkn − pk−1
n ‖, and therefore Sensor n’s individual

energy consumption is formulated as

K∑
k=1

E (pk−1
n , pk) = ξn

K∑
k=1

‖pkn − pk−1
n ‖. (15)

Now, we discuss the distributed realization for the node
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deployment with (i) network lifetime constraint and (ii) limited

communication range. According to the analysis in [10], the

movement distance should be constrained at each iteration

in order to avoid zigzag movements. Therefore, we limit

Sensor n’s movement distance in the k-th iteration by an

upper bound dkn. Note that dkn can be a constant or a func-

tion of the previous and current deployments. For instance,

dkn = α‖pk−1 − ck−1‖ in Lloyd-α [10], where α ∈ (0, 1].
Moreover, to guarantee the required network lifetime, another

constraint ξn
∑k

i=1 ‖pin − pi−1
n ‖ ≤ γn should be taken into

account. Furthermore, full-connectivity, which is ignored in

most distributed sensor relocation algorithms, is definitely

required to obtain neighboring information. Then, another

constraint H
(
Pk

)
= Pk should also be considered. With the

above constraints, each sensor in the distributed scenario op-

timizes its next stop, Pk, in terms of the previous and current

neighboring information, Pi, ∀i < k. In particular, the cell

partition in Lloyd-like algorithms is generated by the current

deployment [9], [10], [15]–[17], [33], [34], Rn = Vn(P
k−1).

The corresponding optimization problem, which is referred to

as Problem B, is thus represented as

minimize
Pk

N∑
n=1

∫
Vn(Pk−1)

ηn‖pkn − ω‖2f(ω)dω (16)

s.t. H
(
Pk

)
= Pk (17)

‖pkn − pk−1
n ‖ ≤ min

(
ẽkn
ξn

, dkn

)
, n ∈ IΩ (18)

where ẽkn = γn − ξn
∑k−1

i=1 ‖pin − pi−1
n ‖ is the residual energy

at the k-th iteration. Since full-connectivity is guaranteed by

constraint (17), all sensors contribute to the distortion (16).

B. Semi-desired Region and Semi-feasible Region

Before studying the optimal solution for (16), we analyze

the constraints (17) and (18). In the distributed scenario,

sensors are supposed to relocate simultaneously. However, the

full-connectivity strategy used in CCML and BCCML requires

a one-by-one relocation scheme, which is not possible in

large-scale distributed networks. To follow full-connectivity

constraint (17) in a large-scale distributed network, we intro-

duce another important concept, semi-desired region (SDR),

which is a shrunk version of the approximated desired region

D̃n (P, IΩ). Let G(P) = (V(P), E(P)) be the undirected con-

nectivity graph comprising a set of vertices V = {p1, . . . , pN}
and a set of edges E = {eij}. The edge cost, wij = ‖pi−pj‖,

is defined as the Euclidean distance between the end vertices

of the edge, eij , and there exists an edge between pi and pj
in G(P) if and only if wij ≤ Rc. For a fully connected graph,

G(P), the corresponding minimum spanning tree (MST) is

defined as G̃(P) =
(
V(P), Ẽ(P)

)
, where Ẽ(P) ⊂ E(P)

is a subset of size |V(P)| − 1. Let N s
n(P) = {m|ẽnm ∈

Ẽ(P) or ẽmn ∈ Ẽ(P)} be the set of Sensor n’s neighbors in

MST. Then, the SDRs are defined as

D
s
n(P) =

⋂
m∈N s

n(P)

B

(
pm + pn

2
,
Rc

2

)
, ∀n ∈ IΩ. (19)

An example of SDR is illustrated in Fig. 1c. In this example,

12 sensors with communication range Rc = 1 are deployed

on the plane, indicating that IΩ = {1, . . . , 12}. The edges in

MST are denoted by red lines in Fig. 1c. Also, Sensor 1’s

movement range, B
(
p01, dn

)
, is demonstrated by a magenta

circle. According to the definition of semi-desired region,

the green overlap between cyan region B
(
p1+p2

2 , Rc

2

)
and

yellow region B
(
p1+p12

2 , Rc

2

)
in Fig. 1c constructs Sensor

1’s semi-desired region, Ds
1 (P). From Figs. 1a, 1b, and 1c,

it is also clear that the semi-desired region is a subset of

the approximated desired region and the desired region, i.e.,

D
s
1(P) ⊆ D̃1(P, IΩ) ⊆ D1(P, IΩ).

Theorem 3. Starting with a fully connected network
(S(Pk) = IΩ), the network is still fully connected
(S(Pk+1) = IΩ) if sensors simultaneously move within their
respective semi-desired regions i.e., pk+1

n ∈D
s
n

(
Pk

)
, ∀n∈IΩ.

The proof is provided in Appendix C. Then, we define the

semi-feasible regions as

F
s
n(P, ẽkn, d

k
n) = D

s
n(P)

⋂
B

(
p0n,min

(
ẽkn
ξn

, dkn

))
, ∀n ∈ IΩ,

(20)

It is trivial to show that both (17) and (18) are satisfied if

sensors move within their semi-feasible regions. Let Pk =

{Pk|H
(
Pk

)
= Pk, ‖pkn − pk−1

n ‖ ≤ min
(

ẽkn
ξn
, dkn

)
, ∀n ∈ IΩ}

be the set of deployments that follow constraints (17) and

(18), and P̂k = {Pk|pkn ∈ F
s
n(P, ẽkn, d

k
n), ∀n ∈ IΩ} be the set

of deployments that are placed within semi-feasible regions.

