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Abstract

In many quantization problems, the distortion function is given by the Euclidean metric to
measure the distance of a source sample to any given reproduction point of the quantizer.
We will in this work regard distortion functions, which are additively and multiplicatively
weighted for each reproduction point resulting in a heterogeneous quantization problem,
as used for example in deployment problems of sensor networks. Whereas, normally in
such problems, the average distortion is minimized for given weights (parameters), we will
optimize the quantization problem over all weights, i.e., we tune or control the distortion
functions in our favor. For a uniform source distribution in one-dimension, we derive the
unique minimizer, given as the uniform scalar quantizer with an optimal common weight.
By numerical simulations, we demonstrate that this result extends to two-dimensions where
asymptotically the parameter optimized quantizer is the hexagonal lattice with common
weights. As an application, we will determine the optimal deployment of unmanned aerial
vehicles (UAVs) to provide a wireless communication to ground terminals under a minimal
communication power cost. Here, the optimal weights relate to the optimal �ight heights of
the UAVs.

1 Introduction

For a set Ω ⊂ Rd in d = 1, 2 dimensions, a quantizer is given by N reproduction or
quantization points Q = {q1, . . . ,qN} ⊂ Ω associated with N quantization regions
R = {R1, . . . ,RN} ⊂ Ω, de�ning a partition of Ω. To measure the quality of a given
quantizer, the Euclidean distance between the source samples and reproduction points
is commonly used as the distortion function. We will study quantizers with parameter
depending distortion functions which minimize the average distortion over Ω for a
given continuous source sample distribution λ : Ω→ [0, 1], as investigated for example
in [1]�[3] with a �xed set of parameters. Contrary to a �xed parameter selection, we
will assign to each quantization point variable parameters to control the distortion
function of the each quantization point individually. Such controllable distortion
functions widens the scope of quantization theory and allows one to apply quantization
techniques to many parameter dependent network and locational problems. In this
work, we will consider for the distortion function of qn a Euclidean square-distance,
which is multiplicatively weighted by some an > 0 and additively weighted by some
bn > 0. Furthermore, we exponentially weight all distortion functions by some �xed
exponent γ ≥ 1. To minimize the average distortion, the optimal quantization regions
are known to be generalized Voronoi (Möbius) regions, which can be non-convex and
disconnected sets [4]. In many applications, as in sensor or vehicle deployments,
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the optimal weights and parameters are usually unknown, but adjustable, and one
wishes therefore to optimize the deployment over all admissible parameter values, see
for example [5]. We will characterize such quantizers with parameterized distortion
measures over one-dimensional convex target regions, i.e., over closed intervals. As a
motivation, we will demonstrate such a parameter driven quantizer for an unmanned
aerial vehicle (UAV) deployment to provide energy-e�cient communication to ground
terminals in a given target region Ω. Here, the parameters relate to the UAVs �ight
heights. Due to page limitations, all proofs are presented in [6].

Notation By [N ] = {1, 2, . . . , N} we denote the �rst N natural numbers, N. We
will write real numbers in R by small letters and row vectors by bold letters. The
Euclidean norm of x is given by ‖x‖ =

√∑
n x

2
n. The open ball in Rd centered at

c ∈ Rd with radius r ≥ 0 is denoted by B (c, r) = {ω | ‖ω − c‖2 ≤ r}. We denote
by Vc the complement of the set V ⊂ Rd. The positive real numbers are denoted by
R+ := {a ∈ R | a > 0}. Moreover, for two points a,b ∈ Rd, we denote the generated
half space between them, which contains a ∈ Rd, as H(a,b).

2 System model

To motivate the concept of parameterized distortion measures, we will investigate the
deployment of N UAVs positioned at P = {p1, . . . ,pN} ⊂ (Ω × R+)N to provide
a wireless communication link to ground terminals (GTs) in a given target region
Ω ⊂ Rd. Here, the nth UAV's position, pn = (qn, hn), is given by its ground position
qn = (xn, yn) ∈ Ω, representing the quantization point, and its �ight height hn,
representing its distortion parameter. The optimal UAV deployment is then de�ned
by the minimum average communication power (distortion) to serve GTs distributed
by a density function λ in Ω with a minimum given data rate Rb. Hereby, each GT
will select the UAV which requires the smallest communication power, resulting in so
called generalized Voronoi (quantization) regions of Ω, as used in [1]�[3], [5], [7]�[10].

