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Using Long Short-Term Memory Recurrent Neural Network in Land Cover

Classification on Landsat Time Series and Cropland Data Layer

Land cover maps are significant in assisting agricultural decision making. However, the
existing workflow of producing land cover maps is very complicated and the result accuracy
is ambiguous. This work builds a long short-term memory (LSTM) recurrent neural network
(RNN) model to take advantage of the temporal pattern of crops across image time series to
improve the accuracy and reduce the complexity. An end-to-end framework is proposed to
train and test the model. Landsat scenes are used as Earth observations, and some field-
measured data together with CDL (Cropland Data Layer) datasets are used as reference data.
The network is thoroughly trained using state-of-the-art techniques of deep learning. Finally,
we tested the network on multiple Landsat scenes to produce five-class and all-class land
cover maps. The maps are visualized and compared with ground truth, CDL, and the results of
SegNet CNN (convolutional neural network). The results show a satisfactory overall accuracy
(>97% for five-class and >88% for all-class) and validate the feasibility of the proposed
method. This study paves a promising way for using LSTM RNN in the classification of

remote sensing image time series.
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1. Introduction

The long-lasting observation of hundreds of onboard sensors in the past six decades has
accumulated a huge volume of satellite images (Computing 2013; Ward 2008; NASA 2016;
Burnett, Weinstein, and Mitchell 2007). However, the conventional image analysis techniques only
expose a tiny part of the information in this rich mine (Ma et al. 2015; Li, Dragicevic, et al. 2016).
In this data-rich yet analysis-poor era, the pace of analyzing data is far behind the speed of
obtaining data. Too many manual processes are the major obstacles in the path. Thus deep learning
(DL), which is more intelligent and requires less human intervention, becomes more and more
popular. Meanwhile, the remote sensing (RS) community has vaguely recognized that conventional
classification schemes are frequently driving to dead-end when improving the result accuracy

(Canty 2006; Blaschke et al. 2014; Sun et al. 2015; Computing 2013; Hussain et al. 2013). In the



world-renowned ImageNet competition, the DL based solutions often outperformance the
conventional methods. A recent trend shows that RS researchers are enlightened to choose DL for
higher accuracy in their future research. A quite number of studies have already practiced neural
networks in classifying RS images and achieved a few satisfactory results.

The success of DL relies on massive training datasets and powerful compute nodes like
Graphics Processing Units (GPU). A good network requires careful engineering and considerable
domain expertise in network training. Feed-forward neural network (FNN) and recurrent neural
networks (RNN) are two commonly used networks. The former feeds information straight through
the network, while the latter cycles the information through a loop. A representative of FNN is
convolutional neural network (CNN) which is dedicated for captioning objects in images such as
faces, plate numbers, and signatures. RNN can form a memory of patterns and is suitable to learn
sequential data like speech and text. Today, the application scope of the two networks is
overlapped. There are few hardcoded restrictions on the specific use cases of either type of
networks. We intend to try RNN on analysis of RS image time series to learn the temporal pattern

of agricultural land covers and produce more accurate classification results.

1.1 Problem Statement

Cropland data layer, short as CDL, is a land cover product by United State Department of
Agriculture National Agricultural Statistics Service (USDA NASS). Its spatial extent covers the
continental U.S. at 30 meters resolution. Landsat dataset is its major data source. It has relatively
high accuracy over the other existing products as NASS massively integrated their ground truth
data collected by its field offices into it. Many pixel values are based on real field reports rather
than classification algorithms. CDL releases only one layer for each year and labels all the pixels
with a unified crop hierarchy. As the frequency is low, it is unable to in-time reflect agricultural
activities like sowing, irrigation, harvesting. Cropland changes over seasons and many farms carry
out multiple cropping within a year. Although CDL hierarchy has double cropping categories (107-

122, 132, see the supplemental material), the time frames of each cropping are completely



unknown. Actually, in-time result from current observations is eagerly needed in the agricultural
analysis. Higher-frequency updates of CDL-like products are very helpful in agricultural decision
making for sure. We want to use DL technique to enhance the data mining in the window interval
between CDL releases and provide more information about the land cover changes to the decision

makers.

1.2 Contributions

This paper builds an LSTM RNN model to utilize CDL time series and ground-measured data to
classify Landsat images. The model aims to generate CDL-like products in a more frequent manner
and supplement the missing years in CDL history. This work pre-processed Landsat, CDL time
series, and ground truth to get training samples. The network is trained thoroughly with the state-
of-the-art techniques from the DL community. Finally, we tested the network on multiple Landsat
scenes to produce five-class and all-class land cover maps. The five classes are cropland, non-crop
vegetation, developed space, water, and barren land. The all-class maps use the same hierarchy as
CDL. The results are plotted on charts and evaluated by reference data. The experiment shows a
satisfactory accuracy (>97% for five-class and >88% for all-class) which validates the feasibility of

the proposed model.

