
1

SUIS: simplify the use of geospatial web services in environmental

modelling

Ziheng Sun, Liping Di*, Juozas Gaigalas

Center for Spatial Information Science and Systems, George Mason University, Fairfax,

VA, USA

Ziheng Sun - Email: zsun@gmu.edu; Tel: (+1) 703 993 6124; Mail: 4400 University Dr,

MSE 6E1, Fairfax, VA, 22030; Fax: (+1) 703 993 6127; ORCiD: 0000-0001-9810-0023

Liping Di (Corresponding author) - Email: ldi@gmu.edu; Tel: (+1) 703 993 6114; Mail:

4400 University Dr, MSE 6E1, Fairfax, VA, 22030; Fax: (+1) 703 993 6127

Juozas Gaigalas - Email: juozasgaigalas@gmail.com; Tel: (+1) 207 318 0332; Mail:

4400 University Dr, MSE 6E1, Fairfax, VA, 22030; Fax: (+1) 703 993 6127

Ziheng Sun is a research assistant professor in CSISS.

Liping Di is a professor at George Mason University and director of CSISS.

Juozas Gaigalas is a Ph.D. student and research assistant in CSISS.

This work was supported by the National Science Foundation under Grant 1740693 and

1440294.

mailto:zsun@gmu.edu
mailto:ldi@gmu.edu
mailto:juozasgaigalas@gmail.com

2

SUIS: simplify the use of geospatial web services in environmental

modelling

Abstract: Today environmental scientists heavily rely on geospatial web services

(GWS). However, many online facilities are under-utilized by the environmental

modelling community because accessing the disparate service interfaces requires highly

specialized technical expertise. This paper proposes a Simple Universal Interface for

Services (SUIS) framework which is a client framework for accessing heterogeneous

services via a single unified interface to simplify service access. The supported services

including Open Geospatial Consortium (OGC), Simple Object Access Protocol (SOAP)

and Representational State Transfer (REST) services. SUIS relieves modellers from

having to learn the details of service technologies such as protocols, bindings, and

schemas. SUIS4j, a Java implementation of the SUIS framework, is developed and tested

to combine multiple operational GWS to demonstrate geoprocessing workflows in

agricultural drought monitoring and coastal ocean modelling. The results confirm the

expected benefits. SUIS is demonstrated to support simplified use of geospatial

cyberinfrastructure for ad-hoc environmental model integration.

Keywords: geospatial web service; interoperability; Earth scientific model;

simplification; geoprocessing workflow.

3

Highlights 1

• New simple and universal service client framework (SUIS) is proposed for 2

reducing complexity and engaging the full potential of geospatial web services. 3

• Understandable and descriptive interface for environmental modellers/scientists 4

• SUIS makes technical terminologies on network communications invisible to 5

scientists 6

• SUIS enables simple and effective composition of web services to perform 7

agricultural drought and coastal ocean modelling 8

• SUIS add negligible time cost (<10 milliseconds) into service performance 9

 10

Software availability 11

Name of software: suis4j 12

Developer: Center for Spatial Information Science and Systems, George Mason University 13

Source language: Java 14

Contact Information: zsun@gmu.edu 15

Availability: The source code and application jar can be accessed via Github: 16

https://github.com/CSISS/suis4j. 17

1. Introduction 18

Following the realization that the traditional personal computer oriented analysis 19

workflows are hindering the use of large volume of geospatial data due to limited disk 20

space and computing capacity (Wagemann et al., 2018), geospatial web services (GWS) 21

appeared and brought great benefits to Earth scientists by providing web access to 22

massive geospatial datasets and functionalities in an elastic manner (Hey and Trefethen, 23

2005; Richard et al., 2014; Vitolo et al., 2015; Wright and Wang, 2011). Driven by the 24

idea of “e-Science” (Hey and Trefethen, 2005), tens of thousands of web services were 25

developed and deployed to continuously serve millions of spatial records and datasets 26

on a daily basis. More and more free and open source software (FOSS) for web 27

applications and geographic information systems became available and used by data 28

vendors to deploy their own thematic web services, allowing vendors to directly connect 29

with stakeholders (Swain et al., 2015). These web services are the key tools that enable 30

modellers to conduct data-intensive science (Hey and Trefethen, 2005). Today, 31

mailto:zsun@gmu.edu
https://github.com/CSISS/suis4j

4

researchers in the whole spectrum of Earth science domains including geography, 32

geology, geophysics, oceanography, glaciology, atmospheric sciences and so on, 33

frequently rely on GWS to search, download, visualize, analyze, and disseminate data. 34

Powerful tools could definitely improve the conduct of environmental research (Hey et 35

al., 2009). However, more powerful tools are usually more complicated, because 36

simplicity is sacrificed in exchange for flexibility and generality. Unfortunately, many 37

scientists are prevented from using the full power of GWS because the service client 38

capacity is limited while GWS service interfaces are too complex. Scientists wishing to 39

utilize these powerful services are forced to understand intricate technical details and 40

processes (Fig. 1) that are not intuitive or easily comprehensible to users who lack 41

computer and geospatial interoperability backgrounds. Each type of service takes a 42

different approach to technical details such as operation names, parameter names, data 43

types, formats, schemas, value options, special tokens, protocol headers, and exception 44

codes. This breadth of options supports flexibility at expense of service adoption. 45

 46

Figure 1. The word cloud of disparate interfaces in geospatial cyberinfrastructure 47

(produced by word cloud generator from the terminologies from collected online 48

documents of geospatial cyberinfrastructure standards, e.g. OGC, TC211, FGDC, and 49

related web service blogs) 50

The growth of web-based resources in recent years has made this problem 51

worse. Imagine a hypothetical seismic scientist who wants to combine an IRIS 52

5

(Incorporated Research Institutions for Seismology) REST service (Shapiro et al., 2005) 53

that offers time series of waveform data with a UCAR (University Corporation for 54

Atmospheric Research) Web Coverage Service (WCS) offering radar data and a Web 55

Processing Service (WPS) (OGC, 2007) to perform re-gridding. After their datasets are 56

processed they want to use a SOAP service (Clements, 2002) for data integration. 57

Typically, they will install desktop client software such as ArcGIS (Institute, 2001) or 58

QGIS (Team, 2013) for OGC services and find a Jupyter notebook (Kluyver et al., 59

2016) or write custom code for the SOAP and RESTful services. This researcher might 60

spend days studying obscure web APIs (Application Programming Interfaces) and 61

navigating unnecessary software functionality. Once they master accessing these varied 62

GWS interfaces they still won’t be able to programmatically chain the services together 63

automatically to deliver the data in its final form. Instead, they will spend more time 64

pre-processing the data manually or writing custom scripts. Although GWS that offer 65

required pre-processing capabilities exist, and even though the researcher is already 66

using some GWS to download the data and do the final data integration – they will 67

avoid utilizing existing web GWS for pre-processing because to them those interfaces 68

appear obscure and cumbersome to access. Instead of taking advantage of these 69

powerful facilities, our hypothetical researcher will avoid learning confusing technical 70

details and will continue to rely on inefficient and time-consuming but familiar 71

procedures. This is a persistent problem and naturally many scientific communities have 72

voiced their desire for simplified access to these powerful online facilities to reduce 73

time spent performing manual data pre-processing (Kelbert, 2014). 74

This paper proposes to solve the problem by applying a simple universal 75

interface for services (SUIS) framework to GWS clients. SUIS client framework 76

bridges the disparate service interfaces with a single generic interface that carefully 77

abstracts service technical details such as protocols, styles, bindings, schemas, and 78

addresses. Only the intuitive information for each service like operation names, 79

parameter names and data types are exposed to end users. That information is generally 80

intuitive and easier for scientists to comprehend because it is directly related to the 81

scientific requirements of specific research fields. Operations in SUIS are mapped to the 82

actions in the original service interfaces. For each type of services SUIS provides a 83

driver that accomplishes the simplified mapping automatically. This means that once 84

6

users learn how to use SUIS they can access all standard-conforming online geospatial 85

cyberinfrastructure. 86

The major benefits of SUIS are reduced barrier of entry and reduced risk of 87

misunderstanding between endpoint consumers and service providers. With SUIS, 88

endpoint users of GWS are separated from heterogeneous interfaces and access with all 89

services via the same set of uniform processes. SUIS aims to lighten the burdens of 90

learning about unnecessary software and to ease the pitfalls of coding clients to interact 91

with complicated geospatial web service interfaces. Additionally, by alleviating 92

problems of interface complexity and heterogeneity SUIS supports easier composition 93

of GWS into workflows. Generic SUIS operations can be chained into geoprocessing 94

models (Di, 2004; Yue et al., 2010) that map to executable workflows composed of the 95

multiple services (Chen et al., 2009; Yu et al., 2012). 96

A Java library named suis4j was implemented to demonstrate and evaluate the 97

SUIS concept. suis4j currently supports the basics of SOAP/WSDL (Web Service 98

Description Language), RESTful/WADL (Web Application Description Language), 99

WPS (version 1.0.0), WCS (version 2.0.0), WMS (version 1.3.0), and WFS (version 100

