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ABSTRACT: Achieving robust, localized quantum states in two-dimen-
sional (2D) materials like graphene is desirable for optoelectronics and
quantum information yet challenging due to the difficulties in confining
Dirac fermions. Traditional colloidal nanoparticle and epitaxially grown
quantum dots are also impractical for solid-state devices, due to either
complex surface chemistry, unreliable spatial positioning, or lack of
electrical and optical access. In this work, we design and optimize nanoscale
monolayer transition-metal dichalcogenide (TMD) heterostructures to
natively host massive Dirac fermion bound states. We develop an integrated
multiscale approach to translate first-principles electronic structure to higher length scales, where we apply a continuum
model to consider arbitrary 2D quantum dot geometries and sizes. Focusing on a model system of an MoS2 quantum dot
in a WS2 matrix (MoS2/WS2), we find discrete bound states in triangular dots with side lengths up to 20 nm. We propose
figures of merit that, when optimized for, result in heterostructure configurations engineered for maximally isolated
bound states at room temperature. These design principles apply to the entire family of semiconducting TMD materials,
and we predict 6.5 nm MoS2/WS2 (quantum dot/matrix) triangular dots and 4.5 nm MoSe2/WSe2 triangular dots as ideal
systems for confining massive Dirac fermions.

KEYWORDS: two-dimensional materials, quantum dot, transition-metal dichalcogenides, multiscale modeling, heterostructure,
Dirac fermions

I nitialization and manipulation of individual quantum states
is a critical requirement to achieving high-performance
optoelectronic devices and quantum information plat-

forms. Thus far, engineering these states has primarily relied on
generating deep level color centers/defects as quantum cavities
in bulk materials1 or physically reducing the semiconductor in
all three dimensions to make nanocrystals.2 The energetic
tunability of these three-dimensional cavity states is well
documented,3 yet precise electrical or optical control of single
quantum states remains elusive.4,5 Two-dimensional (2D)
materials are an attractive platform for quantum confinement
due to their electronically stable surfaces and atomic-scale
thickness, which provides perfect confinement in the out-of-
plane dimension.6 Graphene, the most extensively studied 2D
material, hosts massless Dirac fermions, which cannot be
localized because of carrier transmission regardless of the
height or width of the potential barrier (Klein tunneling).7−10

Several theoretical works have studied forced quantum
confinement arising in idealized, isolated graphene disks and
triangles with infinite mass gradients at the edges, which have
not been experimentally realized.11−13 Inducing quasi-confine-
ment of relativistic Dirac fermions in graphene can be achieved

by introducing a spatially varying bandgap via substrate effects
(doping or spin−orbit coupling), strong magnetic or electric
fields, or adding a second graphene layer.9,14−17 However, this
type of confinement is not a robust intrinsic property of the
graphene system, the induced gaps are small (∼0.1 eV), and
the extreme conditions required to accomplish quasi-confine-
ment are impractical for technological applications.18

However, continued expansion of the 2D materials library
has led to materials with properties distinct from graphene.
The family of transition-metal dichalcogenide (TMD)
monolayers contains many direct bandgap semiconductors
with variable composition and tunable bandgaps which have
been characterized using density functional theory (DFT) and
tight-binding models.19−23 In stark contrast to graphene, these
systems host charge carriers that behave as massive Dirac
fermions because the bandgap gives rise to an effective carrier
mass that reduces the probability of Klein tunneling. Because
these systems are isostructural with small variations in lattice
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constant, we can envision structurally coherent in-plane
quantum confinement engineered via van der Waals (vdW)
heterostructuring24 or lateral epitaxy.25−27 The band offsets
between different TMDs in a heterostructure can be exploited
to construct a confining potential step due to the sharp change
in the absolute band energies at a clean interface between the
two materials. These Dirac carriers are physically distinct from
the Schrödinger fermions encountered in epitaxial bulk
semiconductor quantum dots28 due to the symmetric
degeneracies of the honeycomb lattice and the occurrence of
the direct band gap at nonzero momentum (K-point).29