1.3 Related Work

ANN (artificial neural network), especially deep neural networks (DNN), already has plenty of
application in image recognition (LeCun, Bengio, and Hinton 2015). Audebert et al revealed the
general foreseeable benefits by DL to remote sensing (Audebert et al.). They tested various DL
architectures in the semantic mapping of aerial images and better performances than traditional
methods are achieved. Cooner et al evaluated the effectiveness of multilayer feedforward neural
networks, radial basis neural networks and Random Forests in detecting earthquake damage by the
2010 Por-au-Prince Haiti 7.0 moment magnitude event (Cooner, Shao, and Campbell 2016). Duro

et al compared pixel-based and object-based image analysis approaches for classifying broad land



cover classes over agricultural landscapes using three supervised learning algorithms: decision tree
(DT), random forest (RF), and support vector machine (SVM) (Duro, Franklin, and Dubé 2012).
Zhao et al used multi-scale convolutional auto-encoder to extract features and train a logistic
regression classifier and got better results than traditional methods (Zhao et al. 2015). Kussul et al
designed a multilevel DL architecture to classify land cover and crop type from multi-temporal
multisource satellite imagery (Kussul et al. 2017). Maggiori et al trained CNN to produce building
maps out of high-resolution remote sensing images (Maggiori et al. 2017). Das et al proposed
Deep-STEP for spatiotemporal prediction of satellite remote sensing data (Das and Ghosh 2016).
They derived NDVI (normalized difference vegetation index) from thousands to millions of pixels
of satellite imagery using DL. Marmanis et al used a pre-trained CNN from ImageNet challenge to
extract an initial set of representations which are later transferred into a supervised CNN classifier
for producing land use maps (Marmanis et al. 2016). Li et al used DL to detect and count oil palm
trees in high-resolution remote sensing images (L1, Fu, et al. 2016). Ienco et al evaluated the LSTM
RNN on land cover classification considering multi-temporal spatial data from a time series of
satellite images (Ienco et al. 2017). Their experiments are made under both pixel-based and object-
based scheme. The results show the LSTM RNN is very competitive compared to state-of-the-art
classifiers and even outperform classic approaches at low represented and/or highly mixed classes.
These successful cases have advised the great potential of DL in RS image recognition, which
inspire us to conduct this study using LSTM RNN on satellite image time series for crop
classification.

In addition, LSTM RNN has many improved versions to increase the efficiency and
accuracy, such as bi-directional LSTM (Schuster and Paliwal 1997; Graves, Mohamed, and Hinton
2013), which is a great extended algorithm of LSTM RNN to overcome the limitations of a regular
RNN and is found significantly more effective than the unidirectional ones. However, it doesn’t
always make sense for all the sequence-to-sequence problems as it relies on the knowledge of the

future and a specific time frame. In our case, the study time frame is dynamic. The specific time of



agricultural activities varies every year and the size of available training images changes, which

makes the last time step of the sequence uncertain.

2. Materials and Methods

2.1. Study Area and Materials

We choose the North Dakota (Fig. 1), which has a sound historical archive of Landsat and CDL
products (Fig. 2), as our study area. North Dakota is a state in the northern U.S. Agriculture is its
number-one economic industry (Coon and Leistritz 2010). According to NASS public reports, the
agricultural products of North Dakota play a significant part in the overall yield of U.S., especially
on corn, soybeans, spring wheat and durum wheat (Jantzi et al. 2017).

The Landsat program has observed the Earth for more than four decades and retrieved about
six million scenes (Wikipedia 2014; USGS 2016). The renowned Landsat 5 started to deliver
images from the space in 1984 and was decommissioned in 2013. Landsat 7 operated smoothly
before May 2003 but generated gaps after then due to the malfunction of its scan line corrector. In
2013, a new member, Landsat 8, was launched into the orbit to continue the mission (Roy et al.
2014). Landsat satellites normally scan the entire Earth about every two weeks at 30-meter
resolution.

CDL is a popular yearly product made by USDA covering the continental U.S. It is widely
accepted as a general reference on crop distribution. CDL directly fused a lot of ground truth data
collected by NASS field offices, resulting in a much better accuracy than the other existing
products. The general per-pixel accuracy is claimed as 85% to 95% for major crop types (Boryan et
al. 2011). The time coverage of Landsat and CDL in North Dakota is shown in Fig. 2. North
Dakota is also the only state that has CDL from the very beginning (the oldest CDL year is 1997).
The CDL program only started to provide data for the entire continental U.S. after 2008. Given
1997 is the year when Landsat and CDL began to coexist, the years from 1997 to 2017 are circled

into our study time pool.



Figure 1. Study area. The black lines in the map are U.S. county boundaries. The projection is

NADS83/Conus Albers (EPSG code: 5070).

