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SUIS: simplify the use of geospatial web services in environmental 

modelling 

Abstract: Today environmental scientists heavily rely on geospatial web services 

(GWS). However, many online facilities are under-utilized by the environmental 

modelling community because accessing the disparate service interfaces requires highly 

specialized technical expertise. This paper proposes a Simple Universal Interface for 

Services (SUIS) framework which is a client framework for accessing heterogeneous 

services via a single unified interface to simplify service access. The supported services 

including Open Geospatial Consortium (OGC), Simple Object Access Protocol (SOAP) 

and Representational State Transfer (REST) services. SUIS relieves modellers from 

having to learn the details of service technologies such as protocols, bindings, and 

schemas. SUIS4j, a Java implementation of the SUIS framework, is developed and tested 

to combine multiple operational GWS to demonstrate geoprocessing workflows in 

agricultural drought monitoring and coastal ocean modelling. The results confirm the 

expected benefits. SUIS is demonstrated to support simplified use of geospatial 

cyberinfrastructure for ad-hoc environmental model integration.  

Keywords: geospatial web service; interoperability; Earth scientific model; 

simplification; geoprocessing workflow. 
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Highlights 1 

• New simple and universal service client framework (SUIS) is proposed for 2 

reducing complexity and engaging the full potential of geospatial web services. 3 

• Understandable and descriptive interface for environmental modellers/scientists 4 

• SUIS makes technical terminologies on network communications invisible to 5 

scientists 6 

• SUIS enables simple and effective composition of web services to perform 7 

agricultural drought and coastal ocean modelling 8 

• SUIS add negligible time cost (<10 milliseconds) into service performance  9 

 10 

Software availability 11 

Name of software: suis4j 12 

Developer: Center for Spatial Information Science and Systems, George Mason University 13 

Source language: Java 14 

Contact Information: zsun@gmu.edu 15 

Availability: The source code and application jar can be accessed via Github: 16 

https://github.com/CSISS/suis4j.  17 

1. Introduction 18 

Following the realization that the traditional personal computer oriented analysis 19 

workflows are hindering the use of large volume of geospatial data due to limited disk 20 

space and computing capacity (Wagemann et al., 2018), geospatial web services (GWS) 21 

appeared and brought great benefits to Earth scientists by providing web access to 22 

massive geospatial datasets and functionalities in an elastic manner (Hey and Trefethen, 23 

2005; Richard et al., 2014; Vitolo et al., 2015; Wright and Wang, 2011). Driven by the 24 

idea of “e-Science” (Hey and Trefethen, 2005), tens of thousands of web services were 25 

developed and deployed to continuously serve millions of spatial records and datasets 26 

on a daily basis. More and more free and open source software (FOSS) for web 27 

applications and geographic information systems became available and used by data 28 

vendors to deploy their own thematic web services, allowing vendors to directly connect 29 

with stakeholders (Swain et al., 2015). These web services are the key tools that enable 30 

modellers to conduct data-intensive science (Hey and Trefethen, 2005).  Today, 31 

mailto:zsun@gmu.edu
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researchers in the whole spectrum of Earth science domains including geography, 32 

geology, geophysics, oceanography, glaciology, atmospheric sciences and so on, 33 

frequently rely on GWS to search, download, visualize, analyze, and disseminate data.  34 

Powerful tools could definitely improve the conduct of environmental research (Hey et 35 

al., 2009). However, more powerful tools are usually more complicated, because 36 

simplicity is sacrificed in exchange for flexibility and generality. Unfortunately, many 37 

scientists are prevented from using the full power of GWS because the service client 38 

capacity is limited while GWS service interfaces are too complex. Scientists wishing to 39 

utilize these powerful services are forced to understand intricate technical details and 40 

processes (Fig. 1) that are not intuitive or easily comprehensible to users who lack 41 

computer and geospatial interoperability backgrounds. Each type of service takes a 42 

different approach to technical details such as operation names, parameter names, data 43 

types, formats, schemas, value options, special tokens, protocol headers, and exception 44 

codes. This breadth of options supports flexibility at expense of service adoption.  45 

 46 

Figure 1. The word cloud of disparate interfaces in geospatial cyberinfrastructure 47 

(produced by word cloud generator from the terminologies from collected online 48 

documents of geospatial cyberinfrastructure standards, e.g. OGC, TC211, FGDC, and 49 

related web service blogs) 50 

The growth of web-based resources in recent years has made this problem 51 

worse. Imagine a hypothetical seismic scientist who wants to combine an IRIS 52 
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(Incorporated Research Institutions for Seismology) REST service (Shapiro et al., 2005) 53 

that offers time series of waveform data with a UCAR (University Corporation for 54 

Atmospheric Research) Web Coverage Service (WCS) offering radar data and a Web 55 

Processing Service (WPS) (OGC, 2007) to perform re-gridding. After their datasets are 56 

processed they want to use a SOAP service (Clements, 2002) for data integration. 57 

Typically, they will install desktop client software such as ArcGIS (Institute, 2001) or 58 

QGIS (Team, 2013) for OGC services and find a Jupyter notebook (Kluyver et al., 59 

2016) or write custom code for the SOAP and RESTful services. This researcher might 60 

spend days studying obscure web APIs (Application Programming Interfaces) and 61 

navigating unnecessary software functionality. Once they master accessing these varied 62 

GWS interfaces they still won’t be able to programmatically chain the services together 63 

automatically to deliver the data in its final form. Instead, they will spend more time 64 

pre-processing the data manually or writing custom scripts. Although GWS that offer 65 

required pre-processing capabilities exist, and even though the researcher is already 66 

using some GWS to download the data and do the final data integration – they will 67 

avoid utilizing existing web GWS for pre-processing because to them those interfaces 68 

appear obscure and cumbersome to access. Instead of taking advantage of these 69 

powerful facilities, our hypothetical researcher will avoid learning confusing technical 70 

details and will continue to rely on inefficient and time-consuming but familiar 71 

procedures. This is a persistent problem and naturally many scientific communities have 72 

voiced their desire for simplified access to these powerful online facilities to reduce 73 

time spent performing manual data pre-processing (Kelbert, 2014).  74 

This paper proposes to solve the problem by applying a simple universal 75 

interface for services (SUIS) framework to GWS clients. SUIS client framework 76 

bridges the disparate service interfaces with a single generic interface that carefully 77 

abstracts service technical details such as protocols, styles, bindings, schemas, and 78 

addresses. Only the intuitive information for each service like operation names, 79 

parameter names and data types are exposed to end users. That information is generally 80 

intuitive and easier for scientists to comprehend because it is directly related to the 81 

scientific requirements of specific research fields. Operations in SUIS are mapped to the 82 

actions in the original service interfaces. For each type of services SUIS provides a 83 

driver that accomplishes the simplified mapping automatically. This means that once 84 
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users learn how to use SUIS they can access all standard-conforming online geospatial 85 

cyberinfrastructure. 86 

The major benefits of SUIS are reduced barrier of entry and reduced risk of 87 

misunderstanding between endpoint consumers and service providers. With SUIS, 88 

endpoint users of GWS are separated from heterogeneous interfaces and access with all 89 

services via the same set of uniform processes. SUIS aims to lighten the burdens of 90 

learning about unnecessary software and to ease the pitfalls of coding clients to interact 91 

with complicated geospatial web service interfaces. Additionally, by alleviating 92 

problems of interface complexity and heterogeneity SUIS supports easier composition 93 

of GWS into workflows. Generic SUIS operations can be chained into geoprocessing 94 

models (Di, 2004; Yue et al., 2010) that map to executable workflows composed of the 95 

multiple services (Chen et al., 2009; Yu et al., 2012). 96 

A Java library named suis4j was implemented to demonstrate and evaluate the 97 

SUIS concept. suis4j currently supports the basics of SOAP/WSDL (Web Service 98 

Description Language), RESTful/WADL (Web Application Description Language), 99 

WPS (version 1.0.0), WCS (version 2.0.0), WMS (version 1.3.0), and WFS (version 100 

