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tional screening of materials has led to accelerated

identification of many promising candidates for energy
storage,' electrocatalysis,” photovoltaic absorbers,” and a
staggering variety of other applications.” There is a growing
availability of experimental and theoretical data on 3D crystals
in popular databases,”® and recent efforts have dramatically
increased the collection of proposed 2D materials and their
predicted properties.””'* While high-throughput density func-
tional theory (DFT) studies are a powerful method for
targeted materials design and characterization without
requiring costly and time-consuming synthesis,*''™"* an
imposing challenge remains: using computation to accelerate
the synthesis of materials. Machine learning (ML) has emerged
as a promising way forward in this respect, as shown in studies
on predicting thermodynamic stability of arbitrary composi-
tions'* and reaction successes in inorganic—organic hybrid
material s.ynthesis,15 identifying trends in synthesis conditions

T he explosion of progress in high-throughput computa-
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for metal oxides,'® and searching for high-temperature
ferroelectric perovskites.'” However, ML has not yet been
exploited to provide insights into the synthesis of 2D materials.

To make actionable predictions about the synthesis of
possible 2D materials, we first identify a family of 2D materials
that is well-suited for analysis via ML, namely, a family
comprising a large chemical search space, with examples of
successful synthesis. The 2D transition metal carbides,
carbonitrides, and nitrides (MXenes)'®'? with the general
formula M,,;X,T, (n = 1-3) and their parent MAX phases
(layers of MXenes interleaved with A-element atoms)”**" are
an ideal choice to satisfy these constraints. The large variety of
chemical compositions, number of layers, pure (single
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Figure 1. Schematic of the chemical search space and computational workflow including PU learning. The MAX/MXene search space (upper
left) is determined by all possible combinations of M, A, and X atoms and n = 1, 2, or 3. Structural models of bulk MAX phase (upper right)
and the corresponding MXene highlighted in pink. Schematic of the PU learning process (lower left) and model parameters. Word clouds
(lower right) where large (small) font size and red (orange) color correspond to high (low) predicted synthesizability of the named

compound.

transition element, M, atom), solid solution, and ordered
phases (more than one M element) define a vast materials
search space. More than 20 of the many theoretically predicted
MXenes have been synthesized,"” providing successful
examples to consider. Perhaps most importantly, exciting
experimental results in electrochemical applications'”** and
predictions of attractive electronic,” optical,”*** and mag-
netic’*™*’ properties for theoretically proposed MXenes
invigorate interest in expanding the family of synthesized
MXenes.

In this study, we make use of state-of-the-art positive and
unlabeled (PU) ML’°™*’ to quantify the degree of
“synthesizability” of theoretically predicted MAX and MXene
compounds. We consider the 66 single M atom MXenes, but
each of these is paired with 12 potential MAX precursors,
yielding a total of nearly 800 potential pathways to achieve
synthesis of MXenes. Of the compounds that have not yet
been successfully synthesized, we predict 111 MAX phases and
18 MXenes with a high probability of synthesis success. We
also identify 20 MAX/MZXene pairs with high combined
synthesizability. Elemental information as well as structural,
thermodynamic, and electronic structure data from DFT
calculations are considered as possible inputs to our models.
With these simple inputs as potential features to characterize
candidate materials, we first applied physical and chemical
intuition to identify the most relevant features for predicting
synthesis success. Then statistical learning in the form of
principal component analysis (PCA) was performed to isolate
the most important model inputs, e.g, lattice parameters,
formation energies, and atomic Bader charges. The key features
were then used to train clustering and classification PU
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learning models. The models were k-fold cross-validated with
their performance measured by their true positive rates (TPR)
tested against the 63 (10) experimentally synthesized MAX
(single M MXene) compounds (Table S1). It is important to
note that this study relies on small positive sample sizes, so we
have included a variety of external methods to validate the
model predictions, including phase stability tests and
comparisons to experiment. Our proposed computational
framework can be applied to potentially mechanically
exfoliable 2D materials’ to provide quantitative insights
beyond DFT-calculated exfoliation energies, or more generally
to the liquid exfoliation of any layered materials.”* We expect
the predictions and approach presented in this paper will guide
future experimental efforts and help to bridge the most crucial
remaining gap between theoretical and experimental materials
science: materials synthesis.