In this work, we develop a multiscale workflow to study the
existence and evolution of the bound-state spectra of planar
quantum dots engineered from TMD heterostructures as a
function of their shape and size. The band structures are
characterized by first-principles calculations, while tight
binding and continuum models are used to describe realistic
nanoscale device geometries that are inaccessible to DFT
calculations. We explicitly show the bound-state energy scaling
behavior for massive Dirac fermions in f inite potential wells
corresponding to an experimentally realizable vdW hetero-
structure. We find that the critical well size and well depth
needed to support robust, isolated bound states are achievable
in an MoS2/WS2 (quantum dot/matrix) heterostructure. Based
on these results, we provide simple design rules for atomically

thin TMD heterostructure quantum dots to achieve ideal
quantum confinement.

RESULTS

Quantum Confinement in Monolayer TMDs and
Lateral Heterostructures. First, we briefly discuss our
approach to modeling quantum confinement in the TMD
heterostructure. The computational workflow used here is
represented schematically in Figure 1a. For any two TMDs,
MX2, and M′X2, with direct band gaps at the high-symmetry K
point, the band structures are calculated via DFT. The
chalcogen X atom is chosen to be the same in both TMDs to
minimize lattice mismatch and ensure that the band gaps
remain direct.30,31 The valence and conduction bands are fit
around the K point to obtain the parameters (Table S1) for a
two-band k·p model, which captures the relevant physics of the
conduction and valence bands in the K valley.32 The details of
the k·p Hamiltonian up to second order in k, Hkp

1 (k) + Hkp
2 (k),

are given in the Methods section.
Figure 1b shows an atomistic model of the physical

realization of a laterally confined TMD quantum dot system.
A TMD with the formula unit MX2 forms a nanoscale regular
triangle or hexagon33 within an M′X2 matrix. The spatial extent
of a quantum dot is defined by R▲ and R⬢, which gives the
corner-to-corner distance of the minority material region. The
band offsets between the two TMDs create the quantum

Figure 1. Schematic of the continuum approach to describing planar quantum dot electronic structure. (a) Parameters from DFT are used as
inputs to a k·p model that is solved for device geometries with the finite element method. (b) Triangular and hexagonal regions of MX2 in an
M′X2 matrix form 2D quantum dots. (c) The band offsets between MX2 and M′X2 create quantum wells for confining electrons and holes.
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confinement depicted in Figure 1c. To describe the spatially
dependent band gap variation, we introduce an external finite
potential term V(x) given byÄ

Ç
ÅÅÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑÑÑx

x

x

V
V

V
( )

( ) 0

0 ( )

e

h
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(1)

where Ve is the conduction band offset and Vh is the valence
band offset. V(x) is zero inside the quantum dot and nonzero
in the M′X2 matrix. The magnitudes |Ve| and |Vh| control the
strength of the confining potentials. If Ve is positive, there is a
confining electron potential well in the quantum dot. Likewise,
if Vh is negative, there is a confining hole potential well in the
dot.
We consider two model systems for lateral quantum

confinement: an MoS2 dot in a WS2 matrix (MoS2/WS2),
and a WS2 dot in an MoS2 matrix (WS2/MoS2). The band
offsets between these TMDs result in type 2 band alignment;34

for MoS2/WS2, Ve = 0.31 eV, and for WS2/MoS2, Vh = −0.36
eV.19 Thus, the first configuration yields an electron potential
well, while the second forms a hole potential well. The model

k x k k xH H H V( , ) ( ) ( ) ( )kp kp kp
1 2

= + + can then be numeri-

cally solved in the COMSOL MULTIPHYSICS package for
any device geometry or material combination, given the
appropriate parameters.11 The computed eigenvalues and
eigenvectors correspond to the bound-state energies and
wave functions of the quantum dot system.
Toy Model: 2D Massive Dirac Hamiltonian in a Radial