In the recent decade, UAVs with directional antennas have been widely studied
in the literature [11]�[16], to increase the e�ciency of wireless links. However, in
[11]�[16], the antenna gain was approximated by a constant within a 3dB beamwidth
and set to zero outside. This ignores the strong angle-dependent gain of directional
antennas, notably for low-altitude UAVs. To obtain a more realistic model, we will
consider an antenna gain which depends on the actual radiation angle θn ∈ [0, π

2
] from

the nth UAV at pn to a GT at ω, see Fig. 1. To capture the power fallo� versus
the line-of-sight distance dn along with the random attenuation and the path-loss, we
adopt the following propagation model [17, (2.51)]

PLdB = 10 log10 K − 10α log10(dn/d0)− ψdB, (1)

where K is a unitless constant depending on the antenna characteristics, d0 is a
reference distance, α ≥ 1 is the terrestrial path-loss exponent, and ψdB is a Gaussian
random variable following N

(
0, σ2

ψdB

)
. This air-to-ground or terrestrial path-loss

model is widely used for UAV basestations path-loss models [18]. Practical values of
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Figure 1: UAV deployment with directed antenna beam and associated GT cells for
α = 2 and N = 2 for a uniform GT distribution.

α are between 2 and 6 and depend on the Euclidean distance of GT ω and UAV pn

dn(ω) = d(pn, (ω, 0)) =
√
‖qn − ω‖2 + h2

n =
√

(xn − x)2 + (yn − y)2 + h2
n. (2)

For common practical measurements, see for example [19]. Typically maximal heights
for UAVs are < 1000m, due to �ight zone restrictions of aircrafts. Hence, the received

power at UAV n can be represented as PRX = PTXGTXGRXKd
α
0d
−α
n (ω)10−

ψdB
10 , where

GTX and GRX are the antenna gains of the transmitter and the receiver, respectively.
Here, we assume perfect omnidirectional transmitter GT antennas with an isotropic
gain and directional receiver UAV antennas. The angle dependent antenna gains are

GGT > 0 , GUAV = cos (θn) = hn/dn(ω), (3)

see [20, p.52]. The combined antenna intensity is then proportional toG = GUAVGGTK,
see Fig. 1. Accordingly, the received power can be rewritten as

PRX = PTXhnGGTKd
α
0d
−α−1
n (ω)10−

ψdB
10 . (4)

To achieve a reliable communication between GT and UAV with bit-rate at least Rb

for a channel bandwidth B and noise power density N0, the Shannon formula requires

B log2

(
1 + PRX

BN0

)
≥ Rb. The minimum transmission power to UAV pn is then given

byPTX =
(
2
Rb
B −1

)
BN0d(pn, (ω, 0))α+110

ψdB
10 (hnGGTKd

α
0 )−1 with expectation

E[PTX ]=
(2

Rb
B − 1)N0

hnGGTKdα0

dα+1
n (ω)√
2πσψdB

∫
R

exp

(
− ψ2

dB

2σ2
ψdB

+ln(10)
ψdB
10

)
dψdB =

β

hn
d2γ
n (ω) (5)

where the independent and �xed parameters are given by

β = (2
Rb
B − 1)BN0 exp

(
−
σ2
ψdB

(ln 10)2

200

)
(GGTK)−1d−α0 and γ =

α + 1

2
. (6)



Since our goal is to minimize the average transmission power (5) we de�ne the nth
parameter distortion function as

D(ω,qn, an, bn) = β ·
(
an ‖qn − ω‖2

2 + bn
)γ

(7)

where an = h
−1/γ
n and bn = h

2−1/γ
n . As can be seen from (7), the distortion is a

function of the parameter hn in addition to the distance between the reproduction
point qn and the represented point ω. From a quantization point of view, one can
start with the distortion function (7) without knowing the UAV power consumption
formulas in this section. This is what we will do in the next section. For simplicity,
we will set from here on β = 1, since it will not a�ect the quantizer.

