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A Simple, Accurate Method to Determine the Effective Value of the Magnetic Induction of 

the Microwave Field from the Continuous Saturation of EPR Spectra of Fremy’s Salt 

Solutions.  Representative values of 𝑻𝟏
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Abstract 

 

A simple protocol to measure the effective value of the circularly-polarized magnetic induction 

of the microwave field is proposed and demonstrated employing continuous-wave saturation of a 

standard sample of Fremy’s salt measured under specified conditions.  The fact that the doubly-

integrated intensity of first-derivative spectra is invariant with respect to the line shape is used to 

take into account the non-Lorentzian line shape in order to study the peak-to-peak intensity or 

the line width.  Corrections for the use of line- rather than point-samples are developed. 

 

1 Introduction 

 

Continuous-wave saturation curves (CWS) of radicals in solution have been employed in the past 

to measure 𝑇1before time-domain methods became available. [1-15]  Unlike the time-domain 

methods, a precise value of the circularly-polarized magnetic induction of the microwave field, 

𝐻1, is needed but CWS measurements are inherently simpler; especially in recent years when 

software has been developed to automatically vary precisely the microwave power incident on 

the resonator, 𝑃, acquire and store a spectrum, retune the cavity, and repeat the sequence over a 

series of 𝑃.  Furthermore, CWS is available to labs that are not equipped with pulsed-EPR 

spectrometers. 

 

Our interest in the spin-relaxation behavior of nitroxides in solution has been stimulated by 

recent discoveries of interesting spectral properties of these free radicals as a function of their 

concentration where Heisenberg spin exchange (HSE) and dipole-dipole (DD) interactions 

introduce signals that are admixtures of absorptive and dispersive terms.  See [16] [17] and 

references therein.  Thus, instead of three pure absorption lines observed at low concentration, 

three spin modes [16] [17] result at higher concentrations.  The modes at high- and low-fields, 

are comprised of two components, one absorption plus one dispersion while the central-line 

shows only one component, an absorption.  Furthermore, as HSE increases, intensity of the 

absorptive contributions to the low- and high-field lines is transferred to the central absorption 

line.  Finally, the low- and high-field lines change from absorption to emission. [16] [17]  

                                                 
* Barney L. Bales, corresponding author, barney.bales@csun.edu  

1 Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Sibirsky trakt 10/7,  Kazan 420029, 

Russian Federation 

2 Department of Physics and Astronomy, The Center for Biological Physics, California State University at 

Northridge, CA 91330 USA 
 

3 Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA 

90095 USA 



 2 

Extensive studies of these phenomena have been published recently at low microwave powers in 

order to understand the line width (1/𝑇2) behavior in the presence of complicated hyperfine 

structures due to protons and deuterons [16] [18] and references therein.  Importantly, even 

severely overlapping resonances, past the point of coalescence into a single line, may be 

separated into the individual five components, three absorptive and two dispersive, each of 

which may studied with CWS separately.  This provides another motive to use CWS.  Pulsed 

methods are confined to measuring 𝑇1 of the absorption-dispersion mixtures, not the separated 

components. 

 

Now our attention has turned to the effects of HSE and DD as well as other variables on 𝑇1.  

Studying HSE by EPR is a powerful method to study bi-molecular encounters [19] and re-

encounters. [20]  Its power derives from the fact that the interaction is very short range, 

occurring only during the short time in which the overlap of unpaired spin orbitals between the 

two colliding radicals is significant. [19] 

 

Therefore, to undertake an ambitious program to measure 𝑇1with numerous samples under a 

variety of conditions, we decided to revive the CWS method with a view to easily prepared 

samples.  Our focus is on the standard X-band EPR spectrometer employing a TE102 or TE104 

cavity, glassware to control the temperature, 𝑇, and magnetic field modulation of frequency, 𝑓𝑚, 

with a maximum amplitude, 𝑎𝑚, from coils mounted on the cavity producing a modulation-field 

that varies with position within the cavity.  With this focus, it is easier to present the material.  

Also, it is the setup mostly used by researchers who are not EPR experts.  Nevertheless, our 

procedure might be extended to apply to other setups.  To ensure accurate sample placement, a 

“line-sample” extending all the way through the cavity is preferable to a point-sample.  It is 

easier to prepare the former than the latter and provides better signal-to-noise ratios (SNR) due to 

the increased filling factor. 

 

The well-known relationship between 𝑃 and 𝐻1, 𝐻1 ∝ √𝑃 [2, 3, 21-24] hides the fact that the 

problem of determining 𝐻1 at a given point within the sample and summing the resultant spectra 

for an extended sample is not trivial.  The reader is referred to Ref. [22] and references therein 

for an exhaustive discussion of the various problems.  The primary purpose of this paper is to 

propose a protocol to accurately measure the effective value of 𝐻1 for a particular experimental 

setup.  With our focus on nitroxide radicals in solution, we have selected solutions of Fremy’s 

salt, peroxlyamine disulfonate (PADS), rather than a solid.  PADS is readily available, cheap, 

relatively stable and yields narrow EPR lines leading to good SNR.  In fact, we exploit the 

instability of PADS at elevated temperatures to vary the concentration without disturbing the 

sample. 

 

PADS has been extensively studied, both in solution [3, 4, 8-14] and solid phases [5-7, 15] since 

the early days of EPR.  Unlike most other nitroxide spin probes, PADS resonance absorption 

lines are not complicated by unresolved proton or deuteron hyperfine structure and, thus, were 

anticipated to have a Lorentzian profile.  Nevertheless, it has been reported, [9] [8] and 

confirmed here, that the line shape deviates from Lorentzian due to a Gaussian component whose 

origin is still not satisfactorily explained.  The same problem occurs with all nitroxides largely 

because of unresolved hyperfine structure due to protons, deuterons, and other magnetic nuclei.  

In order to study spin relaxation, the Lorentzian component must be separated from the 
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Gaussian, an old problem in many branches of science where the information of interest lies in a 

Lorentzian line that is broadened by perturbations that, in many cases, are Gaussian, which 

produces a Voigt line shape [25]. The history of the problem, the separation of the Gaussian and 

Lorentzian components of the Voigt and the corrections of various parameters obtained from the 

EPR are treated in depth in Ref. [25]. As we shall see, of primary importance in CWS is the 

doubly-integrated intensity of the first-derivative resonance line, 𝐼.  Obtaining the correct value 

of 𝐼 is important because it varies by more than a factor of three from a Gaussian to a Lorentzian.  

Briefly, for non-experts in EPR, the intensity in the wings of a Lorentzian is larger than that of a 

Gaussian; for a Voigt, the intensity is intermediate [25].  By quantifying the variation of the 

intensity in the wings, a value of the Voigt parameter, Eq. (6), below is obtained.  The method 

was first developed by measuring four points on the spectrum, the two corresponding to the 

maximum and minimum of the first-derivative spectrum and two more in the wings at the point 

where the Gaussian and Lorentzian differ the most.[25]  Later,[26] least-squares fitting to all of 

the points provide significantly better precision and afforded reliable estimates of the errors.  

There are three pertinent peak-to-peak line widths of the first-derivative spectrum: the observed, 

∆𝐻𝑝𝑝
𝑜𝑏𝑠, the Lorentzian, ∆𝐻𝑝𝑝

𝐿 , and the Gaussian, ∆𝐻𝑝𝑝
𝐺 , line widths, respectively. 