RESULTS

First, we will describe the workflow used here and the details of
the PU learning process as applied to the materials synthesis
problem. The computational framework and the PU learning
algorithm are represented schematically in Figure 1. PU
learning is particularly well suited to the problem of providing
insight into 2D materials synthesis, as it is a so-called
“semisupervised” method relying only on positive data
(experimentally synthesized materials), while all yet-to-be
synthesized materials are “unlabeled”. We start by specifying
a chemical search space defined by 11 transition metal M
atoms, 12 A group elements, carbon or nitrogen X atoms, and
n =1, 2, or 3 layers of X with n + 1 layers of M. This yields 792
potential single M MAX phase candidates and, after removing
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the A group elements, 66 single M MXene candidates. While
there are examples of successfully synthesized solid solutions
and ordered double transition metal structures, here we restrict
the search to single M systems to reduce computational
complexity. The addition of solid solutions and ordered double
M element systems would add only 9 positive samples,”” while
vastly increasing the number of unlabeled samples, causing an
imbalanced data set and unstable PU learning models that
overfit to the limited positive samples. To characterize each
material candidate, we consider an exhaustive set of structural,
thermodynamic, electronic structure, and elemental data.
Elemental features such as atomic masses, electronegativities,
chemical potentials, and atom-in-a-box energies are easily
obtained for constituent atoms. DFT calculations were used to
relax structures and obtain quantities such as interlayer
distances, bond lengths, formation energies, and atomic
Bader charges. In this way, over 80 features are generated to
describe each material system. The relative importance of these
features and the feature engineering process that was used to
select the key features for model building are discussed in
detail below.

The framework of PU learning has been adopted and
modified for use in areas using real world (not simulated) data,
such as drug discovery,’®™*® text classification,” and time
series data classification,™ with the common thread being a
data imbalance given a smaller number of positive samples and
a relative abundance of unlabeled samples. In protein
interaction networks, the positive sample size is as low as
25, and in gene identification studies the positive sample
sizes are as small as 11 samples’' or 20 samples.”” These
successes motivate our approach to apply PU learning to the
materials synthesis problem, where positively labeled data are
scarce, negative samples are not available, and high-throughput
computational screening provides a rich variety of unlabeled
data. The approach to PU learning applied here is based on
imposing penalties for misclassifying data during the learning
process. This approach comes in a variety of flavors including
class—wei%hted learning,”’ bagging support vector machine
(SVM),”" and unbiased learning with risk estimators to
optimize the strategy for weighting unlabeled samples.*® In
this study, we are particularly constrained by the dearth of
positive samples available, so we implement a variation of
transductive bagging SVM, which has demonstrated advan-
tages over other PU learning schemes when the size of positive
samples is much smaller than that of unlabeled ones.’’ We
modify the bagging scheme to use a decision tree as the base
classifier, rather than the standard SVM classifier, because
decision trees implicitly perform feature selection and generate
feature importance metrics during model training, giving
explicit physical and chemical insights. To show the robustness
of the PU learning approach for the materials synthesis
problem, we also implemented an alternative algorithm for PU
learning and show that similar model performance was
achieved (with both models outperforming k-means cluster-
ing), meaning that the results are not dependent on a specific
algorithm or implementation.

With this scheme in place, we built and trained the ML
model. The procedure is illustrated in Figure 1. The sample
space is represented abstractly by randomly distributed positive
data (red circles, synthesizable) and unlabeled data (blue
squares). In each iteration of the PU learning process, some of
the unlabeled samples are randomly labeled negative (green
squares, not synthesizable). A decision tree base classifier is
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constructed based on these data to classify the remaining
unlabeled samples as either positive or negative. This
procedure is repeated T times, where T is the number of
iterations (bagging size), and a new random selection of data is
labeled negative in each iteration. We define the “synthesiz-
ability score” of a given unlabeled compound as the average of
the predictive score from all the decision tree classifiers that do
not contain that sample. A score greater than 0.5 corresponds
to a positive prediction, while a compound scoring less than
0.5 is labeled negative. To improve the stability and accuracy of
the model, a repeated k-fold cross-validation is performed with
different splits of samples in each repetition. The model
training, composed of T iterations, is repeated R times with the
data split into k number of folds. We define the TPR, that is,
the percentage of correctly classified positive samples, as the
validation metric

lw 1w
TPR = — ) — ) TPR,,
RE K& (1)

where K is the number of splits, R is the number of repetitions,
and the TPR is first generated from the prediction of each out-
of-fold validation sample and then averaged across the k-folds.
The final TPR is then averaged across all the repetitions.
Further details of the general PU learning method are
presented in the Methods section.

Feature Engineering. As mentioned above, one advantage
of implementing a decision tree as the base classifier is
obtaining quantitative insight into the importance of features
in the PU learning model. Additionally, we are not restricted in
the number of features the model can consider as long as
overfitting is avoided via the k-fold cross-validation detailed
above. We begin the discussion of feature engineering by
briefly noting some of the salient details of MXene synthesis, as
they relate to the choice of relevant properties to compute or
collect for model input. The M—A bond in layered MAX
precursor phases is metallic, which excludes the possibility of
making MXenes by mechanical shearing of their parent
phases.'” Instead, MXene synthesis exploits the chemical
activity of the M—A bonds compared to the stronger, more
inert M—X bonds. Selective etching of the A-elements can be
achieved using acidic solutions or using an electrochemical
approach in basic solutions.*” However, with the exception of
Ti;SiC, " only Al-containing MAX phases have been
successfully etched to synthesize MXenes."* Experiments
have also shown that MAX phases with larger n and heavier
M atoms tend to require longer etching times and stronger
solutions, which has been related to the larger number of M
valence electrons.**