Finite Potential Well. Our investigation into the existence of
bound states in the MoS2/WS2 heterostructure begins with a
simple toy model that emphasizes the unusual behavior of the
massive Dirac fermions. It is well-known that for a particle in a
finite potential well described by the Schrödinger equation, the

ground state is bound for any arbitrarily shallow or narrow well
in one or two dimensions.35 On the contrary, due to particle−
antiparticle conversion, bound-state existence is not guaranteed
for Dirac fermions and depends explicitly on the form of the
potential and the effective fermion mass. There is evidence that
the existence of a bound ground state in 2D is uncertain even
for simple radially symmetric potential wells.36,37

We construct a toy model of the MoS2/WS2 system by
approximating the MoS2 quantum dot as a circular region in a
radially symmetric finite potential. Following DiVincenzo and
Mele,38 we solve the massive Dirac Hamiltonian for a finite
potential to develop straightforward existence criteria for
bound states in the MoS2/WS2 quantum disk system. For
simplicity, we consider the simplified Hamiltonian

k r k rH H V( , ) ( ) ( )kp
1

= + and set the finite band offset Ve =

Vh = V0, such that V(r < r0) = 0 and V(r > r0) = V0, where r0 is
the radius of the MoS2 dot and r is the radial coordinate. Since
we are interested in potential well dimensions that support at
least one bound state, we restrict the solution space to the
ground state, where the angular quantum number m = 0. We
apply continuity boundary conditions to the wave function at
the well edge r = r0 and look for bound-state solutions with

energy E in the range E V
2 2 0< < +
Δ Δ To exclude quasi-

bound states, we only allow terms in the wave function which
exponentially decay as r → ∞.17 This leads to a transcendental
equation for the bound state which must satisfy:

Y r

J r
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V E
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Figure 2. (a) Phase diagram for bound-state existence as a function of heterostructure parameters Δ (band gap), V0 (confining potential
magnitude), a (lattice constant), t (k·p hopping energy), and r0 (dot radius) for the toy model circular finite well. The inset shows
comparison with the bound-state existence boundary taken from numerical solutions for triangular wells. (b) Evolution of the ground state
probability density showing decreasing localization with increased number of vertices for dots with equivalent corner-to-corner length. (c)
Ground state energy relative to the continuum band edge corresponding to the dot geometries in (b).
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. Here Jn and

Yn are the Bessel functions of the first and second kind, and Δ,
a, and t are material parameters corresponding to the bandgap,
lattice constant, and hopping energy taken from Hkp

1 (k). The
limiting behavior and details of obtaining (eq 2) are discussed
in the Supporting Information. We numerically solve for the
roots of (eq 2) and plot (Figure 2a) the lowest bound-state

energy as a function of the dimensionless quantities V0

Δ
and at

r0Δ
.

The phase map provides a completely general estimate of the
ground state energy for any material parameters, with darker
contours representing ground states closer to the bottom of the
potential well and lighter contours approaching the top of the
well.
In our model system of an MoS2 dot in a WS2 matrix, we

find that minimum values of r0 and V0 define a phase boundary
beyond which no bound states are supported. This behavior is
particular to massive Dirac fermions in 2D. In contrast with a
2D Schrödinger quantum dot where confinement effectively
disappears beyond some maximum diameter, in the Dirac
quantum disk there is additionally a minimum critical size
beyond which there is no confinement due to the Klein effect.
This condition can also be achieved by taking Δ to 0 at finite
V0 and fixed size r0, which recovers the massless graphene case.
For the toy model MoS2/WS2 system with a conduction band
offset V0 = Ve = 0.31 eV, we find that the circular well has a
critical radius of 2.6 Å, which is less than one unit cell.
However, for more realistic quantum dot geometries that are
not radially symmetric, the critical radius will be larger. In the
limit of small r0, breaking the radial symmetry of the quantum
disk and introducing a three-fold rotational symmetry shifts the
critical bound-state phase boundary in a nontrivial way,
increasing the minimum critical size for the MoS2/WS2 system
from 0.5 to 1.5 nm (Figure 2a, inset). These critical sizes are
highly dependent on the band offset, and the criteria are more
restrictive for confining wells with smaller band offsets. Having
shown the existence of bound states for massive fermions in
TMD heterostructures, we next turn to exploring the effects of
realistic quantum dot geometries on confinement.
Bound-State Spectra in Triangular and Hexagonal