Figure 2. The availability of data for North Dakota since 1997

2.2. Recurrent Neural Network and Long Short-Term Memory

RNN has a feedback connection which is the most apparent difference from FNN. The underlying
principle of classic RNN is very straightforward. The outputs of previous time steps will be
considered as inputs in the current time step, and the results of the current time step will impact the
calculation of the next time step. Thus, the historical results will have a long-term influence on the
future judgment, which is similar to the definition of memory. Given x4, X5, ..., X,, are the input
vectors, hy, h,, ..., h, are the hidden cell output vectors and y4,y,, ..., ¥, are the result vectors,
where n represents the total steps. A RNN cell is exhibited in Fig. 3 (the left one). The equations

computing result vectors from input vectors are (1)-(3).

ht = HQ)(ht—l) + Hxxt (1)

Ye =60,0m,) (2)
2x_q

franhy = —my 3)

where 6, 0, 6,, are weights, @ is the activation function (tanh in most RNNs). The self-connection
weight 6 is simply initiated as 1. The subsequent back-propagation will adjust all the weights in

every iteration.

Figure 3. RNN and LSTM introduction

LSTM RNN is explicitly designed to avoid the long-term dependency problem (Gers and
Schmidhuber 2000) and the underlying principle is a little more complicated to understand. Not all
the LSTMs are uniform and almost every paper involving LSTMs uses a slightly different version

(Jozefowicz, Zaremba, and Sutskever 2015). We adopt the definition from Graves (Graves,



Mohamed, and Hinton 2013) to explain its internal mechanism. As shown in Fig. 3 (the right one),
a cell of LSTM RNN has three extra “gates”, which control the involvement of the past context
information. The input gate is responsible for scaling input to the cell. The output gate is to scale
the output from the cell. The forget gate is to scale the influence of old cell value on the current cell

state. The equations for computing the gate outputs are (4)-(9):

i; = 0(0yx; + Opihi_1 + by) 4)
fe=0(0xpx; + Opph_y + by) (5)
0y = 0(xoX¢ + Onohe—1 + bo) (6)

g: = tanh(6,,x; + Opgh;_y + by) (7)
cc=fr Cco1ti-ge (8)
h; = o, * tanh(c;) 9)

where h;_; is the output of the last time step, x; is the cell input at the current step, and h; is the
cell output. The ¢ in the subscripts represents the current step number. The i, f, o, and g respectively
denote the output vectors of input gate, the forget gate, output gate and the cell itself. 8 means the
weights, for example, 8,; is the weight between the input vector x; and the input gate vector i;, Oy;
is the weight between the output vector h;_; and the gate vector i;, and so forth. » represents
biases. ¢; and c¢,;_; are the cell outputs in the current step and the previous step. The o represents a
sigmoid function. LSTM usually limits the activation function to tanh for g, and h;, and sigmoid
for iy, f¢, and 0. Sigmoid output values scope from 0 (completely get rid of this) to 1 (completely
keep this), while tanh scales cell outputs into the range between -1 and 1. Other activations, like the
popular RELU (rectified linear unit) (Dahl, Sainath, and Hinton 2013; Nair and Hinton 2010),
makes LSTM diverge due to the existing of gates and is not suitable here (Breuel 2015). Therefore,
for a LSTM RNN sigmoid and tanh are the common configuration.

Generally, the classic RNN cannot look back too far and LSTM RNN solved that problem
(Hochreiter and Schmidhuber 1997). As its extraordinary performance on memory, LSTM RNN

has become a very popular choice for modeling inherently dynamic process like voice and



handwriting (Graves, Mohamed, and Hinton 2013) and massively used by tech giants, e.g. Apple,
Google, Microsoft, and Amazon. This work also utilizes LSTM RNN and examines its
performance in the classification of RS image time series. As the pixel value changes in time series
have many similar characters to the signal of speech or handwriting, high accuracy is expected to

be achieved in this work.

2.3. End-to-End Framework

An end-to-end framework is designed to train LSTM RNN on Landsat and CDL time series. In the
proposed model displayed in Fig. 4, each input pixel is turned into an input vector which includes
seven variables corresponding to seven bands of Landsat. As shown in Table 1, the bands of
different Landsat satellites are different. For Landsat 8, we use its first to seventh bands. Landsat 7
ETM+ and Landsat 5 TM have no ultra-blue so we only have six bands accordingly. The other
bands are not used as they are for special purposes like the cirrus band. Each image represents a
status of the cropland and the surface reflectance of the same crop in different growing stages is
various, e.g., a farm field is covered by crop in the growing season but by bare soil after harvesting.
In other words, each image is parameterized as a time step in LSTM RNN (Fig. 5). LSTM is
supposed to remember the trained pixels on each time step and automatically judge and use the
knowledge in labeling the inputted pixels in future steps. The mode in Fig. 5 is synced sequence
input and output, in which the number of inputs is the same as the number of outputs. We choose
this mode and discard others like many-to-one or sequence-input-and-sequence-output, because we
want to generate a crop map for each time step even though the input Landsat image is not suitable
(e.g., too many clouds) or the time is not good for crop classification (e.g., early-spring). Thus,
every year will have a sequence of Landsat images and predicted crop maps. Generally, the crops
are still in early growing stage in Spring and hard to recognize on satellite images. Therefore, the
maps generated in Spring have lower accuracy than the maps generated in Summer and early
Autumn (June, July, August, and September). Therefore, the first several maps in each year