2.0.0). suis4j was tested and its performance was evaluated with various existing web 101

services. The experiment shows that the SUIS approach shields users from 102

overwhelming and unnecessary technical details and allows users to take advantage of 103

GWS in their applications in a simple way. 104

The remainder of the paper is organized as follows. Section 2 introduces the 105

background of this research and lists the existing related work. Section 3 describes the 106

objectives and design principles underlying SUIS, while Section 4 presents SUIS 107

framework in full detail. In Section 5, the implementation of suis4j is presented. Section 108

6 describes how suis4j was tested with prominent online infrastructures in the Earth 109

science community. Section 7 discusses the pros and cons of SUIS framework. Section 110

8 concludes this research and maps out future work. 111

 112

2. Related Work 113

This section talks about the circumstances and explains why simplification is an 114

inevitable trend in geospatial cyberinfrastructure. 115

7

2.1 GWS Interfaces 116

The interfaces of GWS can be generally divided into three groups: SOAP (Simple 117

Object Access Protocol) interfaces, REST (Representational State Transfer) style 118

interfaces and OGC (Open Geospatial Consortium) standard-compliant interfaces 119

(shown in Fig. 2). Their regimes could be overlapped because a service may belong to 120

more than one group. For example, an OGC WPS could simultaneously provide both a 121

SOAP endpoint and REST endpoint. 122

 123

Figure 2. Three major categories of GWS on the market 124

W3C identifies a set of common core technologies for web services. The main 125

ones are HTTP (HyperText Transfer Protocol), XML (Extensible Markup Language), 126

SOAP (Simple Object Access Protocol), WSDL, etc (W3C, 2015). SOAP messages are 127

exchanged through XML payloads that are transmitted via HTTP POST. WSDL is used 128

to describe SOAP web services interfaces (Chinnici et al., 2007; Christensen et al., 129

2001). Historically, the SOAP standard has maintained the monopoly position in 130

service-oriented architecture (SOA), but as new standards have emerged SOAP has 131

become one of several options in the market. SOAP is well regarded due to its domain 132

independence and security. SOAP and WSDL services are employed in many B2B 133

(business-to-business) and B2C (business-to-consumer) industries such as chemistry 134

(Kim et al., 2015), travel planning, hotel booking (Dhara et al., 2015) and decision 135

support (Demirkan and Delen, 2013). 136

REST is the newcomer and provides a lighter weight alternative to SOAP. It is 137

an architectural style of web services and is NOT a standard. REST is used widely to 138

develop World Wide Web applications. In REST, data and functionality are considered 139

resources and are accessed using Uniform Resource Identifiers (URIs). REST requires 140

that actions on the resources are limited to a small set of simple, well-defined 141

8

operations. Usage of REST in web APIs has skyrocketed in the past decade because 142

RESTful services are lightweight, highly scalable and maintainable. WADL is a schema 143

format developed to describe RESTful applications (Hadley, 2006). 144

Both SOAP and REST are domain-independent. However, in many scenarios, 145

target-specific interfaces are required to facilitate geospatial applications (Dietz, 2010). 146

Organizations like ISO/TC211 (the International Organization for Standardization 147

Technical Committee 211) and OGC (Open Geospatial Consortium) have developed a 148

series of standards targeted to the specific requirements from the geospatial community. 149

ISO focuses on standardization of geographic information and geo-informatics 150

(Ostensen and Smits, 2002) while OGC majorly works on standardizing service 151

interfaces and data models (Di, 2003). Some of their well well-known products are 152

ISO19115:2003 (metadata), ISO19119:2005 (geographic information - services) 153

(Percivall, 2002), WMS (WMS, 2004), WCS, WPS, WFS, SOS (Sensor Observation 154

Service), SPS (Sensor Planning Service), CSW (Catalog Service for the Web) and 155

OpenLS (Open Location Service) (Botts et al., 2008; OGC, 2016). To further advance 156

interoperability ISO/TC211 and OGC hold a cooperative agreement that allows them to 157

cite each other’s standards (ISO/TC211, 2009). 158

These standards have greatly improved the interoperability among geospatial 159

web services. However, the proliferation of standards has greatly increased the 160

heterogeneity of service interfaces. The more complicated the standards are, the greater 161

barriers of entry they present to scientists. This complexity is one important reason for 162

the low adoption rate of GWS by endpoint users. 163

2.2 Geospatial Cyberinfrastructure and Spatial Data Infrastructure 164

Cyberinfrastructure ideas have been gradually embraced by Earth science community 165

and many teams have developed online digital systems to meet cyberinfrastructure 166

needs that were previously unmet for years (Council, 2007; Richard et al., 2014; Sun et 167

al., 2014). That has spurred new research which utilizes web-based instruments, 168

sensors, high-powered computers, data storage capabilities, visualization facilities, and 169

networks for communication and collaboration (Berman and Brady, 2005; Hofer, 2013). 170

Spatial Data Infrastructure (SDI) is one type of cyberinfrastructure. In the early days of 171

GIS, SDI was designed primarily for sharing geographic information in response to the 172

high cost of information collection and maintenance. Later, SDI efforts have evolved 173

9

towards the creation of shared, distributed, and interoperable environments through 174

GWS (Davis Jr and Alves, 2005). In SDI, data providers register their services with a 175

public server that scientists can use to search, select data services of their interest and 176

reach those services through the Web (Table 1). SDI enables users to retrieve the latest 177

version of the data products and simplifies the requirement for endpoint devices that can 178

remain lightweight without the need for large local storage space. Despite advances in 179

SDI, many geospatial scientists who recognize the need for cyberinfrastructure continue 180

to hold a “wait and see” attitude rising from the concern that the systems will not be 181

helpful without broader input from the communities they are meant to serve. 182

Cyberinfrastructure community needs to engage the geoscience population to reach a 183

consensus on what kind of cyberinfrastructures are the most suitable for the community 184

(Mookerjee et al., 2015). 185

Table 1. The popular online geospatial cyberinfrastructures 186

Name Searchabl
e

Object Server
Interface

Portal Provider

CWIC ✓ Data CSW/OpenSe
arch

http://cwic.wgiss.ceos.org CEOS

Unidata x Data TDS http://thredds.ucar.edu UCAR
EOS x Data HTTP http://eospso.nasa.gov/ NASA
GCMD ✓ Data & GWS HTTP http://gcmd.nasa.gov/ NASA

GEOSS ✓ Data & GWS CSW http://www.geossregistries.
info

GEO

U.S.
Water

✓ Data HTTP http://water.usgs.gov USGS

USGS
Catalog

✓ Data CKAN https://data.usgs.gov USGS

Data.gov ✓ Data & GWS CSW/CKAN https://data.gov GSA

NOAA
Catalog

✓ Data CKAN https://data.noaa.gov NOAA

NCEI
Ocean
Archives

✓ Data TDS/HTTP/
FTP/DAP

http://data.nodc.noaa.gov/
geoportal

NOAA

AWS
Public
Datasets

x Data HTTP https://aws.amazon.com/d
atasets/

Amazon

FGDC
Catalog

✓ Data CKAN https://cms.geoplatform.go
v/data/

FGDC

 187

 188

http://cwic.wgiss.ceos.org/
http://thredds.ucar.edu/thredds/catalog.html
http://eospso.nasa.gov/
http://gcmd.nasa.gov/
http://water.usgs.gov/
https://data.usgs.gov/
https://data.gov/
https://data.noaa.gov/
http://data.nodc.noaa.gov/geoportal
http://data.nodc.noaa.gov/geoportal
https://aws.amazon.com/datasets/
https://aws.amazon.com/datasets/
https://cms.geoplatform.gov/data/
https://cms.geoplatform.gov/data/

10

2.3 Client Framework for GWS 189

Most web service frameworks offer client frameworks for users to embed the code 190

calling web services into their application, e.g., Apache Axis (SOAP/REST), Apache 191

CXF (SOAP/REST), gSOAP (SOAP), .NET Framework (REST), Yii (REST), Jersey 192

(REST), Spring (REST), etc. Besides that, service consumer groups develop some 193

independent frameworks for GWS, like ArcGIS, QGIS, gVSIG, and SAGA GIS 194

developed their own embedded client framework which is usually hidden and 195

specifically invoked by a plugin dialog. OGC has invested a lot of efforts in unifying 196

OGC web service interfaces, e.g., OWS common (Whiteside and Greenwood, 2010), 197

OWSLib (Kralidis, 2015), and GeoAPI (Custer, 2011). OWS common defines unified 198

GetCapabilities operation and other minimum utilities and is the basis of most OGC 199

service interface standards. GeoAPI and OWSLib are Java/Python client interfaces 200

aiming to formalize the handling of the types defined in the OGC specifications. 201

However, they are fully engaged with detailed technical terminologies in OGC 202

standards and will cost a lot of time of the environmental scientists who don’t want to 203

invest too much time on web service. In industry, commercial service providers 204

normally develop new client framework to interact with their own services, such as the 205