 

All previous studies of PADS have assumed a Lorentzian shape; thus, the values of 𝑇2 reported 

were extracted from ∆𝐻𝑝𝑝
𝑜𝑏𝑠, assuming a Lorentzian line shape, using for the first derivative of the 

resonance signal 𝑇2 = 2/[√3γ∆𝐻𝑝𝑝
𝑜𝑏𝑠(0)] or 𝑇2 = 2/(γ∆𝐻1/2

𝑜𝑏𝑠(0)) for the non-derivative 

spectrum, respectively, where ∆𝐻1/2
𝑜𝑏𝑠(0) is the full-width between half-maximum points of the 

non-derivative signal, 𝛾 is the gyromagnetic ratio of the electron, and the zero means the limit as 

𝐻1 → 0.  Thus, rather than listing the published values of 𝑇2, we summarize in Table 1 the values 

of ∆𝐻𝑝𝑝
𝑜𝑏𝑠(0), the observed line widths. The PADS concentration is denoted by [PADS]. 

 

To simplify the presentation, we shorten such phrases as “the first-derivative resonance line of 

Lorentzian shape” to just a “Lorentzian.”  Similarly, with Gaussian and Voigt shapes.  For 

example, we say “PADS is not Lorentzian” to mean “the resonance lines of the EPR spectrum of 

PADS are not of Lorentzian shape.” 

 

Two concerns about the interpretation of CWS results are the influence of modulation 

sidebands[9] and passage effects.[1]  In the present case, we show in section 5.5 that neither of 

these pose a problem. 

 

This work is novel in three respects.  (1) We fit all spectra to a Voigt shape, permitting the use of 

all of the points of the spectrum rather than a few selected points.  (2) We show that when spin 

diffusion may be neglected, the CWS of 𝐼 is described by the CWS of Lorentzian shape, 

independent of actual line shape.  (3). We place on solid ground the concept of an effective value 

of 𝐻1 by showing that the line shape of the sum of the Lorentzian spectra that make up the 

observed spectrum for a line sample is nearly Lorentzian and that the same CWS is observed for 

the line sample as for a point sample by using an effective value of 𝐻1. 

 

These three matters which may not be familiar to some workers are carefully treated so that our 

arguments may be scrutinized.  Those readers uninterested in those details may go directly to the 
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protocol, given in two forms in sections 6.1 and 6.2.  The procedure is quite simple and, for 

standard EPR spectrometers, should occupy less than an afternoon. 

 

Table 1.  Relaxation times of PADS derived from CWS in aqueous solutions of 0.05 M K2CO3
 

except as noted.a, b 

[PADS], M 𝑡, °C 𝑓𝑚, kHz T1 x 107, s ∆𝐻𝑝𝑝
𝑜𝑏𝑠(0), mG Notes Ref. 

9.8x10-4 RT None 3.3 260 a, c, e, f, g, h [13] 

9 x10-4 RT 100 3.4±0.2 260 c, h [9] 

9 x10-4 9 100 4.5±0.5 140 d, e, h [9] 

9 x10-4 24 100 4.1±0.35 160 d, e, h [9] 

9 x10-4 34 100 3.4±0.3 187 d, e, h [9] 

5.7x10-4 24 100 4.11 160 d, e, h [3] 

1.07x10-4 24 6 - 163 d, e, h [3] 

9.8x10-4 RT 10 3.2±0.4 264 c, h, j [12] 

9.8x10-4 RT 10 3.5±0.4 256 c, h, k [12] 

9.8x10-4 RT 10 3.4±0.2 260 c, h, l [12] 

9.7x10-4 RT 0.035 – 25 - 239 c, h, m [4] 

1x10-3 RT 30 5 48 b, c, f, i [10] 
a0.1 M Na2CO3.  

b0.1 N K2CO3.  
cAir-saturated.  dDeoxygenated with bubbling N2 gas.  eX-band.  

f60 Mhz.  gSample inserted through small holes in the center of the broad face of a TE102 mode 

single cavity.  hMeasurements made on MI = 0 hyperfine component.  iMI = -1.  f∆𝐻1/2
𝑜𝑏𝑠 = 450 mG 

as measured from non-derivative spectrum was converted into ∆𝐻𝒑𝒑
𝑜𝑏𝑠= 260 mG.  jDual TE104 cavity 

without dewar.  kDual TE104 cavity with dewar.  lSingle TE102 cavity with dewar.  m𝑓𝑚: 35 Hz, 270 

Hz, 1 kHz, and 25 kHz yielding the same value of 𝑇2 

 

2 Theory 

 

2.1 CWS of Lorentzian Lines.  The saturation of a Lorentzian line is treated in many places; 

see, for example the textbook presentation in Ref. [21].  Defining the saturation factor, 𝑠, as 

 

𝑠 = (1 + (𝐻1)2𝛾2𝑇1𝑇2)−1, (1) 

 

Δ𝐻𝑝𝑝
𝐿  varies with 𝐻1 as  

 

Δ𝐻𝑝𝑝
𝐿 (𝐻1) = Δ𝐻𝑝𝑝

𝐿 (0)𝑠−1/2, (2) 

 

and the peak-to-peak line height (𝑉𝑝𝑝) as 

 

𝑉𝑝𝑝

𝐻1
=

𝑉𝑝𝑝(𝐻1
0)

𝐻1
0 𝑠3/2 

(3) 

 

The doubly-integrated intensity of the first-derivative spectrum (𝐼) is given by[25] 
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𝐼 =
1

2
𝐹 ⋅ 𝑉𝑝𝑝(Δ𝐻𝑝𝑝

𝑜𝑏𝑠)
2
 

(4) 

 

where the factor 𝐹 = 2𝜋/√3 = 3.63 for the Lorentzian.  Thus, from Eqs. (2) and (3), we find 

 

𝐼

𝐻1
=

𝐼(𝐻1
0)

𝐻1
0 𝑠1/2 

(5) 

 

In Eqs. (3) and (5), 𝐻1
0 is any value below saturation where 𝑠 is negligibly different than unity. 

We shall refer to the mode of measurement, 𝑀, as the CWS of Δ𝐻𝑝𝑝
𝐿 , 𝑉𝑝𝑝, or 𝐼. 

 

All previous CWS studies of PADS have assumed that the Lorentzian line shape adequately 

describes the resonance lines, employing Eqs. (2) and (3) using Δ𝐻𝑝𝑝
𝑜𝑏𝑠 rather than Δ𝐻𝑝𝑝

𝐿  to study 

𝑇2 and 𝑇1.  For other line shapes, neither (2) nor (3) is correct; however, under the conditions of 

negligible spin diffusion, Eq. (5) is correct, applicable to any arbitrary line shape, including those 

that are partially resolved.  This can be seen by appealing to the spin packet model of 

inhomogeneously broadened lines. [23] [24]  Each spin packet, which is Lorentzian and is 

assumed to be characterized by the same 𝑇2, does obey Eqs. (2) and (3) and because 𝐼 = ∑ 𝐼𝑗 

where 𝐼𝑗 is the doubly-integrated intensity of the 𝑖th spin packet, the sum also obeys Eq. (5). 