3 Optimizing Quantizers with parameterized distortion measures

The communication power cost (7) de�nes, with hn and �xed γ ≥ 1, a parameter-
dependent distortion function for qn. For a given source sample GT density λ in Ω and
UAV deployment, the average power is the average distortion for given quantization
and parameter points (Q,h) with quantization sets R = {Rn}, which is called the
average distortion of the quantizer (Q,h,R)

D̄(Q,h,R) =
N∑
n=1

∫
Rn
D(ω,qn, hn)λ(ω)dω. (8)

The N quantization sets, which minimize the average distortion for given quantization
and parameter points (Q,h), de�ne a generalized Voronoi tessellation V = {Vn(Q,h)}

D̄(Q,h,V) :=

∫
Ω

min
n∈[N ]

{D(ω,qn, hn)}λ(ω)dω =
N∑
n=1

∫
Vn(Q,h)

D(ω,qn, hn)λ(ω)dω, (9)

where the generalized Voronoi regions Vn(Q,h) are de�ned as the set of sample points
ω with smallest distortion to the nth quantization point qn with parameter hn. Min-
imizing the average distortion D̄(Q,h,V) over all parameter and quantization points
can be seen as an N−facility locational-parameter optimization problem [7]�[9], [21].
By the de�nition of the Voronoi regions (9), this is equivalent to the minimum average
distortion over all N−level parameter quantizers

D̄(Q∗,h∗,V∗) = min
(Q,h)∈ΩN×RN+

D̄(Q,h,V) = min
(Q,h)∈ΩN×RN+

min
R={Rn}⊂Ω

D̄(Q,h,R), (10)

which we call the N−level parameter optimized quantizer. To �nd local extrema of (9)
analytically, we will need that the objective function D̄ be continuously di�erentiable
at any point in ΩN ×RN

+ , i.e., the gradient should exist and be a continuous function.
Such a property was shown to be true for piecewise continuous non-decreasing distor-
tion functions in the Euclidean metric over ΩN [22, Thm.2.2] and weighted Euclidean
metric [7]. Then the necessary condition for a local extremum is the vanishing of the
gradient at a critical point. First, we will derive the generalized Voronoi regions for



convex sets Ω in d dimensions for any parameters hn ∈ R+ for the quantization points
qn, which are special cases of Möbius diagrams (tessellations), introduced in [4].

Lemma 1. Let Q = {q1,q2, . . . ,qN} ⊂ ΩN ⊂ (Rd)N for d ∈ {1, 2} be the quantiza-
tion points and h = (h1, . . . , hN) ∈ RN

+ the associated parameters. Then the average
distortion of (Q,h) over all samples in Ω distributed by λ for some exponent γ ≥ 1

D̄ (Q,h,V) =
N∑
n=1

∫
Vn

(‖qn − ω‖2 + h2
n)γ

hn
λ(ω)dω (11)

has generalized Voronoi regions Vn = Vn(Q,h) =
⋂
m 6=n Vnm, where the dominance

regions of quantization point n over m are given by

Vnm = Ω ∩


H(qn,qm) , hm = hn
B(cnm, rnm) , hn < hm
Bc(cnm, rnm) , hn > hm

(12)

and center and radii of the balls are given by

cnm=
qn − hnmqm

1− hnm
and rnm=

(
hnm

(1− hnm)2 ‖qn − qm‖2 + h2
n

h1−2γ
nm − 1

1− hnm

) 1
2

. (13)

Here, we introduced the parameter ratio of the nth and mth quantization point as

hnm = (hn/hm)
1
γ . (14)

Example 1. We plotted in Fig. 1, for N = 2 and Ω = [0, 1]2, the GT regions for a
uniform distribution with UAVs placed on

q1 = (0.1, 0.2), h1 = 0.5, and q2 = (0.6, 0.6), h2 = 1. (15)

If the second UAV reaches an altitude of h2 ≥ 2.3, its Voronoi region V2 = V2,1 will
be empty and hence become �inactive�.

3.1 Local optimality conditions

To �nd the optimalN−level parameter quantizer (9), we have to minimize the average
distortion (8) over all possible quantization-parameter points, i.e., we have to solve a
non-convex N−facility locational-parameter optimization problem,

D̄(Q∗,h∗,V∗) = min
Q∈ΩN ,h∈RN+

N∑
n=1

∫
Vn(Q,h)

h−1
n (‖qn − ω‖2 + h2

n)γλ(ω)dω (16)

where Vn(Q,h) are the Möbius regions given in (12) for each �xed (Q,h). A point
(Q∗,h∗) with Möbius diagram V∗ = V(Q∗,h∗) = {V∗1 , . . . ,V∗N} is a critical point of