Then, we have P̂k ⊆ Pk. To simplify the problem, we replace

Pk by P̂k, and the optimization problem is represented as N
independent problems:

minimize
Pk

∫
Vn(Pk−1)

ηn‖pkn − ω‖2f(ω)dω (21)

s.t. pkn ∈ F
s
n(P, ẽkn, d

k
n) (22)

where n ∈ IΩ. By parallel axis theorem [41], (21) can be

rewritten as∫
Vn(Pk−1)

ηn‖ck−1
n − ω‖2f(ω)dω + ηn‖pkn − ck−1

n ‖2vk−1
n ,

(23)

where vk−1
n =

∫
Vn(Pk−1)

f(ω)dω and ck−1
n =

∫
Vn(Pk−1)

ωf(ω)dω
∫
Vn(Pk−1)

f(ω)dω
. Since the first term in (23) is a constant,

Sensor n’s distortion is an increasing function of the distance

from pkn to ck−1
n . Accordingly, the optimal solution for

(21) with constraint (22) is the point closet to ck−1
n within

F
s
n(P, ẽkn, d

k
n), i.e., pkn = argminq∈Fs

n(P,ẽkn,d
k
n)

‖q−ck−1
n ‖. By

moving sensors to argminq∈Fs
n(P,ẽkn,d

k
n)

‖q − ck−1
n ‖ at each

iteration, we will have a distributed realization, Distributed

Constrained Movement Lloyd (DCML) Algorithm. According

to the above analysis, DCML Algorithm will result in a

deployment that guarantees both connectivity and the required

network lifetime. Like CCML Algorithm, DCML Algorithm

is an iterative improvement algorithm in which the distortion

is non-increasing and converges. The proof is similar to that

of Theorem 2 and therefore omitted here. More details about

DCML Algorithm are shown in Algorithm 3.
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Algorithm 3 Distributed Constrained-Movement Lloyd Algo-

rithm in heterogeneous MWSNs

Input: Target area Ω; probability density function f(·); the

initial sensor deployment P0; the required network life-

time T ; The number of stops K; the communication range

Rc.

Output: Sensors deployments at K stops {Pk}k∈{1,...,K};

Distortion at the final deployment D(PK).
1: Calculate energy constraints γn and initialize the residual

energy ẽ1n = γn, ∀n ∈ IΩ
2: for k = 1 to K do
3: Determine the maximum movement distances dkn =

min
(

ẽkn
ξn
,

2ẽkn
K−k+1

)
, n ∈ IΩ

4: Sensors obtain their MST neighbors {N s
n}n∈IΩ

by

GHS Algorithm [42]

5: Do multiplicatively weighted Voronoi partition, and

then update centroid {cn(Pk−1)}n∈IΩ

6: Calculate semi-desired regions {Ds
n(P

k−1, dkn)}n∈IΩ

7: Calculate the critical point qkn, closest point to

cn(P
k−1) within D

s
n(P

k−1, dkn), ∀n ∈ IΩ
8: Each sensor moves to its next stop pkn = pk−1n +

min
(

γn

2Kξn
, ‖qkn − pk−1n ‖

)
qkn−pk−1

n

‖qkn−pk−1
n ‖ , ∀n ∈ IΩ

9: Update residual energy ẽk+1
n = ẽkn − ξn‖pkn −

pk−1
n ‖, ∀n ∈ IΩ

10: end for

V. ALGORITHM COMPLEXITY AND COMMUNICATION

OVERHEAD

A. Algorithm Complexity

Before we calculate the complexity of different algorithms,

we need to study the computational complexity of FR, AFR,

SFR, cn(P) and vn(P). Finding Sensor n’s FR, Fn(P, I),
includes the following four stages: (i) Determine Kn(P, I)
disjoint components {Unk(P, I)}k=1,...,Kn(P,I) by Breadth

First Search (BFS) or Depth First Search (DFS) with time

complexity O(card(I))3. (ii) Calculate the union of commu-

nication balls in each component, i.e.,
⋃

j∈Unk(P,I) B (pj , Rc),
∀k ∈ {1, . . . ,Kn(P, I)}. Note that the complexity of calcu-

lating the union of two regions is a constant, O(1). Thus, the

complexity of Stage (ii) is O(card(I)). (iii) Obtain Dn(P, I)
by calculating the intersection of Kn(P, I) regions obtained

from the previous stage. Since the computational complex-

ity of intersection is O(1), the complexity in Stage (iii) is

O(Kn(P, I)). (iv) Compute the intersection between Dn(P, I)
and Bn(p

0
n,

γn

ξn
) with complexity O(1).

Therefore, the computational complexity of Fn(P, I) is

O(card(I) + Kn(P, I)). In total, the complexity of finding

card(I) sensors’ FRs is O(card(I)2 + card(I) ·Kn(P, I)).
In general, Kn(P, I) � card(I), and then the corresponding

complexity becomes O(card(I)2). The computations of AFR

and SFR are similar to that of FR, and have the same

complexity O(card(I)2).
3The exact complexity of BFS and DFS is O(N + E), where E is the

number of connections in the communication graph. Since each sensor has
very limited neighbours in the range of Rc, we have O(N) = O(E) and
thus O(N + E) = O(N).