Python/Java/Javascript/Go client library for Google Maps web services, interactive 206

SDK for Bing Maps web control, MapKit JS client for Apple Maps, JavaScript API 207

client for ArcGIS REST services, simple API client for OpenWeatherMap, javascript 208

API of MapQuest, web/mobile SDKs for Here WeGo maps, etc. All these client 209

frameworks are independent, very different, and require long-term engagement and 210

interest, which is not realistic in environmental modeling. Scientists need to focus on 211

environment models rather than various service client SDKs and a more universal and 212

simple client framework will be of their interest. 213

2.4 Geoprocessing Workflow & Earth Science Modelling 214

Geoprocessing denotes processing geographical data and is the core part of geographic 215

information system (Allen, 2011; Chen et al., 2009; FRISBIE, 1979; Goodchild, 1982; 216

Kinzy, 1978; Mark, 1979; Roberts et al., 2010; Sun et al., 2012). A geoprocessing 217

workflow is a chain of several atomic functions to achieve more complex tasks (Di et al., 218

2006). The available atomic processes differ among platforms. In ArcGIS, the processes 219

are the tools in ArcGIS toolbox. In cyberinfrastructure, the processes are web services 220

11

registered in centralized catalogs. Geoprocessing workflows are one of the major users 221

of GWS and they greatly extend the capability scope that cyberinfrastructure can cover. 222

But workflow approaches to modelling still struggle to advocate themselves within the 223

community. Scientists have difficulties to leverage workflows in real science. They are 224

supposed to ease the burden on scientists for processing data but eventually they leave 225

users with another big burden of dealing with workflow. The workflows become even 226

more complicated once they involve ontologies, provenance, inference-based 227

automation, etc. The hard-to-use impression of GWS contributes to the unpopularity of 228

geoprocessing workflows. In recent studies, integrated environmental modelling (IEM) 229

has been identified as a structural way to develop and organize environmental models 230

(Gao et al., 2019; Jakeman and Letcher, 2003; Kelly et al., 2013; Laniak et al., 2013). 231

Geoprocessing workflow approach is listed as an option for constructing integrated 232

models composed of heterogeneous atomic processes (Yue et al., 2015). The approach 233

is promising but remains too complicated for Earth scientists without web service 234

background. 235

2.5 Existing efforts for simplicity 236

Cyberinfrastructure community has recognized the complexity problem and has 237

attempted to shield end users from some of the complexity. Initially, they studied the 238

causes of complexity. Shen et al (Shen et al., 2007) concluded five types of 239

heterogeneous issues among web services including semantic, parameter data type, 240

parameter structure, parameter number, and parameter data unit. Many attempts have 241

been made to extract common things among web services and create a generic interface 242

to simplify the calling procedure on the client side. For instance, Schindler et al present 243

a generic and flexible framework for building geoscientific metadata portals 244

independent of content standards for metadata and protocols (Schindler and 245

Diepenbroek, 2008). Kiehle et al built a generic service utilizing spatial standards of 246

OGC, ISO, and W3C (World Wide Web Consortium) for providing common 247

geoinformation capabilities in SDI (Kiehle et al., 2006). de Souza Munoz et al propose a 248

generic approach called openModeller to handle different data formats and multiple 249

algorithms that can be used in potential distribution modeling and make it easy in data 250

preparation and comparison between algorithms using separate software applications 251

(de Souza Muñoz et al., 2011). Trabant et al used a simple subset of RESTful concepts, 252

12

common calling conventions, a common tabular text dataset convention, human-253

readable documentation and tools to help scientists learn how to use the web services 254

from IRIS Data Management Center (Trabant et al., 2015). Burkon et al tried to develop 255

and demonstrate the practical use of a generic model of service’s interface that could be 256

used as a basis for creation of a formal description of any service in any industry 257

(Burkoň). Mackiewicz discussed the benefits of applying the generic interface definition 258

(GID) of IEC 61970 to power system operations and industrial applications 259

(Mackiewicz, 2006). Tristan et al introduced a generic service wrapper enabling the 260

optimization of legacy codes assembled in application workflows on grid infrastructure 261

(Glatard et al., 2006). Most research work focuses on the server side and attempts to 262

unify the service interfaces. However, the current landscape is not favorable for 263

unifying service interfaces across domains and industries because service providers 264

have different business goals and different prior knowledge. Because it’s not reasonable 265

to expect the existing service providers will simplify their interfaces this work should 266

focus on the client and create a simple client framework that can handle the disparate 267

service interfaces and provide a universal calling interface for end users. 268

3. Objective and design principles 269

Our general objective is to hide scientifically irrelevant technical details of geospatial 270

web services and to expose only application-related information to end users. A generic 271

client framework is created to act as a system building-block that bridges scientific end-272

users and disparate geospatial web services (Fig. 3). The general objective is supported 273

by three specific principles: a) keeping the processing interface simple, b) making GWS 274

more composable in the environmental workflow, and c) seeking common ground to 275

become a universal solution. 276

13

 277

Figure 3. SUIS objective 278

3.1 Keeping It Simple 279

The geospatial process interfaces that take inputs and produce outputs are simple in 280

traditional GIS, but have become complicated after being translated into GWS 281

paradigm. The protocols for information communication have evolved concurrently 282

with the long-term organic development of the Internet. The complex historical 283

development of web service technologies has embedded specialized technological 284

knowledge into the GWS interfaces. As case in point, every ordinary World Wide Web 285

Consortium (WWW) service request-response exchange involves multiple layers of 286

historical technical minutia that are irrelevant to web user’s needs. The World Wide 287

Web is successful because Web browsers engineers have artfully leveraged protocols 288

without drowning web users in technical details – protocol details are hidden far away 289

from the surface that end users see. Meanwhile, consumers of geospatial web service 290

face complicated and frustrating client software that directly exposes GWS protocols to 291

end users. Service consumers must deal with a full stack of engineering information – 292

from data exchange to operation semantics. For instance, for a non-GWS-expert 293

environmental scientist, the XML-formated messages with many redundant and deeply 294

nested labels are very likely to produce confusion and frustration. Our objective requires 295

that technical details about communication protocols are simplified and hidden away 296

from the application logic. 297

14

Additionally, current GWS interface descriptions have too many layers. In WSDL, a 298

service has bindings, a binding has port types, a port type has operations, an operation 299

has input elements, an input element has messages, a message has schemes, and a 300

scheme allows numerous compositions. It is normal to initially become lost while 301

figuring the relationships among these terminologies. In most cases, those concepts are 302

only meaningful to expert users. It is unreasonable to have every user encounter them. 303

Although the layered architecture enhances engineering flexibility when building 304

loosely coupled services, it correspondingly raises interface complexity barriers for 305

consumer comprehension. To provide a geospatial service process interface that is as 306

simple as GIS, SUIS removes those description layers that are not relevant to general 307

users. 308

3.2 Making GWS Composable in Environmental Workflow 309

At present, the adoption of GWS in the workflow is much less than was expected when 310

GWS were introduced (Lopez-Pellicer et al., 2012). Most scientists treat geospatial web 311

services as simple tools for data access, which is just one aspect of the design goals of 312

cyberinfrastructure. GWS permit a major interoperability breakthrough of computer and 313

network technologies that can directly support and transform the conduct of scientific 314

and engineering research and yield revolutionary payoffs by empowering individual 315

researchers and by increasing the scale, scope, and flexibility of collective research 316

(David, 2004). GWS are supposed to be chained into workflows for automation to 317

practically help with most basic steps of the real scientific research and in the analysis 318

of datasets of large-scale areas and extended temporal periods. There are already many 319

successful experiments in using GWS into environmental model workflows in Lab. 320

However, after these years of developments, those vision goals of GWS are never really 321

been achieved in real-world environmental model workflows. To make GWS more 322

composable in the workflow, simplification of the interfaces of GWS to make them 323

usable in workflows is a prerequisite step. 324

3.3 Seeking for Common Ground to Become Universal 325

Unifying all GWS interfaces into a single universal interface is challenging because 326

attempts to do that are obstructed by the extreme interface heterogeneity. The reasons 327

for that are highly varied and involve factors like service purpose, operation granularity, 328

15

nested tree structures, data formats, message schemas, context scenarios, design 329

concepts, technical restrictions, and subjective provider preferences. There is enough 330

idiosyncrasy to make it barely possible to precisely map to all GWS interfaces to a 331

single model of API interface. Our experiences in transforming OGC web services into 332

