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A B S T R A C T

Coastal ecosystems are exposed to multiple anthropogenic stressors such as fishing, pollution, and climate
change. Ecosystem-based coastal management requires understanding where the combination of multiple
stressors has large cumulative effects and where actions to address impacts are most urgently needed. However,
the effects of multiple stressors on coastal and marine ecosystems are often non-linear and interactive. This
complexity is not captured by commonly used spatial models for mapping human impacts. Flexible statistical
and machine learning models like random forests have thus been used as an alternative modeling approach to
identify important stressors and to make spatial predictions of their combined effects. However, tests of such
models' prediction skill have been limited. Therefore, we tested how well ten statistical and machine learning
methods predicted three ecological indicators of coastal marine ecosystem condition (kelp biodiversity, fish
biomass, and rocky intertidal biodiversity) off California, USA. Spatial data representing anthropogenic stressors
and ocean uses as well as natural gradients were used as predictors. The models' prediction errors were estimated
by double spatial block cross-validation. The best models achieved mean squared errors about 25% lower than a
null model for kelp biodiversity and fish biomass; none of the tested models worked well for rocky intertidal
biodiversity. The models captured general trends, but not local variability of the indicators. For kelp biodi-
versity, the best performing method was principal components regression. For fish biomass, the best performing
method was boosted regression trees. However, after tuning, this model did not include any interactions between
stressors, and ridge regression (a constrained linear model) performed almost as well. While in theory flexible
machine learning methods are required to represent the complex stressor-ecosystem state relationships revealed
by experimental ecologists, with our data, this flexibility could not be harnessed because more flexible models
overfitted due to small sample sizes and low signal-to-noise ratio. The main challenge for harnessing the flex-
ibility of statistical and machine learning methods to link ecological indicators and anthropogenic stressors is
obtaining more suitable data. In particular, better data describing the spatial and temporal distribution of human
uses and stressors are needed. We conclude by discussing methodological implications for future research.

1. Introduction

Most of the world's coastal ecosystems are affected by multiple
human stressors (Halpern et al., 2008, 2015). These stressors include
local disturbances by direct use (e.g., recreational fishing, coastal
construction activities) as well as long-term, broad-scale drivers like
overfishing (Jackson et al., 2001) and climate change (Hoegh-Guldberg
and Bruno, 2010; Poloczanska et al., 2016). Understanding the cumu-
lative effects of multiple stressors is thus a priority for marine

researchers, managers and resource users alike (Borja et al., 2014;
Mason et al., 2017). One approach to mitigate the cumulative impacts
of multiple stressors and balance human uses with environmental
protection is ecosystem-based management (EBM; Levin et al., 2009).
EBM requires mapping the overall condition of marine ecosystems,
understanding how they are affected by anthropogenic stressors, and
predicting their response to different management decisions (Borja
et al., 2016; Foley et al., 2017; Thrush et al., 2016). However, labora-
tory and field experiments suggest that the effects of multiple stressors
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on marine ecosystems are complex, non-linear, and hard to predict
(Crain et al., 2008; Hunsicker et al., 2016; Côté et al., 2016).

Several studies have proposed spatial models for mapping human
impacts on marine ecosystems. Most are simple, additive, linear models
that calculate a human impact index and are unlikely to capture im-
portant ecological non-linearities and interactions (Korpinen and
Andersen, 2016). The most commonly used of these human impact
index models was proposed by Halpern et al. (2008), and subsequently
applied in many regional studies: e.g. for the waters of British Columbia
(Ban et al., 2010; Murray et al., 2015), the Baltic Sea (Korpinen et al.,
2012), parts of the North Sea (Andersen et al., 2013), the Mediterra-
nean and Black Seas (Micheli et al., 2013), the Great Lakes (Allan et al.,
2013), the Bering Strait region (Afflerbach et al., 2017) and our study
area, the coast of California (Halpern et al., 2009; Mach et al., 2017).
When cautiously interpreted, maps generated with this model can
broadly highlight potential priority areas for research and management
(Andersen et al., 2017; Stock et al., 2018). However, like other existing
models for mapping human impacts on marine ecosystems, Halpern
et al.’s (2008) model makes various simplifying assumptions (e.g. that
stressors do not interact) that are at odds with experimental results
(Halpern and Fujita, 2013). In combination, these assumptions and data
quality can have large effects on model outputs (Gissi et al., 2017; Stock
and Micheli, 2016) and lead to ineffective environmental management
decisions.