Next, we study the computational complexity of cn(P) and

vn(P). Let μ(R) =
∫
R
ωdω be the volume of region R with

the uniform distribution. Many integral algorithms, such as

uniform sampling, stratified sampling, importance sampling,

sequential Monte Carlo, and Risch algorithm are available in

the literature [43], [44]. For simplicity, we assume the integrals

in cn(P) and vn(P) are calculated by uniform sampling4. In

this case, the computational complexity of cn(P) and vn(P)

is proportional to the number of samples, O(μ(Vn(P))
ε ), where

ε is the sample size. Thus, the total complexity of computing

all cn(P)s and vn(P)s is O(
∑N

n=1 μ(vn(P))

ε ) = O(μ(Ω)
ε ).

Now, we have enough materials to derive the complexity

of different algorithms. Since CCML is deigned for homo-

geneous MWSN, the backbone network includes all sensors,

i.e., card(I) = N . Therefore, CCML’s algorithm complexity

is O((N2 + μ(Ω)
ε )K), where K is the number of iterations.

Let Z be the number of sensors out of the final backbone

network. BCCML’s algorithms complexity is calculated as

O((
∑Z

z=0(N − z)2 + O(μ(Ω)
ε ))K). The complexity of the

worst case, Z = 1, is then O((N2 + μ(Ω)
ε )NK). Different

from CCML and BCCML, DCML is a distributed algo-

rithm. Thus, we focus on Sensor n’s complexity in DCML.

Note that MST can be obtained by a distributed minimum

spinning tree algorithm, GHS Algorithm [42], with com-

plexity O(N log(N)). At the k-th stop, DCML calculates

(a) cn(P)s and vn(P), (b) Fn(P, I) and (c) MST with

complexities O(μ(Vn(P
k))

ε ), O(N), and O(N log(N)), respec-

tively. In total, DCML’s complexity during K stops is then

O(KN log(N)+
∑K

k=1
μ(Vn(P

k))
ε ). Obviously, as a distributed

algorithm, DCML’s complexity is smaller than that of CCML

and BCCML. i.e., O(KN log(N) +
∑K

k=1
μ(Vn(P

k))
ε ) <

O((N2 + μ(Ω)
ε )K) < O((N2 + μ(Ω)

ε )NK).

B. Communication Overhead

In centralized implementations, the relocation includes the

following stages: (i) Sensors send their spatial information

to AP via multi-hop communications; (ii) AP calculates the

final deployment by running CCML/BCCML in terms of

the collected information; (iii) AP sends final deployment to

each sensor by multi-hop communications; (iv) Sensors are

relocated to their destinations based on the received deploy-

ment. In the worst case, where sensors are connected with

a line topology, the sensor with a hops to AP will transfer

N − a messages from itself and N − 1 − a farther sensors

in Stage (2). Thus, the communication overhead in Stage

(ii) is O(
∑N−1

a=1 a) = O(N2). Similarly, the communication

overhead in Stage (iv) is also O(N2). Therefore, the total com-

munication overhead in centralized implementations (CCML

and BCCML) is O(N2).
In what follows, we analyze the communication in the

distributed implementation. At each stop, sensors need to

compute (a) their own Voronoi Diagrams and (b) MST in

terms of their neighbor information. Sensor n can compute

its Voronoi Diagram by exchanging message with its one-

hop neighbors [6], [10]. Since each sensor has very limited

number of one-hop neighbours, the communication overhead

4The integral is approximated by the summation over uniform samples.
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CT (P) =
card(T̂ )

card(T )
=

∑
n∈S(P)

∫
Vn(P)

⋂
B(pn,Rs,n)

[∑M
m=1 φ (‖ω − tm‖)

]
dω∑

n∈S(P)

∫
Vn(P)

[∑M
m=1 φ (‖ω − tm‖)

]
dω

, (25)

of N sensors for Voronoi Diagram is O(N). In addition,

communication overhead for distributed MST for each stop

is O(N log(N)) [42]. Therefore, the total communication

overhead in a K-stop distributed implementation (DCML) is

O(K(N log(N) +N)) = O(KN log(N)).

VI. EXTENSION

In this section, we extend the proposed algorithms, CCML

and DCML, to other sensing tasks: area coverage and target

coverage. We employ the binary coverage model [2]–[13],

[32], [33] in which Sensor n can only detect the points within

its sensing radius Rs,n. Intuitively, in order to decrease the

sensing uncertainty, CCML and DCML deploy sensors into

high-density regions, and thus the points with high density

are more likely to be covered. To cover the objects in different

tasks, the density function f(ω) in (2) should be predetermined

to highlight the points around the objects of interest. In

the following three subsections, we introduce three kinds of

coverage and propose the corresponding density functions.

A. Area Coverage

Without any prior information about the target region,

the density function is chosen to be uniform, i.e., f(ω) =
1∫

Ω
dω

, ∀ω ∈ Ω. Under such circumstances, maximizing the

area covered by sensors is a primary task. To evaluate the

corresponding sensing performance, we employ area coverage

[6], [23], [33] (the proportion of covered area) defined by

CA(P) =

∫
⋃N

n=1 B(pn,Rs,n)
dω∫

Ω
dω

=

∑N
n=1

∫
Vn(P)

⋂
B(pn,Rs,n)

dω∑N
n=1

∫
Vn(P)

dω
.