2.0.0). suis4j was tested and its performance was evaluated with various existing web 101 

services. The experiment shows that the SUIS approach shields users from 102 

overwhelming and unnecessary technical details and allows users to take advantage of 103 

GWS in their applications in a simple way. 104 

The remainder of the paper is organized as follows. Section 2 introduces the 105 

background of this research and lists the existing related work. Section 3 describes the 106 

objectives and design principles underlying SUIS, while Section 4 presents SUIS 107 

framework in full detail. In Section 5, the implementation of suis4j is presented. Section 108 

6 describes how suis4j was tested with prominent online infrastructures in the Earth 109 

science community. Section 7 discusses the pros and cons of SUIS framework. Section 110 

8 concludes this research and maps out future work.  111 

 112 

2. Related Work 113 

This section talks about the circumstances and explains why simplification is an 114 

inevitable trend in geospatial cyberinfrastructure. 115 
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2.1 GWS Interfaces 116 

The interfaces of GWS can be generally divided into three groups: SOAP (Simple 117 

Object Access Protocol) interfaces, REST (Representational State Transfer) style 118 

interfaces and OGC (Open Geospatial Consortium) standard-compliant interfaces 119 

(shown in Fig. 2). Their regimes could be overlapped because a service may belong to 120 

more than one group. For example, an OGC WPS could simultaneously provide both a 121 

SOAP endpoint and REST endpoint.  122 

 123 

Figure 2. Three major categories of GWS on the market 124 

W3C identifies a set of common core technologies for web services. The main 125 

ones are HTTP (HyperText Transfer Protocol), XML (Extensible Markup Language), 126 

SOAP (Simple Object Access Protocol), WSDL, etc (W3C, 2015). SOAP messages are 127 

exchanged through XML payloads that are transmitted via HTTP POST. WSDL is used 128 

to describe SOAP web services interfaces (Chinnici et al., 2007; Christensen et al., 129 

2001). Historically, the SOAP standard has maintained the monopoly position in 130 

service-oriented architecture (SOA), but as new standards have emerged SOAP has 131 

become one of several options in the market. SOAP is well regarded due to its domain 132 

independence and security. SOAP and WSDL services are employed in many B2B 133 

(business-to-business) and B2C (business-to-consumer) industries such as chemistry 134 

(Kim et al., 2015), travel planning, hotel booking (Dhara et al., 2015) and decision 135 

support (Demirkan and Delen, 2013).  136 

REST is the newcomer and provides a lighter weight alternative to SOAP. It is 137 

an architectural style of web services and is NOT a standard. REST is used widely to 138 

develop World Wide Web applications. In REST, data and functionality are considered 139 

resources and are accessed using Uniform Resource Identifiers (URIs). REST requires 140 

that actions on the resources are limited to a small set of simple, well-defined 141 
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operations. Usage of REST in web APIs has skyrocketed in the past decade because 142 

RESTful services are lightweight, highly scalable and maintainable. WADL is a schema 143 

format developed to describe RESTful applications (Hadley, 2006).  144 

Both SOAP and REST are domain-independent. However, in many scenarios, 145 

target-specific interfaces are required to facilitate geospatial applications (Dietz, 2010). 146 

Organizations like ISO/TC211 (the International Organization for Standardization 147 

Technical Committee 211) and OGC (Open Geospatial Consortium) have developed a 148 

series of standards targeted to the specific requirements from the geospatial community. 149 

ISO focuses on standardization of geographic information and geo-informatics 150 

(Ostensen and Smits, 2002) while OGC majorly works on standardizing service 151 

interfaces and data models (Di, 2003). Some of their well well-known products are 152 

ISO19115:2003 (metadata), ISO19119:2005 (geographic information - services) 153 

(Percivall, 2002), WMS (WMS, 2004), WCS, WPS, WFS, SOS (Sensor Observation 154 

Service), SPS (Sensor Planning Service), CSW (Catalog Service for the Web) and 155 

OpenLS (Open Location Service) (Botts et al., 2008; OGC, 2016). To further advance 156 

interoperability ISO/TC211 and OGC hold a cooperative agreement that allows them to 157 

cite each other’s standards (ISO/TC211, 2009).  158 

These standards have greatly improved the interoperability among geospatial 159 

web services. However, the proliferation of standards has greatly increased the 160 

heterogeneity of service interfaces. The more complicated the standards are, the greater 161 

barriers of entry they present to scientists. This complexity is one important reason for 162 

the low adoption rate of GWS by endpoint users. 163 

2.2 Geospatial Cyberinfrastructure and Spatial Data Infrastructure 164 

Cyberinfrastructure ideas have been gradually embraced by Earth science community 165 

and many teams have developed online digital systems to meet cyberinfrastructure 166 

needs that were previously unmet for years (Council, 2007; Richard et al., 2014; Sun et 167 

al., 2014). That has spurred new research which utilizes web-based instruments, 168 

sensors, high-powered computers, data storage capabilities, visualization facilities, and 169 

networks for communication and collaboration (Berman and Brady, 2005; Hofer, 2013). 170 

Spatial Data Infrastructure (SDI) is one type of cyberinfrastructure. In the early days of 171 

GIS, SDI was designed primarily for sharing geographic information in response to the 172 

high cost of information collection and maintenance. Later, SDI efforts have evolved 173 
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towards the creation of shared, distributed, and interoperable environments through 174 

GWS (Davis Jr and Alves, 2005). In SDI, data providers register their services with a 175 

public server that scientists can use to search, select data services of their interest and 176 

reach those services through the Web (Table 1). SDI enables users to retrieve the latest 177 

version of the data products and simplifies the requirement for endpoint devices that can 178 

remain lightweight without the need for large local storage space. Despite advances in 179 

SDI, many geospatial scientists who recognize the need for cyberinfrastructure continue 180 

to hold a “wait and see” attitude rising from the concern that the systems will not be 181 

helpful without broader input from the communities they are meant to serve. 182 

Cyberinfrastructure community needs to engage the geoscience population to reach a 183 

consensus on what kind of cyberinfrastructures are the most suitable for the community 184 