With this synthesis procedure and these empirical findings in
mind, we identify a few classes of features that may be
particularly relevant to this synthesis problem. Structurally, the
interlayer (out-of-plane) distances between M atoms, M and X,
M and A atoms, efc., as well as nearest-neighbor bond lengths,
quantify the strength of the relevant bonds. Thermodynamic
data including the total, formation, cohesive, and per-atom
energies all give at least a simple picture of a compound’s
stability. For the reasons mentioned above, the mass and n
descriptors are heavily weighted in the MAX model to
represent the relative difficulty (ease) of synthesizing MAX
phases with more (fewer) layers. And finally, the per-atom
Bader charges provide electronic structure information related
to charge transfer and the character of bonds. The feature
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Figure 2. Feature importance ranking for (a) MAX and (b) MXene models. Layer distances and bond lengths are labeled in the unit cell

diagrams. See Table 1 for definitions of all feature labels.

Table 1. Detailed Description of Computed
Features Used in the PU Learning Model

importance ranking of the top 50 features for the best-
performing MAX and MXene models is depicted in Figure 2.
Definitions of these features are given in Table 1. Feature

importance reveals how much weight the model assigns to a cleme

DFT-calculated features

particular descriptor when making predictions, thereby giving n number of layers Z
direct chemical insight into which features are most relevant a in-plane lattice constant N_V
for predicting sYntheSizabihty' c out-of-plane lattice constant P

For the MAX phases, we find that the top five most d MX  laver d[ijstances i‘P
important features are the formation energy, number of layers, 4 MM Y Xe
M atom Bader charge, system mass, and cohesive energy. The 4 MA A
X atom Bader charge, M atom ionization potentials, and ¢ 4 AA IE1
lattice constant are also in the top 10 most important features. -
The high rankings of these features reveal that the ML model is r MX  bond lengths IE2
relying heavily on the thermodynamic stability and data related
to the M—X bond to make its classifications. This is in line _MA E_chem
with our chemical intuition and shows that we can safely m mass E_atom
neglect features other than the S0 shown in Figure 2a in the

. . e e \% volume
classification. Moreover, these quantitative data bolster our )
. . . .. rho density
chemical intuition when choosing a more limited feature set E rotal
. . . . . ner: (0} ener:
for use in alternative PU schemes, in which base classifiers E agy ener jyatom
other than a decision tree are used. As another visual P gy.p
. X E_form formation energy

representation of feature importance, we plot the feature B coh  cohesive ener
correlation matrix for the MAX model in Figure Sla. e M Bader char esg};n M A X

The feature importance plot for the MXene model (Figure o A atoms, reggpectively’ ’
2b) is consistent with previous empirical observations based on e X

successful MXene syntheses. Among the most important
features we find the M—X bond length, cohesive and formation
energies, per-atom mass, and the Bader charges for the M and
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Figure 3. Model evaluation for per-atom normalized features. Model performance measured by true positive rate is tested as a function of

number of splits (k), bagging size (T), and number of repetitions

(R).

X atoms. These features encode information about the strength
of the M—X bond and the overall thermodynamic stability.
Interestingly, the simple metric of number of M atom valence
electrons is not important, although previous experiments have
suggested this feature is strongly tied to synthesis success.**
Instead, the atomic Bader charges are among the most
important features, as these calculated quantities give a more
realistic estimate of the distribution of charge in the system.
The MXene feature correlation matrix is shown in Figure S1b.

Model Building. With reasonable features generated, next
we turn to the actual construction of the PU learning model.
This process involves three interrelated steps: (1) testing
possible feature sets, (2) tuning hyperparameters, and (3)
evaluating model performance. To construct a robust model
for synthesizability predictions, extensive and careful testing
over all three steps must be performed. As discussed above,
using the decision tree as a base classifier allows for an
unrestricted feature space dimensionality, but there may be
redundancies in descriptors or numerical differences based on
weighting/normalization schemes, such that it is still important
to construct multiple feature sets and test their performance.
Of the many tested feature sets, the best performance was
achieved after normalizing descriptors by the number of atoms
in the system. This simple reweighting can dramatically
increase the model performance. The model performance as
measured by the TPR is uniformly better after normalization,
over all tested hyperparameter values. The per-atom normal-
ization reduces bias based on system size, helping to isolate the
real chemical and structural differences underlying successful
synthesis, thereby improving the TPR. For comparison, model
training performance for a feature set without normalization is
shown in Figure S2.