(24)

The experimental results in Section VII show that CCML

and DCML algorithms with uniform density function provide

a large area coverage in addition to a small distortion.

B. Target Coverage

In another popular scenario, sensors are deployed to collect

detailed information from the targets with known locations

[24]–[27]. Let T = {t1, t2, . . . , tM} be the set of known

targets, T̂ = {t|min
n

(
‖t−pn‖
Rs,n

)
≤ 1, t ∈ T } be the set of

targets that covered by at least one sensor. Then, area coverage

CT (P) - the proportion of covered target points - can be

written as (25), where φ(·) is the unit impulse response,

card(S) is the cardinality of the set S.

To emphasize the importance of discrete targets, we model

the density function as a Gaussian mixture centered at discrete

targets. The corresponding density function can be written as

f(w) =

M∑
m=1

Ame
− ‖w−tm‖2

R2
s,n (26)

where Am reflects the comparative importance of the target

qm. Similarly, CCML and DCML can also be extended to

maximize barrier coverage [28]–[30].

VII. PERFORMANCE EVALUATION

We provide the simulation results for two different MWSNs:

(1) MWSN1: A homogeneous MWSN in which all sensors

have the same characteristics. (2) MWSN2: A heterogeneous

MWSN including sensors with different sensing, moving cost

parameters, and battery energies. In addition, we employ

uniform density function, f(ω) = 1, for MWSN1 while the

non-uniform density function in [6], [33] is employed for

MWSN2. The non-uniform density function is the sum of five

Gaussian functions of the form 5exp(6(−(x − xcenter)
2 −

(y − ycenter)
2)). The centers (xcenter, ycenter) are (2,0.25),

(1,2.25), (1.9,1.9), (2.35,1.25) and (0.1,0.1). Moreover, the

target region, Ω, which is also the same as in [6], [33], is de-

termined by the polygon vertices (0,0), (2.125,0), (2.9325,1.5),

(2.975,1.6), (2.9325,1.7), (2.295,2.1), (0.85,2.3), (0.17,1.2).

Also, we set the power consumption after sensor relocation

as β = 1. As a result, the energy constraints can be calculated

by γn = en−T , where en is Sensor n’s battery energy. Other

parameters are provided in Table I. Moreover, we generate

initial sensor deployments randomly, i.e., every node location

is generated with uniform distribution on Ω. To guarantee the

initial full-connectivity, we sequentially generate random node

locations, and only keep a node if it connects with at least one

previous node. The maximum number of iterations is set to

1005.

To evaluate the performance, we compare the distortion

(4) and area coverage (24) of CCML, BCCML, and DCML

with those of VFA [35], Lloyd-α [10], and DEED [10]. We

run the algorithms for: (i) the centralized scheme where each

sensor’s energy consumption for relocation is determined by

the distance from the initial location and the final location;

and (ii) the distributed scheme where each sensor’s energy

consumption for relocation is determined by the total distance

of its specific (100-stop) movement path. Several important

simulation details are provided as follows. Since network

lifetime is not considered in VFA [35], it is impossible to

apply the original VFA to satisfy the required network lifetime.

Thus, we propose a variant of VFA in which each sensor

stops moving after the predetermined energy, γn, is consumed.

Furthermore, when the communication range Rc is limited,

the lack of full-connectivity prevents VFA, Lloyd-α, and

DEED from operating in a distributed scheme. To compare

them with our DCML Algorithm, sensors need to have global

information in VFA, Lloyd-α, and DEED. Another issue is

that sensors may be divided into multiple disconnected sub-

graphs after running VFA, Lloyd-α, and DEED because of

the limited communication range. Under such circumstances,

we compute the distortions associated with different sub-

graphs and report the minimum one. In other words, we

focus on the best performances that VFA, Lloyd-α, and DEED

can reach in MWSNs when communication range is limited.

5100 is large enough for the proposed algorithms to converge. Therefore,
instead of using the stop threshold ε in CCML and BCCML, we run all
algorithms 100 iterations in the experiments.
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TABLE I: Simulation Parameters

Parameters N η1−η8 η9−η32 ξ1−ξ8 ξ9−ξ32 Rs,1−Rs,8 Rs,9−Rs,32 e1−e28 e29−e32
MWSN1 32 1 1 1 1 0.2 0.2 2 2

MSWN2 32 1 4 2 1 0.3 0.15 2 0.8

(a) (b) (c)

(d) (e) (f)

Fig. 2: Centralized sensor deployments: (a) VFA in MWSN1; (b) Lloyd-α in MWSN1; (c) CCML in MWSN1; (d) VFA in MWSN2; (e) Lloyd-α in MWSN2;
(f) BCCML in MWSN2. The initial sensor locations are denoted by green dots. The final locations of active and inactive sensors are denoted by red and
black dots. The sensing regions of active and inactive sensors are denoted by blue and black. The movement paths are denoted by blue lines.

Nonetheless, when we compute the distortion for our proposed

algorithms, only sensors in the actual backbone network (the

sub-graph including AP, i.e., Sensor 1), are taken into account,

which gives our algorithm more advantage over the existing

algorithms.