For example, a model that ignores stressor interactions may suggest
reducing a stressor that in reality counteracts the effects of another
stressor; in this case, reducing the former will have limited benefits
(Brown et al., 2014). Halpern et al.’s and similar human impact index
models also rely on expert judgment to link human stressors to eco-
system-level effects, but it would be preferable to extract relationships
between stressors and ecosystem condition from data (Doubleday et al.,
2017). Furthermore, first attempts to test Halpern et al.’s (2008) model
against ecological field data reported mixed results (Sala et al., 2012;
Andersen et al., 2015; Clark et al., 2016). While more theoretically
grounded approaches for spatial modeling of multiple stressor effects
are under development (Hodgson and Halpern, 2018), they have so far
considered few stressors (e.g. Coll et al., 2016) or are not yet fully
operational (e.g. Giakoumi et al., 2015). Simple, linear and additive
models like Halpern et al.’s thus remain the most widely used (Korpinen
and Andersen, 2016).

A notable, empirical exception to the established additive models
and the mechanistic models under development was proposed by
Parravicini et al. (2012). These authors created maps of marine habitat
status and various anthropogenic stressors for a small (few km2) coastal
study area and used random forests, a statistical learning (or machine
learning, which we here consider synonymous) model, to link habitat
status and stressors. They then predicted how habitat status would
change under different management scenarios. Statistical learning
methods have also been used to identify important gradients, pressures,
thresholds, and interactions that affect marine ecosystems (Jones et al.,
2017; Large et al., 2013, 2015; Samhouri et al., 2017; Teichert et al.,
2016). In the future, such methods in combination with “big environ-
mental data” are expected to shed more light on and allow for better
spatial prediction of multiple stressor effects. Unfortunately, currently
available marine ecological data are rarely “big”, and monitoring pro-
grams are not designed for this purpose (Baird et al., 2016; Dafforn
et al., 2016). In particular, ecological data are often spatially auto-
correlated and can be clustered in few locations (e.g., close to research
centers). This violates the assumption of independent observations that
many statistical learning methods make (Stojanova et al., 2013). Thus,
the ability of such methods to spatially predict indicators of ecosystem
state based on currently available regional ecological and stressor data
sets remains unexplored.

While the use of statistical and machine learning methods for
human impact mapping is a nascent field of research, these methods
have at least three advantages in comparison to the more common

human impact index models. First, in contrast to predicting an abstract
index, statistical learning methods allow direct prediction of quantita-
tive ecological indicators or composite indicators chosen to reflect
specific management goals. Second, the accuracy of human impact in-
dices is difficult to assess because it is not clear which measurable
quantities the index values should be compared to, especially at broad
spatial scales (Stock et al., 2018). In contrast, for statistical and ma-
chine learning methods, appropriate cross-validation methods provide
sound estimates of spatial prediction error (Roberts et al., 2017). Third,
human impact index models at present cannot incorporate natural
disturbances, or possible beneficial effects of some human activities on
certain biota. In contrast, statistical learning methods can incorporate
any predictor for which data are available. This is important if the re-
sulting maps are used to inform coastal management, because human
uses of the coast are managed within a background of natural dis-
turbance (Micheli et al., 2016).

The potential of statistical learning to link indicators of marine
ecosystem condition to multiple stressors, and to make spatial predic-
tions of ecosystem responses, therefore deserves further development
and testing. Our paper expands the previous work by Parravicini et al.
(2012) in three ways. First, we test how well statistical learning
methods work for spatial prediction of ecological indicators related to
coastal human impacts at a regional scale, and with accordingly coarser
data. Second, we compare the performance of different model types.
This is necessary because which type of model performs best depends
on the characteristics of the data. On the one hand, flexible models may
be required to adequately represent the interactive and non-linear re-
lationships present in marine ecosystems under stress. However, if
sample sizes and the signal-to-noise ratio in the data are small (as in
ecosystems with high natural variability), more flexible models are
more likely to fit to the noise (overfitting). Thus, we tested model types
ranging from relatively inflexible models like ridge regression to very
flexible ones like boosted regression trees. Third, while Parravicini et al.
(2012) reported good model fit, models used for prediction should be
tested against data that were not used to train them. Furthermore,
standard methods to test prediction accuracy are over-optimistic if
observations are not independent. We therefore estimate the different
models' prediction accuracy based on spatial block cross-validation
(Roberts et al., 2017).

We used this expanded approach to map three ecological indicators
along the coast of California: Biodiversity in kelp forests and in rocky
intertidal habitats, and fish biomass in kelp forests. We calculated these
indicators based on species-level field observations. As input data (i.e.,
predictors), we used spatial data representing human activities like
fishing effort with different gear types, an overall human impact index
for the California Current (Halpern et al., 2009), as well as data re-
presenting environmental gradients in the study region. We conclude
by discussing the potential of statistical learning for mapping and un-
derstanding the cumulative effects of human activities on coastal eco-
systems, point out potential statistical pitfalls, and suggest improve-
ments in data collection that are required to make use of this potential.