 

For most nitroxides, each line in the spectrum is accurately described by the Voigt that is 

characterized uniquely by the Voigt parameter as follows: [25] 

 

𝜒 = Δ𝐻𝑝𝑝
𝐺 /Δ𝐻𝑝𝑝

𝐿  (6) 

 

Methods to obtain 𝜒 as well as Δ𝐻𝑝𝑝
𝐺  and Δ𝐻𝑝𝑝

𝐿  separately from least-squares fits of experimental 

or theoretical spectra have been available for many years;[26] thus, Eq. (2) may be used for a 

Voigt shape by extracting Δ𝐻𝑝𝑝
𝐿  from the measured Δ𝐻𝑝𝑝

𝑜𝑏𝑠.  For 𝜒 → ∞ the Gaussian shape is 

obtained where 𝐹 = √𝜋𝑒/8 = 1.03. [25]  For intermediate values of 𝜒, 𝐹 in Eq. (4) is obtained 

from Eq. (34) of Ref. [25] 

 

Eqs. (2, 3, and 5) apply to a point-sample because 𝐻1 varies with position.  Let us assume for 

convenience the common arrangement which has the point-sample in the center of the TE102 

cavity where 𝐻1 has its maximum value, 𝐻1𝑚𝑎𝑥. 

 

As supported by a large literature, [2] [21] [27] [28] [22], the accepted relationship between the 

power incident on the cavity, 𝑃, and 𝐻1𝑚𝑎𝑥 is as follows: 

 

𝐻1𝑚𝑎𝑥 = Γ𝑚𝑎𝑥√𝑄𝑃 = 𝐾1𝑚𝑎𝑥√𝑃 (7) 

 

where Γ𝑚𝑎𝑥 and 𝐾1𝑚𝑎𝑥 are constants and 𝑄 is the loaded quality-factor of the cavity.  Note that 

Eq. (7) supposes a critically-coupled cavity; if this is not the case, a correction factor is needed. 

[9] 
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In what follows, we show that by employing effective values of 𝐻1, equations of the same forms 

as (2) and (3) approximate well the CWS of samples that are not points, but “lines” (in 

cylindrical tubes of small diameter).  Thus, we may write 

 

𝐻1 = Γ√𝑄𝑃 = 𝐾1𝑀√𝑃 (8) 

 

where 𝐻1 = 𝜉𝑀𝐻1𝑚𝑎𝑥, Γ = 𝜉𝑀Γ𝑚𝑎𝑥, and 𝐾1𝑀 = 𝜉𝑀𝐾1𝑚𝑎𝑥 are effective values which depend on 

the mode of measurement denoted by the subscript 𝑀.  Γ is related to the conversion efficiency, 

e.g., Ref. [22].  For a point-sample yielding a Lorentzian, 𝜉𝑀 = 1 for all three modes, but for line-

samples, they differ from one another. 

 

Rewriting Eq. (2), employing Eq. (8), we have 

 

Δ𝐻𝑝𝑝
𝐿 = Δ𝐻𝑝𝑝

𝐿 (0) (1 + (𝐾1∆𝐻𝑝𝑝
𝐿 √𝑃)

2 2

√3Δ𝐻𝑝𝑝
𝐿 (0)

𝛾𝑇1)

1/2

 
(9) 

 

where 𝐾1∆𝐻𝑝𝑝
𝐿 = 𝜉∆𝐻𝑝𝑝

𝐿 𝐾1𝑚𝑎𝑥 with 𝛾𝑇2 = 2/√3Δ𝐻𝑝𝑝
𝐿 (0). 

 

Recognizing that the slope of 𝑉𝑝𝑝 with respect to 𝐻1, 𝐾𝑝𝑝, in the unsaturated region is given by 

𝐾𝑝𝑝 = 𝑉𝑝𝑝(𝐻1
0)/𝐻1

0, Eq. (3) may be written as follows 

 

𝑉𝑝𝑝 = 𝐾𝑝𝑝

𝐾1𝑉𝑝𝑝
√𝑃

(1 + (𝐾1𝑉𝑝𝑝
√𝑃)

2 2

√3Δ𝐻𝑝𝑝
𝐿 (0)

𝛾𝑇1)

3/2
 

(10) 

 

where 𝐾1𝑉𝑝𝑝
= 𝜉𝑉𝑝𝑝

𝐾1𝑚𝑎𝑥. 

 

Similarly, from Eq. (5), 𝐼 varies as 

 

𝐼 = 𝐾𝐼

𝐾1𝐼√𝑃

(1 + (𝐾1𝐼√𝑃)
2 2

√3Δ𝐻𝑝𝑝
𝐿 (0)

𝛾𝑇1)

1/2
 

(11) 

 

Where 𝐾𝐼 is the slope of 𝐼 with respect to 𝐻1 at small 𝐻1 and 𝐾1𝐼 = 𝜉𝐼𝐾1𝑚𝑎𝑥.  Observe that at 

large values of √𝑃, 𝐼 becomes independent of √𝑃. 

 

2.2 The effective 𝑯𝟏 for a line-sample: Lorentzian shape.  Do values of 𝜉∆𝐻𝑝𝑝
𝐿 , 𝜉𝑉𝑝𝑝

, and 𝜉𝐼 

exist such that Eqs. (9 - 11) produce the same CWS for a line-sample that they do for a point-

sample using 𝜉∆𝐻𝑝𝑝
𝐿 = 𝜉𝑉𝑝𝑝

= 𝜉𝐼 = 1?  It would not be surprising if this question could not be 

answered in the affirmative, because summing spectra from different points along the line-

sample involves adding spectra at different levels of saturation; i.e., different values of ∆𝐻𝑝𝑝
𝐿 .  
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What line shape does this sum produce?  Past workers have tacitly assumed that the CWS due to 

this composite spectrum could be treated with a Lorentzian form.  From Eq. (4), the values of 𝑉𝑝𝑝 

for spectra away from the central point are enhanced as the inverse square of ∆𝐻𝑝𝑝
𝑜𝑏𝑠 compared 

with that at the central point because of the smaller ∆𝐻𝑝𝑝
𝑜𝑏𝑠.  Furthermore, they are also enhanced 

because the values of 𝐼 are larger in relation to the central values because they are saturated less. 

 

To answer these questions, we sum over the line to yield the resulting spectrum as follows: 

 

𝑌′𝑠𝑢𝑚 = ∫ Y′(𝑥)d𝑥
𝑎

0

 
(12) 

 

where 𝑎 is the wide dimension of the cavity, traversed by the line-sample, which is usually 

oriented vertically in a standard spectrometer.  At point 𝑥, the spectrum is given by of Eq. (3.10) 

of Ref. [21] or as Eq. (8), section C of chapter 13 of Ref. [29] as follows: 

 

Y′(𝑥) = −C𝑎𝑚(𝑥)𝑎1(𝑥)𝐻1𝑚𝑎𝑥

(𝐻 − 𝐻0)𝛾𝑇2𝑠2

[1 + 𝑠(𝐻 − 𝐻0)2𝛾2𝑇2
2]2

 
(13) 

 

In Eq. (13), the amplitude of the field modulation varies as 𝑎𝑚(𝑥) = 𝑎𝑚𝑠𝑖𝑛2(𝜋𝑥/𝑎), [28] and 

that of the circularly-polarized magnetic induction as 𝑎1(𝑥)𝐻1𝑚𝑎𝑥 = 𝑎1𝐻1𝑚𝑎𝑥𝑠𝑖𝑛(𝜋𝑥/𝑎), [28] 

and C is an arbitrary overall gain constant.  Eq. (13) supposes that 𝑎𝑚(𝑥) is small enough to 

avoid broadening.  Eq. (12) was solved numerically for 𝑇1 = 𝑇2 = 0.33 s for different values of 

𝐻1𝑚𝑎𝑥. Perhaps surprisingly, the resulting sum spectra were accurately Lorentzian even when 

significantly saturated.  For example, at 𝐻1𝑚𝑎𝑥 = 0.24 G, where (𝛾𝐻1𝑚𝑎𝑥)2 𝑇1 𝑇2 = 1.94, where 𝑠 