(Mookerjee et al., 2015). 185 

Table 1. The popular online geospatial cyberinfrastructures 186 

Name Searchabl
e 

Object Server 
Interface 

Portal Provider 

CWIC ✓ Data CSW/OpenSe
arch 

http://cwic.wgiss.ceos.org CEOS 

Unidata x Data TDS http://thredds.ucar.edu UCAR 
EOS x Data HTTP http://eospso.nasa.gov/ NASA 
GCMD ✓ Data & GWS HTTP http://gcmd.nasa.gov/ NASA 

GEOSS ✓ Data & GWS CSW http://www.geossregistries.
info 

GEO 

U.S. 
Water 

✓ Data HTTP http://water.usgs.gov USGS 

USGS 
Catalog 

✓ Data CKAN https://data.usgs.gov USGS 

Data.gov ✓ Data & GWS CSW/CKAN https://data.gov GSA 

NOAA 
Catalog 

✓ Data CKAN https://data.noaa.gov NOAA 

NCEI 
Ocean 
Archives 

✓ Data TDS/HTTP/ 
FTP/DAP 

http://data.nodc.noaa.gov/
geoportal 

NOAA 

AWS 
Public 
Datasets 

x Data HTTP https://aws.amazon.com/d
atasets/ 

Amazon 

FGDC 
Catalog 

✓ Data CKAN https://cms.geoplatform.go
v/data/ 

FGDC 

 187 

 188 

http://cwic.wgiss.ceos.org/
http://thredds.ucar.edu/thredds/catalog.html
http://eospso.nasa.gov/
http://gcmd.nasa.gov/
http://water.usgs.gov/
https://data.usgs.gov/
https://data.gov/
https://data.noaa.gov/
http://data.nodc.noaa.gov/geoportal
http://data.nodc.noaa.gov/geoportal
https://aws.amazon.com/datasets/
https://aws.amazon.com/datasets/
https://cms.geoplatform.gov/data/
https://cms.geoplatform.gov/data/
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2.3 Client Framework for GWS 189 

Most web service frameworks offer client frameworks for users to embed the code 190 

calling web services into their application, e.g., Apache Axis (SOAP/REST), Apache 191 

CXF (SOAP/REST), gSOAP (SOAP), .NET Framework (REST), Yii (REST), Jersey 192 

(REST), Spring (REST), etc. Besides that, service consumer groups develop some 193 

independent frameworks for GWS, like ArcGIS, QGIS, gVSIG, and SAGA GIS 194 

developed their own embedded client framework which is usually hidden and 195 

specifically invoked by a plugin dialog. OGC has invested a lot of efforts in unifying 196 

OGC web service interfaces, e.g., OWS common (Whiteside and Greenwood, 2010), 197 

OWSLib (Kralidis, 2015), and GeoAPI (Custer, 2011). OWS common defines unified 198 

GetCapabilities operation and other minimum utilities and is the basis of most OGC 199 

service interface standards. GeoAPI and OWSLib are Java/Python client interfaces 200 

aiming to formalize the handling of the types defined in the OGC specifications. 201 

However, they are fully engaged with detailed technical terminologies in OGC 202 

standards and will cost a lot of time of the environmental scientists who don’t want to 203 

invest too much time on web service. In industry, commercial service providers 204 

normally develop new client framework to interact with their own services, such as the 205 

Python/Java/Javascript/Go client library for Google Maps web services, interactive 206 

SDK for Bing Maps web control, MapKit JS client for Apple Maps, JavaScript API 207 

client for ArcGIS REST services, simple API client for OpenWeatherMap, javascript 208 

API of MapQuest, web/mobile SDKs for Here WeGo maps, etc. All these client 209 

frameworks are independent, very different, and require long-term engagement and 210 

interest, which is not realistic in environmental modeling. Scientists need to focus on 211 

environment models rather than various service client SDKs and a more universal and 212 

simple client framework will be of their interest. 213 

2.4 Geoprocessing Workflow & Earth Science Modelling 214 

Geoprocessing denotes processing geographical data and is the core part of geographic 215 

information system (Allen, 2011; Chen et al., 2009; FRISBIE, 1979; Goodchild, 1982; 216 

Kinzy, 1978; Mark, 1979; Roberts et al., 2010; Sun et al., 2012). A geoprocessing 217 

workflow is a chain of several atomic functions to achieve more complex tasks (Di et al., 218 

2006). The available atomic processes differ among platforms. In ArcGIS, the processes 219 

are the tools in ArcGIS toolbox. In cyberinfrastructure, the processes are web services 220 
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registered in centralized catalogs. Geoprocessing workflows are one of the major users 221 

of GWS and they greatly extend the capability scope that cyberinfrastructure can cover. 222 

But workflow approaches to modelling still struggle to advocate themselves within the 223 

community. Scientists have difficulties to leverage workflows in real science. They are 224 

supposed to ease the burden on scientists for processing data but eventually they leave 225 

users with another big burden of dealing with workflow. The workflows become even 226 

more complicated once they involve ontologies, provenance, inference-based 227 

automation, etc. The hard-to-use impression of GWS contributes to the unpopularity of 228 

geoprocessing workflows. In recent studies, integrated environmental modelling (IEM) 229 

has been identified as a structural way to develop and organize environmental models 230 

(Gao et al., 2019; Jakeman and Letcher, 2003; Kelly et al., 2013; Laniak et al., 2013). 231 

Geoprocessing workflow approach is listed as an option for constructing integrated 232 

models composed of heterogeneous atomic processes (Yue et al., 2015). The approach 233 

is promising but remains too complicated for Earth scientists without web service 234 

background.  235 

2.5 Existing efforts for simplicity 236 

Cyberinfrastructure community has recognized the complexity problem and has 237 

attempted to shield end users from some of the complexity. Initially, they studied the 238 

causes of complexity. Shen et al (Shen et al., 2007) concluded five types of 239 

heterogeneous issues among web services including semantic, parameter data type, 240 

parameter structure, parameter number, and parameter data unit. Many attempts have 241 

been made to extract common things among web services and create a generic interface 242 

to simplify the calling procedure on the client side. For instance, Schindler et al present 243 

a generic and flexible framework for building geoscientific metadata portals 244 

independent of content standards for metadata and protocols (Schindler and 245 

Diepenbroek, 2008). Kiehle et al built a generic service utilizing spatial standards of 246 

OGC, ISO, and W3C (World Wide Web Consortium) for providing common 247 

geoinformation capabilities in SDI (Kiehle et al., 2006). de Souza Munoz et al propose a 248 

generic approach called openModeller to handle different data formats and multiple 249 

algorithms that can be used in potential distribution modeling and make it easy in data 250 

preparation and comparison between algorithms using separate software applications 251 

(de Souza Muñoz et al., 2011). Trabant et al used a simple subset of RESTful concepts, 252 
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common calling conventions, a common tabular text dataset convention, human-253 

readable documentation and tools to help scientists learn how to use the web services 254 

from IRIS Data Management Center (Trabant et al., 2015). Burkon et al tried to develop 255 

and demonstrate the practical use of a generic model of service’s interface that could be 256 

used as a basis for creation of a formal description of any service in any industry 257 