2. Methods

2.1. Overview

We used a spatially explicit double cross-validation approach to
estimate the prediction accuracy of different model types (Fig. 1). We
trained ten types of regression models to predict three field-measured
ecological indicators based on spatial data representing anthropogenic
stressors as well as natural gradients. Table 1 summarizes the responses
(dependent variables) and predictors (features or independent vari-
ables). Table 2 summarizes the model types tested in this study. To
account for non-independent observations, we estimated each model
type's prediction accuracy (mean squared error, MSE), by means of
spatial block cross-validation (Roberts et al., 2017) using 12 exhaustive
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and non-overlapping spatial clusters of observations as blocks. All
model types required explicit selection of predictors or setting of tuning
parameters (e.g. the learning rate for boosted regression trees). How-
ever, tuning models to minimize their cross-validation error biases this
error estimate. We thus used a double-cross-validation approach (e.g.
Filzmoser et al., 2009), selecting variables and values for the tuning
parameters based on an internal cross-validation using the 11 spatial
locks in the external cross-validation's training sets.

2.2. Responses: ecological indicators

We calculated 3 community-level indicators of coastal ecosystem
condition (benthic biodiversity and fish biomass of kelp forests, and
biodiversity of rocky intertidal habitats) based on field observations
collected along the West Coast of the United States by the Partnership
for Interdisciplinary Studies of Coastal Oceans (PISCO; Fig. 2). Data

were requested directly from PISCO representatives, however since
initial analyses were completed, the original count data collected by
PISCO have been assigned permanent DOIs (included in Table 1). Few
field observations were available for Oregon and Washington, with
most concentrated in southern and central California. We therefore
limit our analyses to the California coast.

Kelp forest benthic biodiversity was calculated based on species-
level invertebrate and algal density data collected along SCUBA swath
transects. Species diversity was summarized for each field site by cal-
culating the Shannon index (H; R package vegan, Oksanen et al., 2013),
which incorporates both species richness and relative abundance. In
total, the data yielded 683 field observations of biodiversity for 160
distinct sites between 1999 and 2009. Fish abundance and size was
measured from PISCO fish transects, which are conducted at different
depth levels. We combined data from benthic and midwater transects
and estimated biomass for each transect by means of species-specific

Fig. 1. Overview of the spatially explicit double cross-validation approach to estimate the prediction accuracy of different model types.

Table 1

Sources and descriptions of the response and predictor data used in this study.

Data Source Description

Responses
Kelp biodiversity PISCO, doi:https://doi.org/10.6085/AA/pisco_

subtidal.161.2
Shannon diversity index calculated based on species-level macroalgae and invertebrate swath
SCUBA transects data. Note that the DOI is for raw data, but we obtained a cleaned and
summarized version from PISCO representatives (also for fish biomass and rocky intertidal
diversity).

Fish biomass PISCO, doi:https://doi.org/10.6085/AA/pisco_
subtidal.150.2

Total biomass estimated based on transect surveys in kelp forests

Rocky intertidal biodiversity PISCO, doi:https://doi.org/10.6085/AA/pisco_
intertidal.52.7

Shannon diversity index calculated based on species-level macroalgae and invertebrate
quadrat data

Predictors (features)

Human impact index Halpern et al. (2009), https://www.nceas.
ucsb.edu/ globalmarine/ca_current_data

Human impact index for the California Current region, downloaded February 10th, 2017.

Human use and stressors As above Included: Ocean acidification, ocean deposition, inorganic pollution, organic pollution,
invasive species, nutrient runoff, ocean-based pollution, sediment runoff increase, sediment
runoff decrease, shipping, sea surface temperature change, coastal trash, UV radiation
change, commercial fishing (split into 5 gear categories, e.g. pelagic high-bycatch),
recreational fishing

Population density CIESIN (2016) Mean 2005 population density on land within 10 km of field observations based on gridded
population of the world (GPW), v4

Water depth Amante and Eakins (2009) ETOPO1

Sea surface temperature NODC (2017) Mean of AVHRR 2000–2009 annual composites
Chlorophyll concentration NASA (2017) Mean of Aqua-MODIS 2003–2009 annual composites
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length-weight ratios (available from FishBase). In total, these field data
comprised 558 field observations for 123 distinct sites between 2001
and 2009. Rocky intertidal field observations consisted of percent cover
of invertebrates and macrophytes (macroalgae and the surfgrass, Phyl-
lospadix sp.), observed in quadrats along transects at increasing tidal
heights. We summarized these species-level observations by calculating
Shannon's H. In total, these data yielded 183 field observations for 103
distinct sites between 2001 and 2010. We scaled each indicator to have
mean 0 and standard deviation 1.