= 0.340 for the central point, the fit to a Lorentzian yields 𝑟 = 0.99997 and a maximum ratio of 

residual to 𝑉𝑝𝑝 of 0.009.  Fitting all such spectra yields values of 𝑉𝑝𝑝 and Δ𝐻𝑝𝑝
𝐿  from which 𝐼 may 

be calculated from Eq. (4).  For convenience, 𝐾1𝑚𝑎𝑥 is set to unity so that 𝜉𝑀 = 𝐾1𝑀.  Figure 1a 

shows the results of these calculations of the CWS of ∆𝐻𝑝𝑝
𝐿  for point- and line-samples.  The 

lines through the points are the fits to Eq. (9) with 𝑇1 = 0.33 s and 𝜉∆𝐻𝑝𝑝
𝐿  = 1 for both sample 

types, yielding 𝐾1∆𝐻𝑝𝑝
𝐿  = 0.8518 ± 0.0031. The saturation of the line-sample is less than that of 

the point-sample, as expected.  Figure 1b shows the same data except with 𝜉∆𝐻𝑝𝑝
𝐿  = 0.8518 for the 

line-sample, demonstrating that the line-sample behaves as a point-sample with an effective field 

𝐻1 = 0.8518𝐻1𝑚𝑎𝑥.  For 𝑉𝑝𝑝 and 𝐼, the CWS are different if plotted against √𝑃, not shown, but 

Figures 2 and 3 show that coincident curves are obtained with  𝜉𝑉𝑝𝑝
= 0.8620 ± 0.0022 and 𝜉𝐼= 

0.9013 ± 0.0008, respectively.  The uncertainties are fit errors.  Values of  𝑉𝑝𝑝 and 𝐼 are given in 

arbitrary units (AU) because of the gain factor.  Because the correct value of 𝐻1 is given by 

mode 𝐼, to use the other modes to find the effective value of 𝐻1, we must multiply the fit value of 

𝐾1∆𝐻𝑝𝑝
𝐿  by the factor 𝜁∆𝐻𝑝𝑝

𝐿 = 𝐾1𝐼/𝐾1∆𝐻𝑝𝑝
𝐿  = 1.058 ± 0.004 and of 𝐾1𝑉𝑝𝑝

 by 𝜁𝑉𝑝𝑝
= 𝐾1𝐼/𝐾1𝑉𝑝𝑝

 = 

1.046 ± 0.003.  Note that Eq. (13) is equivalent to Eq. (2) of Eaton and coworkers. [28] 

 

Freed and coworkers [9] found 𝜉 = 0.87 experimentally by comparing the CWS of a small 

sample of PADS to a line-sample.  Eaton and coworkers verified the use of Eq. 13 

experimentally by observing that the same results were obtained from a point- and line-sample; 
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however, without considering the non-Lorentzian line shape.  In Ref. [13], the problems of 

varying 𝐻1 and 𝑎𝑚 were avoided by utilizing a sample placement passing the sample through the 

center of the broad face of the cavity; however, also assuming a Lorentzian. 

 

3 A proposed protocol to measure 𝑯𝟏. 

 

In order to interpret the CWS to obtain values of 𝑇1 from a radical of interest, it is clear that an 

accurate value of the effective 𝐾1 is needed.  The purpose of this work is to propose a simple 

method to determine 𝐾1 by measuring the saturation behavior of an aqueous line-sample of 

Fremy’s salt, peroxylamine disulfonate, (PADS).  We assume a value of 𝑇1 = 0.33 s taken from 

literature values, Table 1.  This approach is similar to that of Ref. [28].  The determination of 𝐾1 

can be no more accurate than that of 𝑇1 estimated to be 20 – 30% by Freed and coworkers. [9]  A 

reasonable question is as follows: what is the point in studying carefully the effects of line-

samples and non-Lorentzian line shapes for the calibration knowing that the best we can do is 20 

– 30%?  Our answer is two-fold.  The first is that relative values of 𝑇1 from different labs will be 

of good accuracy, estimated below to be 3.5 – 5%.  Furthermore, conclusions may be drawn 

from relative values of 𝑇1 due to changes in experimental parameters; for example, see Refs. [1] 

and [2] and references therein.  The second reason is that with modern time-domain methods 

continuing to develop, [30] perhaps more accurate values of 𝑇1 for PADS will be forthcoming 

from which values of 𝐾1 and 𝑇1 may be updated. 

 

The proposed standard sample is as follows: air-saturated, 0.3-mM PADS in aqueous solution of 

50-mM K2CO3 measured at 298 K, with magnetic-field modulation of frequency, 𝑓𝑚= 100 kHz 

of amplitude 𝑎𝑚 = 0.1 G.  The other parameters, receiver gain, time constant, and sweep time, 

may be chosen in the usual manner to provide a faithful spectrum. [31] 

 

To illustrate the protocol, we detail measurements of the standard sample sealed into 50-L 

disposable capillaries filled so that the solutions pass through the entire cavity. 

 

It is clear that the protocol will only directly apply to samples that mimic the PADS sample with 

fidelity.  A line-sample of a radical of interest in 50-mM K2CO3 aqueous solution with the same 

geometry may be computed from the second equality in Eq. (8), provided that the 𝑄 is the same.  

If there are significant differences in the values of 𝑄 between the standard sample and the sample 

of interest, for example with a change of solvent or glassware, then measurements of 𝑄 and the 

use of the first equality in Eq. (8) would be needed. 

 

4 Experimental 

 

PADS was purchased from Sigma-Aldrich and used as received.  A stock solution of nominal 

0.5-mM concentration was prepared by weight in aqueous 50-mM K2CO3 (TatChimProduct, 98 

%).  Samples were sealed into 50-L disposable capillaries filled so that the solutions pass 

through the entire cavity. The PADS purity was determined to be 60 % by comparing its value of 

𝐼 with that of a freshly prepared aqueous sample of protonated 2,2,6,6-tetramethyl-4-

oxopiperidine-1-oxyl (Sigma 97%) below saturation.  The quoted concentrations are those 

determined gravimetrically multiplied by 0.6.  Thus, the stock solution fulfills the required 0.3 

mM concentration for the standard sample.  The spectra were obtained with a Bruker EMX plus 
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spectrometer in Kazan at X-band (9.47 GHz) with nitrogen-flow temperature stabilization of 

precision 0.1 K; field-sweep width, 50 G; receiver gain, 1000; time constant, 5.12 ms; 

conversion time, 40 ms; and resolution, 1000 points.  The Q-value was measured at 33 dB (𝑃 =
 0.1 mW) using Bruker’s software EPR Acquisition.  See section 7.5 of Ref. [22] for a discussion 

of this method and others.  The authors outline some possible problems and conclude that for 

high-Q, the estimation is “fairly accurate.”  In addition to the standard protocol to calibrate 𝐻1, 

experiments were conducted varying the temperature, the oxygen concentration, the 

concentration of PADS, modulation frequency, and modulation amplitude. The concentration of 

PADS was serially reduced by heat quenching [32] as described below.  In addition to air-

saturated samples, oxygen or argon was bubbled through the standard solution for 30 min before 

filling and sealing the capillaries.  We call these Air, Oxygen, and Argon samples, respectively.  

All of the data in this study were obtained with a critically-coupled cavity; thus, Eq. (8) is valid 

as written. 