(Burkoň). Mackiewicz discussed the benefits of applying the generic interface definition 258 

(GID) of IEC 61970 to power system operations and industrial applications 259 

(Mackiewicz, 2006). Tristan et al introduced a generic service wrapper enabling the 260 

optimization of legacy codes assembled in application workflows on grid infrastructure 261 

(Glatard et al., 2006). Most research work focuses on the server side and attempts to 262 

unify the service interfaces. However, the current landscape is not favorable for 263 

unifying service interfaces across domains and industries because service providers 264 

have different business goals and different prior knowledge. Because it’s not reasonable 265 

to expect the existing service providers will simplify their interfaces this work should 266 

focus on the client and create a simple client framework that can handle the disparate 267 

service interfaces and provide a universal calling interface for end users.  268 

3. Objective and design principles 269 

Our general objective is to hide scientifically irrelevant technical details of geospatial 270 

web services and to expose only application-related information to end users. A generic 271 

client framework is created to act as a system building-block that bridges scientific end-272 

users and disparate geospatial web services (Fig. 3). The general objective is supported 273 

by three specific principles: a) keeping the processing interface simple, b) making GWS 274 

more composable in the environmental workflow, and c) seeking common ground to 275 

become a universal solution.  276 
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 277 

Figure 3. SUIS objective 278 

3.1 Keeping It Simple 279 

The geospatial process interfaces that take inputs and produce outputs are simple in 280 

traditional GIS, but have become complicated after being translated into GWS 281 

paradigm. The protocols for information communication have evolved concurrently 282 

with the long-term organic development of the Internet. The complex historical 283 

development of web service technologies has embedded specialized technological 284 

knowledge into the GWS interfaces. As case in point, every ordinary World Wide Web 285 

Consortium (WWW) service request-response exchange involves multiple layers of 286 

historical technical minutia that are irrelevant to web user’s needs. The World Wide 287 

Web is successful because Web browsers engineers have artfully leveraged protocols 288 

without drowning web users in technical details – protocol details are hidden far away 289 

from the surface that end users see. Meanwhile, consumers of geospatial web service 290 

face complicated and frustrating client software that directly exposes GWS protocols to 291 

end users. Service consumers must deal with a full stack of engineering information – 292 

from data exchange to operation semantics. For instance, for a non-GWS-expert 293 

environmental scientist, the XML-formated messages with many redundant and deeply 294 

nested labels are very likely to produce confusion and frustration. Our objective requires 295 

that technical details about communication protocols are simplified and hidden away 296 

from the application logic. 297 



14 

 

Additionally, current GWS interface descriptions have too many layers. In WSDL, a 298 

service has bindings, a binding has port types, a port type has operations, an operation 299 

has input elements, an input element has messages, a message has schemes, and a 300 

scheme allows numerous compositions. It is normal to initially become lost while 301 

figuring the relationships among these terminologies. In most cases, those concepts are 302 

only meaningful to expert users. It is unreasonable to have every user encounter them. 303 

Although the layered architecture enhances engineering flexibility when building 304 

loosely coupled services, it correspondingly raises interface complexity barriers for 305 

consumer comprehension. To provide a geospatial service process interface that is as 306 

simple as GIS, SUIS removes those description layers that are not relevant to general 307 

users. 308 

3.2 Making GWS Composable in Environmental Workflow 309 

At present, the adoption of GWS in the workflow is much less than was expected when 310 

GWS were introduced (Lopez-Pellicer et al., 2012). Most scientists treat geospatial web 311 

services as simple tools for data access, which is just one aspect of the design goals of 312 

cyberinfrastructure. GWS permit a major interoperability breakthrough of computer and 313 

network technologies that can directly support and transform the conduct of scientific 314 

and engineering research and yield revolutionary payoffs by empowering individual 315 

researchers and by increasing the scale, scope, and flexibility of collective research 316 

(David, 2004). GWS are supposed to be chained into workflows for automation to 317 

practically help with most basic steps of the real scientific research and in the analysis 318 

of datasets of large-scale areas and extended temporal periods. There are already many 319 

successful experiments in using GWS into environmental model workflows in Lab. 320 

However, after these years of developments, those vision goals of GWS are never really 321 

been achieved in real-world environmental model workflows. To make GWS more 322 

composable in the workflow, simplification of the interfaces of GWS to make them 323 

usable in workflows is a prerequisite step. 324 

3.3 Seeking for Common Ground to Become Universal 325 

Unifying all GWS interfaces into a single universal interface is challenging because 326 

attempts to do that are obstructed by the extreme interface heterogeneity. The reasons 327 

for that are highly varied and involve factors like service purpose, operation granularity, 328 



15 

 

nested tree structures, data formats, message schemas, context scenarios, design 329 

concepts, technical restrictions, and subjective provider preferences. There is enough 330 

idiosyncrasy to make it barely possible to precisely map to all GWS interfaces to a 331 

single model of API interface. Our experiences in transforming OGC web services into 332 

SOAP services have confirmed that. The famous precept to “seek for common ground 333 

while reserving the differences” (Bol, 1987) in this case states the basic rule for 334 

designing a universal solution. A universal client interface for all other GWS interfaces 335 

should center on the common ground and relegate differences to the background. We 336 

need to identify and classify identical or similar interface concepts and then organize 337 

them into a complete interface which is neat, consistent and easily intelligible for 338 

scientists. The outlying and disparate interface concepts that cannot be unified should be 339 

handled via hidden adapters or drivers. 340 

4. SUIS Framework 341 

 342 

Figure 4. SUIS architecture 343 

This section introduces the core model, architectural design and usage of SUIS. The 344 

core model has two major components: profile and driver (Fig. 4).  345 
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4.1 Profile 346 

SUIS profile is a model representing the smallest functional unit of GWS. It is 347 

composed of three public interface classes (Operation, Message, and Parameter) and 348 

enumeration class DataType (Fig. 5).  349 

(1) Operation denotes the action that the service provides. It includes operation 350 

name, input message, output message, and narrative description.  351 

(2) Message is the payload exchanged between the client and server. It contains a 352 

content variable which could be any object such as JSON (JavaScript Object 353 

Notation), XML, and KVP (Key-Value Pairs).  354 

(3) Parameter represents the variables that are inputs and outputs in operations. 355 

Parameter attributes are identity string, a data type, a parameter name, a 356 

parameter value, a description, and minimum and maximum occurrence limits. 357 

To support SUIS profile implementation in multiple programming languages, 358 

we define parameter value as an abstract object and give SUIS library 359 

developers the responsibility to determine the specific data type. Each parameter 360 

object must have an attribute referring to SUIS DataType enumeration. 361 

(4) DataType has five named constants (Fig. 5) which represent basic data types 362 

common to the general database, GIS database, GWS, and general programming 363 

languages. The mapping between the conventional data types and SUIS data 364 

types is listed in Table 2. We combine similar data types to simplify the service 365 

profile. Three new types (BOOL, NUMBER, and DATE) are added to support 366 

logic description capabilities.  367 

The DataType enumeration class describes the general types of data content 368 

communicated over the Internet using structured data exchange formats such as XML, 369 