Dots − Continuum Approach. Several different quantum
dot geometries are accessible based on the crystal symmetry of

the component TMD materials and synthesis conditions.33 We
compute the ground state using the continuum method for a
circular quantum dot, finding quantitative agreement with the
toy model results (Eanalytic − Econtinuum = 0.5 meV, which equals
the E(Hkp

2 ) correction absent from the toy model), and then
repeat the process for hexagonal, square, and triangular
geometries. Figure 2b shows the evolution of the ground
state wave function as the number of vertices in the dot
geometry increases from three (triangle) to infinity (circle),
with the vertex−vertex distance fixed at 10 nm (significantly
above the bound-state existence boundary). At this size, at least
one bound state is present for the MoS2/WS2 system in all
geometries, but as shown in Figure 2c, the energy of this state
relative to the band offset varies considerably. This is primarily
explained by the fact that the dot area is minimized for a given
vertex−vertex length in the triangle, and this reduction in area
manifests as an effective geometric confinement. The
sensitivity of the ground state energy to this geometrical effect
is an important consideration for device design, as the
transition from a hexagonal dot to a triangular dot (two
common geometries in TMD flake systems)39,40 in the model
system increases the ground state energy by a factor of almost
three (30 meV vs 80 meV). Therefore, the triangular system is
better for engineering confinement at larger dot sizes, which
may be advantageous for experimental observations.
Since triangular and hexagonal shapes are most commonly

observed for TMD monolayers due to the hexagonal unit cell,
we focus on these geometries to investigate the evolution of
the electron and hole ground states with system size. To
engineer quantum confinement, we determine the maximum
and optimal dot sizes for hosting bound states. We
systematically vary R▲ and R⬢ and compute the ground
state energies for each geometry. The electron (Figure 3a) and
hole (Figure 3b) ground state energies are plotted vs inverse
side length for triangular (green points) and hexagonal (blue
points) geometries to show the characteristic scaling. The
corresponding R▲ and R⬢ values are given on the upper x-axis

for convenience. Rescaling the energies such that
2

Δ (the

bottom of the well) corresponds to 0, we see a monotonic
decrease in the electron ground state with increasing dot size.
For small dots (R▲ < 5 nm), the ground state energy is close
to the top of the electron well. The quantum confinement

Figure 3. Scaling of the electron and hole ground states with inverse side length. (a) Electron and (b) hole ground state energies for
triangular (green) and hexagonal (blue) quantum dots show a characteristic dependence on quantum dot size. (c) Electron and (d) hole
ground state wave functions delocalize with increasing quantum dot size.
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persists for large dots (R▲ > 20 nm), as the ground state
approaches the bottom of the potential well. This confinement
predicted for large nanoscale geometries is a consequence of
the ideal confinement in the out-of-plane direction in these 2D
structures, despite the finite nature of the potential barrier and
relativistic properties of the carriers.
The ground state energy dependence on quantum dot size

follows the simple relation:

E R R R c( )gs
2 1

α β= + +
− −

(3)

where R is length, α and β are materials-dependent constants,
and c is a constant specified to set the bottom of the potential
well equal to zero. This scaling with inverse length and inverse
length squared follows immediately from the expansion in k
(which has units of inverse length) in the k·p model. The
ground state energy for any geometry is then totally specified
by the α and β coefficients for a given MX2/M′X2 pair. The
same characteristic scaling behavior is seen for holes in WS2/
MoS2 (Figure 3b).
Visualizing the ground state wave functions provides a