The hyperparameters k, T, and R were tested for
convergence for both MAX and MXene PU models by varying
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one parameter and fixing the other two at a large value. This
testing is summarized in Figure 3, where performance is shown
in orange. We limit the discussion of model performance to the
results for the per-atom normalized feature set, as it
outperforms other feature sets in all respects. The number of
splits, k, can range from 2 to the number of positively labeled
samples. For the MAX model, a TPR of nearly 0.90 is achieved
for k = 10 (Figure 3a), with marginal increases of ~1% beyond
that point. Cross-validation poses a unique challenge for the
MZXene data set, where there are only 10 positive samples. The
optimal performance was reached using a “leave-one-out cross-
validation” scheme (Figure 3d), where k equals the number of
positive samples, and within each k-fold the model is trained
on all but one sample, which is then used as the test set. The
bagging size, T, determines the number of base models
generated for the ensemble averaging, and a sharp increase in
TPR was observed between T = 10 and T = 50 for the MAX
model (Figure 3b). For T > 50, the TPR increase is again ~1%.
The MXene model TPR showed a stronger dependence on T
(Figure 3e). An increase in the TPR of over 5% was seen
between T = 50 and T = 1000. Finally, model performance
with respect to number of repetitions, R, was tested. While
increasing k and T incurs only a small cost to the runtime of
model training, R controls the number of iterations of the
entire model training procedure, and thus it is desirable to find
a lower bound for convergence with respect to R. Fortunately,
the TPR is stable over a large range of R (up to R = 1000) for
both MAX and MXene models.

As a further check against bias in the model, we repeated this
entire training and evaluation procedure on the MAX and
MXene data sets for two other ML algorithms: k-means
clustering and robust ensemble SVM (RESVM).” k-means
clustering is a conceptually simple method in which samples
are partitioned into one of k clusters based on the distance
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between the vector of features that describes the sample and
the mean of each cluster. In our case, we know a priori that
there are only two possible clusters: predicted positive and
predicted negative. The k-means clustering attempts to sort all
the samples into one of these clusters based on its feature
vector’s proximity to the means of the clusters. The
transductive bagging PU learning approach assigns a numeric
score between 0 and 1 to each sample that can be visualized in
3D as a function of three features to graphically depict
“clusters” of similar samples (Figure S3a), but a similar plot
using k-means clustering generates a much more -easily
interpreted representation. Plotting the clusters against
formation energy, M—A layer distance, and M—X bond length,
k-means clustering reveals a clear division in this feature space
between predicted positive and predicted negative samples
(Figure S3b). Most of the true positives clearly sit in the
predicted positive cluster, while most of the false negatives
overlap with the predicted negative cluster, revealing that the
model has misclassified these samples due to their distance in
feature space from the predicted positive cluster. RESVM is yet
another ML scheme that can be applied to PU learning
problems (details of the algorithm are provided in the Methods
section). This approach has not been previously applied to
materials science problems, but we have adapted the algorithm
to our synthesis problem and used it to generate synthesiz-
ability scores (Figure S3c) in the same manner as in PU
learning with a decision tree base classifier. Unlike the
decision-tree-based model, using SVM as the base classifier
imposes limits on the feature space dimensionality, so we must
consider around 10 features, rather than the 50 used in the
decision tree method. However, similar model performance
was achieved with the two PU learning methods (and both
outperformed simple k-means clustering), so we conclude that
the PU learning approach is a robust method for tackling the
synthesis problem, and the results are not algorithm-specific.

After exhaustive hyperparameter testing over multiple
feature sets, optimal model performances of TPR > 90% and
TPR > 75% were found for (k, T, R) = (10, 500, 200) and (k,
T, R) = (10, 1000, 200) for MAX and MXene models,
respectively. Perhaps unsurprisingly, while the model perform-
ance for the MAX phases is quite good, the performance for
MXenes is less so. To provide clarity on the predictive power
of these models, we first analyze the model predictions and
provide a breakdown by chemical composition, number of
layers, and the most relevant model descriptors. We then
combine the insights from this analysis with a holistic picture
of MAX/MXene precursor/product pairs to highlight the most
promising synthesis pathways.

Model Predictions. From the 792 MAX phases,
accounting for the 63 true positives, there are 729 unlabeled
samples. The PU learning model predicts that 111 of these
unlabeled samples are positive, i.e., promising candidates for
synthesis. The 111 predicted positive compounds are listed in
Table S2. This result provides significant guidance in future
MAX synthesis, reducing the possible space of unlabeled
samples to 17% of its original size, while still providing a large
number and chemical variety of proposed candidates. Ten of
the 11 possible M species (all except W) are represented, as
well as all 12 possible A species. Twenty-nine of the predicted
positives are nitrides, and there are n = 1, 2, and 3 phases
present. Surprisingly, four Mn-based compounds are predicted
positive (e.g, Mn,AlC and Mn,AIN), although there are no
examples of successfully synthesized Mn-based MAX phases.
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These compounds could be promising precursors for MXenes
with exotic properties for which no parent phases currently
exist.