Simulation results for the centralized scheme are provided

in Figs. 2 and 3. From Figs. 2a and 2c, we observe that both

VFA and CCML algorithms generate fully connected final

deployments for the required network lifetime, T = 1.3. By

setting α to 0.2, Lloyd-α achieves a similar network lifetime

T = 1.31. However, Lloyd-0.2 generates a disconnected

network where 12 sensors are placed out of the backbone

network. The corresponding distortions for VFA, Lloyd-0.2,

and CCML are, respectively, 0.17, 0.78, and 0.14.

The centralized sensor relocations in heterogeneous MWSN

(MWSN2) are illustrated in Figs. 2d, 2e, and 2f. In MWSN2,

BCCML activates 30 sensors to sense the target region while

the other two sensors are deactivated because of their low

battery energy. VFA and Lloyd-α attempt to use all sensors

to finish the sensing task, but AP can only collect information

from the active sensors shown by red dots. Like the compar-

isons in MWSN1, BCCML’s distortion, 0.29, is much smaller

than that of VFA and Lloyd-α, which are 4.16 and 0.66.
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Fig. 3: Performance comparison for centralized sensor deployment. (a)
Distortion in MWSN1; (b) Distortion in MWSN2; (c) Area coverage in

MWSN1; (d) Area coverage in MWSN2.
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(a) (b) (c)

(d) (e) (f)

Fig. 4: Distributed sensor deployments: (a) VFA in MWSN1; (b) Lloyd-α in MWSN1; (c) DCML in MWSN1; (d) VFA in MWSN2; (e) Lloyd-α in MWSN2;
(f) DCML in MWSN2. The initial sensor locations are denoted by green dots. The final locations of active and inactive sensors are denoted by red and black
dots. The sensing regions of active and inactive sensors are denoted by blue and black. The movement paths are denoted by blue lines.

More detailed performance comparisons are provided in

Figs. 3a, 3b, 3c, and 3d. In Fig. 3a, for any given network life-

time, CCML Algorithm provides a lower distortion compare

to other algorithms in the homogeneous MWSN1. Similarly,

BCCML Algorithm outperforms other algorithms in heteroge-

neous MWSNs shown in Fig. 3b. It is also noteworthy that low

distortion is accompanied with high area coverage in MWSN1

where the density function is uniform. Unfortunately, such

a relationship does not hold for MWSN2 where the density

function is non-uniform. Consequently, one can approximately

optimize the area coverage by CCML and BCCML with a

uniform density function.

There are two primary reasons why the proposed CCML

and BCCML perform better than the existing algorithms,

VFA, Lloyd-α, and DEED. (i) The existing algorithms do

not take connectivity into consideration. As a result, when the

communication range is small, VFA, Lloyd-α, and DEED may

generate disconnected networks and then large distortions. (ii)

In the existing algorithms, each sensor attempts to save its

own energy consumption which results in unbalanced energy

consumption among sensors and then short network lifetime.

However, CCML and BCCML determine the relocation con-

sidering all sensors’ residual energy.

Besides, our proposed algorithms perform well in both

homogeneous and heterogeneous MWSNs, but the existing

algorithms, which are designed for homogeneous MWSNs,

have very restricted performance in heterogeneous MWSNs

or even cannot be applied to heterogeneous MWSNs. Note

that the implementation of DEED needs both gradient and

Hessian matrix of the objective function (4). To our best

knowledge, the theoretical computation of Hessian matrix in

heterogeneous MWSNs is still an open problem. Although one

can approximate the second-order derivatives by numerical

methods, the corresponding extreme time complexity prevents

DEED from being a feasible solution. Therefore, DEED

cannot be extended to heterogeneous MWSNs. Different from

DEED, Lloyd-α, which only needs gradient, can be extended

to heterogeneous MWSNs as the calculation of the gradient in

heterogeneous MWSNs already proposed in our previous work

[33]. Unfortunately, when sensors are equipped with variant

battery energies, Lloyd-α can only achieve a short network

lifetime. In MWSN2, where 4 sensors are equipped with a

low battery energy, 0.8, Lloyd-α still uses all sensors to sense

the target region. Note that the network will die after the first

node runs out of its battery energy. As a result, Lloyd-α cannot

achieve a network lifetime larger than 0.8 in MWSN2 (see Fig.

3b). However, the proposed BCCML Algorithm appropriately

selects a subset of sensors to finish the sensing task.

Another advantage of BCCML Algorithm over Lloyd-α and

DEED is its tractability. BCCML Algorithm directly controls

the network lifetime while Lloyd-α and DEED indirectly

influence network lifetime by tuning the hyperparameters α
and δ, respectively. There is no explicit relationship between α
(or δ) and network lifetime. Thus, one has to attempt different

values of α (or δ) in Lloyd-α (or DEED) to reach the required

network lifetime.
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Fig. 5: Performance comparison for distributed sensor deployment. (a)
Distortion in MWSN1; (b) Distortion in MWSN2; (c) Area coverage in

MWSN1; (d) Area coverage in MWSN2.