qualitative picture of the extent of quantum confinement.
Figure 3c shows the electron ground state wave function in
hexagonal MoS2 quantum dots with R⬢ = 10, 20, and 30 nm.
At R⬢ = 10 nm, the wave function is strongly localized. The
amplitude is large at the center of the dot and radially decays,
as expected. As the area of the hexagon increases, the wave
function becomes increasingly delocalized until confinement is
no longer apparent. At this point, the ground state of the
system is indistinguishable from the infinite periodic band
structure, and the finite dot region is no longer discretely
quantized. The same wave function delocalization is observed
for hole ground states in triangular WS2 dots with increasing
area (Figure 3d).
To verify the validity (and limitations) of the continuum

approach, we repeat the analysis at small dot sizes using a
three-band tight-bonding model32 of a triangular MoS2
quantum dot41 with an outer edge of WS2 atoms that forms
the finite electron confining well. We recover the same
characteristic ground state energy scaling described by (eq 3)
in the tight binding model results (Figure S1b). The computed
wave functions (Figure S1c) agree with those from the
continuum model, although the inclusion of an additional d
band and spin−orbit coupling in the tight-binding model leads
to degeneracy breaking in the excited states. Importantly, while
k·p is a long wavelength theory that is expected to break down
at small length scales, the tight-binding approach describes the
quantum dot system at these length scales. The continuum
approach is well-suited for device-relevant length scales, so
there seem to be no apparent gaps in our multiscale approach.
Independently, we verify the validity of the truncation of the k
expansion to second order by measuring the magnitude of the
correction introduced by Hkp

2 (k) as a function of dot size
(Figure S2). As expected, the higher order terms are more
important for smaller dot sizes, and for a 4 nm MoS2/WS2
triangular dot, the second-order correction reaches a maximum
of 8.5 meV, which is well within the perturbative regime. At
small dot sizes in the tight-binding regime, the higher order
terms in the continuum model will affect the quantitative
energy values, but overall trends such as the geometry-critical
size relationships are minimally impacted.
Having considered the ground state energy-size scaling for

electrons and holes, we reduce the model MoS2/WS2 system to

just triangular dots and consider the complete bound-state
spectrum as a function of dot size. To compute all of the
bound states, we iteratively solve the eigenvalue problem over
the entire range of energies in the potential well and extract the
smooth eigenstates. Figure 4a shows some representative

bound-state spectra with energies referenced to the bottom of
the well (M′X2 band edge). At a 5 nm side length (Figure 4a,
top), the MoS2 well effectively supports only one bound state,
with an additional bound state appearing at the very top of the
potential well. As the MoS2 well region is enlarged, the number
of bound states increases, and the energy of the ground state
reduces toward the energy of the pristine monolayer band
edge. Figure 4a also shows the probability density of the
electron wave functions, |Ψe|

2, corresponding to the first 4
eigenstates of the confined system. The closely spaced states
visible near eigenstate 2 and 3 are due to differing
contributions from the valence band wave function with
different angular momentum quantum numbers; this occurs at
all higher energy eigenstates, but the energy splitting is small.
Due to the inclusion of Hkp

2 (k), we avoid the common fermion

Figure 4. (a) Bound-state spectra for MoS2/WS2 triangular
quantum dots as a function of dot size. A sample of wave
functions is shown for the 10 nm well; wave functions possess
three-fold rotational symmetry of the confining geometry. (b)
Bound-state energy spacing and effective density of states vs size of
the dots in (a). The average state spacing rapidly drops below kBT
@ 300 K as the confinement decreases.
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doubling problem that arises in discretizing Dirac Hamil-
tonians by introducing an effective Wilson mass.42 As expected,
the symmetry of the excited eigenstates matches the confining
geometry of the finite potential well. Examples for hole wave
functions in hexagonal confined WS2 dots are given in the
Supporting Information. At 20 nm (Figure 3a, bottom), the
eigenstates are collapsing into a continuum description. At this
size, the high area to depth ratio of the well means that the
potential step at the well edges is no longer impacting the wave
function in the center of the well.
Figure 4c gives a quantitative description of the bound-state

spectrum evolution with increasing dot size from 5 to 25 nm.
The blue columns show the average energy spacing between
eigenstates for a particular dot size, including the energy
separation between the ground state and the well bottom. For
a fixed well depth, the average energy spacing between states
decreases rapidly with increasing side length, crossing kBT ≅