To further evaluate our model’s predictive power, we
considered the thermodynamic and elastic stability of the
predicted positive MAX phases and their stability compared to
their competing binary phases; 87% of the predicted positives
were classified “viable crystals”, satisfying both the Cauchy—
Born elastic stability criteria and having negative heats of
formation compared to the MAX 4Phase constituent elements
in their most stable unary forms.” Using the MaterialsWeb
database, *® which reports phase stability of M,AX compounds,
we then applied a further test by looking at the phase stability
of the predicted positives against their competing phases. Of
the predicted positives contained in the database, 89% are
stable or metastable (energy difference per atom between the
compound and their decompositional products less than 100
meV/ atom),M’48 and 11% are unstable. The phase stable and
metastable compounds are listed in Table S3. It should also be
noted that reported phonon calculations on MAX phases
found no negative frequencies, indicating dynamic stability.*’

The MXene model yielded 18 predicted positive compounds
out of the 56 unlabeled samples. These systems are listed in
Table 2. The predicted positive compounds offer a wide

Table 2. Predicted Positive MXene Compounds with
Synthesizability Score > 0.5

MXene predicted positives

Hf,C, Ta,N; Sc;C,
Nb,C, Ta,C Ti,N
Zr,C Hf,N; Se,C
Ta,C, Ti,Cs W;C,
w,C, Hf,C Nb,N
Zr,Cy Sc,Cs Mo, C;

chemical variety while providing important guidance to future
synthesis efforts, reducing the space of 56 unlabeled candidates
to nearly a third of that size. We again consider the stability of
the predicted positives as a check on the model predictions.
Fourteen of the 18 compounds have formation energies below
200 meV/atom and so are considered stable under the
proposed threshold for 2D material stability.”® The four
unstable systems (W,C;, Ta,C, W;C,, and Mo,C;) may be
stabilized by surface functionalization. Sixteen of the 18 have
medium or high dynamical stability according to phonon
calculations reported in the Computational 2D Materials
Database.”

Most interestingly, the model predicts certain Ta, Hf, and
Nb nitrides, as well as two Sc-based MXenes (Sc;C, and Sc,C)
and two W-based MXenes (W,C; and W,C,), as positive,
although no such nitrides or pure phase Sc- or W-based
MZXenes have been reported. The predicted positive W-based
MXenes, for which no existing (or even predicted) MAX
phases can act as precursors, may indicate that non-MAX
phase precursors, such as the recently reported W-based
nanolaminated ternary phase, (W, Ti)4C4_x’51 are Dbetter
starting points to successfully synthesize these compounds.
Mo,C, Zr;C,, and Hf;C, MXenes have previously been
synthesized by such methods.”>~>* The PU learning approach
employed here outputs an easily interpreted “synthesis
probability” between 0 and 1, where 0 corresponds to a
negative (not synthesizable) compound and 1 is a positive
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(synthesized) compound. This allows for a variety of analyses
based on comparison to experimental data and the
distributions of synthesis probability and features for predicted
positive and negative compounds.

The scaled errors of machine learning model predictions
decrease as the number of samples increases, so the sample size
is an important factor affecting a model’s predictive accuracy.
Typical examples of machine learning in materials science use
between 100 and 10* training samples.’> Additionally,
traditional k-fold cross-validation is overly optimistic when
evaluating materials discovery machine learning models,
because materials data sets are rarely uniformly distributed.®
With these points in mind, it is particularly important and
necessary in this study to compare the model predictions to
experiments and other external measures of validation, because
of the small size of positive samples.

Next, we test our model predictions against experimental
observations by comparing the “predicted negative” MXenes
(Table S4) to compounds for which we have unsuccessfully
attempted synthesis. Many MXenes have not been successfully
synthesized mostly due to the lack of available synthesized
MAX phase precursors. For example, the MAX phase
precursors for Hf;N,, Cr;C,, Cr;N,, and Mo;N, have not
been reported in the literature. Even if the MAX phase exists,
the attempted wet-chemical etching in hydrofluoric acid (HF)-
containing aqueous solutions is not always successful.
Although the Cr,AIC MAX phase was synthesized long before
the discovery of MXenes,”’ attempts to make Cr,C from
Cr,AlIC by HF etching have been unsuccessful. Based on our
knowledge to date, no selective etching of Al is observed for
Cr,AlIC immersion in different concentrations of HF, and the
MAX phase powder is dissolved after a few hours.”® This
observation suggests that Cr,C synthesis, if possible, is not
likely to be successful via the HF route. TiyN; was similarly
difficult to synthesize (dissolution in HF), and we were able to
synthesize it via molten salt etching of Ti,AIN,.”” We have
tried the molten salt route for Cr,C synthesis, and it was not
successful (not published).