significantly depend on empirical knowledge learned by LSTM in training stage and will only be



used as reference to roughly estimate the crops. In the late growing season, the accuracy of the
maps is supposed to increase as the patterns of crop growing become much clearer in the latter time
steps of LSTM.

Three hidden layers with LSTM neurons are configured. The first layer has 500 neurons and
each neuron maps a type of feature. The second layer has 250 neurons which are the high-level
composition of the first-layer features. The third layer has 100 neurons which are the more abstract
composition of the second-layer features. The three-tier representation tries to establish a mapping
between pixels and land cover captions. As for optimization method, there are many optimizers
available, like Adam, Adagrad, AdaDelta, Stochastic Gradient Descent (SGD), RMSProp, and
Nesterov accelerated gradient. In this work, we choose the SGD to reduce the high cost of
backpropagation as it can certainly converge to a local minimum, slowly progress towards the
bottom and have little chance to encounter gradient vanishing problem (Merity, Keskar, and Socher
2017). We also tried Nesterov, Adam, and RMSProp and they give slightly quicker learning curves
than SGD but easily lead to gradient vanishing problem. In our initial tests, the RMSProp produces
relatively better learning curves over other optimizers before it is overfitted. The network using
RMSProp was experimentally trained and its results are very similar to SGD network. By contrast,
SGD seems to make LSTM remarkably easy to train. Hence, we conservatively use SGD in this
study as a compromise solution. In future, we will further study how other optimizers could
improve the converging speed and prediction accuracy while avoiding overfitting and divergence in
this scenario. The loss function is multiclass cross entropy which is commonly used to classify a set
of objects into multiple classes. Backpropagation is enabled for weight updating. The weights are
initialized by Xavier’s method (Glorot and Bengio 2010). Learning rate is scheduled to decay on a
certain iterations so the training can switch to small steps when they are close to the optimum
(Senior, Heigold, and Yang 2013).

The output layer uses SoftMax as activation function on each unit of the output vector. Each

dimension corresponds to a land cover class. We made two networks for five-class and all-class



experiments respectively. In the five-class hierarchy, 0 means cropland, 1 means vegetation other
than crops, 2 means developed space, 3 is water and 4 is bare land. A complete mapping from all
classes in CDL hierarchy to the five classes is contained in the supplemental material. The value of
each output neuron ranges from 0 to 1, representing the probability of the inputted pixel belongs to
the corresponding land cover. The land cover with the highest probability will claim the pixel.

This network configuration is not the only solution to this problem. The depth could be as
deep as hundreds of layers and the neurons on the hidden layers could be thousands. Actually, the
cutting-edge hardware allows millions of neurons and hundreds of layers present in one network. In
theory, the bigger network has more capacity to discover very implicit features, but meanwhile
increases the chance of over-fitting. This network benchmarks LSTM RNN in crop classification
and three hidden layers with 850 neurons are basically adequate for this study. More experiments

are needed on deeper and wider networks in the future.

Figure 4. The proposed model (per pixel)

Figure 5. Many-to-many schema to learn the temporal pattern of crop growth

Table 1. The employed bands of Landsat 5, 7 and 8 (unit: micrometers)

2.4. Training

We collected Landsat surface reflectance (SR) products in the studied period and clipped the area
of North Dakota. A subarea of North Dakota is chosen for training (Fig. 6). The mask band is used
to filter out the cloud, cloud shadow, bad quality pixels, etc. The CDL of the area from 2013 to
2016 is extracted and pre-processed to match with Landsat pixels. Each color in CDL represents a
different crop category, e.g., yellow is corn, green is soybean and red is barley. The pixels must go
through a number of processes before being considered as training samples (Fig. 7). We abandoned
boundary pixels in the CDL of the corresponding year. Only the clear pixels whose eight-
directional neighbors are labeled by the same category are retained. Then those pixels are validated

by ground-measured datasets from North Dakota public datasets. Only the qualified pixels to the



above two rules are added into the training dataset. The affine transformation is used to transform
the pixel x and y to latitude and longitude. The matching between Landsat pixels and CDL pixels is
established via their geospatial coordinates. The band values will be normalized to highlight the
signal variance equally. Crop captions for the pixels are mapped to the specially adopted
hierarchies, e.g., five classes or all classes (the supplemental material). Finally, the training samples
are encoded in multiple CSV files with eight columns (seven inputs and one class label), and each

file comes from a different image. The files will be inputted to LSTM in time sequence.