25 meV at 15 nm, which means that the average state is no
longer thermally isolated at room temperature. The red
columns give the number of bound states in the well as the
side length increases up to 25 nm, when the ground state is
within kBT of the continuum band edge and effectively merges
with the continuum. In the design and synthesis of solid-state
quantum dots for optoelectronic applications, this threshold
should be kept in mind as a heuristic to minimize thermally
induced decoherence due to increasing density of states near
the desired excitation. Akin to the determination of the critical
maximum size for confinement, this threshold arising from
neighboring excited bound states places a restrictive practical
constraint on feasible quantum dot configurations.
Synthesizing the results presented above, we outline a

general design scheme in Figure 5 to optimize quantum
confinement in 2D semiconductor heterostructures. For any
combination of layered TMD semiconductors, absolute band
energies and k·p parameters can be obtained from first-
principles calculations on pristine periodic systems (Figure 5a).
From these parameters, finite size effects can be explored at
length scales that are experimentally accessible but beyond the
scope of DFT calculations or tight-binding models. From the
phase diagram in Figure 2, bound-state existence can be
determined based on the DFT parameters for the pristine
monolayers. If bound states exist, then we can assess the
robustness of the planar quantum dot confinement using two

basic figures of merit: F 0.5
E

V1
gs

well
= −

Δ
, the percent deviation

of the ground state from the center of the well, and F2 =
ΔEes−gs, the energy spacing between the ground state and the
first excited state (Figure 5b). These metrics characterize the
degree of isolation for a quantum state that is energetically
centered between the band edges of the component materials.
An optimal, isolated state has the best chance of withstanding
perturbations caused by edge states or atomic defects, without
knowing a priori where the dominant defect levels exist for a
given semiconductor heterostructure. To achieve such a state,
we need to simultaneously minimize F1 and maximize F2.
Figure 5c,d plots F1 and F2 as a function of the dimensionless
scaling variables at/Δr0 and V/Δ, where V is the band offset in
the confining well, along with examples of TMD hetero-
structures based on their band structure parameters. Since the
band offsets are not identical for TMD heterostructures as they
were in our toy model (Figure 2), and there is some mixing
between the two bands, this parametrization lacks a depend-
ence on the difference between Vh and Ve. We take V0 ≈ Ve(h)

for confined electrons (holes) to preserve simplicity, because
the Ve − Vh coupling correction to the ground state energy is
small.
For type II band alignment, the optimization shows that

deeper wells (corresponding to a larger band misalignment
between the two semiconductors) lead to greater energy
separation between the ground and first excited states at a fixed

Figure 5. (a) Design workflow for forming confining TMD
heterostructures. (b) Figures of merit for evaluating the perform-
ance of an MX2 quantum dot in isolating a single quantum state.

0.5
E

V

gs
−

Δ
measures the percent deviation from the center of the

well, and ΔEes−gs gives the energy separation between the ground
state and the first excited state. (c, d) Design optimization
diagrams for the figures of merit in (b), with results for different
TMD heterostructures in several dot configurations overlaid.
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dot area. The same is true for the ground state energy spacing
from the well bottom. In the MoS2/WS2 system, there is an
optimum triangular side length of ∼6.5 nm that corresponds to
the maximally centered ground state in the middle of the well,
whereas for MoSe2/WSe2, this optimum size is closer to 4.5
nm. TMD monolayer flakes with spatial extent <10 nm have
been synthesized, making these systems both practical and
ideal for nanoscale quantum confinement.43−48 Recently, both
bottom-up25,49 and top-down50,51 approaches have demon-
strated high control over 2D heterostructure features on this
length scale, within the bounds of the kT threshold identified
in Figure 4b.
The optimal size asymmetry between confined electrons and