Many field sites had observations from several years, and were very
close to other sites. To mitigate overrepresentation of places with many
close-by sampling sites or repeated observations, we aggregated multi-
year and close-by observations as follows. We first calculated the means
of each indicator for all years with data for field sites containing ob-
servations from several years, resulting in a single value for each site
and indicator. Then, we grouped close-by field observations of each
indicator using agglomerative hierarchical clustering with Euclidean
distance between field sites as dissimilarity function and average
linkage (Hastie et al., 2009). We chose 1 km as threshold average dis-
tance between clusters, thus ensuring that the clusters' centroids fall
into different grid cells of the stressor data (each 1 km2). We summar-
ized the field observations for each cluster by calculating the mean of
all sites in a given cluster. This resulted in 136 clustered field ob-
servations for kelp biodiversity, 104 clustered field observations for fish
biomass, and 95 clustered field observations for rocky intertidal bio-
diversity, our final sample sizes.

While our predictors covered varying time periods until 2008
(Halpern et al., 2009), the field observations were made between 1999
and 2011. We retained observations made after 2008 for two reasons.
First, some sites had no data from the earlier years. Second, because the
stressor data covered different years, temporal consistency between all
data in the model could not be achieved anyway. We therefore con-
sidered the benefits of including data for additional sites to outweigh
the consequences of including field observations made after the period
covered by the stressor data.

2.3. Predictors: Anthropogenic stressors and natural gradients

In the marine human impact mapping literature, terms like “stres-
sors”, “human activities”, “pressures” and “threats” are sometimes used
inconsistently, and the data we use represent a mix of direct human use
(like fishing) and proxies for broad-scale anthropogenic change (e.g.
satellite-mapped sea surface temperature anomalies). Thus, we use the
terms “human activities”, “human use” and “human stressors” broadly
and interchangeably to refer to these data sets.

We downloaded the original, normalized data sets used by Halpern
et al. (2009) to map human impacts on the California Current large
marine ecosystem (Table 1). Some of these data sets contain presence-
absence of infrastructure like oil rigs that exist only in the proximity of

few or no field observations. We excluded such “rare” stressors because
we expected that they would lead to overfitting at the few sites where
they occurred. As proxies for overall human impact, we included the
final human impact index by Halpern et al. (2009) and the mean po-
pulation density (CIESIN, 2016) on land within 10 km of each field
observation. Furthermore, we included three potential predictors re-
presenting broad-scale natural gradients in our study area: 1) Water
depth (ETOPO1, Amante and Eakins, 2009); 2) Mean sea surface tem-
perature based on AVHRR annual composites for 2000–2009 (NODC
and Rosenstiel School of Marine and Atmospheric Science, 2017); and
3) average chlorophyll concentrations based on MODIS-Aqua annual
composites for 2003–2009.

The stressor data were noisy at fine scales, especially along the
coast. Thus, whether a field site fell into a given grid cell or into one of
its neighbors could lead to very different values of some predictors
(Fig. 2D), but these discontinuities are unlikely to represent real dif-
ferences between close-by locations. To alleviate the effects of such
fine-scale noise in the predictor data, we summarized the spatial data
for each field observation cluster as the means of all grid cells within a
3 km buffer around the cluster's centroid (Fig. 1D). We then scaled each
predictor to mean 0 and standard deviation 1. Effectively, averaging the
predictors in buffers around each field observation acted as a low-pass
filter, reducing extremes and differences between predictors for close-
by sites. Thus, our final units of analysis were long-term average con-
ditions in small coastal areas, calculated based on multiple field ob-
servations of the ecological indicators and, respectively, several grid
cells of the predictor data.

2.4. Regression models

We tested various statistical and machine learning methods for re-
gression (Table 2). These models are well described in the literature
(e.g. Hastie et al., 2009; James et al., 2013). We thus provide only a
basic overview of how the different models work. We compared the
performance of the models against a null model for each indicator,
which always predicts the mean response of the training observations,
i.e. does not use any predictors.

The first class of models that we tested were different types of linear
least-squares models (LIN, LINPoly, LINInt, PCR). For p predictors, these
models have the functional form F(X)= b0+b1X1+b2X2+…+bpXp.
For a given sample, the coefficients bi are chosen to minimize the re-
sidual sum of squares (RSS). While such models are linear functions of
the predictors X1…Xp, the predictors can be calculated by applying non-
linear functions to the original input data. For example, polynomial
regression models have the same form, but include higher powers of the
predictors. We included squared and cubic terms (LINPoly). The coef-
ficients were estimated as for the standard linear model. Similarly, we
added pair-wise interactions between predictors (LINInt). Variable se-
lection for these models is described in Section 2.6. In principal

Table 2

Overview of model types tested in this study, with information on tuning parameters and feature selection algorithms where applicable. For each model type, we
considered the standard model and a variation including spatial weights for the observations.