In what follows, we analyze the impact of communica-

tion range, Rc, on the performance. The sensors with larger

communication range, Rc, are more likely to construct or

maintain a connected network. According to our simulation

results, VFA, Lloyd-α, DEED, CCML and BCCML keep

full-connectivity for the two considered MWSNs when the

communication range is large, e.g., Rc = 0.5. However,

when Rc = 0.4, VFA, Lloyd-α, DEED lose connectivity in

some cases. In general, a shorter network lifetime implies

that more energy can be used for relocation, and then smaller

distortions can be achieved. We observe from Figs 3a and 3b

that all algorithms provide non-decreasing Distortion-Lifetime

functions for the cases of Rc = 0.5. However, when Rc = 0.4,

the distortions of VFA, Lloyd-α, and DEED fluctuate because

of the unpremeditated loss of connectivity in some cases.

On the contrary, the distortions of CCML and BCCML are

still non-decreasing functions of network lifetime because the

backbone network is appropriately selected and maintained by

CCML and BCCML. In sum, for VFA, Lloyd-α, and DEED

algorithms, the distortions are significantly increased when

Rc is decreased from 0.5 to 0.4. However, CCML/BCCML

provides similar performance for both Rcs.

The above analysis also works for the distributed sensor

relocation scheme. The distributed relocations in both MWSNs

are illustrated in Fig. 4, and the corresponding performances

are compared in Figs. 5a, 5b, 5c, and 5d. Different from the

sensor relocation in the centralized implementation (Fig. 2)

where movement paths are straight lines from initial locations

to final locations, the sensor relocation in the distributed

implementation (Fig. 4) are represented by broken lines with

multiple stops.

Last, we provide sensor relocations of three different algo-

rithms (Basic+ECST-H [27], TV-Greedy+ECST-H [27], and

CCML) in Figs. 6 and 7 to confirm that CCML Algorithm

can be successfully extended to target coverage problems.

Both Basic+ECST-H and TV-Greedy+ECST-H consist of three

stages: (i) A subset of sensors are placed to cover all targets;

and (ii) other sensors are placed to guarantee connectivity; (iii)

Hungarian Algorithm is employed to reduce the total energy

consumption. According to our experiments, Basic+ECST-H

and TV-Greedy+ECST-H require more sensors than CCML

to achieve both full-coverage and full-connectivity. In Fig.

6a, all sensors are scheduled to cover targets in Stage (i)

of Basic+ECST-H, and then no sensor is available in Stage

(ii). As a result, Basic+ECST-H with Rc = 0.4 is terminated

with four disconnected subgraphs in which the largest sub-

graph merely covers 48% of targets. In Fig. 6b, 32 sensors

are not enough to achieve full-coverage in Stage (i) of TV-

Greedy+ECST-H, and only 92% of targets are covered. How-

ever, with the same number of sensors, our proposed CCML

Algorithm covers all targets and ensures full-connectivity. To

perform a statistical performance analysis, we run the relo-

cation algorithms with 100 random target deployments6. The

detailed comparisons7 of Basic+ECST-H, TV-Greedy+ECST-

H, and CCML are provided in Figs. 7a and 7b. Given a specific

target coverage, CCML, on average, achieves a longer network

lifetime.

VIII. CONCLUSIONS AND DISCUSSION

The trade-off between sensing quality and energy consump-

tion, which is dominated by movement, is discussed in this

paper. We studied the optimal sensor deployment to minimize

sensing uncertainty with a network lifetime constraint in both

homogeneous and heterogeneous mobile wireless sensor net-

works. To make the model more practical, we take connectiv-

ity, which has a crucial influence on sensing performance, into

consideration. According to our analysis, full-connectivity is

necessary to minimize the sensing uncertainty in homogeneous

MWSNs. The necessary condition for an optimal deployment

implies that sensors should move towards the centroid within

their own feasible regions, determined by both the battery

energies and the communication range. With the help of these

necessary conditions, two centralized sensor relocation algo-

rithms, Centralized Constrained Movement Lloyd Algorithm

and Backwards-stepwise Centralized Constrained Movement

Lloyd Algorithm, are designed for homogeneous and hetero-

geneous MWSNs, respectively. Moreover, a distributed real-

ization, Distributed Constrained Movement Lloyd Algorithm,

whose performance is similar to the centralized scheme, is also

provided in this paper. Furthermore, by manually changing

the density function, we extend the proposed sensor relocation

algorithms to target coverage. Our simulation results show that

the proposed algorithms outperform the existing algorithms

in the literature (VFA, Lloyd-α, DEED) when a minimum

network lifetime is given in homogeneous and heterogeneous

MWSNs. Compared with the existing target coverage al-

6Each target deployment consists of 50 target locations.
7For each required network lifetime, a boxplot is employed to display

minimum, first quartile, median, third quartile, and maximum distortions
of CCML with 100 target deployments. However, the target coverages of
Basic+ECST-H and TV-Greedy+ECST-H are represented by, in total, 200 dots
since network lifetime is not explicitly controlled by Basic+ECST-H and TV-
Greedy+ECST-H.
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(a) (b) (c)

Fig. 6: The target coverage in MWSN1. (a) Basic+ECST-H; (b) TV-Greedy+ECST-H; (c) CCML. The covered targets and uncovered targets are denoted by
magenta triangles and black triangles, respectively.
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Fig. 7: The target coverage in MWSN1. (a) Rc = 0.4, Rs = 0.2; (b)
Rc = 0.5, Rs = 0.25. The target coverage of Basic+ECST-H,

TV-Greedy+ECST-H, and CCML are, respectively, denoted by green dots,
yellow dots and blue boxes.

gorithms, such as Basic+ECST-H and TV-Greedy+ECST-H,

CCML Algorithm provides a more flexible trade-off between

target coverage and network lifetime.