 

The spectra were fit and analyzed by the program Lowfit, which searches for the minimum least-

squares difference in the spectrum and a theoretical model of a Gaussian-Lorentzian sum 

function taking advantage of the fact that such a sum function is an excellent approximation to 

the Voigt shape. [26]  Δ𝐻𝑝𝑝
𝐿  and Δ𝐻𝑝𝑝

𝐺  are obtained separately.[26]  Accurate values of 𝐼, are 

obtained from the fit parameters using Eq (34) of Ref. [25].  Lowfit includes both absorption and 

dispersion terms in the fit allowing correction for small dispersion admixtures due to a slightly 

unbalanced microwave bridge, as described in Ref. [20].  Corrections due to the contribution to 

the Gaussian line width by field modulation were carried out; [33] however, these amounted to 

only 4%, at most, of the intrinsic values of Δ𝐻𝑝𝑝
𝐺  and fall within the uncertainty of Δ𝐻𝑝𝑝

𝐺 . 

 

Fits of the CWS were performed with the Levenberg-Marquardt algorithm using Kaleidagraph 

(2457 Perkiomen Ave, Reading, PA 19606).  The algorithm is accurate, efficient, and rapid 

provided that the estimates of the parameters are reasonably close to their final values.  The 

values of the best-fit parameters are output with error estimates of the variables and the 

correlation coefficient, 𝑟. [34]  The fits shown in Figures 1 – 3 and 5 – 6 are performed and the 

fit curves plotted in considerably less than 1 s. 

 

5 Results  

 

5.1 The line shape of PADS.  That the spectral lines of PADS are not Lorentzian was noted 

many years ago[8] by visually comparing them with those of the Gaussian and Lorentzian line 

shapes of equal 𝑉𝑝𝑝 and Δ𝐻𝑝𝑝
𝑜𝑏𝑠.  Later, [9] the departure from Lorentzian was tabulated.  By 

fitting the spectra to a Voigt, the departure from a Lorentzian may be quantified, and by using all 

of the spectral points the precision may be improved by an order of magnitude or much more in 

case of noisy spectra.  For a dramatic demonstration of this point, see Figure 11 of Ref. [35]. 

 

Figure 4a shows that Δ𝐻𝑝𝑝
𝐺  is a constant as a function of the PADS concentration, for all three 

lines, which is presented because there was a report [8] that the lines became increasingly 

Gaussian with decreasing concentration.  Figure 4a shows no significant variation for 

concentrations down to 1.2 x 10-5 M, a factor of 79 lower than 95 x 10-5 M used in the previous 

paper. [8]  Figure 4b shows that Δ𝐻𝑝𝑝
𝐺  is also constant with respect to √𝑃.  This result is 

important because it shows that saturation only affects the Lorentzian component of the Voigt. 
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This work has not clarified the origin of the inhomogeneous broadening; however, there was a 

suggestion that it arose from hyperfine coupling with K+ ions during ion pairing.[36]  We may 

rule out magnetic field inhomogeneity because faithful Lorentzian shapes of other free radicals 

were observed with the same magnet used to observe the non-Lorentzian shape of PADS. [9]  

Modulation sidebands may be ruled out because Δ𝐻𝑝𝑝
𝐺  is the same for 𝑓𝑚 =100- and 10-kHz in 

this study. 

 

5.2 Demonstration of the Protocol.  Calibration of 𝑲𝟏𝑴 for the Kazan EPR Spectrometer.  

For one of the standard samples, Figures 5 - 7 show typical CWS of 𝑉𝑝𝑝, 𝐼, and Δ𝐻𝑝𝑝
𝐿 , 

respectively.  The lines in Figure 7 are fits to Eq. (9) with fixed 𝑇1 = 0.33 s to obtain values of 

𝐾1∆𝐻𝑝𝑝
𝐿  and Δ𝐻𝑝𝑝

𝐿 (0).  The lines in Figures 5 and 6 are fits to Eqs. (10) and (11), respectively, 

fixing 𝑇1 = 0.33 s and 𝑇2 = 2/[√3γ∆𝐻𝑝𝑝
𝐿 (0)], to find 𝐾1𝑉𝑝𝑝

 and 𝐾𝑝𝑝 in Figure 5 and 𝐾1𝐼 and 𝐾𝐼 

in Figure 6.  The fit parameters for this sample are given in Tables 2 – 4.  The low-. center-, and 

high-field lines are denoted, lf, cf, and hf, respectively.  The linear fits in the linear region, shown 

in the insets to Figures 5 and 6, are precise for both 𝑉𝑝𝑝 and 𝐼 as shown by the values of 𝑟 given 

in the respective captions, attesting to the remarkable linearity of √𝑃 in the Bruker hardware and 

the precision obtained by least-squares fitting of the spectra.  The values of 𝑉𝑝𝑝, Figure 6, for hf 

are slightly smaller than for cf and lf which are equal to one another, because Δ𝐻𝑝𝑝
𝐿  for hf is 

larger, Figure 7 and Table 4; however, the values of 𝐼 in Figure 6 are the same as expected. 

 

 

Table 2.  Fit parameters and fit errors for 𝑉𝑝𝑝, Figure 5. 

Line 𝐾1𝑉𝑝𝑝
, 𝐺𝑊1/2 𝐾𝑝𝑝 x 10-7, AU 𝑟 

lf 0.899 ± 0.004 7.64 ± 0.01 0.99991 

cf 0.901 ± 0.003 7.57 ± 0.01 0.99994 

hf 0.898 ± 0.003 7.31 ± 0.01 0.99995 

 

Table 3.  Fit parameters and fit errors for doubly-integrated intensity, 𝐼, Figure 6. 

Line 𝐾1𝐼 , 𝐺𝑊1/2 𝐾𝐼 x 10-6, AU 𝑟 

lf 0.829 ± 0.006 7.90 ± 0.04 0.99997 

cf 0.821 ± 0.005 7.95 ± 0.04 0.99998 

hf 0.820 ± 0.003 7.98 ± 0.03 0.99999 
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Table 4.  Fit parameters and fit errors for Δ𝐻𝑝𝑝
𝐿 , Figure 7. 

Line 𝐾1, 𝐺𝑊1/2 Δ𝐻𝑝𝑝
𝐿 (0), 𝐺 𝑇2, s Δ𝐻𝑝𝑝

𝑜𝑏𝑠(0), 𝐺a 𝑟 

lf 1.04 ± 0.02 0.2151 ± 0.0014 0.305 ± 0.002 0.2451 ± 0.0006 0.983 

cf 1.03 ± 0.02 0.2156 ± 0.0011 0.304 ± 0.002 0.2472 ± 0.0007 0.990 

hf 1.025 ± 0.008 0.2203 ± 0.0005 0.2978 ± 0.0007 0.2488 ± 0.0004 0.998 
aCompare Δ𝐻𝑝𝑝

𝑜𝑏𝑠(0) = 0.252 ± 0.009 G with first two entries in Table 1 Δ𝐻𝑝𝑝
𝑜𝑏𝑠(0) = 0.260 G at 

RT. [9] [13]  Treating Δ𝐻𝑝𝑝
𝑜𝑏𝑠(0) as if it were Δ𝐻𝑝𝑝

𝐿 (0) yields an apparent 𝑇2 = 0.266 ± 0.002.  

Compare with Ref. [9] where 𝑇2 = 0.252 ± 0.009 s. 