SOAP services have confirmed that. The famous precept to “seek for common ground 333

while reserving the differences” (Bol, 1987) in this case states the basic rule for 334

designing a universal solution. A universal client interface for all other GWS interfaces 335

should center on the common ground and relegate differences to the background. We 336

need to identify and classify identical or similar interface concepts and then organize 337

them into a complete interface which is neat, consistent and easily intelligible for 338

scientists. The outlying and disparate interface concepts that cannot be unified should be 339

handled via hidden adapters or drivers. 340

4. SUIS Framework 341

 342

Figure 4. SUIS architecture 343

This section introduces the core model, architectural design and usage of SUIS. The 344

core model has two major components: profile and driver (Fig. 4). 345

16

4.1 Profile 346

SUIS profile is a model representing the smallest functional unit of GWS. It is 347

composed of three public interface classes (Operation, Message, and Parameter) and 348

enumeration class DataType (Fig. 5). 349

(1) Operation denotes the action that the service provides. It includes operation 350

name, input message, output message, and narrative description. 351

(2) Message is the payload exchanged between the client and server. It contains a 352

content variable which could be any object such as JSON (JavaScript Object 353

Notation), XML, and KVP (Key-Value Pairs). 354

(3) Parameter represents the variables that are inputs and outputs in operations. 355

Parameter attributes are identity string, a data type, a parameter name, a 356

parameter value, a description, and minimum and maximum occurrence limits. 357

To support SUIS profile implementation in multiple programming languages, 358

we define parameter value as an abstract object and give SUIS library 359

developers the responsibility to determine the specific data type. Each parameter 360

object must have an attribute referring to SUIS DataType enumeration. 361

(4) DataType has five named constants (Fig. 5) which represent basic data types 362

common to the general database, GIS database, GWS, and general programming 363

languages. The mapping between the conventional data types and SUIS data 364

types is listed in Table 2. We combine similar data types to simplify the service 365

profile. Three new types (BOOL, NUMBER, and DATE) are added to support 366

logic description capabilities. 367

The DataType enumeration class describes the general types of data content 368

communicated over the Internet using structured data exchange formats such as XML, 369

JSON, KVP, Base64 (Josefsson, 2006), ASCII, Binary, etc. Although using different 370

encodings and protocols, these parameters belong to the same type, FILE. Because non-371

expert users have no interests to know how the files are encoded or transferred in 372

communication. The encoding and decoding, downloading and uploading details should 373

be erased from the surface and processed automatically on the backstage. 374

17

 375

Figure 5. SUIS UML 376

Table 2. Data type mapping between GIS and SUIS 377

General & GIS SUIS

Boolean Bool
Short Integer Number
Long Integer Number
Float Number
Double Number
Text String
Date Date
BLOB String/File
Object Id String
Vector (geometry,
point, linestring,
polygon, multipoint,
multiline, multipolygon,
geometrycollection,
etc)

String/File

Raster (grid, coverage,
picture, etc)

String/File

 378

18

4.2 Driver 379

The technical details of each GWS type are isolated and processed in a low-level 380

container, called SUIS driver. The driver wraps the specific service interfaces with the 381

SUIS profile and translates SUIS requests and responses to message formats compliant 382

with service interfaces. Users only interact with the SUIS profile and are not required to 383

understand technical details and complexity encapsulated in SUIS drivers. The SUIS 384

driver backgrounds technical details and acts as a “gray box” which non-experts can 385

treat as a black box while experts and power users can use it to leverage the backend 386

service interface. The driver mechanism makes it easy to transform the existing services 387

into SUIS style without sacrificing their unique capabilities. Each SUIS driver wraps 388

one type of service interface. SUIS architecture allows new drivers to be created for 389

other types of service interfaces that do not belong to the three groups discussed in 390

Section 2. All SUIS drivers must implement a mandatory set of methods for decoding 391

the SUIS requests and encoding SUIS responses as illustrated in Fig. 6: a set of methods 392

that translate SUIS requests to service requests (yellow boxes) and a set of methods for 393

translating service replies to SUIS responses (blue boxes). 394

 395

Figure 6. The work steps of SUIS driver 396

4.3 Mapping 397

The task of mapping the disparate GWS interfaces to a SUIS profile demands some 398

subtle and challenging design decisions. It requires extracting incompatible operation 399

semantics, identifying their essential information roles and grouping them most 400

effectively using the categories provided by SUIS profile. Specific services allow 401

multiple possible mappings – requiring careful consideration of overall semantics. For 402

example, the common GetCapabilities operation of OGC services can be mapped to a 403

SUIS operation or it can be merged into the initial method digest phase which retrieves 404

service descriptions and initializes the driver. When multiple valid design choices are 405

possible we evaluate each option against the general objective and goals of SUIS 406

19

(Section 3). Fig. 7 shows the mapping we created between the three service categories 407

(SOAP, REST, OGC) and the SUIS profile. The mapping is not simple or direct 408

because the ties lack fixed patterns such as one-to-one, one-to-many, or many-to-many. 409

For example, a resource and one of its supported methods in REST interface are 410

combined into a SUIS operation, while the GetCapabilities request is mapped to SUIS 411

operations listing the provided assets. Taken together these complex mapping choices 412

produce a simple and universal API model that represents capabilities of all GWS 413

interface types. The specific level of simplifying on the SUIS interface depends on the 414

acknowledged common requirements from environmental scientists. 415

 416

Figure 7. The mapping between existing service interfaces and SUIS profile 417

4.4 Payload 418

The data payloads transferred between the SUIS client and the GWS interfaces are 419

automatically generated by SUIS drivers in accordance to the GWS interface schemas. 420

Since the payloads encapsulate superfluous technical details, the SUIS architecture 421

makes them invisible to scientific end users. SUIS users construct SUIS requests that 422

are composed of parameter key-value pairs that represent the core service request 423

information. SUIS drivers automatically decode and wrap SUIS requests into request 424

payloads. In the same fashion, the drivers decode the response payloads and transform 425

them into SUIS key-value pairs. To end users, the transformation from simple SUIS 426

data model to complex payload structure is invisible. SUIS drivers provide two 427

20

transmission methods, send and receive, for delivering and receiving service payloads. 428

If GWS requires file inputs, the SUIS drivers are required to support at least one of the 429

three ways to transfer files into or out of GWS: URL (simplest), HTTP POST multipart 430

attachment (file size limited), or a third-party file uploading service (e.g., FTP) to turn 431

local files into URLs. 432

4.5 Usage 433

SUIS is designed to permit flexible usage that adapts to multiple context scenarios. 434

Scientists are free to choose from a variety of existing GWS facilities (such as mobile or 435

real-time GWS) according to their application requirements. Customized SUIS drivers 436

allow the inclusion of new message structures and formats. The SUIS data types allow 437

users to input or receive either GIS datasets or literal values. In program code, input 438

specification, process activation, and output retrieval tasks from diverse GWS are 439

presented by SUIS in a uniform fashion. Both synchronous and asynchronous modes of 440

operation in the distributed processing environment are supported (Fig. 8). The 441

synchronous mode can be used for instantly responsive services, while asynchronous 442

mode allows interaction with extended duration GWS processes. The SUIS Framework 443

API can be expressed in all general-purpose programming languages such as Java, 444

Python, and C/C++ thus allowing scientists to use SUIS with their preferred languages. 445

The main steps of using SUIS to invoke GWS (Table 3) are: 446

(1) Initialize SUIS drivers to parse the capabilities of the service, such as the 447

operations, parameters, data types. Capabilities information is used to configure 448

the driver. 449

(2) Examine the supported operations (optional). Choose the required operation. 450

(3) Examine input and output parameters of the chosen operation (optional). 451

(4) Construct the request message by setting values of input parameters. 452

(5) Send the request and receive the response. 453

(6) Examine the returned messages (optional). 454

 These steps could be altered to support complex application logic and to support 455

program flow events such as exceptions, to use services that are missing service 456

description file or to perform asynchronous requests. Scientists can skip the service 457

examination steps if they are familiar with the operations. The async mode in SUIS is 458

21

built because many web services don’t support asynchronous requests, e.g. most REST 459

services. For those services with async settings, e.g., WPS 2.0, SUIS driver developers 460

are recommended to directly reuse their native async settings. 461

 462

Figure 8. Two modes of using SUIS to call GWS 463

Table 3. An example of SUIS invoking IRIS REST service 464

//Step 1

SUISClient sc = new SUISClient.Builder()

.initialize("https://service.iris.edu/irisws/timeseries/1/application.wadl",

ServiceType.REST).build();

//Step 2

sc.listOperations();

Operation o = sc.operation("http://service.iris.edu/timeseries/1/version.GET");

//Step 3

sc.listInputParams(o);

sc.listOutputParams(o);

//Step 4

22

o.input().value("network", "IU")

 .value("station", "ANMO")

 .value("location", "00")

 .value("channel", "BHZ")

 .value("starttime", "2001-12-09T12:00:00")

 .value("endtime", "2001-12-09T12:20:00")

 .value("output", "plot");

//Step 5

sc.call(o);

//Step 6 - optional

sc.listOutputValues(o);

String filepath = o.output().value("return"); //get the data location

5. Implementation 465

The SUIS Framework should be implemented by SUIS developers of different 466

programming languages (e.g., Java – suis4j, Python - suispy, etc). Each library will be 467

maintained by the community of stakeholders who use the corresponding programming 468

language. The client providers like ArcGIS and QGIS can contribute to the development 469

and adopt the SUIS libraries in their software to avoid maintaining their own code to 470

call GWS. Compatibility issues should be fixed by SUIS developers driven by the 471

science user communities. 472

SUIS has been implemented as a Java library named suis4j. It utilizes several open 473

source Java libraries to achieve SUIS functionality (Table 4). suis4j is available on 474