JSON, KVP, Base64 (Josefsson, 2006), ASCII, Binary, etc. Although using different 370 

encodings and protocols, these parameters belong to the same type, FILE. Because non-371 

expert users have no interests to know how the files are encoded or transferred in 372 

communication. The encoding and decoding, downloading and uploading details should 373 

be erased from the surface and processed automatically on the backstage. 374 
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 375 

Figure 5. SUIS UML 376 

Table 2. Data type mapping between GIS and SUIS 377 

General & GIS SUIS 

Boolean Bool 
Short Integer Number 
Long Integer Number 
Float Number 
Double Number 
Text String 
Date Date 
BLOB String/File 
Object Id String 
Vector (geometry, 
point, linestring, 
polygon, multipoint, 
multiline, multipolygon, 
geometrycollection, 
etc) 

String/File 

Raster (grid, coverage, 
picture, etc) 

String/File 

 378 
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4.2 Driver 379 

The technical details of each GWS type are isolated and processed in a low-level 380 

container, called SUIS driver. The driver wraps the specific service interfaces with the 381 

SUIS profile and translates SUIS requests and responses to message formats compliant 382 

with service interfaces. Users only interact with the SUIS profile and are not required to 383 

understand technical details and complexity encapsulated in SUIS drivers. The SUIS 384 

driver backgrounds technical details and acts as a “gray box” which non-experts can 385 

treat as a black box while experts and power users can use it to leverage the backend 386 

service interface. The driver mechanism makes it easy to transform the existing services 387 

into SUIS style without sacrificing their unique capabilities. Each SUIS driver wraps 388 

one type of service interface. SUIS architecture allows new drivers to be created for 389 

other types of service interfaces that do not belong to the three groups discussed in 390 

Section 2. All SUIS drivers must implement a mandatory set of methods for decoding 391 

the SUIS requests and encoding SUIS responses as illustrated in Fig. 6: a set of methods 392 

that translate SUIS requests to service requests (yellow boxes) and a set of methods for 393 

translating service replies to SUIS responses (blue boxes).  394 

 395 

Figure 6. The work steps of SUIS driver 396 

4.3 Mapping 397 

The task of mapping the disparate GWS interfaces to a SUIS profile demands some 398 

subtle and challenging design decisions. It requires extracting incompatible operation 399 

semantics, identifying their essential information roles and grouping them most 400 

effectively using the categories provided by SUIS profile. Specific services allow 401 

multiple possible mappings – requiring careful consideration of overall semantics. For 402 

example, the common GetCapabilities operation of OGC services can be mapped to a 403 

SUIS operation or it can be merged into the initial method digest phase which retrieves 404 

service descriptions and initializes the driver. When multiple valid design choices are 405 

possible we evaluate each option against the general objective and goals of SUIS 406 
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(Section 3). Fig. 7 shows the mapping we created between the three service categories 407 

(SOAP, REST, OGC) and the SUIS profile. The mapping is not simple or direct 408 

because the ties lack fixed patterns such as one-to-one, one-to-many, or many-to-many. 409 

For example, a resource and one of its supported methods in REST interface are 410 

combined into a SUIS operation, while the GetCapabilities request is mapped to SUIS 411 

operations listing the provided assets. Taken together these complex mapping choices 412 

produce a simple and universal API model that represents capabilities of all GWS 413 

interface types. The specific level of simplifying on the SUIS interface depends on the 414 

acknowledged common requirements from environmental scientists. 415 

 416 

Figure 7. The mapping between existing service interfaces and SUIS profile 417 

4.4 Payload 418 

The data payloads transferred between the SUIS client and the GWS interfaces are 419 

automatically generated by SUIS drivers in accordance to the GWS interface schemas. 420 

Since the payloads encapsulate superfluous technical details, the SUIS architecture 421 

makes them invisible to scientific end users. SUIS users construct SUIS requests that 422 

are composed of parameter key-value pairs that represent the core service request 423 

information. SUIS drivers automatically decode and wrap SUIS requests into request 424 

payloads. In the same fashion, the drivers decode the response payloads and transform 425 

them into SUIS key-value pairs. To end users, the transformation from simple SUIS 426 

data model to complex payload structure is invisible. SUIS drivers provide two 427 
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transmission methods, send and receive, for delivering and receiving service payloads. 428 

If GWS requires file inputs, the SUIS drivers are required to support at least one of the 429 

three ways to transfer files into or out of GWS: URL (simplest), HTTP POST multipart 430 

attachment (file size limited), or a third-party file uploading service (e.g., FTP) to turn 431 

local files into URLs.  432 

4.5 Usage 433 

SUIS is designed to permit flexible usage that adapts to multiple context scenarios. 434 

Scientists are free to choose from a variety of existing GWS facilities (such as mobile or 435 

real-time GWS) according to their application requirements. Customized SUIS drivers 436 

allow the inclusion of new message structures and formats. The SUIS data types allow 437 

users to input or receive either GIS datasets or literal values. In program code, input 438 

specification, process activation, and output retrieval tasks from diverse GWS are 439 

presented by SUIS in a uniform fashion. Both synchronous and asynchronous modes of 440 

operation in the distributed processing environment are supported (Fig. 8). The 441 

synchronous mode can be used for instantly responsive services, while asynchronous 442 

mode allows interaction with extended duration GWS processes. The SUIS Framework 443 

API can be expressed in all general-purpose programming languages such as Java, 444 

Python, and C/C++ thus allowing scientists to use SUIS with their preferred languages. 445 

The main steps of using SUIS to invoke GWS (Table 3) are: 446 

(1)  Initialize SUIS drivers to parse the capabilities of the service, such as the 447 

operations, parameters, data types. Capabilities information is used to configure 448 

the driver.  449 

(2)  Examine the supported operations (optional). Choose the required operation.  450 

(3)  Examine input and output parameters of the chosen operation (optional). 451 

(4)  Construct the request message by setting values of input parameters. 452 

(5)  Send the request and receive the response. 453 

(6)  Examine the returned messages (optional). 454 

 These steps could be altered to support complex application logic and to support 455 

program flow events such as exceptions, to use services that are missing service 456 

description file or to perform asynchronous requests. Scientists can skip the service 457 

examination steps if they are familiar with the operations. The async mode in SUIS is 458 
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built because many web services don’t support asynchronous requests, e.g. most REST 459 

services. For those services with async settings, e.g., WPS 2.0, SUIS driver developers 460 

are recommended to directly reuse their native async settings. 461 

 462 

Figure 8. Two modes of using SUIS to call GWS 463 

Table 3. An example of SUIS invoking IRIS REST service 464 

//Step 1 

SUISClient sc = new SUISClient.Builder() 

.initialize("https://service.iris.edu/irisws/timeseries/1/application.wadl",  

ServiceType.REST).build(); 

//Step 2 

sc.listOperations(); 

Operation o = sc.operation("http://service.iris.edu/timeseries/1/version.GET"); 

//Step 3 

sc.listInputParams(o); 

sc.listOutputParams(o); 