Figure 6. The data series of Landsat and CDL for training. The x-axis is the input bands and the y-
axis is the timeline of Julian dates (e.g., 2013143 means 23 May 2013). The false color composites
are grey-scaled band images. The four classified maps at the bottom are CDLs from 2013 to 2016.

The full legend for CDL is on NASS website (Boryan et al. 2011).

Figure 7. Pre-processing workflow

Training a neural network is a world-class challenge, especially when the training samples
are not normally distributed. Over-fitting and under-fitting are two of the most painful things for
DL practitioners. Under-fitting means the network is not well trained and the data pattern stays
unrecognized. Over-fitting means that the network is over-trained and loses generality on the test
dataset. A typical consequence is the accuracy of the training dataset is extremely high but very
poor on the test dataset. Dropout is a technique specially designed to avoid over-fitting, but not a
universal solution (Srivastava et al. 2014; Krizhevsky, Sutskever, and Hinton 2012; Dahl, Sainath,
and Hinton 2013). Many studies still try to figure out a better solution. The methods we used to
avoid overfitting are Bias (Schaffer 1993) and L2 regulation (Zibulevsky and Elad 2010).

We picked 13,508,899 samples from eleven Landsat scenes (6 Oct, 2 Sep, 3 Aug, 18 July,
16 June in 2016; 20 Oct, 11 Apr, 26 Mar in 2015; 14 Aug, 13 Jul, 8 Apr in 2014) to fully train the

built model. The score-iteration path is plotted in Fig. 8. The score represents the value of



multiclass cross entropy (MCE) which is the loss calculated against every batch of training samples
for backpropagation. The MCE bounces back and forth in different batches but is stably decreasing
over epochs. After thousands of iterations, the difference of test accuracy between two consecutive
iterations will become very small. If the difference is smaller than a threshold, the learning should
be terminated to prevent over-fitting. The size of the network determines its tolerance to the
complexity of the pattern. The completeness and distribution of training dataset have a direct

impact on the steep level of the training curve.

Figure 8. Training 1,474,034 samples in five epochs.

For performance increasing the learning, rate is scheduled to decay along with the iterations
(Fig. 9). Meanwhile, to accelerate training the experiment is conducted on the computation node
with two Intel(R) Xeon(R) E5-2650 v3 CPUs and a Geforce GTX 1060 6GB GPU. The host
operating system is Ubuntu Linux 64bit version 16.04. The training samples are learned by
hundreds of epochs. DeepLearning4] API is used to program the model and NVIDIA CUDA is

utilized for high-performance parallel processing.

Figure 9. The scheduled drop of learning rate
We use confusion-matrix metrics to measure the model accuracy. The usual metrics include
overall accuracy (OA), producer accuracy (PA), user accuracy (UA) and Kappa coefficient

(Congalton 1991). The equations are (10)-(17).

Npixels correctly classified
MOA =L Y (10)
Ntotal pixels

N . .
__ !Vpixels correctly classified as i
Mpp; = =22 Lassifie (11)
reference pixels of i
N . .
__ !Vpixels correctly classified as i
My, = =225 classifie (12)
pixels classified as i
DPo—Pe
My = (13)
a a
pp 1-pe

Do = Npixels correctly classified (14)



Pe = XisoPi * i (15)

D.i = Nreference pixels of class i (16)

Di. = Npixels classified as i (17)

where i represents crop number, 7 is the total number of crops, N is the count function, p, is the
relative observed agreement among raters, and p. is the hypothetical probability of chance
agreement. OA is the percentage of correctly classified pixels in all the pixels. PA is evaluated from
the view of producers and represents the probability that the reference samples are correctly
classified in the results. UA is evaluated from the view of users and reflects the probability that the
classified results agree with the reference maps. Kappa coefficient measures the overall agreement
between the classified map and the reference map and its value ranges from 0 to 1. 0 means
complete disagreement, while 1 means the classified result and the reference data are identical.
These metrics can determine if the model is correctly fit on both training and testing datasets and

help avoid over-fitting or under-fitting.

3. Results

We applied the trained LSTM RNN on continuous images to produce time-series crop maps. The
Landsat footstep is path 031 row 027 in WRS-2 (world reference system) (Irons, Dwyer, and Barsi
2012). The tested images include six scenes on 26 May, 30 Aug and 15 Sep in 2014, 1 Aug and 2
Sep in 2015, and 13 Apr in 2016. All the five-class results are listed in Fig. 10. The proportion of
developed and barren land in the study area is small so we merge them with non-crop vegetation
into a bigger class - non-crop land. Thus, the predicted final maps only contain three classes. CDL
is also mapped into the three classes for comparison. Fig 10 (a), (b), and (c) are CDL in 2014, 2015
and 2016, respectively. Fig. 10 (d), (e), and (f) are the classified results. After manual supervised
comparison, we concluded that the results have no obvious differences from CDL. The six maps
highly agree on the distribution of water bodies. The top-left water in Fig. 10 (f) is larger than
others due to flooding. Small water bodies are precisely labeled in Fig. 10 (d), (e) and (f). The north

area in Fig. 10 (b) apparently contains less agricultural fields comparing to CDL in 2014 and 2016.