GitHub (https://github.com/CSISS/suis4j) for downloading and sharing. suis4j 475

development and maintenance follow standard Java ecosystem practices. GitHub issue 476

tracking system is used for fixing bugs and planning enhancements. Apache Maven 477

(Miller et al., 2010) is used to manage dependencies and to build releases. Maven 478

allows developers to easily include suis4j as a dependency into their projects. The code 479

structure is split into two major packages: the SUIS profile and drivers as described in 480

the core framework model. A Client class provides the object-oriented interface for end 481

users to access SUIS capabilities. The library has no dependencies to any complex GIS 482

system and works with all standards-conformant GWS. 483

Table 4. suis4j dependencies 484

Library name Functionality

https://github.com/CSISS/suis4j

23

SoapUI (Kankanamge,

2012)

Composing SOAP requests

JAXB Parsing XML schemas

XMLBean Parsing XML schemas

WSDL4J Parsing WSDL

GeoTools Java Toolkit OGC standard schema API

6. Experiments 485

To validate SUIS framework against its objectives we applied the suis4j library to two 486

geospatial science use cases: agricultural drought modelling (Deng, 2013; Sun et al., 487

2017b) and FVCOM (Finite Volume Coastal Ocean Model) data processing (Chen et 488

al., 2006), both of which involve a number of heterogeneous GWS, including GADMFS 489

(Global Agricultural Drought Monitoring and Forecasting System) WCS (Deng, 2013), 490

NWS (National Weather Service) REST, GeoServer, GeoBrain SOAP services (Di, 491

2004), and WPS. All the service calls in both workflows are made in synchronous mode 492

to ensure the service outputs are ready as the inputs of other services. 493

6.1 Agricultural Drought 494

Suppose we are agricultural drought scientists and we have created a new index to 495

monitor agricultural drought. The equation for the index is: 496

DroughtIndex =
𝑉𝐶𝐼+𝑀𝑃

2
 (1) 497

where VCI (vegetation condition index) represents the relative status of vegetation 498

comparing to the historical records in the same period. MP (monthly precipitation) is 499

derived from quantitative precipitation estimate (QPE) from NWS. The drought index 500

supposes that vegetation status and precipitation are linearly correlated with drought. 501

Remote sensing scientists are continuously searching for indices to accurately reflect 502

observed conditions and this index represents a novel attempt in a realistic agricultural 503

drought research scenario. 504

Multiple datasets must be combined to calculate the drought index and to do our 505

study. We must retrieve VCI products from GADMFS1 and then download MP 506

1 http://gis.csiss.gmu.edu/GADMFS

24

products from the NWS AHPS (Advanced Hydrologic Prediction Service) website. 507

Once data is obtained we use GeoBrain web services (Han et al., 2008; Li et al., 2010) 508

to process the two products into the final drought index product. We employ suis4j to 509

automate these tasks into a geoprocessing workflow. The workflow is shown in Fig. 9, 510

where irregular shapes represent GWS, purple rectangles represent operations, dashed 511

lines represent data flow, and solid lines represent SUIS calling web services. We utilize 512

geospatial web services to re-project, clip, and calculate the final drought product based 513

on our index equation. We use suis4j to call the required services in the required order 514

and then link their inputs and outputs to form a chain. We apply the same workflow 515

chain to different days in 2017 to generate a time series of drought products (shown in 516

Fig. 10). Our results show that the long-narrow central part of California (the area 517

between roads I-5 and CA-99) endures agricultural drought for almost the entire year 518

and seasonally (from May to July) drought spreads to cover most places in California. 519

In August, the drought starts to gradually dissipate. To present our results we select the 520

April 23 drought index product and render that as a drought map by overlaying drought 521

index on Google Maps. 522

 523

Figure 9. The use of SUIS in drought workflow 524

25

 525

 526

Figure 10. April 23 drought index of California in 2017, generated by suis4j (The base 527

map is Google Maps © Google) 528

The finished experiment warrants discussion of technical results, especially 529

those related to performance issues. The drought workflow uses web services from two 530

26

categories: data services and processing services. Both types of services introduce 531

network load. Processing services involve computational load on the server and wait 532

time for the client. Application architecture can be used to address some performance 533

challenges. For example, SUIS application might cache the outputted data from GWS to 534

reduce both computational efforts and network load across multiple application runs. 535

The particular caching strategy depends on SUIS driver developers. The recommended 536

practice is to remember the paths of the files downloaded by users from GWS. Next 537

time when users input the same parameters, SUIS will check the file paths and directly 538

return files to users if they exist. The lifetime of the cached files is equal to the time the 539

downloaded files exist in their cached paths. For time-sensitive requests, if the input 540

parameters to GWS are different from the input parameters which produced the cache 541

files, SUIS will resend the requests for new files; if the input parameters to GWS stay 542

the same, SUIS will provide an option for users to force refresh the cache files by 543

downloading new ones. 544

To decrease the long delays caused by slow network connections between client 545

and GWS, SUIS supports easy switching between multiple GWS. For example, both 546

GADMFS and NOAA STAR provide VCI products, and GADMFS serves the data via 547

WCS while NOAA STAR uses FTP-based Shell scripts. Scientific users can quickly 548

alter which service SUIS accesses by changing service endpoint and input parameters. 549

Effective SUIS applications can preserve network resources by never downloading 550

remote service data more than once. For example, in traditional usage, the WCS 551

GetCoverage request will download data from the remote server to the local client. 552

Then, as the next step, this data must be uploaded to another location from where it can 553

be downloaded by the re-projecting service. SUIS can make this compound process 554

more efficient by allowing service users to skip the download and upload steps and 555

instead directly pass the WCS GetCoverage URL to the re-projecting service interface 556

(Keens, 2007; OGC, 2007, 2017) (as shown in Fig. 11). No network load is generated as 557

data streams directly from WCS to the re-projecting service without being repeatedly 558

downloaded and uploaded. The fake call mechanism can save the large part of the total 559

time cost and has the added benefit of making the workflow more concise. Furthermore, 560

SUIS can prevent idle blocking while waiting for the result data to be received. 561

Regardless whether a specific geospatial web service supports asynchronous operation 562

27

semantics, SUIS provides its own asynchronous communication mode to minimize the 563

time scientists spend idly waiting for processing results. 564

 565

Figure 11. The direct streaming call with SUIS 566

To derive precise quantitative measures from the aforementioned performance 567

issues, we recorded and evaluated the inputs, outputs, and the duration of each SUIS 568

call. To calculate a representative workload scenario, we made simple assumptions 569

concerning potential users and their behavior. We then derived average values such as 570

inter-arrival times between incoming requests or the requested amount of data from the 571

scenario. When SUIS and GWS exchange messages, each exchange causes extra delays 572

that vary depending on the client and server machines’ computing power. We compare 573

the computational effort of subsetting and re-gridding coverages via WCS to the extra 574

delay caused by SUIS wrappers and slow network connections. Fig. 12 gives the 575

average allocation of time cost of the SUIS steps after 100-times repeated tests on 576

GADMFS WCS. The experiments request 23.3 Mbytes of VCI covering the California 577

area of 647,972 square kilometers. Fig. 12 shows that it costs 9.2% of the total time to 578

receive and parse the WCS capabilities document to initialize SUIS. Sending 579

GetCoverage requests and downloading the VCI image only takes 90.7% of the time 580

which is 1.03 seconds on average. Meanwhile, SUIS own operations cost barely any 581

time or computational power (overall less than 1 millisecond). The service description 582

retrieving takes some time cost due to the complex structure of the capabilities 583

document which makes automatic parsing slow. We can improve it by exporting the 584

corresponding SUIS driver state to a local file and read it back when scientists want to 585

use that web service next time thus avoiding repeating the work of parsing the 586

capabilities of that services. Recreating a SUIS driver from a configuration file is much 587

faster than creating a new one from OGC capabilities document. 588

 589

WCS Re-project WCS Re-project

SUIS SUIS

Real Call Fake Call

Download Upload

28

 590

Figure 12. The average time cost of SUIS calling GADMFS WCS (SUIS own 591

operations add negligible time costs) 592

The time cost of sending & receiving data will rise as the requested data 593

becomes larger. Transmitting large binary datasets via web messages requires complex 594

actions on both the server and the client. Protocols like SOAP allow multiple 595

transmission options such as MTOM (W3C Message Transmission Optimization 596

Mechanism), Base64, URL reference, FTP, etc. 597

6.2 Coastal Ocean Modelling 598

To demonstrate that SUIS is a domain-independent tool, we also use suis4j in a coastal 599

ocean modelling study based on FVCOM – an unstructured grid, finite-volume coastal 600

ocean model (Chen et al., 2012). Our study area is the Gulf of Mexico and parts of the 601