These experimental findings suggest that the MXenes in
Table S4 are difficult to synthesize and should have
correspondingly low synthesizability scores. Indeed, Cr,C is
predicted negative with a synthesizability score of 0.25. More
broadly, the low synthesizability scores of many nitride
MZXenes agree with our experimental observations of the
difficulty in synthesizing such compounds, either because of
the lack of MAX phase precursor or dissolution of the MAX
powder instead of selective etching in the current MXene
synthesis routes. This agreement with experimental data
provides added validation of the model predictions.

The violin plots in Figure 4 summarize the predicted
synthesis probability distributions as a function of atomic
species. Some trends across both MAX and MXene systems are
readily apparent. Distributions for carbides (green) are always
at least equal or skew to higher values than those for nitrides
(blue). This is expected because of all the successfully
synthesized MAX phases, only 9 (less than 15%) are nitrides.
The situation is even worse for MXenes, of which only one
nitride, Ti,N;, has been synthesized from a MAX phase
precursor.”” While this fact certainly biases the model
predictions toward carbides, it also underscores the importance
of identifying nitride compounds with high synthesis
probabilities. In the violin plots, the median is represented
by the thicker dashed line, and the interquartile is contained by
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Figure 4. Violin plots of synthesis probabilities as a function of
constituent atomic species (X = N shown in blue, X = C shown in
green). (a) MAX synthesis probabilities as a function of M atom.
(b) MAX synthesis probabilities as a function of A atom. (c)
MXene synthesis probabilities as a function of M atom.

the thinner dashed lines. For many species, the interquartile
covers a range of low synthesis probability, and a much smaller
distribution extends to higher synthesis probabilities. Again,
this agrees with intuition from experiment; we expect that most
of the not-yet synthesized compounds are difficult to
synthesize, and we are most interested in the relatively fewer
unidentified systems with a high synthesis probability.

Figure 4a shows the distributions for MAX phases as a
function of M atom. There is a clear trend of decreasing
synthesizability with increasing group number, where group 4
Ti-, Zr-, and Hf-based MAX phases have high synthesizability,
and group 6 Mo- and W-based systems have relatively low
synthesis probability. For W in particular, the interquartile is
completely below 0.2. This agrees with experimental results, in
which the majority of synthesized MAX compounds have M
atoms from group 4, and no W-based systems have been
synthesized. The A atom dependence (Figure 4b) is less
apparent. The distributions for carbides are in general spread
out over the whole range of scores. This result is interesting in
the sense that, although only Al-based MAX phases have been
successfully etched into MXenes,'” there are a large number of
predicted positive compounds containing a different A-group
element that may be promising MXene precursors. The
previously clear trend for MAX phases disappears entirely for
the MXenes. In Figure 4c, there are a surprising number of
predicted positive samples from all the early transition metal
elements except for V, Mn, and Cr. However, this stark
contrast between the 3d block and other transition metal
compounds may be an artifact due to the fact that many of the
strongly correlated 3d block transition metal MXenes are
predicted to be magnetic,%_28 and only nonmagnetic ground
states were considered in this work. The Ti and Nb carbide
“violin plots” are in fact simply lines at high synthesis
probability, because only one of the layered MXene systems
of each of these families has not yet been synthesized.
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Box plots of feature distributions in the MAX model (Figure
S4) for predicted negative (score <0.5) and predicted positive
(score >0.5) samples further elucidate the relationship between
specific descriptors and synthesizability. In general, feature
distributions for predicted positive samples are much more
tightly distributed than those for predicted negatives. While the
total energies calculated from DFT increase linearly with
increasing n, the formation energies within one standard
deviation of the median of all predicted positives are between 0
and —1 eV, and the cohesive energies are between —S5.5 and
—7.5 €V, regardless of n. In contrast, formation and cohesive
energies for predicted negatives span much larger ranges in
energy. Similarly, stark differences between negative and
positive samples exist with respect to interlayer distances and
bond lengths. Irrespective of n, predicted positives have M—X
interlayer separations, M—A interlayer separations, and M—X
bond lengths closely distributed around 1.2, 4.5, and 2.2 A,
respectively. With respect to the atomic Bader charges, the
predicted positives have median values between 2 and 3 e~
smaller for M atoms and slightly smaller median values for A
and X atoms. This finding agrees well with experimental
observations, where compounds with heavier M elements and
more valence electrons are more difficult to synthesize and
require stronger etching conditions.