 

The procedure for Sample 1 was repeated with 7 others from two stock solutions measured at 

different times.  One of the samples was stored in the refrigerator for one month before being 

measured again.  The mean values and standard deviation (sd) of 24 measurements (3 lines, 8 

CWS) are 𝐾1𝐼 = 0.820 ± 0.025, 𝐾1Δ𝐻𝑝𝑝
𝐿  = 1.02 ± 0.023, and 𝐾1𝑉𝑝𝑝

 = 0.905 ± 0.009.  Note that the 

precision of 𝐾1𝑉𝑝𝑝
 is nearly three times that of the other two.  The correct value of the effective 

𝐾1 is given by 𝐾1𝐼.  Therefore, if we wish to use the other modes to find the effective value of 

𝐻1, we must multiply the fits value of 𝐾1𝑉𝑝𝑝
 by 𝜁𝑉𝑝𝑝

= 𝐾1𝐼/𝐾1𝑉𝑝𝑝
= (0.820 ± 0.025)/( 0.905 ± 

0.009) = 0.906 ± 0.029 and to use Δ𝐻𝑝𝑝
𝐿 , multiply 𝐾Δ𝐻𝑝𝑝

𝐿  by 𝜁Δ𝐻𝑝𝑝
𝐿 = 𝐾1𝐼/𝐾1Δ𝐻𝑝𝑝

𝐿 = (0.820 ± 

0.025)/( 1.02 ± 0.023) = 0.804 ± 0.030.  For the Voigt line shape of the standard sample of 

PADS, we may find 𝐻1 from the correction factors 𝜁𝑀 as follows: 

 

𝐻1 = 𝜁𝑀𝐾1𝑀√𝑃 (14) 

 

Which are summarized in table 5 together with the results for a Lorentzian line-sample. 

 

Table 5.  Values of 𝜁𝑀 for 𝐻1 = 𝜁𝑀𝐾1𝑀√𝑃a 

Mode, 

𝑀 

Point-Sample, 

Lorentzian 

Line-Sample, 

Lorentzian 

Line-Sample, 

PADSa 

Equation 

∆𝐻𝑝𝑝
𝐿  1 1.058 ± 0.004 0.804 ± 0.030 (9) 

𝑉𝑝𝑝 1 1.046 ± 0.003 0.906 ± 0.029 (10) 

𝐼 1 1 1.00 ± 0.03 (11) 

𝑉𝑝𝑝 –  – 0.847 ± 0.031b (10)b 

aFor the standard sample, only.  bIf ∆𝐻𝑝𝑝
𝑜𝑏𝑠(0) is used rather than ∆𝐻𝑝𝑝

𝐿 (0).  See Section 6.2 

 

Values in the penultimate column of Table 5 pertain to the standard samples taking into account 

the Voigt shape of PADS.  For other samples of PADS as functions of concentration, oxygen 

concentration, and temperatures other than those of the standard sample, only the mode 𝐼 is 

applicable because the line shapes change with all three variables. 

 

5.3 Value of 𝚪 Kazan EPR.  The mean value and sd of 𝑄 = (1.86 ± 0.11) x 103 was obtained 

from four samples, each removed and replaced in the cavity twice, for a total of 8 measurements.  

From Eq. (1), with 𝑄1/2 = 43.1 ± 1.2, we compute Γ = 0.0190 ± 0.0008 G/W1/2 for the Kazan 

EPR. 
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5.4 Representative values of 𝑻𝟏 for PADS.  With the value of 𝐾1 = 𝐾1𝐼 calibrated for the 

Kazan EPR spectrometer, we briefly explore the dependence of 𝑇1 and 𝑇2 on temperature; 

oxygen concentration; modulation amplitude and frequency; and PADS concentration.  In all that 

follows, the mode 𝐼 is used to determine 𝑇1 and the mode Δ𝐻𝑝𝑝
𝐿  for 𝑇2. 

 

5.5 Dependence on modulation frequency and amplitude.  Table 6 tabulates 𝑇1 and 𝑇2.for 

different combinations of 𝑓𝑚 and 𝑎𝑚 for a standard sample, showing that there is no significant 

difference for any of the combinations. 

 

For the simple theory of Eqs. (2), (3) and (5) to apply, the thermal equilibrium of the spins within 

a spin packet must be maintained during the magnet-field sweep through resonance, a condition 

known as slow passage. [1]  When the field is modulated, this condition is met as follows: [1] 

 
𝐻1

2𝜋𝑎𝑚𝑓𝑚
≫ √𝑇1𝑇2 

(15) 

 

For PADS, 𝑠 is significantly different from unity when 𝐻1 ≈ 0.05 G, thus for values of 𝑎𝑚 and 

𝑓𝑚 in Table 6, the LHS of Eq. (15) varies from 0.8 – 8 s while the RHS is about 0.3 s.  

Therefore, slow passage is expected to be fulfilled for all four of the modulation combinations 

and the fact that the values of 𝑇1 are consistent over these combinations confirms this 

expectation. In Tables 6 and 8, the values of 𝑇2 are mean values over the three lines, ignoring the 

small differences, that are shown explicitly in Tables 4 and 7. 

 

Table 6.  Dependence of 𝑇1 and 𝑇2 on modulation amplitude and frequency.  Standard sample 

298 K. 

𝑎𝑚, G 𝑓𝑚, kHz 𝑇1, sa 𝑇2, sa,b 

0.10 10 0.325 ± 0.011 0.301 ± 0.006 

0.02 100 0.329 ± 0.017 0.302 ± 0.008 

0.05 100 0.337 ± 0.028 0.305 ± 0.003 

0.10 100 0.337 ± 0.050 0.306 ± 0.006 
aMean over three lines; error, sd and average fit-error in quadrature.  bIgnoring the small 

difference in the three lines. 

 

5.6 Dependence on temperature and oxygen concentration.  The results for 𝑇1 and 𝑇2 are 

given in Table 7.  𝑇2 for lf and cf are within experimental uncertainty and are averaged.  𝑇1 are 

averaged over the three lines.  Uncertainties are the average fit errors and sd added in quadrature.  

Both 𝑇1 and 𝑇2 decrease with increasing oxygen concentration and with increasing temperature. 
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Table 7.  Dependence of 𝑇1 and 𝑇2 on temperature and oxygen concentration 

T, K Sample 𝑇1, sa 𝑇2, sb 𝑇2, sc 

303 Oxygen 0.191 ± 0.011 0.177 ± 0.001 0.174 ± 0.001 

298 Oxygen 0.197 ± 00.24 0.192 ± 0.001 0.190 ± 0.001 

293 Oxygen 0.207 ± 0.012 0.210 ± 0.002 0.206 ± 0.001 

303 Argon 0.409 ± 0.012 0.333 ± 0.003 0.325 ± 0.001 

298 Argon 0.418 ± 0.013 0.355 ± 0.001 0.346 ± 0.001 

293 Argon 0.417 ± 0.013 0.382 ± 0.001 0.370 ± 0.001 

303 Air 0.332 ± 0.013 0.287 ± 0.001 0.283 ± 0.001 

298 Air 0.330 ± 0.013 0.307 ± 0.001 0.299 ± 0.001 

293 Air 0.353 ± 0.013 0.328 ± 0.001 0.320 ± 0.001 
aMean lf, cf, and hf, error, sd and fit error taken in quadrature.  bMean lf and cf, error sd and fit 

error taken in quadrature.  chf, fit error.   