(16) if all partial derivatives of D̄ are vanishing, i.e., if for each n ∈ [N ] it holds

0 =

∫
V∗
n

(q∗n − ω)(‖q∗n − ω‖2 + h∗2n )γ−1λ(ω)dω (17)

0 =

∫
V∗
n

(‖q∗n − ω‖2 + h∗2n )γ−1 · (‖q∗n − ω‖2 − (2γ − 1)h∗2n )λ(ω)dω. (18)

For N = 1 the integral regions will not depend on Q or h and since the integral kernel
is continuously di�erentiable, the partial derivatives will only apply to the integral
kernel. Similar to [22], for N > 1, the conservation-of-mass law, can be used to show
that the derivatives of the integral domains will cancel each other out.

3.2 The optimal N−level parameter quantizer in one-dimension for uniform density

In this section, we discuss the parameter optimized quantizer for a one-dimensional
convex source Ω ⊂ R, i.e., for an interval Ω = [s, t] given by some real numbers
s < t. Under such circumstances, the quantization points are degenerated to scalars,
i.e., qn = xn ∈ [s, t], ∀ n ∈ [N ]. If we shift the interval Ω by an arbitrary a ∈ R,
then the average distortion, i.e., the objective function, will not change if we shift all
quantization points by the same number a. Hence, if we set a = −s, we can shift
any quantizer for [s, t] to [0, A] where A = t − s without loss of generality. Let us
assume a uniform distribution on Ω, i.e. λ(ω) = 1/A. To derive the unique N−level
parameter optimized quantizer for any N , we will �rst investigate the case N = 1.

Lemma 2. Let A > 0 and γ ≥ 1. The unique 1−level parameter optimized quantizer
(x∗, h∗) with distortion function (7) is given for a uniform source density in [0, A] by

x∗=
A

2
, h∗=

A

2
g(γ) and the minimum average distortion D̄(x∗, h∗)=

(
A

2

)2γ−1

g(γ)

where g(γ) = arg minu>0 F (u, γ) < 1/
√

2γ − 1 is the unique minimizer of

F (u, γ) =

∫ 1

0

f(ω, u, γ)dω with f(ω, u, γ) =
(ω2 + u2)γ

u
(19)

which is for �xed γ a continuous and convex function over R+. For γ ∈ {1, 2, 3} the
minimizer can be derived in closed form as

g(1) =
√

1/3, g(2) =

√
(
√

32/5− 1)/9, g(3) =

√(
(32/7)1/3 − 1

)
/5. (20)

Remark . The convexity of F (·, γ) can be also shown by using extensions of the
Hermite-Hadamard inequality [23], which allows to show convexity over any interval.
Let us note here that for any �xed parameter hn > 0, the average distortion D̄(x∗n ±
ε, hn) is strictly monotone increasing in ε > 0. Hence, x∗n is the unique minimizer for
any hn > 0. We will use this decoupling property repeatedly in the proofs [6].



To derive our main result, we need some general properties of the optimal regions.

Lemma 3. Let Ω = [0, A] for some A > 0. The N−level parameter optimized quan-
tizer (Q∗,h∗) ∈ ΩN ×RN

+ for a uniform source density in Ω has optimal quantization
regions Vn(Q∗,h∗) = [b∗n−1, b

∗
n] with 0 ≤ b∗n−1 < b∗n ≤ A and optimal quantization

points x∗n = (b∗n + b∗n−1)/2 for n ∈ [N ], i.e., each region is a closed interval with
positive measure and centroidal quantization points.

Remark . Hence, for an N−level parameter optimized quantizer, all quantization
points are used, which is intuitively, since each additional quantization point should
reduce the distortion of the quantizer by partitioning the source in non-zero regions.

Theorem 1. Let N ∈ N, Ω = [0, A] for some A > 0, and γ ≥ 1. The unique
N−level parameter optimized quantizer (Q∗,h∗,R∗) is the uniform scalar quantizer
with identical parameter values, given for n ∈ [N ] by

q∗n = x∗n =
A

2N
(2n− 1), h∗ = h∗n =

A

2N
g(γ), R∗n =

[
A

N
(n− 1),

A

N
n

]
(21)

with minimum average distortion

D̄(Q∗,h∗,R∗) =

(
A

2N

)2γ−1 ∫ 1

0

(
ω2 + g2(γ)

)γ
g(γ)

dω. (22)

For γ ∈ {1, 2, 3}, the closed form g(γ) is provided in (20).