The combined synthesizability scores for MAX and MXenes
offer a strategy for overcoming the scarcity of data in the pure
M MXene family of 2D materials. Of the 729 unlabeled MAX
phases, 111 were predicted positive by our PU learning model.
Taking these as potential precursors for the synthesis of
MXenes, we generate 111 (MAX, MXene) pairs to identify the
most promising synthesis pathways. The static exfoliation
energy has been used to characterize the possibility of
chemically etching a bulk MAX phase into 2D MXenes.*’
We compute the etching energy as

Emax - 2EMX - ZﬂA
48 @)

where E__ is the total energy of the MAX phase, Eyy is the
total energy of a MXene unit cell, 4, is the chemical potential

of the MAX phase A atom from its most stable crystal phase,
v3

2
S= % is the surface area, and a is the MAX phase in-plane

Eetch =

(a) lattice constant. It is important to note that the surfaces of
synthesized MXenes are functionalized by O, F, and OH
groups, which affect their formation and etching energies.*’
The etching energy is used as a metric to further discriminate
between (MAX, MXene) pairs, especially considering pairs
with different precursor phases but the same MXene. These
three factors, MAX synthesizability, MXene synthesizability,
and etching energy, were used as input to a k-means clustering
model to group all possible pairs of predicted positive MAX
phases and their MXene partners into positive and negative
(MAX, MXene) pairs. The model also considers the
differences in bond lengths, interlayer distances, and Bader
charges between each MAX parent and its corresponding
MXene. In this way, the k-means clustering groups together
(MAX, MXene) pairs with similarly favorable features (high
combined synthesizability, low etching energy, etc.) into the
“positive” cluster and similarly unfavorable features (low
combined synthesizability, high etching energy, etc.) into the
“negative” cluster.

The results of k-means clustering are presented in Figure 5,
where predicted positive pairs are shown in green and
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Figure S. k-means clustering of (MAX, MXene) pair synthesiz-
ability as a function of the required chemical etching energy, and
individual MAX and MXene synthesizability. Predicted positive
samples are shown in light green, top 20 predicted positive
samples are in dark green, and predicted negative samples are
shown in orange. Zr,GeC, Ti,AsC;, and Nb;AIC, data points
(circled in blue) are shown as examples for the top predicted
positive samples.

predicted negative pairs are in orange. The etching energy is
plotted along the z-axis as an aide for visualizing the clusters.
The top 20 pairs with highest combined synthesizability scores
are highlighted in dark green. The k-means clustering was
repeated with the synthesizability scores from RESVM (Figure
SS). Table 3 contains the top 20 pairs with their respective
MAX and MXene scores, as well as E,, ;. Each of these pairs
represents a not-yet-synthesized MAX phase and correspond-
ing MXene that can both be synthesized with high probability.
This provides further guidance to experiment, reducing the

Table 3. Most Preferable MAX Phase Precursors and the
Synthesizability of Their Corresponding MXenes, as Well as
the Etching Energy (eV/A?) of the (MAX, MXene) Pair”

synthesizability of synthesizability of etching

MAX MAX MX energy
Zr,GaC 0.975 0.748 —-0.143
Zr,GeC* 0.942 0.748 —0.152
Zr,AsC 0.890 0.748 —0.150
Zr,PC 0.860 0.748 —0.138
Zr,CdC 0.846 0.748 —0.108
Zr,SiC 0.816 0.748 —0.131
Nb,AIC,* 0.751 0.793 —0.187
Zr,AIC, 0.819 0.680 —0.135
Ti,AlC,4 0.893 0.618 —0.185
Ti,AsC,* 0.742 0.618 —0.225
Ti,SnC, 0.678 0.618 —0.189
Ti,PC, 0.676 0.618 —-0214
Sc,PbC 0.768 0.543 -0.219
TiInCy 0.652 0.618 -0.171
Sc,TIC 0.737 0.543 —0.178
Ti,SCy 0.636 0.618 —0.252
Ti,SnN 0.720 0.545 —0.146
Z1,SiC, 0.574 0.680 —0.158
Ti, TIN 0.693 0.545 —0.108
Sc,GaC 0.677 0.543 —0.305

“Three representative samples highlighted in Figure 5 are denoted
here with an asterisk.
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space from 111 predicted positive MAX phases to the 20
specific phases that can also be chemically etched into MXenes
with high probability. There are some notable omissions in this
list, which contains only one-third of the predicted positive
MZXenes. This is because there are no predicted positive MAX
precursors for compounds such as W;C,. The model
predictions indicating these MXenes as promising synthesis
candidates means that non-MAX phase precursors are
preferable to yield these compounds.