APPENDIX A

PROOF OF LEMMA 1

Lemma 1 focuses on homogeneous MWSNs where ηn =
η, ξn = ξ, and γn = γ, ∀n ∈ IΩ. Let P0 = (p01, . . . , p

0
N )

and P∗ = (p∗1, . . . , p
∗
N ) be the initial and the optimal sensor

deployments in an MWSN with performance function (4) and

constraints (8), respectively. For convenience, let IΩ be the set

of all sensors, S(P) be the set of sensors that can communicate

with the AP when the sensor deployment is P, and Nn(P)
be Sensor n’s neighbors given deployment P. S(P) is also

referred to as the backbone network in Section II. In Lemma

1, we assumed that P0 provides a fully connected network, i.e.,

S(P0) = IΩ. Now, we assume that the optimal deployment is

associated with a disconnected network, i.e., S(P∗) �= IΩ. In

this case, we can find a sensor, n ∈ S(P∗), such that one of

its neighbors in the initial deployment, m ∈ Nn(P
0), is not in

the final backbone network, m /∈ S(P∗). An alternative point

is defined as

p′m = p0m +min
(
0, ‖p∗n − p0m‖ −Rc

) p∗n − p0m
‖p∗n − p0m‖ . (27)

Replacing p∗m by p′m, we get an alternative deployment

P′ = (p∗1, . . . , p
′
m, . . . , p∗N ). Next, we check if P′ satisfies the

network lifetime constraints (8). First, since sensors m and n
are neighbors, we have ‖p0m − p0n‖ ≤ Rc. Second, following

the constraints (8), we have ‖p∗n − p0n‖ ≤ γ
ξ . Third, using

the triangular inequality, we have ‖p0n − p0m‖+ ‖p∗n − p0n‖ >
‖p0m−p∗n‖. Combining the above three inequalities, we obtain

‖p∗n−p0m‖ < Rc+
γ
ξ . According to (27), p′m is placed between

p∗n and p0m, and the moving distance is

‖p′m − p0m‖ = min
(
0, ‖p∗n − p0m‖ −Rc

)
<

γ

ξ
. (28)

Thus, the deployment P′ satisfies the network lifetime con-

straints. In what follows, we verify that P′ provides a smaller

distortion compared to P∗. The distance between p′m and p∗n
can be calculated as (29), which means ‖p∗n − p′m‖ ≤ Rc. In

other words, when the deployment is P′, Sensor m connects

with n and then should be taken into the calculation of

distortion (4). In our model, sensors are initially deployed

in the target region Ω, i.e., p0n ∈ Ω, where Ω is a convex

region [33]. Moveover, it is self-evident that the optimal sensor

locations are also in the target region, i.e., p∗n ∈ Ω, ∀n ∈ IΩ.

By properties of a convex region, any point between p∗n and p0m
should be in the target region, e.g., p′m ∈ Ω. Therefore, Sensor

m is associated with a non-empty MWVD Vm(H(P′)) =
{ω|ω ∈ Ω, ‖ω − p′m‖ < ‖ω − p∗i ‖, ∀i ∈ S(P′)i �= m}.
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‖p∗n − p′m‖ = ‖p∗n − p0m‖ − ‖p′m − p0m‖ =

{
‖p∗n − p0m‖, if ‖p∗n − p0m‖ ≤ Rc

Rc, otherwise
, (29)

D(P′)−D(P∗)=

∫
Vm(H(P′))

η‖ω−p′m‖2f(ω)dω−
∑

n∈S(H(P∗))

∫
Vm(H(P′))

⋂
Vn(H(P∗))

η‖ω−p′m‖2f(ω)dω

=

∫
Vm(H(P′))

η

(
‖ω − p′m‖2 − min

n∈S(P∗)
‖ω − p∗n‖2

)
f(ω)dω < 0

(30)

D(P∗)=
∑
n∈I∗

∫
R∗

n

ηn‖p∗n − ω‖2f(ω)dω=
∫
R∗

m

ηm‖p∗m − ω‖2f(ω)dω +
∑

n∈(I∗−{m})

∫
R∗

n

ηn‖p∗n − ω‖2f(ω)dω

=ηm‖c∗m−p∗m‖2v∗m+

∫
R∗

m

ηm‖c∗m−ω‖2f(ω)dω +
∑

n∈(I∗−{m})

∫
R∗

n

ηn‖p∗n − ω‖2f(ω)dω,
(32)

The difference between the distortions at P′ and P∗ lays on

Vm(H(P′)) and can be calculated as (30). Consequently, P′ is

a better solution than P∗, which contradicts our assumption8.