 

5.7 Dependence on the PADS concentration.  One of the Argon samples and one of the Air 

samples were studied at 298 K at different PADS concentrations by heat quenching at 340 K for 

short time intervals to thermally degrade the PADS. [32]  The samples were not disturbed during 

the process.  This is a strategy similar to that utilized in Ref. [32].  The total quench time and 

values of 𝑇1 and 𝑇2 are given in Tables 8 and 9.  In the absence of oxygen, the concentration is 

reduced by about 60 % at 80 min of quenching, while with an Air sample, it is reduced by about 

77%; thus, PADS is somewhat more stable at 340 K in the absence of oxygen.  For PADS 

concentrations higher than those in Table 8, see Table 1 of Ref. [3]. 

 

Table 8.  𝑇1 and 𝑇2 at 298 K vs PADS concentration.  Argon Sample. 

t, mina [𝑃𝐴𝐷𝑆] mMb 𝑇1, sc 𝑇2, sc,d 

0 0.313 0.475 ± 0.019 0.391 ± 0.005 

5 0.292 0.456 ± 0.027 0.403 ± 0.007 

10 0.275 0.457 ± 0.017 0.409 ± 0.007 

30 0.229 0.507 ± 0.035 0.431 ± 0.006 

55 0.173 0.539 ± 0.032 0.453 ± 0.008 

80 0.122 0.592 ± 0.078 0.463 ± 0.008 
aTotal quench time at 340 K; e.g., 𝑡 = 10 min means that the sample was quenched for 5 min at 

340 K, returned to 298 K for measurement, and quenched another 5 min.  bConcentration of 

PADS.  The relative concentration is precise to better than 1%.  cMean value over three lines; 

error is the sd and the average fit error taken in quadrature.  dIgnoring the small difference in the 

three lines. 
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Table 9.  𝑇1 and 𝑇2  at 298 K vs PADS concentration.  Air Sample. 

t, mina [𝑃𝐴𝐷𝑆] mMb 𝑇1, sc 𝑇2, sc,d 

0 0.302 0.337 ± 0.023 0.264 ± 0.003 

5 0.279 0.317 ± 0.035 0.274 ± 0.004 

8 0.263 0.356 ± 0.023 0.284 ± 0.003 

16 0.217 0.362 ± 0.017 0.310 ± 0.006 

25 0.186 0.414 ± 0.012 0.334 ± 0.006 

45 0.136 0.459 ± 0.009 0.381 ± 0.007 

90 0.0532 0.614 ± 0.031 0.467 ± 0.010 
aTotal quench time at 340 K; e.g., 𝑡 = 8 min means that the sample was quenched for 5 min at 

340 K, returned to 298 K for measurement, and quenched another 3 min.  bConcentration of 

PADS.  The relative concentration is precise to better than 1%.  cMean value over three lines; 

error is the sd and the average fit error taken in quadrature.  dIgnoring the small difference in the 

three lines 

 

5.8 Dependence on the microwave power range.  The parameters from a least-squares fit can 

depend on the fit window. [26]  Therefore, it’s important to document the dependence of 𝐾1 on 

the fit range.  Taking as an example, the CWS in Figure 5, we fit the same curve over different 

ranges to different maximum values of √𝑃 yielding the results tabulated in Table 10.  The 

percent discrepancy is given in the third column, showing that an accurate calibration is effected 

using any range up to one of the five maximum values of √𝑃 in Figure 5, demarked by the 

arrow.  Because values of 𝐾1𝑉𝑝𝑝
 are expected to vary with the setup, these power ranges are only 

a guideline; however, this range is for 𝑠 from 0.45 to 0.83, independent of 𝐾1𝑉𝑝𝑝
.  Because the fit 

range is robust, one may be guided by the appearance of the CWS and fit to several maximum 

powers near the CWS peak to confirm the invariance of the results. 

 

Table 10.  Dependence of 𝐾1𝑉𝑝𝑝
 on power range of the CWS.a 

Maximum fit-value √𝑃, W1/2 𝐾1𝑉𝑝𝑝
, G/ W1/2 % difference from the mean 

value of 0.905 ± 0.009 

0.0892 0.926 ± 0.009b -0.7 

0.112 0.918 ± 0.008 -0.2 

0.141 0.913 ± 0.008 0.8 

0.178 0.904 ± 0.010 1.5 

0.224 0.899 ± 0.003 2.4 
aUsing Figure 5 as a representative example.  bErrors estimated from the fit. 

 

6 Discussion 

 

6.1 Protocol to calibrate 𝑯𝟏 using parameters derived from the Voigt shape of PADS.  Any 

mode of CWS may be used, employing the final column of Table 5; however, we recommend the 

mode 𝑉𝑝𝑝 which is straightforward to measure and is more precise than either Δ𝐻𝑝𝑝
𝐿  or 𝐼.  Thus, 

the CWS of 𝑉𝑝𝑝 is fit to Eq. (10) with 𝑇1 = 0.33 s to find 𝐾1𝑉𝑝𝑝
 and the resulting value of 𝐻1 is 

computed from Eq. (14) with 𝜁𝑉𝑝𝑝
 = 0.906 ± 0.029.  The uncertainty in 𝐾1𝑉𝑝𝑝

, including that due 

to the fit window, Table 10, is about 1.5%.  Adding this to the 3.2 % uncertainty for 𝜁𝑉𝑝𝑝
 in 
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quadrature gives about 3.5%.  Therefore 𝐻1 may be determined with a precision of about 3.5 % 

for a given value of Q. 

 

6.2 Protocol to calibrate 𝑯𝟏 using parameters measured directly from the spectrum of 

PADS.  We routinely fit all nitroxide spectra to a Voigt, check to see if it is an excellent fit using 

the criterion that the maximum residual between the fit and the spectrum be less than 1 % of 𝑉𝑝𝑝.  

For example, see Figure 20 of Ref. [18].  Therefore, for us, it is just as easy to measure and 

compute 𝑉𝑝𝑝, Δ𝐻𝑝𝑝
𝐿 , 𝐹, and 𝐼 as it is to measure Δ𝐻𝑝𝑝

𝑜𝑏𝑠 and 𝑉𝑝𝑝.  Nevertheless, we recognize that 

many, maybe most labs are not set up to do that and wish to calibrate 𝐻1.  With that in mind, we 

fit the CWS of 𝑉𝑝𝑝 to Eq. (10) to obtain 𝐾1𝑉𝑝𝑝

∗  using Δ𝐻𝑝𝑝
𝑜𝑏𝑠(0) rather than Δ𝐻𝑝𝑝

𝐿 (0), where the 

asterisk denotes using the former rather than the latter.  The ratio  𝐾1𝑉𝑝𝑝

∗ /𝐾1𝑉𝑝𝑝
 = 1.07 ± 0.02; 

therefore, the corrected values of 𝐾1𝑉𝑝𝑝
= 𝐾1𝑉𝑝𝑝

∗ /(1.07 ± 0.02).  Thus, the CWS of 𝑉𝑝𝑝 is fit to 

Eq. (10) with 𝑇1 = 0.33 s to find 𝐾1𝑉𝑝𝑝

∗  and the effective value of 𝐻1 is computed from Eq. (14) 

with 𝜁 ∗𝑉𝑝𝑝
 = 0.847 ± 0.031, given in the final row of Table 5. The precision will depend on the 

errors in obtaining Δ𝐻𝑝𝑝
𝑜𝑏𝑠 and 𝑉𝑝𝑝 which must be estimated in each case. 