It is abnormal that a large scale of croplands turns into non-crop lands and switch back to croplands
in next year. Fallow might be the case, but in 2015 the rainfall in North Dakota is high which
makes fallow unlikely. It is more likely that CDL used a Landsat image in the rainy season and
incorrectly classify those croplands into herbaceous wetlands. Correspondingly, the result in Fig.

10 (e) has a better consistency on cropland than CDL in that area.

Figure 10. The three-classes test results and CDL. (a) CDL of 2014; (b) CDL of 2015; (¢) CDL of
2016; (d) test result on 26 May 2014; (e) test result on 1 Aug 2015; (f) test result on 14 Apr 2016.
We tested the all-classes LSTM on several scenes in growing season and compared the true-
color composite images, CDL, and the results of SegNet (Badrinarayanan, Kendall, and Cipolla
2017) to the results (Fig. 11). SegNet inherits from the fully convolutional neural network (FCNN)
(Long, Shelhamer, and Darrell 2015) and is one of the state-of-the-art technologies for semantic
segmentation. It proposes a deep convolutional encoder-decoder architecture for robust semantic
pixel-wise labeling. It is designed to only require forward evaluation of a fully learned function to
obtain smooth label predictions, consider the larger context for pixel labeling with increasing
network depth, and can visualize the effect of feature activations in the pixel label space at any
depth (Badrinarayanan, Kendall, and Cipolla 2017). Thus, this work chooses SegNet and trained it
with the same Landsat images and CDL mentioned in Section 2.4 and tested it in the same region.
Regardless of the network and used training sample size, both the LSTM RNN and SegNet
achieved good accuracies. The differences are small, scattered and distributed on the edges and
intersections. In details, the RNN results are more similar to CDL than the CNN results. In both
results, the corn and soybeans are confused in some places, and the edge pixels are a little irregular
comparing to CDL. The LSTM RNN results reflect more reasonable changes in crop distribution
over the growing season. The landscapes in the growing season of the same year keep basically the
same in the RNN results. Ambiguous classified places exist mainly in the alfalfa and grass/pasture,

corn and soybeans, barley and spring wheat, which look very similar to each other in some growing



stages and easy to be misclassified. Besides that, the CNN results seem struggling in separating
water from spring wheat and alfalfa, which lead to an apparent under-estimation of the lake and
rivers. Overall, the RNN and CNN have little differences on the primary crop types (corn, soybean)
and the RNN outperformed CNN on secondary crop types (barley, spring wheat, alfalfa). Due to
the encoder-decoder mechanism, the pixel clusters in CNN results are bigger and more uniform
than LSTM RNN results. It makes the CNN maps neat and smooth, but meanwhile ignores pixel-
wise temporal patterns in the areas with the complicated context of multiple crop types. LSTM
RNN gives a pixel-wise independent prediction to reflect the crop growing patterns in each pixel
area. The RNN results show that the LSTM RNN provides more specific and customized

independent analysis for each pixel and contains abundant crop context information of the farms.

Figure 11. Landsat true-colour composites, CDL, and the all-class results of LSTM RNN and
SegNet. The x-axis is the product category, and the y-axis is product observation date. The
classification legend is at the bottom.

As CDL is a synthetic product rather than ground truth, our result maps are not necessary to
mimics CDL. Instead, the absolute accuracy is estimated by metrics based on a more accurate
dataset. We created six sample sets of five classes and four sample sets of all classes. The sample
sets are derived from various Landsat scenes and ground measured datasets. Each sample goes
through the restricted processes in Section 2.4 to ensure their correctness. Table 2 and 3 shows the
metrics of five-class and all-class results respectively. In the five-class results, the overall accuracy
of LSTM RNN ranges from 97.33% to 99.21%, and in the all-class results ranges from 88.85% to
91.35%. The producer accuracy (PA) and user accuracy (UA) are higher than 93% in the five-class
and higher than 80% in the all-class results. The Kappa values of LSTM RNN are greater than 88%,
representing very good agreements on the major areas are reached by both producers and
consumers. Table 3 also contains the metrics of CNN results, whose overall accuracy (average

86.74%) is generally a little lower than the LSTM RNN results (average 89.73%). By comparison,



the SegNet has less PA, UA, and Kappa than LSTM RNN in this case, which reflects that the
LSTM RNN brings improvements on accuracy to the state-of-the-art and is very suitable for crop
classification on time series of Landsat scenes.