APPENDIX B

PROOF OF THEOREM 1

Let R∗ = (R∗
1, . . . , R

∗
N ) be the optimal partition and

I∗ be the optimal backbone network. For simplicity, let

c∗n =

∫
R∗

n
ωf(ω)dω

∫
R∗

n
f(ω)dω

and v∗n =
∫
R∗

n
f(ω)dω be, respectively,

the geometric centroid and the Lebesgue measure (volume)

of R∗
n, ∀n ∈ IΩ. Let m ∈ I∗ be a specific sensor in the

backbone network, P∗. First, we assume that other sensor

locations, {p∗n}n∈(IΩ−{m}), are known, and then derive the

constraint for p∗m. Since I∗ is the backbone network, we

have9. p∗m ∈ Dm (P∗, I∗)
⋂Wc (P∗, I∗). Moreover, since

Sensor m should satisfy the energy constraints (8), we have

p∗m ∈ B(p0m, γm

ξm
). In summary, Sensor m’s location is re-

strained by

Dm (P∗, I∗)
⋂

Wc (P∗, I∗)
⋂

B
(
p0m, Rc

)
= Fm (P∗, I∗)

⋂
Wc (P∗, I∗) .

(31)

Second, the minimum distortion can be rewritten as (32),

where the third equation follows from the parallel axis the-

orem. Given the optimal partition R∗ and optimal locations

{p∗n}n∈(IΩ−{m}), the second and third terms in (32) are

constants. Therefore, p∗m should be a minimizer of the first

term with the constraint (31), i.e.,

p∗m=arg min
pm:pm∈F(P∗,I∗)

⋂Wc(P∗,I∗)
ηm‖pm − c∗m‖2v∗m. (33)

Eq. (33) implies that the optimal solution should minimize

the distance to c∗n within F(P∗, I∗)
⋂Wc (P∗, I∗). In what

follows, we discuss 3 different cases of c∗m.

(a) If c∗m ∈ [F(P∗, I∗)
⋂W (P∗, I∗)], we have p∗m �=

c∗m because p∗ ∈ [F (P∗, I∗)
⋂Wc]. However, replac-

ing p∗m by c∗m, one can get a better solution P′ =(
p∗1, . . . , p

∗
m−1, c

∗
m, p∗m+1, . . . , p

∗
N

)
which not only follows the

8Remark: In this proof, we ignore two special cases: (i) p′m is placed on top
of another sensor, i.e., p′m = p∗i , i �= m. In this case, p′m should be moved
towards p0m a little bit to avoid overlap without breaking the constraints, and
then we will have the same contradiction. (ii) After replacing p∗m by p′m, more
than one sensor joins the backbone network. In this case, the distortion at P′
will be further reduced, and therefore we will have the same contradiction.

9The definitions of Dm (P, I) and W (P, I) and their relationships to
backbone network are already provided in Section III

energy constraints but also provides a smaller distortion. As

a result, c∗m ∈ [F(P∗, I∗)
⋂W (P∗, I∗)] is an impossible

case for the optimal deployment. In other words, we have the

condition

c∗m /∈
[
F(P∗, I∗)

⋂
W (P∗, I∗)

]
(34)

Since MWVD is the optimal partition, we have R∗ = V (P∗)
and then

c∗m =

∫
Vm(P∗) ωf(ω)dω∫
Vn(P∗) f(ω)dω

= cm(P∗), ∀n ∈ IΩ. (35)

Moreover, the backbone network I∗ is a function of deploy-

ment P∗ and can be represented by

I∗ = S(P∗). (36)

Substituting (35) and (36) to (34), we get condition (i).

(b) If c∗m ∈ [F(P∗, I∗)
⋂Wc (P∗, I∗)], Sensor m should

be placed at c∗m, i.e., p∗m = c∗m. Replacing c∗m by (35) , we

get the first case in condition (ii).

(c) If c∗m /∈ F(P∗, I∗), a simple geometric argument

reveals that the optimal solution should be on the boundary of

F(P∗, I∗). Therefore, the optimal location can be represented

as p∗m = arg min
q∈∂[Fm(P∗,I∗)

⋂Wc(P∗,I∗)]
‖q− c∗m‖. Replacing

c∗m and I∗ by (35) and (36), respectively, we get the second

case in condition (ii).

APPENDIX C

PROOF OF THEOREM 3

Let Pk =
(
pk1 , . . . , p

k
N

)
and Pk =

(
pk+1
1 , . . . , pk+1

N

)
be

the current and next sensor deployment. Let m and n be two

sensors such that they are MST neighbors at Pk. Then, the dis-

tance between pkm and pkn is no larger than the communication

range Rc, i.e., ‖pkm−pkn‖ ≤ Rc. According to the definition of

semi-desired region (19), we have D
s
m(P) ⊂ B

(
pk
m+pk

n

2 , Rc

2

)
and D

s
n(P) ⊂ B

(
pk
m+pk

n

2 , Rc

2

)
. Moreover, m and n move

within their semi-desired regions, i.e., pk+1
m ∈ D

s
m

(
Pk

)
and

pk+1
n ∈ D

s
n

(
Pk

)
. Thus, both pk+1

m and pk+1
n lie in the

circle B

(
pk
m+pk

n

2 , Rc

2

)
. Therefore, the distance between pk+1

m

and pk+1
n is no larger than the communication range, i.e.,

‖pk+1
m −pk+1

n ‖ ≤ Rc. In other words, Sensors m and n are still

connected with each other after the relocation. Consequently,

the network at Pk+1, G
(
Pk+1

)
, retains all edges in the

MST at Pk, indicating that the network, G
(
Pk+1

)
, is fully

connected.
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