Atlantic Ocean. FVCOM requires input temperature and salinity data to be formatted 602

into model-specific schemas. This data transformation task engages a substantial 603

amount of oceanographers’ time and they have voiced their need for automation of this 604

work for a number of years. We excise suis4j to the preprocess water temperature and 605

salinity data to use with FVCOM. A Java program2 generating salinity condition grid to 606

use as input for FVCOM was created and uploaded to GitHub to demonstrate another 607

possible use of SUIS. This program uses services provided by the EarthCube 608

CyberConnector project (Sun et al., 2017a). We access three services to download raw 609

2 https://github.com/ZihengSun/suis4j/blob/master/src/suis4j/client/FVCOMTest.java

https://github.com/ZihengSun/suis4j/blob/master/src/suis4j/client/FVCOMTest.java

29

data, to interpolate it onto the FVCOM grid, and then finally to reformat it into a special 610

model-ready format. suis4j invokes the three processes in sequence to produces a map 611

of seawater salinity (Fig. 13). This experiment shows that SUIS enables instant 612

automation to produce a time series of maps by making some minimal changes to the 613

input parameters and rerunning the workflow sequence. This greatly relieves 614

oceanographers from the repetitive, tedious and error-prone task of manually 615

downloading and processing each dataset. Because SUIS vastly reduces the labor 616

involved in using existing services, oceanographers are able to take advantage of 617

EarthCube CyberConnector facilities that solve their specific data pre-processing 618

problems. Without SUIS, these powerful facilities will remain under-utilized. 619

Besides the two case studies, we have actively engaged with our stakeholders in 620

various communities including OGC, ESIP (Federation of Earth Science Information 621

Partners), AGU (American Geophysical Union), and AMS (American Meteorological 622

Society), and invited modellers and cyberinfrastructure developers to help test suis4j. 623

We received some feedbacks which include many positive comments and also some 624

suggestions for further improvements. Most of them confirm its necessity and 625

simplicity, and supporting more languages such as python and R is the most priority 626

thing for broad adoption. 627

 628

Apr 2,

2009

Apr 3,

2009

Apr 4,

2009

Apr 5,

2009

Apr 6,

2009

Apr 7,

2009

Apr 8,

2009

Apr 9,

2009

Apr 10, 2009

30

 629

Figure 13. The result map of SUIS salinity workflow (generated by suis4j. The base 630

layer is world country border.) 631

7. Discussion 632

This section discusses the advantages and disadvantages of SUIS from both engineering 633

and scientific user’s perspective. 634

7.1 Vendor Perspective 635

(1) Scalability: Scalability is strongly correlated with compatibility. SUIS has 636

exceptional compatibility with existing GWS interfaces – it supports all generic 637

GWS standards. SUIS framework is open and extensible – it is easy to create 638

drivers to access service resources through new interfaces. One negative 639

consequence of broad compatibility is that the greater variety of interfaces 640

makes work to adapt all of them more complicated. 641

(2) Interoperability: The interoperability of a systems framework determines its 642

level of flexibility and greatly impacts its future development (Thomas et al., 643

2007). SUIS supports two levels of interoperability: service and workflow. 644

Service interoperability is provided by compatibility with the standard interfaces 645

of geospatial web services. Workflow interoperability is supported through 646

workflow language standard and workflow engine. SUIS workflows can be 647

31

translated to workflows in other workflow languages and systems like BPEL 648

(Business Process Execution Language) (OASIS, 2007) or Taverna (Oinn et al., 649

2004). 650

(3) Performance: The resource overhead of SUIS own operation steps is small and 651

negligible (Fig. 12). Most time cost within SUIS is spent on communicating 652

with GWS – which is inevitable. The internal logic of SUIS does not incur 653

significant time cost. The performance of SUIS applications is determined 654

mainly by the network capacity, the client and server computational power and 655

the workload. 656

7.2 Scientist Perspective 657

(1) Simplicity: SUIS is a clear lifesaver for users tired of interacting with varied and 658

confusing web service interfaces. SUIS simplifies the calling procedures into a 659

unified process which is easy to master for beginners. The disparate, 660

unnecessary and complicated technical details are safely buried in the 661

background. 662

(2) Reliability: SUIS will operate without interruption as long as the corresponding 663

geospatial web service is up and running. SUIS itself won’t interrupt the user 664

logic unless it encounters a service-related exception and has to terminate the 665

entire workflow. SUIS can run indefinitely without interruptions and suis4j 666

library presents an easy and reliable introduction to all GWS. 667

(3) Short learning curve: SUIS exposes minimal little technical details and avoids 668

obscure technical jargon in its API model and documentation. The terminology 669

and concepts involved in understanding and using SUIS are as simple and 670

understandable as possible. No technical knowledge of service details is required 671

because SUIS separates its intuitive profile from the messy service binding 672

details. As shown in Table 3, users are able to take advantage of the service 673

without learning about service standards, web protocol, web service profiles, 674

workflows, XML, etc. The GWS barrier of entry is substantially lowered by 675

SUIS. 676

32

8. Conclusion 677

This paper proposes a novel framework called SUIS to simplify the usage of GWS in 678

geospatial cyberinfrastructure, which has been under-utilized because of difficult and 679

disparate interfaces. SUIS creates a universal profile for the major geospatial web 680

service categories and builds a convenient bridge between the existing GWS and 681

scientists in geospatial application domains. It severely decreases the complexity of 682

using cyberinfrastructure service resources in and especially benefits scientists without 683

GWS backgrounds. Simultaneously, the framework supports high scalability, 684

interoperability and lower barriers of entry. 685

In the future, scientists from various communities will take advantage of SUIS 686

to develop new scientific use cases. The SUIS workflow translation to standard 687

workflow languages will be implemented. As snippets of knowledge, SUIS workflows 688

can interconnect and form more advanced models to perform large and complex tasks 689

such as global climate change simulation or global drought forecasting. We will 690

continue to work on include SUIS in broader collaborative research that includes 691

datasets and functionalities from a greater variety of sources and disciplines. Security 692

and service documentation enhancement are another two important issues and will be 693

studied in the next stage of work. In addition, SUIS drivers should enumerate and rank 694

possible transmission protocols according to their network performances for a given 695

volume of data and then select the most effective option. Dynamic selection of 696

transmission channels can help SUIS adapt to different data volume scaling scenarios 697

and choices of data formats. These methods can be utilized to reduce the time costs of 698

the sending and receiving steps and avoid exceeding timeout limits or overloading the 699

network infrastructure. 700

Acknowledgment 701

We sincerely thank the anonymous reviewers, the authors of the software, libraries, 702

tools and datasets we have used in this work, and ESIP Lab. This study was supported 703

by grants from the National Science Foundation (Grant number: AGS-1740693 & CNS-704

1739705; PI: Prof. Liping Di). 705

Disclosure 706

No interest conflict is claimed. 707

33

 708

 709

34

Reference 710

Allen, D.W., 2011. Getting to Know ArcGIS ModelBuilder. Esri Press. 711

Berman, F.D., Brady, H.E., 2005. NSF SBE-CISE workshop on cyberinfrastructure and 712

the social sciences. National Science Foundation. 713

Bol, P.K., 1987. Seeking Common Ground: Han Literati under Jurchen Rule. Harvard 714

Journal of Asiatic Studies 47(2) 461-538. 715

Botts, M., Percivall, G., Reed, C., Davidson, J., 2008. OGC® sensor web enablement: 716

Overview and high level architecture, GeoSensor networks. Springer Berlin Heidelberg, 717

pp. 175-190. 718

Burkoň, L., Generic Service Interface. prací účastník 12. 719

Chen, A., Di, L., Wei, Y., Bai, Y., Liu, Y., 2009. Use of grid computing for modeling 720

virtual geospatial products. International Journal of Geographical Information Science 721

23(5) 581-604. 722

Chen, C., Beardsley, R.C., Cowles, G., 2006. An unstructured grid, finite-volume 723

coastal ocean model (FVCOM) system. Oceanography 19(1) 78-89. 724

Chen, C., Beardsley, R.C., Cowles, G.W., Qi, J., Lai, Z., Gao, G., Stuebe, D.A., Xu, Q., 725

Xue, P., Ge, J., 2012. An Unstructured-grid, Finite-volume Community Ocean Model: 726

FVCOM User Manual. Sea Grant College Program, Massachusetts Institute of 727

Technology. 728

Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S., 2007. Web services 729

description language (wsdl) version 2.0 part 1: Core language, W3C recommendation. 730

W3C, p. 19. 731

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., 2001. Web services 732

description language (WSDL) 1.1, W3C Standard, p. W3C Standard. 733

Clements, T., 2002. Overview of SOAP, Sun Develper Network. 734

Council, C., 2007. Cyberinfrastructure vision for 21st century discovery. National 735

Science Foundation, Cyberinfrastructure Council. 736

Custer, A., 2011. GeoAPI 3.0 Implementation Standard. Open Geospatial Consortium 737

(OGC). 738

David, P.A., 2004. Towards a cyberinfrastructure for enhanced scientific collaboration: 739

providing its' soft'foundations may be the hardest part. 740

Davis Jr, C.A., Alves, L.L., 2005. Local Spatial Data Infrastructures Based on a 741