//Step 4 
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o.input().value("network", "IU") 

 .value("station", "ANMO") 

 .value("location", "00") 

 .value("channel", "BHZ") 

 .value("starttime", "2001-12-09T12:00:00") 

 .value("endtime", "2001-12-09T12:20:00") 

 .value("output", "plot"); 

//Step 5 

sc.call(o); 

//Step 6 - optional 

sc.listOutputValues(o); 

String filepath = o.output().value("return"); //get the data location 

5. Implementation 465 

The SUIS Framework should be implemented by SUIS developers of different 466 

programming languages (e.g., Java – suis4j, Python - suispy, etc). Each library will be 467 

maintained by the community of stakeholders who use the corresponding programming 468 

language. The client providers like ArcGIS and QGIS can contribute to the development 469 

and adopt the SUIS libraries in their software to avoid maintaining their own code to 470 

call GWS. Compatibility issues should be fixed by SUIS developers driven by the 471 

science user communities. 472 

SUIS has been implemented as a Java library named suis4j. It utilizes several open 473 

source Java libraries to achieve SUIS functionality (Table 4). suis4j is available on 474 

GitHub (https://github.com/CSISS/suis4j) for downloading and sharing. suis4j 475 

development and maintenance follow standard Java ecosystem practices. GitHub issue 476 

tracking system is used for fixing bugs and planning enhancements. Apache Maven 477 

(Miller et al., 2010) is used to manage dependencies and to build releases. Maven 478 

allows developers to easily include suis4j as a dependency into their projects. The code 479 

structure is split into two major packages: the SUIS profile and drivers as described in 480 

the core framework model. A Client class provides the object-oriented interface for end 481 

users to access SUIS capabilities. The library has no dependencies to any complex GIS 482 

system and works with all standards-conformant GWS.  483 

Table 4.  suis4j dependencies 484 

Library name Functionality 

https://github.com/CSISS/suis4j
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SoapUI (Kankanamge, 

2012) 

Composing SOAP requests 

JAXB Parsing XML schemas 

XMLBean Parsing XML schemas 

WSDL4J Parsing WSDL 

GeoTools Java Toolkit OGC standard schema API 

6. Experiments 485 

To validate SUIS framework against its objectives we applied the suis4j library to two 486 

geospatial science use cases: agricultural drought modelling  (Deng, 2013; Sun et al., 487 

2017b) and FVCOM (Finite Volume Coastal Ocean Model) data processing (Chen et 488 

al., 2006), both of which involve a number of heterogeneous GWS, including GADMFS 489 

(Global Agricultural Drought Monitoring and Forecasting System) WCS (Deng, 2013), 490 

NWS (National Weather Service) REST, GeoServer, GeoBrain SOAP services (Di, 491 

2004), and WPS. All the service calls in both workflows are made in synchronous mode 492 

to ensure the service outputs are ready as the inputs of other services.  493 

6.1 Agricultural Drought 494 

Suppose we are agricultural drought scientists and we have created a new index to 495 

monitor agricultural drought. The equation for the index is: 496 

DroughtIndex =
𝑉𝐶𝐼+𝑀𝑃

2
                                     (1) 497 

where VCI (vegetation condition index) represents the relative status of vegetation 498 

comparing to the historical records in the same period. MP (monthly precipitation) is 499 

derived from quantitative precipitation estimate (QPE) from NWS. The drought index 500 

supposes that vegetation status and precipitation are linearly correlated with drought. 501 

Remote sensing scientists are continuously searching for indices to accurately reflect 502 

observed conditions and this index represents a novel attempt in a realistic agricultural 503 

drought research scenario. 504 

Multiple datasets must be combined to calculate the drought index and to do our 505 

study. We must retrieve VCI products from GADMFS1 and then download MP 506 

 

1 http://gis.csiss.gmu.edu/GADMFS 
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products from the NWS AHPS (Advanced Hydrologic Prediction Service) website. 507 

Once data is obtained we use GeoBrain web services (Han et al., 2008; Li et al., 2010) 508 

to process the two products into the final drought index product. We employ suis4j to 509 

automate these tasks into a geoprocessing workflow. The workflow is shown in Fig. 9, 510 

where irregular shapes represent GWS, purple rectangles represent operations, dashed 511 

lines represent data flow, and solid lines represent SUIS calling web services. We utilize 512 

geospatial web services to re-project, clip, and calculate the final drought product based 513 

on our index equation. We use suis4j to call the required services in the required order 514 

and then link their inputs and outputs to form a chain. We apply the same workflow 515 

chain to different days in 2017 to generate a time series of drought products (shown in 516 

Fig. 10). Our results show that the long-narrow central part of California (the area 517 

between roads I-5 and CA-99) endures agricultural drought for almost the entire year 518 

and seasonally (from May to July) drought spreads to cover most places in California. 519 

In August, the drought starts to gradually dissipate. To present our results we select the 520 

April 23 drought index product and render that as a drought map by overlaying drought 521 

index on Google Maps.  522 

 523 

Figure 9. The use of SUIS in drought workflow 524 
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 525 

 526 

Figure 10. April 23 drought index of California in 2017, generated by suis4j (The base 527 

map is Google Maps © Google) 528 

The finished experiment warrants discussion of technical results, especially 529 

those related to performance issues. The drought workflow uses web services from two 530 
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categories: data services and processing services. Both types of services introduce 531 

network load. Processing services involve computational load on the server and wait 532 

time for the client. Application architecture can be used to address some performance 533 

challenges. For example, SUIS application might cache the outputted data from GWS to 534 

reduce both computational efforts and network load across multiple application runs. 535 

The particular caching strategy depends on SUIS driver developers. The recommended 536 

practice is to remember the paths of the files downloaded by users from GWS. Next 537 

time when users input the same parameters, SUIS will check the file paths and directly 538 

return files to users if they exist. The lifetime of the cached files is equal to the time the 539 

downloaded files exist in their cached paths. For time-sensitive requests, if the input 540 

parameters to GWS are different from the input parameters which produced the cache 541 

files, SUIS will resend the requests for new files; if the input parameters to GWS stay 542 

the same, SUIS will provide an option for users to force refresh the cache files by 543 

downloading new ones. 544 

To decrease the long delays caused by slow network connections between client 545 

and GWS, SUIS supports easy switching between multiple GWS. For example, both 546 

GADMFS and NOAA STAR provide VCI products, and GADMFS serves the data via 547 

WCS while NOAA STAR uses FTP-based Shell scripts. Scientific users can quickly 548 

alter which service SUIS accesses by changing service endpoint and input parameters. 549 

Effective SUIS applications can preserve network resources by never downloading 550 

remote service data more than once. For example, in traditional usage, the WCS 551 

GetCoverage request will download data from the remote server to the local client. 552 

Then, as the next step, this data must be uploaded to another location from where it can 553 

be downloaded by the re-projecting service. SUIS can make this compound process 554 

more efficient by allowing service users to skip the download and upload steps and 555 

instead directly pass the WCS GetCoverage URL to the re-projecting service interface 556 