CONCLUSIONS

In this work, PU machine learning was adapted and applied to
the problem of bulk and 2D materials synthesis. We chose the
family of 2D MXenes and their parent MAX phases as an ideal
chemical search space because of the large dimensionality,
chemical variety, and numerous examples of successful
synthesis. Elemental data and descriptors from DFT
calculations were used to characterize each material, and
extensive testing was performed to optimize the model
hyperparameters and feature set to achieve robust, validated
predictions. Two PU learning algorithms were employed,
yielding similar results, with the bulk of the discussion devoted
to our own implementation of transductive bagging with a
decision tree base classifier. This is the most transparent
algorithm because it offers a detailed breakdown of feature
importance and an easily interpreted synthesizability score
between 0 and 1 for each unlabeled sample. Analyzing the
trained model revealed that features related to thermodynamic
stability, bond strength, and charge distribution were most
important in generating model predictions. The resulting
classifications showed trends that agree well with experimental
findings, in which earlier group transition metal compounds
with smaller charge densities on the M atoms are easier to
synthesize. The PU learning model predicted 111 MAX phases
and 18 MXenes as synthesizable, including some systems such
as Hf,N;, Sc;C,, and W,C;, although no Hf nitride or Sc- or
W-based single M MXenes yet exist. Considering both MAX
phase synthesizability and the score of the corresponding
MZXene, we also identified the top 20 most promising MAX
systems that can be synthesized with high probability and
etched to form previously unavailable MXenes. This work
provides a computational workflow based on high-throughput
DFT and PU learning to make actionable predictions about
the synthesis of bulk and 2D materials and further bridge the
gap between theory and experimental realization. More
specifically, we have applied this framework to the family of
2D MXenes and provided insight and guidance on which
materials systems are most likely to be synthesized. By
accelerating materials discovery, design, and now synthesis,
the availability of 2D materials with exotic properties can be
rapidly expanded and exploited for use in next-generation
technologies.

METHODS

The PU learning algorithm implemented in this paper is a variant of
the well-established transductive bagging SVM proposed by Mordelet
et al.’' Bagging is also commonly used to create ensembles of decision
tree classifiers,’”®' so it is a natural extension to adapt the
transductive bagging scheme to decision trees. The technical details
of the implementation of this model are as follows: Denoting P as the
positive sample set, U as the unlabeled sample set, K as the number of
positive samples, and T as the number of bootstraps, i.e., the bagging
size. The model iteratively generates T decision tree classifiers as base
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models. In each iteration, a random subsample of U, denoted as U, is
generated and treated as the negative sample set in this iteration. A
binary decision tree classifier is trained using P and U, and this
classifier is used to predict the score for the remaining unlabeled
samples, U \ U,. In practice, the size of Uj is chosen to be equal to K,
which is the same as that of P, to ensure a balanced training. After T
iterations, the score of any unlabeled sample x is obtained by
averaging the predictive score from the decision tree classifiers trained
on subsamples that do not contain x. If the average predictive score of
the unlabeled sample x is greater than 0.5, then the label of x is
predicted to be positive; otherwise a negative label is assigned to x.
We have taken measures to minimize the impact of the small positive
sample sizes by using ensemble methods, performing k-fold cross-
validation and extensive testing of model performance with respect to
the bagging size and number of training repetitions. Moreover, we
validated our approach through comparisons to experimental
evidence and tests of thermodynamic, elastic, and phase stability.

The RESVM method developed by Claesen et al.>> was
implemented using class weighted SVM (CWSVM) base models.
The optimization problem for training CWSVMs in PU learning uses
manually tuned misclassification penalties C;, and Cy; for positive and
unlabeled samples, respectively, with C, > Cy;. The base models were
trained using collections of random samples of size n, and ny from P
and U, respectively. The hyperparameter wp then determines C,
according to

Cp = Cympl

P CALPS 3)

An additional hyperparameter, y, was used in the radial basis
functions for the base models. Hyperparameters were tuned to
maximize model performance (measured by TPR) by conducting a
grid search for multiple feature sets starting from the optimal values
for ny; and Cy; suggested by Claesen et al.”> RESVM results were
evaluated using k-fold cross-validation with k = 10 folds and T = 100
iterations to determine the TPR. The RESVM workflow begins with
training samples being fed to the base models, where each model
assigns decision values to the remaining samples. The decision values
are then aggregated to produce the final predictions in an ensemble
scheme that reduces the bias each individual model has for the data
on which it was trained. Majority voting was used for the aggregation,
whereby the fraction of positive votes for an unlabeled sample x is
given by

Models + ?:;dds Sgn(l//l(x))
v(x) =
anodels (4)
where 1,4 is the total number of CWSVM base models and v is

the decision function of the ith model. Samples are predicted positive
if v(x) > 0.5 and predicted negative if v(x) < 0.5. A schematic of the
RESVM workflow is given in Figure S6.

DFT calculations were performed within the Vienna ab-Initio
Simulation Package (VASP)® using the Perdew—Burke—Ernzerhof
(PBE)® exchange—correlation functional and projector-augmented
wave (PAW) pseudopotentials.®* Structural relaxations were
performed by straining around experimental lattice constant values
and fitting energies to an equation of state, while final static
calculations were done with a 520 eV plane-wave energy cutoff, an 8 X
8 X 1 k-point mesh, and a total energy convergence criterion of 107°
eV.
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