Service-Oriented Architecture, GeoInfo, pp. 30-48. 742

de Souza Muñoz, M.E., De Giovanni, R., de Siqueira, M.F., Sutton, T., Brewer, P., 743

Pereira, R.S., Canhos, D.A.L., Canhos, V.P., 2011. openModeller: a generic approach to 744

species’ potential distribution modelling. GeoInformatica 15(1) 111-135. 745

Demirkan, H., Delen, D., 2013. Leveraging the capabilities of service-oriented decision 746

support systems: Putting analytics and big data in cloud. Decision Support Systems 747

55(1) 412-421. 748

Deng, M., L. Di, W. Han, A. Yagci, C. Peng and Gil Heo, 2013. Web-service-based 749

Monitoring and Analysis of Global Agricultural Drought. Photogrammetric Engineering 750

& Remote Sensing (PE&RS) 79(10) 929-943. 751

Dhara, K.M., Dharmala, M., Sharma, C.K., 2015. A Survey Paper on Service Oriented 752

Architecture Approach and Modern Web Services. 753

Di, L., 2003. The development of remote-sensing related standards at FGDC, OGC, and 754

ISO TC 211, Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. 755

Proceedings. 2003 IEEE International. IEEE, pp. 643-647. 756

35

Di, L., 2004. GeoBrain-A Web Services based Geospatial Knowledge Building System, 757

Proceedings of NASA Earth Science Technology Conference: Palo Alto, CA, USA, p. 758

8. 759

Di, L., Zhao, P., Yang, W., Yue, P., 2006. Ontology-driven automatic geospatial-760

processing modeling based on web-service chaining, Proceedings of the sixth annual 761

NASA earth science technology conference. Citeseer, pp. 27-29. 762

Dietz, C., 2010. Geospatial Web Services, Open Standards, and Advances in 763

Interoperability: A Selected, Annotated Bibliography. Coordinates Online Journal of the 764

Map and Geography Round Table A(8). 765

FRISBIE, D., 1979. GEOPROCESSING FOR COMMUNITY CRIME PREVENTION 766

PLANNING (FROM CRIMINAL JUSTICE INFORMATION AND STATISTICS 767

SYSTEMS-INTERNATIONAL SEARCH SYMPOSIUM-PROCEEDINGS, FOURTH, 768

1979, BY JOHN W LAUCHER-NCJ-63648). 769

Gao, F., Yue, P., Zhang, C., Wang, M., 2019. Coupling components and services for 770

integrated environmental modelling. Environmental Modelling & Software 118 14-22. 771

Glatard, T., Emsellem, D., Montagnat, J., 2006. Generic web service wrapper for 772

efficient embedding of legacy codes in service-based workflows, Grid-Enabling Legacy 773

Applications and Supporting End Users Workshop, pp. 1-10. 774

Goodchild, M., 1982. Accuracy and spatial resolution: critical dimensions for 775

geoprocessing, In: Douglas, D., Boyle, A.R. (Eds.), Computer Aided Cartography and 776

Geographic Information Processing: Hope and Realism: Ottawa, Canada, pp. 87-90. 777

Hadley, M.J., 2006. Web application description language (WADL). 778

Han, W., Di, L., Zhao, P., Wei, Y., Li, X., 2008. Design and implementation of 779

GeoBrain online analysis system (GeOnAS), Web and Wireless Geographical 780

Information Systems. Springer, pp. 27-36. 781

Hey, T., Tansley, S., Tolle, K.M., 2009. The fourth paradigm: data-intensive scientific 782

discovery. Microsoft research Redmond, WA. 783

Hey, T., Trefethen, A.E., 2005. Cyberinfrastructure for e-Science. Science 308(5723) 784

817-821. 785

Hofer, B., 2013. Geospatial Cyberinfrastructure and Geoprocessing Web—A Review of 786

Commonalities and Differences of E-Science Approaches. ISPRS International Journal 787

of Geo-Information 2(3) 749-765. 788

Institute, E.S.R., 2001. What is ArcGIS?: GIS by ESRI. ESRI. 789

ISO/TC211, 2009. Standards Guide: ISO/TC 211 GEOGRAPHIC 790

INFORMATION/GEOMATICS. 791

Jakeman, A.J., Letcher, R.A., 2003. Integrated assessment and modelling: features, 792

principles and examples for catchment management. Environmental Modelling & 793

Software 18(6) 491-501. 794

Josefsson, S., 2006. RFC4648: The Base16, Base32, and Base64 data encodings. 795

Internet Engineering Task Force, Tech. Rep. 796

Kankanamge, C., 2012. Web services testing with soapUI. Packt Publishing Ltd. 797

Keens, S., 2007. Discussions, findings, and use of WPS in OWS-4. OGC Discussion 798

Paper. OGC 06-182r1. Version 0.9. 1, 2007-05-10. 799

Kelbert, A., 2014. Science and cyberinfrastructure: The chicken and egg problem. Eos, 800

Transactions American Geophysical Union 95(49) 458-459. 801

Kelly, R.A., Jakeman, A.J., Barreteau, O., Borsuk, M.E., ElSawah, S., Hamilton, S.H., 802

Henriksen, H.J., Kuikka, S., Maier, H.R., Rizzoli, A.E., 2013. Selecting among five 803

common modelling approaches for integrated environmental assessment and 804

management. Environmental Modelling & Software 47 159-181. 805

36

Kiehle, C., Greve, K., Heier, C., 2006. Standardized geoprocessing–taking spatial data 806

infrastructures one step further, Proceedings of the 9th AGILE International Conference 807

on Geographic Information Science. Visegrád, Hungary. 808

Kim, S., Thiessen, P.A., Bolton, E.E., Bryant, S.H., 2015. PUG-SOAP and PUG-REST: 809

web services for programmatic access to chemical information in PubChem. Nucleic 810

acids research gkv396. 811

Kinzy, S., 1978. Geoprocessing System Planning. Data Resources and Requirements: 812

Federal and. Local. Perspectives, Edited by Rolf R. Schmitt and Ronald E. Crellin, 813

URISA 102-107. 814

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Bussonnier, M., Frederic, J., 815

Kelley, K., Hamrick, J.B., Grout, J., Corlay, S., 2016. Jupyter Notebooks-a publishing 816

format for reproducible computational workflows, ELPUB, pp. 87-90. 817

Kralidis, T., 2015. OWSLib documentation. Retrieved. 818

Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G., 819

Geller, G., Quinn, N., Blind, M., 2013. Integrated environmental modeling: a vision and 820

roadmap for the future. Environmental Modelling & Software 39 3-23. 821

Li, X., Di, L., Han, W., Zhao, P., Dadi, U., 2010. Sharing geoscience algorithms in a 822

Web service-oriented environment (GRASS GIS example). Computers & Geosciences 823

36(8) 1060-1068. 824

Lopez-Pellicer, F.J., RenteríA-Agualimpia, W., Béjar, R., Muro-Medrano, P.R., 825

Zarazaga-Soria, F.J., 2012. Availability of the OGC geoprocessing standard: March 826

2011 reality check. Computers & Geosciences 47 13-19. 827

Mackiewicz, R., 2006. The benefits of standardized Web services based on the IEC 828

61970 generic interface definition for electric utility control center application 829

integration, Power Systems Conference and Exposition, 2006. PSCE'06. 2006 IEEE 830

PES. IEEE, pp. 491-494. 831

Mark, D.M., 1979. Phenomenon-based data-structuring and digital terrain modeling. 832

Geo-processing 1(1) 27-36. 833

Miller, F.P., Vandome, A.F., McBrewster, J., 2010. Apache Maven. 834

Mookerjee, M., Vieira, D., Chan, M.A., Gil, Y., Goodwin, C., Shipley, T.F., Tikoff, B., 835

2015. We need to talk: Facilitating communication between field-based geoscience and 836

cyberinfrastructure communities. GSA TODAY 25(11). 837

OASIS, 2007. Web Services Business Process Execution Language Version 2.0. 838

OGC, 2007. OpenGIS® Web Processing Service. OGC: OGC Standard. 839

OGC, 2017. Testbed-12 Implementing Asynchronous Services Response Engineering 840

Report, In: Pross, B. (Ed.), OGC 16-023r3. 841

OGC, I., 2016. OGC Standards and Supporting Documents. 842

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., 843

Glover, K., Pocock, M.R., Wipat, A., 2004. Taverna: a tool for the composition and 844

enactment of bioinformatics workflows. Bioinformatics 20(17) 3045-3054. 845

Ostensen, O.M., Smits, P.C., 2002. ISO/TC211: Standardisation of geographic 846

information and geo-informatics, Geoscience and Remote Sensing Symposium, 2002. 847

IGARSS '02. 2002 IEEE International, pp. 261-263. 848

Percivall, G., 2002. ISO 19119 and OGC Service architecture, FIG XXII International 849