Table 2. Metrics of the five-class results

Table 3. Metrics of the all-class results by LSTM RNN (R) and SegNet (S)

4. Discussion

4.1 Why using RNN?

Convolutional neural network, short as CNN, is one of the most popular networks for image
semantic segmentation (Maggiori et al. 2017). In contrary, RNN is typically used in speech and text
processing. However, using RNN in crop classification has several reasons. First, the crop growth
is staged and time-sensitive. We take advantage of RNN to discover the temporal variation pattern
of crops during the growing season. RNN can detect the coherence among consecutive pixels over
time steps and recognize the characteristics of crops in different growing stages. The overall pattern
of samples will be more exposed using LSTM RNN where each sample has a long influence on the
future judgment. We can increase the sample pool to involve more Landsat scenes without
completely overwriting the network memory of old samples (CNN has this problem. Training on a
new sample set will under-fit the old one). Thus, this study chooses RNN over CNN and achieved
very good results. It indicates the playground of RNN should not be limited and it may harvest
exceptional outcome in unconventional scenarios. In addition, recurrent convolutional neural
network (RCNN) has been proposed and already put on the table [38]. In future, the performance of

CNN, RNN, and RCNN need be further examined on Landsat scenes.

4.2 Why all-class results less accurate than five-class results?

One reason is we are short of validation samples of crop ground truth. CDL only provides a
reference which is not one hundred percent correct. Even only a few wrong samples involved in the

training will lead to the errors that are augmented and propagated during the propagation. In other



words, neural network tolerance cannot fully offset the consequences of original errors in the
samples. If the network picks the wrong answer based on error samples, it will always prefer the
wrong answer in the subsequent learning. Thus, training samples should be as accurate as possible
at all costs, and the training samples of five-class are more accurate (either corn or soybean are
crop), which increases all-class results’ accuracy.

In addition, the Landsat bands limit the distinguishing capability they provide. For example,
corn has long and narrow leaves, and soybean has round and wide leaves. Corn leaves are not as
dense as soybean. However, in its growing season (245=Sep 3), the two crops have very identical
spectral features. We select 199,459 pixels of corn, soybeans, grass, and water from the Landsat
2015245 image. Their band values are plotted in Fig. 12 which shows the curves of corn and
soybean are overlapped and hard to distinguish. Increasing the dimensions of the band space with
more bands or data sources may help enlarge the differences.

Figure 12. Spectral characteristics of soybean, corn, water and grass (based on 199,459 samples of
3 Sep 2015). The x-axis is the band number and the y-axis is the reflectance value. The markers on
data points are random letters, which can help highlight the macro band value differences between

Crops.

4.3 Broad benefits

The traditional methods like SVM, Random Forest, and CART decision tree are non-parametric
models. It means their complexity increases along with the size of the training set. It is very
expensive to train them with big data. Meanwhile, the trained models can hardly be applied to other
strange images. The old models are disposable products which are huge wastes of producers’ and
users’ time and efforts. On the contrary, the proposed LSTM RNN model can be used across
images. It can remember the trained samples and generalize their features into a universal pattern
for the crops, which is adaptable to strange images. RS experts can feed the model with a huge
number of samples from different images. The memory mechanism of LSTM RNN will help

distinguish plenty of representation features to improve the classification results. The flexible



training and recycling usage will make the proposed model a very meaningful tool in the current
landscape of RS community and show a promising future on fully automatic image classification
(Sun et al. 2016; Sun et al. 2014). However, as the crop patterns in growing season vary in different
places according to the various weather and environment conditions like soil salinity and moisture,
it is still a long way to fully train the LSTM RNN to become universally applicable on all the crops
over the U.S. Thus, at present this study only deals with North Dakota, and it is not recommended
to directly use the trained network in another state. One solution is to reuse the trained LSTM RNN
by fine-tuning it on new Landsat scenes. For example, the network trained in this study is
especially for the P31R27 cell (North Dakota) in Landsat WRS2 grid, and if some people need use
it for the P32R31 cell (Nebraska), they can directly train the old network with the Landsat images
of P32R31, which is supposed to sum the memory of the two grids and gain capabilities to
recognize more crop patterns. Continuously training LSTM RNN with the Landsat images of all the

other agricultural states is an essential part of our next step of work.

5. Conclusions

This paper builds an LSTM RNN model to utilize CDL time series and ground-measured data to
classify Landsat images. The model aims to generate CDL-like products with higher accuracy in an
easier manner. We pre-processed Landsat, CDL time series, and ground truth, and used the
validated samples in training. The network is trained thoroughly with the state-of-the-art techniques
from the DL community. We tested the trained model on multiple Landsat scenes to produce five-
class and all-class crop maps. The model results are plotted on charts and compared with CDL and
ground truth. The evaluation results show a very satisfactory overall accuracy (>97% for five-class
and >88% for all-class) and validate the feasibility of the model in the land cover classification of
image time series.