 

We reiterate that to find reliable values of 𝑇1 for other radicals the mode 𝐼 must be used.  Indeed, 

we are able to use 𝑉𝑝𝑝 to calibrate 𝐻1 for PADS because its line shape does not differ radically 

from the Lorentzian allowing the use of the Lorentzian CWS to fit the results.  For Voigt shapes 

with larger values of 𝜒 the CWS of 𝑉𝑝𝑝 does not remotely conform to the Lorentzian CWS as can 

be appreciated by examining, for example, the results of Portis [23] where the CWS reaches a 

plateau and does not decrease or Castner, [24] where it does reach a maximum but decreases 

more slowly than the Lorentzian.  For further insight into problems associated with saturation of 

inhomogeneously broadened lines, see also, Ref. [37]. 

 

We have proposed that the standard sample be measured at 298 K; however, there may be setups 

without temperature control.  For those, a measurement of 𝑇 will permit a corrected value of 𝑇1 

to use in the calibration by interpolation in Table 7.  We have proposed using air-saturated 

samples; however, deoxygenated samples could be used employing 𝑇1 = 0.475 ± 0.019 s for the 

Argon sample (Table 8) in Eqs. (9 – 11) to fit the CWS. 

 

6.3 Update the Results.  In the event that a more accurate value of 𝑇1 becomes available, the 

results in this paper may be scaled by recognizing that the same value of 𝑠 is obtained for 

𝑇1𝑎𝑑𝑗𝐾1𝑎𝑑𝑗
2  = 0.33𝜇𝑠 ⋅ 𝐾1

2, where 𝑇1𝑎𝑑𝑗 and 𝐾1𝑎𝑑𝑗 are the new, more accurate values and 𝐾1 is 

the previously calibrated value; therefore 

 

𝐾1𝑎𝑑𝑗 = √
0.33𝜇𝑠

𝑇1𝑎𝑑𝑗
𝐾1 

(17) 

 

We have presented values of 𝑇1 and 𝑇2 as functions of several parameters.  It is beyond the scope 

of this paper to discuss these results in detail; however, we do note that they decrease as a 

function of increasing oxygen and/or increasing PADS concentration, as expected, Tables 7 – 9.  
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They also decrease with increasing 𝑇 for these rather low PADS concentrations.  Under all 

conditions, 𝑇1 > 𝑇2. 

 

6.4 CWS to increase precision.  A benefit to CWS studies is an increased precision of 

parameters pertinent to the unsaturated region.  Typically, one runs a saturation curve on a 

sample with a selected set of parameters; 𝑇, solvent, concentration, etc., and then picks a prudent 

value of 𝑃 in order to avoid saturation.[31]  Then the experiment is run at that power, but 

considerable information is lost by not running a CWS.  Using Figure 5 to illustrate, perhaps a 

worker would select √𝑃 = 0.02 G1/2 as the prudent value.  Then, to measure Δ𝐻𝑝𝑝
𝐿 , for example, 

looking at Figure 7, we see that the results are quite noisy, so much so that the difference 

between the three lines is not significant although from the 3rd column of Table 3, we see that the 

difference in Δ𝐻𝑝𝑝
𝐿  between hf versus the other two is small, but significant.  Fitting a CWS not 

only increases the statistics but also profits from the increased SNR at higher powers.  To 

improve the precision at a single value of 𝑃 one could measure the spectrum 𝑁 times gaining a 

factor 𝑁1/2 in the precision, [34] but all at the same SNR; thus, the gain in precision for the same 

acquisition time is less.  Similar remarks apply to the slope of 𝑉𝑝𝑝, 𝐾𝑝𝑝, and the slope of 𝐼, 𝐾𝐼.  

See the insets to Figures 5 and 6.  Thus, in order to compare the relative concentrations of 

radicals in two solutions, one may use all of the points to obtain 𝐾𝐼 instead of the usual method 

of comparing them at one power for each sample.  A similar use of CWS was employed by 

Eaton and co-workers to get better values of proton hyperfine coupling constants. [28] 

 

7 Conclusions 
 

We have proposed and demonstrated a protocol to calibrate the effective value of 𝐻1 by 

measuring and fitting the CWS of a standard sample of PADS.  The demonstration was for the 

case of a line-sample extending all of the way through a TE102 cavity with a particular 

configuration of the sample and temperature control glassware, so for changes in any of these, a 

new calibration would be necessary.  For this demonstration, the calibration would permit the 

measurement of 𝑇1 to a precision of about 3.5 % if the sample of interest is in aqueous solution 

and careful sample placement ensures reproducible values of 𝑄.  For other solvents, 

measurements of 𝑄 are necessary and, using our results as a guide, the uncertainty in √𝑄, 2.8 %, 

adding in quadrature to the 3.5 %, would increase the uncertainty to about 5 %.  Note that this 

estimate includes only random errors in the measurement of 𝑄.  These uncertainties are estimated 

from the fitting errors in the least-squares fits and the sd of repeated measurements.  They do not 

include the uncertainty in the supposed value of 𝑇1 = 0.33 S.  If a more accurate value of 𝑇1 for 

the standard sample were to become available, Eq. (16) would allow corrected values of past 

measurements to be obtained. 
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Figures 

 

 
Figure 1. CWS of ∆𝐻𝑝𝑝

𝐿  for a point-sample, squares, and line samples, circles, with (a) 𝜉∆𝐻𝑝𝑝
𝐿  = 1 

for both samples and (b) with 𝜉∆𝐻𝑝𝑝
𝐿  = 0.8518 for the line-sample.  What appears to be a single 

line is the overlay of two lines that are fits of the data to Eq. (9). 
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Figure 2.  CWS of 𝑉𝑝𝑝 for a point-sample, squares, and line samples, circles, with 𝜉𝑉𝑝𝑝

 = 0.8620 

for the line-sample.  Two overlaying lines that appear to be a single line are fits of the data to Eq. 

(10). 
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Figure 3.  CWS of 𝐼 for a point-sample, squares, and line samples, circles, with 𝜉𝐼 = 0.9013 for 

the line-sample.  Two overlaying lines that appear to be a single line are fits of the data to Eq. 

(11). 
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Figure 4.  (a). Mean values and sd (error bars) of Δ𝐻𝑝𝑝

𝐺  averaged over 20 values of √𝑃 for each 

of the three lines in the spectra versus PADS concentration. The mean value of Δ𝐻𝑝𝑝
𝐺  over the 

480 measurements, placed near the origin for clarity, is shown by the solid square.  (b). Δ𝐻𝑝𝑝
𝐺  vs. 

√𝑃 for the same series.  These data are from the heat quench experiment with an Air sample.  

Further data are given in Table 9. 
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Figure 5.  Main plot: CWS of 𝑉𝑝𝑝 of the standard sample: lf, circles; cf, squares; and hf, 

diamonds.  The lines are least-squares fits to Eq. (10) with parameters in Table 2.  The arrow 

demarks the stable fitting range of √𝑃.  Inset: linear region where straight lines fit the data with 𝑟 

= 0.99996, 0.99989, 0.99983. 
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Figure 6.  Main plot: CWS of 𝐼 of the standard sample; symbols are the same as in Figure 5.  The 

lines are least-squares fits to Eq. (11) with parameters in Table 3. Inset: linear region where 

straight lines fit the data with 𝑟 = 0.9996, 0.9992, 0.9996. 
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Figure 7.  Saturation of Δ𝐻𝑝𝑝

𝐿 , the Lorentzian component of the Voigt line shape.  Symbols are 

the same as in Figure 5.  The lines are least-squares fits to Eq. (9) with parameters in Table 4.  

What appears to be a single line is the overlay of two lines fit to lf and cf.  

 

 

 