Code Model R package Feature selection and tuning parameters

NULL Null model n/a n/a
LIN Ordinary (linear) least squares Base Features selected by stepwise selection
LINPoly Polynomial least squares regression (cubic) Base Features selected by stepwise selection
LINInt Linear least squares regression with pair-wise interactions Base Features selected by stepwise selection
PCR Principal components regression Base Tuning parameter: Number of components to include as features
RR Ridge regression glmnet Shrinkage penalty multiplier
Lasso Least absolute shrinkage and selection operator glmnet Shrinkage penalty multiplier
GAM Generalized additive models gam Features and degrees of freedom for each feature selected by stepwise selection
CART (Classification and) Regression trees tree Pruning parameter
RF Random forests and bagged trees randomForest Proportion of predictors to try at each split
BRT Boosted regression trees gbm Number of trees (1000 to 50000), learning rate (0.00005 to 0.1), interaction depth (1 to 5)
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Fig. 2. Field observations and spatial clusters used as blocks in the double spatial block cross-validation (A-C); example of a stressor data set that changes values
abruptly between neighboring grid cells, and 3 km buffers (hollow circles) used to smooth the predictors in each field observations' surroundings (D).
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components regression (PCR), predictor Xi is the ith principal compo-
nent of the original predictors. The number of principal components to
include is a tuning parameter.

The second class of models that we tested were shrinkage models

(ridge regression, RR; and least absolute shrinkage and selection op-
erator, Lasso). These models have the same functional form as standard
linear models, but the coefficients b1…bp are estimated not to minimize
the RSS, but a quantity of the form RSS+ λ P, where P is a penalty for
large coefficients and λ is a tuning parameter determining how the
penalty is weighted in comparison to the RSS. Ridge regression uses the
sum of squared coefficients as penalty, whereas Lasso uses the sum of
the coefficients' absolute values.

Generalized additive models (GAMs) are an extension of linear models
(Hastie and Tibshirani, 1990) with the functional form F

(X)= b0+b1s1(X1)+ b2s2(X2)+…+bpsp(Xp), where s1…sp are (pos-
sibly non-linear) functions of the predictors. In contrast to e.g. poly-
nomial regression, these functions have flexible shapes that are learned
from the data. We used smoothing splines for this purpose. Feature
selection thus involved not only choosing which predictors to include,
but also choosing the degrees of freedom for each included predictor.

The remaining models tested in this study were tree-based. These are
flexible models that can per default represent non-linear relationships
and interactions. Classification and Regression Trees (CART) are binary
trees where at each node, the data are split based on a threshold value
of one predictor. Variance is reduced by “pruning”, i.e. choosing the
tree size (number of nodes) that minimizes ΣRSS+ λ |T|, where ΣRSS is
the sum of all leaves' RSS and |T| is the size of the tree. As for the
shrinkage methods, λ is a tuning parameter that controls the bias-var-
iance tradeoff.

Bagging (bootstrap aggregation) reduces variance by averaging the
predictions of many models (in this case, trees) that are fit to bootstrap
samples of the original data. Random forests (RF; Breiman, 2001) can
further improve prediction accuracy by reducing the correlation be-
tween individual trees. This is achieved by allowing each split in a tree
to consider only a random subset of the predictors. The number of
predictors considered at each split is a tuning parameter. The number of
trees must be large enough to reduce the model's variance, but using
more trees does not lead to overfitting. We used 2000 trees in each
random forest. Because bagged regression trees are a special case of
random forests (where all predictors are considered at each split), these
models are not distinguished further. The choice between bagged re-
gression trees and random forests was made by setting the tuning
parameter.

Boosted regression trees (BRT) are another approach that reduces
variance by combining many individual regression trees. BRT first fits a
single tree with only few splits. The tree's predictions for the training
observations are then multiplied by a small learning rate. A new tree is
fit to the residuals, its predictions multiplied by the learning rate, and
added to the first. Repeating this process many times, BRT approx-
imates the function to be learned in many small steps. Tuning para-
meters are the learning rate, the size of each tree (interaction depth),
and the number of trees (Elith et al., 2008).

2.5. Spatial autocorrelation and spatial weights

Non-independent observations can affect the performance of sta-
tistical learning methods and lead to overoptimistic estimates of their
prediction error (Burman et al., 1994). While many statistical concerns
arise from auto-correlated residuals (e.g. Le Rest et al., 2014), we had to
fit thousands of models without knowing which predictors would be
included in the final ones. Furthermore, flexible models can overfit to
dependence structures in the data. In this case, no residual spatial au-
tocorrelation may be detected. To inform spatial cross-validation,
Roberts et al. (2017) thus suggest investigating dependence structures
in the raw data. We estimated the spatial distances over which each

response or predictor became uncorrelated with itself based on in-
spection of sample variograms.