In the future, we will compare LSTM RNN with CNN and RCNN to determine their
application range. Landsat 5 and 7 TM/ETM+ bands will also be involved to mend the lack of CDL

in some states before 2008. We will further study how other optimizers could improve the



converging speed and prediction accuracy while avoiding overfitting and divergence, and
experiment with deeper and wider networks for better network capability. In addition, continuously
training LSTM RNN with the Landsat images of larger scale (e.g. the entire U.S.) will be an

important part of our next step work.
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Figure 1. Study area. The black lines in the map are U.S. county boundaries. The projection is

NAD&83/Conus Albers (EPSG code: 5070).
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Figure 5. Many-to-many schema to learn the temporal pattern of crop growth
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Figure 6. The data series of Landsat and CDL for training. The x-axis is Landsat band and y-axis is
timeline of Julian dates (e.g., 2013143 means 23 May 2013). The false colour composites are grey-
scaled band images. The four classified maps at the bottom are CDLs from 2013 to 2016. The

legend for CDL is on NASS website.



Ground-measured

datasets
1 Training samples
Remove false pixels

. Global normalization
Filter cloud,
Shadow, bad

9 _» .
el 1L Class mapping
value, etc.
CDL-Landsat matching
Coordinate transformation

Landsat

Figure 7. Pre-processing workflow

M score

0.125 summary

o
8

e
o
~J
u

Multiclass cross entropy
<]
(=]
3

0.025

0.000
1000 1500 2000

Training iteration (times)

g

Figure 8. Training 1,474,034 samples in five epochs.

Iy

b
;. w

0.008

0.006

Learning rate
o

0.002

1

0 500 1000 1500 2000

A J

0.000

Training iteration (times)



Figure 9. The scheduled drop of learning rate
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Figure 10. The three-classes test results and CDL. (a) CDL of 2014; (b) CDL of 2015; (c) CDL of

2016; (d) test result on 26 May 2014; (e) test result on 1 Aug 2015; (f) test result on 14 Apr 2016.
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Figure 11. Landsat true-colour composites, CDL, and the all-class results of LSTM RNN and
SegNet. The x axis is product category, and the y axis is product observation date. The

classification legend is at the bottom.
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Figure 12. Spectral characteristics of soybean, corn, water and grass (based on 199,459 samples of
3 Sep 2015). The x-axis is band number and y-axis is the reflectance value. The markers on data
points are random letters, which can help highlight the macro band value differences of crops.

Table 1. The employed bands of Landsat 5, 7 and 8 (WL: wavelength)

Landsat 5 TM Landsat 7 ETM+ Landsat 8 OLI
No. Name WL(um) No. Name WL(um) No. Name WL(um)
1 Ultra blue 0.43-0.45
1 Blue 0.45-0.52 1 Blue 0.45-0.52 2 Blue 0.45-0.51
2 Green 0.52-0.60 2 Green 0.52-0.60 3 Green 0.53-0.59
3 Red 0.63-0.69 3 Red 0.63-0.69 4 Red 0.64-0.67
4 NIR 0.76-0.90 4 NIR 0.77-0.90 5 NIR 0.85-0.88
5 SWIR1 1.55-1.75 5 SWIR1  1.55-1.75 6 SWIR 1 1.57-1.65
7 SWIR2 2.08-2.35 7 SWIR2  2.09-2.35 7 SWIR 2 2.11-2.29




Table 2. Metrics of the five-class results (Avg is short for average)

Test dataset Pixel amount Accuracy UA (Avg) PA (Avg) Kappa
S1 736,558 0.9921 0.9649 0.9874 0.9917
S2 737,017 0.9909 0.9645 0.9767 0.9904
S3 1,358,173 0.9878 0.9615 0.9540 0.9872
S4 1,595,654 0.9845 0.9518 0.9389 0.9837
S5 1,616,563 0.9822 0.9459 0.9356 0.9812
S6 1,752,372 0.9733 0.9083 0.9294 0.9717

Table 3. Metrics of the all-class results (R: LSTM RNN; S: SegNet)

Test dataset Accuracy UA (Avg) PA (Avg) Kappa
2 Sep 2015 (R) 0.9135 0.8229 0.8615 0.9111
2 Sep 2015 (S) 0.8714 0.7377 0.8236 0.8643
1 Aug 2015 (R) 0.8885 0.8055 0.8065 0.8854
1 Aug 2015 (S) 0.8608 0.7720 0.8133 0.8509
15 Sep 2014 (R) 0.8922 0.8030 0.8142 0.8891
15 Sep 2014 (S) 0.8875 0.7973 0.8042 0.8847
30 Aug 2014 (R)  0.8953 0.8058 0.8096 0.8924
30 Aug 2014 (S) 0.8502 0.6527 0.7664 0.8386