(Keens, 2007; OGC, 2007, 2017) (as shown in Fig. 11). No network load is generated as 557 

data streams directly from WCS to the re-projecting service without being repeatedly 558 

downloaded and uploaded. The fake call mechanism can save the large part of the total 559 

time cost and has the added benefit of making the workflow more concise. Furthermore, 560 

SUIS can prevent idle blocking while waiting for the result data to be received. 561 

Regardless whether a specific geospatial web service supports asynchronous operation 562 
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semantics, SUIS provides its own asynchronous communication mode to minimize the 563 

time scientists spend idly waiting for processing results.  564 

 565 

Figure 11. The direct streaming call with SUIS 566 

To derive precise quantitative measures from the aforementioned performance 567 

issues, we recorded and evaluated the inputs, outputs, and the duration of each SUIS 568 

call. To calculate a representative workload scenario, we made simple assumptions 569 

concerning potential users and their behavior. We then derived average values such as 570 

inter-arrival times between incoming requests or the requested amount of data from the 571 

scenario. When SUIS and GWS exchange messages, each exchange causes extra delays 572 

that vary depending on the client and server machines’ computing power. We compare 573 

the computational effort of subsetting and re-gridding coverages via WCS to the extra 574 

delay caused by SUIS wrappers and slow network connections. Fig. 12 gives the 575 

average allocation of time cost of the SUIS steps after 100-times repeated tests on 576 

GADMFS WCS. The experiments request 23.3 Mbytes of VCI covering the California 577 

area of 647,972 square kilometers. Fig. 12 shows that it costs 9.2% of the total time to 578 

receive and parse the WCS capabilities document to initialize SUIS. Sending 579 

GetCoverage requests and downloading the VCI image only takes 90.7% of the time 580 

which is 1.03 seconds on average. Meanwhile, SUIS own operations cost barely any 581 

time or computational power (overall less than 1 millisecond). The service description 582 

retrieving takes some time cost due to the complex structure of the capabilities 583 

document which makes automatic parsing slow. We can improve it by exporting the 584 

corresponding SUIS driver state to a local file and read it back when scientists want to 585 

use that web service next time thus avoiding repeating the work of parsing the 586 

capabilities of that services. Recreating a SUIS driver from a configuration file is much 587 

faster than creating a new one from OGC capabilities document. 588 

 589 

WCS Re-project WCS Re-project 

SUIS SUIS 

Real Call Fake Call 

Download Upload 
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 590 

Figure 12. The average time cost of SUIS calling GADMFS WCS (SUIS own 591 

operations add negligible time costs) 592 

The time cost of sending & receiving data will rise as the requested data 593 

becomes larger. Transmitting large binary datasets via web messages requires complex 594 

actions on both the server and the client. Protocols like SOAP allow multiple 595 

transmission options such as MTOM (W3C Message Transmission Optimization 596 

Mechanism), Base64, URL reference, FTP, etc.  597 

6.2 Coastal Ocean Modelling 598 

To demonstrate that SUIS is a domain-independent tool, we also use suis4j in a coastal 599 

ocean modelling study based on FVCOM – an unstructured grid, finite-volume coastal 600 

ocean model (Chen et al., 2012). Our study area is the Gulf of Mexico and parts of the 601 

Atlantic Ocean. FVCOM requires input temperature and salinity data to be formatted 602 

into model-specific schemas. This data transformation task engages a substantial 603 

amount of oceanographers’ time and they have voiced their need for automation of this 604 

work for a number of years. We excise suis4j to the preprocess water temperature and 605 

salinity data to use with FVCOM. A Java program2 generating salinity condition grid to 606 

use as input for FVCOM was created and uploaded to GitHub to demonstrate another 607 

possible use of SUIS. This program uses services provided by the EarthCube 608 

CyberConnector project (Sun et al., 2017a). We access three services to download raw 609 

 

2 https://github.com/ZihengSun/suis4j/blob/master/src/suis4j/client/FVCOMTest.java 

https://github.com/ZihengSun/suis4j/blob/master/src/suis4j/client/FVCOMTest.java
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data, to interpolate it onto the FVCOM grid, and then finally to reformat it into a special 610 

model-ready format. suis4j invokes the three processes in sequence to produces a map 611 

of seawater salinity (Fig. 13). This experiment shows that SUIS enables instant 612 

automation to produce a time series of maps by making some minimal changes to the 613 

input parameters and rerunning the workflow sequence. This greatly relieves 614 

oceanographers from the repetitive, tedious and error-prone task of manually 615 

downloading and processing each dataset. Because SUIS vastly reduces the labor 616 

involved in using existing services, oceanographers are able to take advantage of 617 

EarthCube CyberConnector facilities that solve their specific data pre-processing 618 

problems. Without SUIS, these powerful facilities will remain under-utilized. 619 

Besides the two case studies, we have actively engaged with our stakeholders in 620 

various communities including OGC, ESIP (Federation of Earth Science Information 621 

Partners), AGU (American Geophysical Union), and AMS (American Meteorological 622 

Society), and invited modellers and cyberinfrastructure developers to help test suis4j. 623 

We received some feedbacks which include many positive comments and also some 624 

suggestions for further improvements. Most of them confirm its necessity and 625 

simplicity, and supporting more languages such as python and R is the most priority 626 

thing for broad adoption.  627 
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 629 

Figure 13. The result map of SUIS salinity workflow (generated by suis4j. The base 630 

layer is world country border.) 631 

7. Discussion 632 

This section discusses the advantages and disadvantages of SUIS from both engineering 633 

and scientific user’s perspective.  634 

7.1 Vendor Perspective 635 

(1) Scalability: Scalability is strongly correlated with compatibility. SUIS has 636 

exceptional compatibility with existing GWS interfaces – it supports all generic 637 

GWS standards. SUIS framework is open and extensible – it is easy to create 638 

drivers to access service resources through new interfaces. One negative 639 

consequence of broad compatibility is that the greater variety of interfaces 640 

makes work to adapt all of them more complicated.  641 

(2) Interoperability: The interoperability of a systems framework determines its 642 

level of flexibility and greatly impacts its future development (Thomas et al., 643 

2007). SUIS supports two levels of interoperability: service and workflow. 644 

Service interoperability is provided by compatibility with the standard interfaces 645 

of geospatial web services. Workflow interoperability is supported through 646 

workflow language standard and workflow engine. SUIS workflows can be 647 
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translated to workflows in other workflow languages and systems like BPEL 648 