We also tested if using spatial declustering weights for training the
models improved their predictions. The common polygon- and Kriging-
based methods for calculating such weights are sensitive to the study
area's boundaries and assign too large weights to observations near the
edges of clusters (Bel et al., 2009; Kovitz and Christakos, 2004). Be-
cause large parts of our data were almost linear “strings” of observa-
tions along the coast, these problems would be especially pronounced.
We thus used cell declustering (Isaaks and Srivastava, 1989). However,
to account for the close to linear nature of our observation locations, we
did not use a regular grid. Instead, we placed square grid cells manually
along the coastline, so that each cell contained as many observations as
possible but did not cross the boundaries of the spatial blocks used for
cross-validation. The cell size was chosen based on the sample vario-
grams of the ecological indicators. The resulting weights are shown in
Fig. 2.

For all tested model types except random forests, we used the
standard implementations for fitting models with observation weights
in the respective R packages (minimizing a weighted RSS). For re-
gression with random forests, no default support for regression with
weighted observations was available. We thus used the normalized
observation weights as sampling probabilities for bootstrapping, similar
to proposals to adjust random forests for classification with imbalanced
classes (Chen et al., 2004). We compared the prediction accuracy of all
model types trained with and without spatial observation weights.

2.6. Model selection and spatial prediction

We used spatial block cross-validation to estimate the different
model types' prediction error. This approach uses large spatial blocks
(clusters) of observations as cross-validation folds (Roberts et al.,
2017). We identified spatial blocks by means of agglomerative hier-
archical clustering with the Euclidean distance between field sites as
dissimilarity metric and average linkage (Hastie et al., 2009). We used
12 spatial blocks because this number resulted in a good spatial parti-
tioning of observations upon manual inspection. The spatial blocks are
shown in Fig. 2. The smallest blocks contained 3 field observations,
whereas the largest blocks contained about 30.

For each of the three responses, we trained the model type with the
smallest cross-validated MSE on the full data set in order to make final
predictions (Kuhn and Johnson, 2013). For this purpose, we created
points 1 km apart along the coastline of California. At each point, we
extracted the mean values for all predictors in a 3 km buffer around
each point, as for the training data.

2.7. Feature selection and tuning

Feature selection and model tuning were performed using only the
external cross-validation's training sets, because selecting predictors or
tuning models based on cross-validation results makes these error es-
timates overoptimistic (Arlot and Celisse, 2010).

We used a stepwise algorithm for the models requiring explicit
feature selection (LIN, LINPoly, LINInt, GAM). For linear models, this
algorithm begins with the null model, and considers two actions in each
step: 1) adding a predictor that was not yet included in the model; or 2)
removing a predictor that was already included in the model during an
earlier step. In each step, it takes the action leading to the largest re-
duction of cross-validated MSE. Note that this algorithm is greedy and
may not find the global optimum.

For GAMs, we also had to choose the degrees of freedom (df) for
each predictor. Thus, the algorithm considered four actions in each
step: 1) adding a predictor that was not yet included in the model as a
linear function; or 2) removing a predictor that was already included in
the model with 1df, i.e. a linear function; or 3) increasing the df of one
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of the predictors by 1; or 4) decreasing the df of one of the predictors by
1. To limit the potential for overfitting the smoothing splines, we lim-
ited the maximum df for each predictor to 5.

All other models required the selection of at least one tuning
parameter. As for feature selection, we compared the models based on
internal spatial block cross-validation, and set the tuning parameters to
the values that resulted in the lowest internal MSE.

3. Results

3.1. Spatial autocorrelation of raw data

Fig. 3 shows omnidirectional sample variograms for the scaled
ecological indicators and predictors. Broadly speaking, for all three
indicators, the variance first increased with separation distance,
reaching a first peak at about 35-40 km, then decreasing again. At
larger separation distances, the variograms behaved erratically. We
thus used 40 km as cell sizes for calculating grid-based declustering
weights. The predictors also showed spatial autocorrelation, with
ranges varying from less than 10 to 100 s of kilometers.

3.2. Model performance

Table 3 shows the MSEs of the tested models, estimated by means of
spatial block cross-validation. The best method for predicting kelp
biodiversity was principal components regression (PCR) without de-
clustering weights, with an MSE of 1.06, or 76% of the null model MSE.
Also ridge regression, random forests and boosted regression trees had a
lower MSE than the null model, but considerable larger MSEs than PCR.
The best method for predicting fish biomass in kelp forests was boosted
regression trees (BRT) with declustering weights (MSE 0.75, or 73% of
the null model MSE). However, BRT without declustering weights
performed almost as well (MSE 0.77), as did ridge regression without
weights (MSE 0.78). For this indicator, most models made better pre-
dictions than the null model. The best method for predicting rocky
intertidal biodiversity in kelp forests was CART with spatial weights,
achieving an MSE of 1.02, or 88% of the null model MSE. Because of the
smaller improvement compared to the null model, we conclude that our
predictors contained little relevant information for predicting this in-
dicator, and thus do not discuss the model for rocky intertidal biodi-
versity further.