Congress: Washington, D.C. USA, pp. 1-12. 850

Richard, S.M., Pearthree, G., Aufdenkampe, A.K., Cutcher‐Gershenfeld, J., Daniels, 851

M., Gomez, B., Kinkade, D., Percivall, G., 2014. Community‐Developed Geoscience 852

Cyberinfrastructure. Eos, Transactions American Geophysical Union 95(20) 165-166. 853

Roberts, J.J., Best, B.D., Dunn, D.C., Treml, E.A., Halpin, P.N., 2010. Marine 854

Geospatial Ecology Tools: An integrated framework for ecological geoprocessing with 855

37

ArcGIS, Python, R, MATLAB, and C++. Environmental Modelling & Software 25(10) 856

1197-1207. 857

Schindler, U., Diepenbroek, M., 2008. Generic XML-based framework for metadata 858

portals. Computers & Geosciences 34(12) 1947-1955. 859

Shapiro, N.M., Campillo, M., Stehly, L., Ritzwoller, M.H., 2005. High-resolution 860

surface-wave tomography from ambient seismic noise. Science 307(5715) 1615-1618. 861

Shen, D., Yu, G., Kou, Y., Nie, T., Zhao, Z., 2007. Resolving heterogeneity of Web-862

service composition in network manufacturing based on ontology. International Journal 863

of Computer Integrated Manufacturing 20(2-3) 222-233. 864

Sun, Z., Di, L., Huang, H., Wu, X., Tong, D.Q., Zhang, C., Virgei, C., Fang, H., Yu, E., 865

Tan, X., 2017a. CyberConnector: a service-oriented system for automatically tailoring 866

multisource Earth observation data to feed Earth science models. Earth Science 867

Informatics 11(1) 1-17. 868

Sun, Z., Di, L., Zhang, C., Fang, H., Yu, E., Lin, L., Tan, X., Guo, L., Chen, Z., Yue, P., 869

2017b. Establish cyberinfrastructure to facilitate agricultural drought monitoring, Agro-870

Geoinformatics, 2017 6th International Conference on. IEEE, pp. 1-4. 871

Sun, Z., Peng, C., Deng, M., Chen, A., Yue, P., Fang, H., Di, L., 2014. Automation of 872

Customized and Near-Real-Time Vegetation Condition Index Generation Through 873

Cyberinfrastructure-Based Geoprocessing Workflows. IEEE Journal of Selected Topics 874

in Applied Earth Observations and Remote Sensing 7(11) 4512-4522. 875

Sun, Z., Yue, P., Di, L., 2012. GeoPWTManager: a task-oriented web geoprocessing 876

system. Computers & Geosciences 47(0) 34-45. 877

Swain, N.R., Latu, K., Christensen, S.D., Jones, N.L., Nelson, E.J., Ames, D.P., 878

Williams, G.P., 2015. A review of open source software solutions for developing water 879

resources web applications. Environmental Modelling & Software 67 108-117. 880

Team, Q.D., 2013. QGIS geographic information system. Open Source Geospatial 881

Foundation Project. 882

Thomas, D., Khalsa, S., Nativi, S., Ahern, T., Shibasaki, R., 2007. Processes for 883

achieving interoperability in GEOSS, AGU Fall Meeting Abstracts, p. 08. 884

Trabant, C., Ahern, T., Stults, M., 2015. Building web service interfaces to geoscience 885

data sets: EarthCube GeoWS project activities at the IRIS DMC, AGU Fall Meeting 886

Abstracts. 887

Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C.J., Buytaert, W., 2015. Web 888

technologies for environmental Big Data. Environmental Modelling & Software 63 185-889

198. 890

W3C, 2015. Web of Services. 891

Wagemann, J., Clements, O., Marco Figuera, R., Rossi, A.P., Mantovani, S., 2018. 892

Geospatial web services pave new ways for server-based on-demand access and 893

processing of Big Earth Data. International Journal of Digital Earth 11(1) 7-25. 894

Whiteside, A., Greenwood, J., 2010. OGC Web Services Common Standard. Open 895

Geospatial Consortium. 896

WMS, O., 2004. Web Map Service. Version. 897

Wright, D.J., Wang, S., 2011. The emergence of spatial cyberinfrastructure. 898

Proceedings of the National Academy of Sciences 108(14) 5488-5491. 899

Yu, G., Zhao, P., Di, L., Chen, A., Deng, M., Bai, Y., 2012. BPELPower-A BPEL 900

execution engine for geospatial web services. Computers & Geosciences 47(0) 87-101. 901

Yue, P., Gong, J., Di, L., Yuan, J., Sun, L., Sun, Z., Wang, Q., 2010. GeoPW: Laying 902

Blocks for the Geospatial Processing Web. Transactions in GIS 14(6) 755-772. 903

38

Yue, P., Zhang, M., Tan, Z., 2015. A geoprocessing workflow system for environmental 904

monitoring and integrated modelling. Environmental Modelling & Software 69 128-905

140. 906

 907

39

Tables 908

Table 1. The popular online geospatial cyberinfrastructures 909

Name Searchabl
e

Object Server
Interface

Portal Provider

CWIC ✓ Data CSW/OpenSe
arch

http://cwic.wgiss.ceos.org CEOS

Unidata x Data TDS http://thredds.ucar.edu UCAR
EOS x Data HTTP http://eospso.nasa.gov/ NASA
GCMD ✓ Data & GWS HTTP http://gcmd.nasa.gov/ NASA

GEOSS ✓ Data & GWS CSW http://www.geossregistries.
info

GEO

U.S.
Water

✓ Data HTTP http://water.usgs.gov USGS

USGS
Catalog

✓ Data CKAN https://data.usgs.gov USGS

Data.gov ✓ Data & GWS CSW/CKAN https://data.gov GSA

NOAA
Catalog

✓ Data CKAN https://data.noaa.gov NOAA

NCEI
Ocean
Archives

✓ Data TDS/HTTP/
FTP/DAP

http://data.nodc.noaa.gov/
geoportal

NOAA

AWS
Public
Datasets

x Data HTTP https://aws.amazon.com/d
atasets/

Amazon

FGDC
Catalog

✓ Data CKAN https://cms.geoplatform.go
v/data/

FGDC

 910

Table 2. Data type mapping between GIS and SUIS 911

GIS SUIS

Boolean Bool

Short Integer Number

Long Integer Number

Float Number

Double Number

Text String

Date Date

BLOB File

Object Id String

Vector String/File

http://cwic.wgiss.ceos.org/
http://thredds.ucar.edu/thredds/catalog.html
http://eospso.nasa.gov/
http://gcmd.nasa.gov/
http://water.usgs.gov/
https://data.usgs.gov/
https://data.gov/
https://data.noaa.gov/
http://data.nodc.noaa.gov/geoportal
http://data.nodc.noaa.gov/geoportal
https://aws.amazon.com/datasets/
https://aws.amazon.com/datasets/
https://cms.geoplatform.gov/data/
https://cms.geoplatform.gov/data/

40

Raster String/File

 912

Table 3. An example of SUIS invoking IRIS REST service 913

//Step 1

SUISClient sc = new SUISClient.Builder()

 .initialize("https://service.iris.edu/irisws/timeseries/1/application.wadl",

ServiceType.REST)

 .build();

//Step 2

sc.listOperations(); //optional

Operation o = sc.operation("http://service.iris.edu/timeseries/1/version.GET");

//Step 3 - optional

sc.listInputParams(o);

sc.listOutputParams(o);

//Step 4

o.input().value("network", "IU")

 .value("station", "ANMO")

 .value("location", "00")

 .value("channel", "BHZ")

 .value("starttime", "2001-12-09T12:00:00")

 .value("endtime", "2001-12-09T12:20:00")

 .value("output", "plot");

//Step 5

sc.call(o);

//Step 6 - optional

sc.listOutputValues(o);

String filepath = o.output().value("return");//get the data location

 914

Table 4. suis4j dependencies 915

Library name Functionality

SoapUI (Kankanamge, Composing SOAP requests

41

2012)

JAXB Parsing XML schemas

XMLBean Parsing XML schemas

WSDL4J Parsing WSDL

GeoTools Java Toolkit OGC standard schema API

 916

 917

42

Figures 918

Figure 1. The word cloud of disparate interfaces in geospatial cyberinfrastructure 919

Figure 2. Three major categories of GWS on the market 920

Figure 3. SUIS objective 921

Figure 4. SUIS architecture 922

Figure 5. SUIS UML 923

Figure 6. The work steps of SUIS driver 924

Figure 7. The mapping between existing service interfaces and SUIS profile 925

Figure 8. Two modes of using SUIS to call GWS 926

Figure 9. The use of SUIS in drought workflow 927

Figure 10. April 23 drought index of California in 2017, generated by suis4j (The base 928

map is Google Maps © Google) 929

Figure 11. The direct streaming call with SUIS 930

Figure 12. The average time cost of SUIS calling GADMFS WCS 931

Figure 13. The result map of SUIS salinity workflow (generated by suis4j. The base 932

layer is world country border.) 933

 934

 935