holes in the selenide system arises from a change in the
hopping energy between the molybdenum and tungsten
compounds. In the sulfide system, a similar hopping energy
difference is counterbalanced by a change in the band gap
which does not occur in the selenide system. In smaller dots at
constant band offset, the ground state approaches the top of
the well, eventually leading to the phase boundary for bound
state existence seen in Figure 2. Furthermore, increasing the
lattice constant or hopping energy at a fixed offset also
increases the confinement for a fixed geometry. For shallow
wells, larger dot sizes are preferable to realize bound states far
from the background band edges, which may have relevance
for Moire ́ superlattice engineering. Overall, these findings lead
to the surprising and important conclusion that, rather than
naively minimizing the dot area, optimal confinement is
achieved by tuning the quantum dot spatial extent to a precise
value that depends sensitively on the material parameters.

CONCLUSIONS

In this paper, we have presented and analyzed a lateral TMD
heterostructure architecture for ideal quantum confinement. In
doing so, we demonstrated a multiscale computational
approach for optimizing realistic material and device
parameters to achieve robust, coherent single quantum states
in ambient conditions. By considering a toy model of a 2D
quantum well, we established the criteria for supporting bound
states in a TMD heterostructure and clearly emphasized the
advantage of intrinsic confinement of massive Dirac fermions,
compared to graphene which supports only quasi-bound states
under applied fields. With a continuum method for solving a
two-band k·p model, geometric effects were shown to play an
important role in engineering robust confinement, with
triangular 2D quantum dots exhibiting maximal geometric
confinement. The ground state energies scale with the system
size as αR−2 + βR−1, such that the lowest bound-state energy
can be predicted for any size and shape of quantum dot simply
by computing the material dependent coefficients α and β via
fitting to continuum results. Performance metrics for confine-
ment were proposed in terms of the energetic isolation of the
ground state from both bulk band edges and neighboring
excited states. Optimizing for these metrics in an MoS2
triangular quantum dot in a WS2 matrix results in a prediction
of ∼6.5 nm side length for optimal confinement. Moreover, we
predict optimal geometries for arbitrary heterostructures of
TMDs, and our formalism can easily be applied to any 2D
semiconductor heterostructure. Our findings establish straight-
forward design principles for engineering optimal 2D quantum
confinement at room temperature that should be of immediate
use in the experimental realization of coherent quantum states.

METHODS

The two-band k·p model to first order in k corresponds to a massive
Dirac Hamiltonian, H, which captures the salient structure of the K
valley in MoS2,

21 while the second-order contribution describes the
anisotropic dispersion and electron−hole asymmetry, and including
the third-order contribution completely recovers the DFT band
structure.23,32,52 We ignore the spin degree of freedom (reducing H to
a 2 × 2 matrix) and spin−orbit coupling and include contributions up
to second order in k, such that the model is given by32Ä
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where Δ is the direct band gap, a is the lattice constant, t is the
hopping parameter, γ1 − γ3 are energy parameters, and k2 = kx

2 + ky
2.

With the Fermi level in the middle of the gap set to zero, the valence
band maximum and conduction band minimum of MX2 are −Δ/2
and Δ/2, respectively, where the band gap of the MX2 quantum dot is
Δ. The top (or bottom) of the potential well is then Δ/2 + Ve or −Δ/
2 − Vh for electrons or holes, respectively.

The tight-binding model was constructed by considering nearest-
neighbor hopping between Mo dz

2, dxy, and dx2−y2 orbitals.
32 The tight-

binding Hamiltonian for the finite triangular quantum dot includes
diagonal submatrices that account for the on-site energies, spin−orbit
coupling, and an external scalar potential V(x) and off-diagonal
submatrices that describe the directional hopping between Mo d
orbitals.41 The external potential was adjusted on the outermost edge
of atoms to model the band offset between Mo and W.
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