The following examples only serve to illustrate a potential pitfall
when evaluating the performance of statistical and machine learning
methods on spatial data. When using 10-fold instead of spatial block
cross-validation, more flexible models consistently outperformed the
less flexible ones, and estimated prediction errors were much lower. For
example, for kelp biodiversity, random forest had the lowest cross-va-
lidated MSE (0.49), less than half of the best model's MSE estimated by
the spatial block cross-validation and corresponding to 49% of the null
model's MSE (when also estimated by 10-fold cross-validation). For fish
biomass, the best models according to 10-fold cross-validation were
GAM (0.65, 65% of null model MSE), boosted regression trees and
random forests (0.67). While the difference between MSEs estimated by
the two cross-validation approaches was smaller for fish biomass than
for kelp biodiversity, the estimates were still lower than those obtained
by spatial block cross-validation. Similar to the 10-fold cross-validated
error estimates, out-of-bag MSEs for random forests were lower than the
error estimates obtained by spatial block cross-validation (kelp: 0.46;
fish: 0.63).

Fig. 3. Omnidirectional sample variograms of the scaled responses (A-C) and predictors (D; calculated for grid cells within 10 km of the coastline).

Table 3

Mean squared errors (MSEs) from the spatial block cross-validation. The lowest
MSEs in each column are shown in bold font. Abbreviations for models as in
Table 2, and RI-rocky intertidal.

Model No spatial weights Declustering weights

KELP FISH RI KELP FISH RI

NULL 1.39 1.03 1.16 – – –

LIN 2.36 0.81 1.24 2.33 1.18 1.46
LINPoly 2.36 0.81 1.24 2.33 1.18 1.46
LINInt 3.44 2.12 3.61 4.72 2.32 4.78
PCR 1.06 1.06 1.34 1.26 0.92 1.50
RR 1.32 0.78 1.16 1.39 0.81 1.19
Lasso 1.79 0.84 1.09 1.75 0.83 1.10
GAM 2.35 1.02 1.57 2.47 1.12 1.35
CART 1.69 1.05 1.37 1.91 0.98 1.02

RF 1.27 0.88 1.11 1.24 0.81 1.08
BRT 1.37 0.77 1.10 1.42 0.75 1.13
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3.3. Best models

The best model for kelp forest biodiversity (trained on the full data
set) was a linear function of the original predictors' first two principal
components (PCs). Both PCs had high loadings for many predictors and
we could thus could not disentangle the effects of individual predictors
or identify important predictor groups based on this model.

The final BRT model for fish biomass had 4000 trees, a learning rate
of 0.001, and interaction depth 1 (i.e. did not consider interactions
between predictors). The by far most important predictors (measured as
reduction in MSE attributable to them) were water depth and recrea-
tional fishing, followed (in this order) by demersal destructive fishing,
chlorophyll concentration, organic pollution, the full human impact
index calculated by Halpern et al. (2009), and demersal non-destructive
high-bycatch fishing. The other predictors were much less important.
Fish biomass decreased with increasing intensity of all important in-
dividual stressors; however, it increased with higher human impact
index. Fish biomass also increased with deeper water and with de-
creasing chlorophyll, which may however serve as proxies for larger
distances to the coastline.

3.4. Spatial predictions

Fig. 4 shows the models' predictions after training them on the full
data set. It also illustrates the high variability of the ecological in-
dicators, which none of the models captured.

From south to north, the PCR model for kelp forest biodiversity

predicted mostly low biodiversity for the mainland, but higher biodi-
versity for Santa Catalina island, the Channel Islands and other offshore
islands in southern California. North of Los Angeles, the model pre-
dicted increasing biodiversity, with some of the highest values occur-
ring in the Big Sur area. Moving further north, it predicted decreasing
biodiversity reaching low values in the San Francisco Bay Area. The bay
itself had still lower predicted biodiversity overall, however with some
unrealistic high values. For the coast north of San Francisco, variable
but overall high biodiversity was predicted.

The predicted spatial distribution of fish biomass broadly matched
that of biodiversity. The BRT model predicted low biomass for most of
the mainland coast south of San Luis Obispo, but predicted high bio-
mass for the offshore islands. North of Los Angeles, the model predicted
increasing biomass, with some of the highest values again occurring in
the Big Sur area. Further north towards Monterey and San Francisco,
predicted biomass decreased, but again with some unrealistically high
values in the San Francisco Bay. North of San Francisco, predicted fish
biomass increased again, reaching a peak just south of Mendocino, then
decreasing but staying mostly above the levels predicted for southern
California. It should be noted, though, that the fish biomass field data
did not include any observations made north of San Francisco.