(Business Process Execution Language) (OASIS, 2007) or Taverna (Oinn et al., 649 

2004).  650 

(3) Performance: The resource overhead of SUIS own operation steps is small and 651 

negligible (Fig. 12). Most time cost within SUIS is spent on communicating 652 

with GWS – which is inevitable. The internal logic of SUIS does not incur 653 

significant time cost. The performance of SUIS applications is determined 654 

mainly by the network capacity, the client and server computational power and 655 

the workload.  656 

7.2 Scientist Perspective 657 

(1) Simplicity: SUIS is a clear lifesaver for users tired of interacting with varied and 658 

confusing web service interfaces. SUIS simplifies the calling procedures into a 659 

unified process which is easy to master for beginners. The disparate, 660 

unnecessary and complicated technical details are safely buried in the 661 

background.  662 

(2) Reliability: SUIS will operate without interruption as long as the corresponding 663 

geospatial web service is up and running. SUIS itself won’t interrupt the user 664 

logic unless it encounters a service-related exception and has to terminate the 665 

entire workflow. SUIS can run indefinitely without interruptions and suis4j 666 

library presents an easy and reliable introduction to all GWS.  667 

(3) Short learning curve: SUIS exposes minimal little technical details and avoids 668 

obscure technical jargon in its API model and documentation. The terminology 669 

and concepts involved in understanding and using SUIS are as simple and 670 

understandable as possible. No technical knowledge of service details is required 671 

because SUIS separates its intuitive profile from the messy service binding 672 

details. As shown in Table 3, users are able to take advantage of the service 673 

without learning about service standards, web protocol, web service profiles, 674 

workflows, XML, etc. The GWS barrier of entry is substantially lowered by 675 

SUIS. 676 
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8. Conclusion 677 

This paper proposes a novel framework called SUIS to simplify the usage of GWS in 678 

geospatial cyberinfrastructure, which has been under-utilized because of difficult and 679 

disparate interfaces. SUIS creates a universal profile for the major geospatial web 680 

service categories and builds a convenient bridge between the existing GWS and 681 

scientists in geospatial application domains. It severely decreases the complexity of 682 

using cyberinfrastructure service resources in and especially benefits scientists without 683 

GWS backgrounds. Simultaneously, the framework supports high scalability, 684 

interoperability and lower barriers of entry. 685 

In the future, scientists from various communities will take advantage of SUIS 686 

to develop new scientific use cases. The SUIS workflow translation to standard 687 

workflow languages will be implemented. As snippets of knowledge, SUIS workflows 688 

can interconnect and form more advanced models to perform large and complex tasks 689 

such as global climate change simulation or global drought forecasting. We will 690 

continue to work on include SUIS in broader collaborative research that includes 691 

datasets and functionalities from a greater variety of sources and disciplines. Security 692 

and service documentation enhancement are another two important issues and will be 693 

studied in the next stage of work. In addition, SUIS drivers should enumerate and rank 694 

possible transmission protocols according to their network performances for a given 695 

volume of data and then select the most effective option. Dynamic selection of 696 

transmission channels can help SUIS adapt to different data volume scaling scenarios 697 

and choices of data formats. These methods can be utilized to reduce the time costs of 698 

the sending and receiving steps and avoid exceeding timeout limits or overloading the 699 

network infrastructure. 700 
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Tables 908 

Table 1. The popular online geospatial cyberinfrastructures 909 

Name Searchabl
e 

Object Server 
Interface 

Portal Provider 

CWIC ✓ Data CSW/OpenSe
arch 

http://cwic.wgiss.ceos.org CEOS 

Unidata x Data TDS http://thredds.ucar.edu UCAR 
EOS x Data HTTP http://eospso.nasa.gov/ NASA 
GCMD ✓ Data & GWS HTTP http://gcmd.nasa.gov/ NASA 

GEOSS ✓ Data & GWS CSW http://www.geossregistries.
info 

GEO 

U.S. 
Water 

✓ Data HTTP http://water.usgs.gov USGS 

USGS 
Catalog 

✓ Data CKAN https://data.usgs.gov USGS 

Data.gov ✓ Data & GWS CSW/CKAN https://data.gov GSA 

NOAA 
Catalog 

✓ Data CKAN https://data.noaa.gov NOAA 

NCEI 
Ocean 
Archives 

✓ Data TDS/HTTP/ 
FTP/DAP 

http://data.nodc.noaa.gov/
geoportal 

NOAA 

AWS 
Public 
Datasets 

x Data HTTP https://aws.amazon.com/d
atasets/ 

Amazon 

FGDC 
Catalog 

✓ Data CKAN https://cms.geoplatform.go
v/data/ 

FGDC 

 910 

Table 2. Data type mapping between GIS and SUIS 911 

GIS SUIS 

Boolean Bool 

Short Integer Number 

Long Integer Number 

Float Number 

Double Number 

Text String 

Date Date 

BLOB File 

Object Id String 

Vector String/File 

http://cwic.wgiss.ceos.org/
http://thredds.ucar.edu/thredds/catalog.html
http://eospso.nasa.gov/
http://gcmd.nasa.gov/
http://water.usgs.gov/
https://data.usgs.gov/
https://data.gov/
https://data.noaa.gov/
http://data.nodc.noaa.gov/geoportal
http://data.nodc.noaa.gov/geoportal
https://aws.amazon.com/datasets/
https://aws.amazon.com/datasets/
https://cms.geoplatform.gov/data/
https://cms.geoplatform.gov/data/
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Raster String/File 

 912 

Table 3. An example of SUIS invoking IRIS REST service 913 

//Step 1 

SUISClient sc = new SUISClient.Builder() 

    .initialize("https://service.iris.edu/irisws/timeseries/1/application.wadl", 

ServiceType.REST) 

 .build(); 

//Step 2 

sc.listOperations(); //optional 

Operation o = sc.operation("http://service.iris.edu/timeseries/1/version.GET"); 

//Step 3 - optional 

sc.listInputParams(o); 

sc.listOutputParams(o); 

//Step 4 

o.input().value("network", "IU") 

 .value("station", "ANMO") 

 .value("location", "00") 

 .value("channel", "BHZ") 

 .value("starttime", "2001-12-09T12:00:00") 

 .value("endtime", "2001-12-09T12:20:00") 

 .value("output", "plot"); 

//Step 5 

sc.call(o); 

//Step 6 - optional 

sc.listOutputValues(o); 

String filepath = o.output().value("return");//get the data location 

 914 

Table 4.  suis4j dependencies 915 

Library name Functionality 

SoapUI (Kankanamge, Composing SOAP requests 
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2012) 

JAXB Parsing XML schemas 

XMLBean Parsing XML schemas 

WSDL4J Parsing WSDL 

GeoTools Java Toolkit OGC standard schema API 

 916 

 917 
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Figures 918 

Figure 1. The word cloud of disparate interfaces in geospatial cyberinfrastructure 919 

Figure 2. Three major categories of GWS on the market 920 

Figure 3. SUIS objective 921 

Figure 4. SUIS architecture 922 

Figure 5. SUIS UML 923 

Figure 6. The work steps of SUIS driver 924 

Figure 7. The mapping between existing service interfaces and SUIS profile 925 

Figure 8. Two modes of using SUIS to call GWS 926 

Figure 9. The use of SUIS in drought workflow 927 

Figure 10. April 23 drought index of California in 2017, generated by suis4j (The base 928 

map is Google Maps © Google) 929 

Figure 11. The direct streaming call with SUIS 930 

Figure 12. The average time cost of SUIS calling GADMFS WCS 931 

Figure 13. The result map of SUIS salinity workflow (generated by suis4j. The base 932 

layer is world country border.) 933 
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