Example 2. We plot the optimal heights and optimal average distortion for a uniform
GT density in [0, 1] over various α and N = 2 in Fig. 2. Note that the factor
A/2N = 1/4 will play a crucial role for the height and distortion scaling. Moreover,
the distortion decreases exponentially in α if A/2N < 1.

Let us set β = 1 = A. Then, the optimal UAV deployment is pictured in Fig. 3
for N = 2 and N = 4. The maximum elevation angle θmax is hereby constant for each
UAV and does not change if the number of UAVs, N , increases. Moreover, it is also
independent of A and β, since with (21) we have µ∗n = x∗n − x∗n−1 = A/N and

cos(θmax) = cos(θn) =
h∗

µ∗n/2
=

2N

A

A

2N
g(1) =

1√
3
. (23)

4 Llyod-like Algorithms and Simulation Results

In this section, we introduce two Lloyd-like algorithms, Lloyd-A and Lloyd-B, to
optimize the quantizer for two-dimensional scenarios. The proposed algorithms iter-
ate between two steps: (1) The reproduction points are optimized through gradient
descent while the partitioning is �xed; (ii) The partitioning is optimized while the
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sion for A = 1, α = 1 and N = 2, 4 over a uniform

GT density by (21).

reproduction points are �xed. In Lloyd-A, all UAVs (or reproduction points) share
the common �ight height while Lloyd-B allows UAVs at di�erent �ight heights.

In what follows, we provide the simulation results over the two-dimensional target
region Ω = [0, 10]2 with uniform and non-uniform density functions. The non-uniform

density function is a Gaussian mixture of the form
∑3

k=1
Ak√
2πσ2

k

exp
(
−‖ω−ck‖

2

2σk

)
, where

the weights, Ak, k = 1, 2, 3 are 0.5, 0.25, 0.25, the means, ck, are (3, 3), (6, 7), (7.5, 2.5),
the standard deviations, σk, are 1.5, 1, and 2, respectively.
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Figure 4: The performance comparison of Lloyd-A, Lloyd-B and Random Deployment

(RD). (a) Uniform density. (b) Non-uniform density.

To evaluate the performance of the proposed algorithms, we compare them with
the average distortion of 100 random deployments (RDs). Figs. 4a and 4b, show
that the proposed algorithms outperform the random deployment on both uniform
and non-uniform distributed target regions. From Fig. 4a, one can also �nd that
the distortion achieved by Lloyd-A and Lloyd-B are very close, indicating that the
optimality of the common height, as proved for the one-dimensional case in Section 3,
might be extended to the two-dimensional case when the density function is uniform.
However, one can �nd a non-negligible gap between Lloyd-A and Lloyd-B in Fig. 4b



(a) (b)

Figure 5: The UAV projections on the ground with generalized Voronoi Diagrams where

α = 2 and the source distribution is uniform. (a) 32 UAVs. (b) 100 UAVs.

where the density function is non-uniform. For instance, given 16 UAVs and the path-
loss exponent α = 6, Lloyd-A's distortion is 40.17 while Lloyd-B obtains a smaller
distortion, 28.25, by placing UAVs at di�erent heights. Figs. 5a and 5b illustrate the
UAV ground projections and their partitions on a uniform distributed square region.
As the number of UAVs increases, the UAV partitions approximate hexagons which
implies that the optimality of congruent partition (Theorem 1) might be extended to
uniformly distributed users for two-dimensional sources. However, our simulations in
[6] show that congruent partition is no longer a necessary condition for the optimal
quantizer when the source distribution is non-uniform.

5 Conclusion

We studied quantizers with parameterized distortion measures for an application to
UAV deployments. Instead of using the traditional mean distance square as the dis-
tortion, we introduce a distortion function which models the energy consumption of
UAVs in dependence of their heights. We derived the unique parameter optimized
quantizer � a uniform scalar quantizer with an optimal common parameter � for uni-
form source density in one-dimensional space. In addition, two Lloyd-like algorithms
are designed to minimize the distortion in two-dimensional space. Numerical sim-
ulations demonstrate that the common weight property extends to two-dimensional
space for a uniform density.
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