4. Discussion

The objectives of this paper were 1) to investigate if statistical and
machine learning methods trained on regional biological and human
stressor data could make accurate spatial predictions of coastal

Fig. 4. Model predictions (separate for the mainland's coastline as well as islands and large enclosed bays like San Francisco Bay) for the California coast, summarized
by latitude. Green blocks running along the left axes show latitudes where kelp canopy was observed during an aerial survey conducted by the California Department
of Fish and Wildlife in 2008 (CDFW, 2008). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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ecological indicators; 2) to provide quantitative estimates of prediction
error in comparison to a null model; and 3) to suggest appropriate
methods for model selection and error estimation in this setting.

Because of many correlated predictors and high natural variability,
we did not attempt to draw causal inferences about drivers of coastal
ecosystem state. For example, the best model for fish biomass asso-
ciated higher values of the full human impact index (Halpern et al.,
2009) with higher biomass; we suspect that this is an artifact of using
correlated predictors. Where we reported such relationships (e.g. that
recreational fishing was one of the most important predictors of coastal
fish biomass), we did so to provide a qualitative check of our models,
rather than to suggest that we correctly identified what drives the re-
spective aspects of coastal ecosystem condition in our study area.

4.1. Predictions for the California coast

The predictions for kelp forest biodiversity and fish biomass made
intuitive sense, because much of California's population is concentrated
in the south (Los Angeles and San Diego) as well as the San Francisco
Bay area. In contrast, the northern coast, offshore islands and some
stretches of the central coast like Big Sur are little developed. Because
coastal and upstream population are good general indicators of human
influence on coastal ecosystems (Feist and Levin, 2016), the predicted
broad-scale spatial distributions appear realistic (higher biodiversity
and fish biomass in less populated areas). Also, while we could not
disentangle the importance of different predictors for the kelp biodi-
versity model, the most important predictors for the fish biomass model
were related to fishing, natural gradients and pollution, which in-
tuitively makes sense.

However, our predictions should not be seen as representing current
coastal ecosystem condition in California, but as in broad strokes re-
presenting the overall potential for human impacts over a multi-year
period in the first decade of the 2000s for the following reasons. First,
our models were trained on field data that are several years old, and
California's coastal ecosystems have since experienced major changes,
for example mass mortality of invertebrates in 2011 and 2013 from
toxic algal blooms and disease (Stokstad, 2014; Jurgens et al., 2015).
There has also been unusually warm water throughout the northeastern
Pacific from late 2013 to late 2015, which affected the composition and
structure of marine and coastal biological communities along much of
the North American west coast (Cavole et al., 2016). Second, we
trained, tuned and tested our models using ecological indicators cal-
culated from field observations in kelp forests and rocky intertidal ha-
bitats. While we then used the best identified models to predict the two
kelp-related indicators for the whole coastline of California, kelp forests
do not exist everywhere (Fig. 4). Third, while fish biomass is a common
indicator for marine resource availability, and biodiversity is of direct
conservation concern, other indicators may be more relevant for spe-
cific management and conservation objectives. This paper focused on
model testing, and we thus chose our three ecological indictors based
on data availability. Studies aiming primarily to inform management
should more carefully choose and justify which indicators to use as
responses (Boldt et al., 2014; Rombouts et al., 2013).

4.2. Evaluating statistical learning methods for spatial prediction

The prediction error of a model has a reducible component that can
be improved by choosing an appropriate model type, and an irreducible
component. The reducible error again has two components: bias and
variance. Bias arises if a model is too inflexible to represent the true
relationships between predictors and response. For example, a linear
model will have high bias, and therefore a high prediction error, if the
relationship being modeled is in fact highly non-linear. In marine
ecosystems, non-linear relationships are common (Hunsicker et al.,
2016), and the effects of multiple stressors are often interactive (Côté
et al., 2016). One of the reasons why flexible models like random forests

are promising for predicting multiple stressor effects is their ability to
capture non-linear relationships and interactions, and thus achieve low
bias. However, more flexible models can have errors with high var-
iance. This means that the model represents peculiarities of the sample
rather than general relationships in the population (overfitting). The
variance tends to be higher if the sample size and the signal-to-noise
ratio are small, as is the case for our ecological field data. It thus was
not a priori clear which types of models would work best for our re-
search problem, or how many predictors should be included. We tested
various types of models in combination with dimensionality reduction
methods such as stepwise variable selection and regularization in order
to achieve good compromises between bias and variance, and avoid the
inclusion of unnecessary predictors.

Importantly, high variance can only be detected if the models are
tested on data not used for training them. This is the rationale for using
cross-validation. However, in spite of high local variability of the eco-
logical indicators, some close-by sites had rather similar values for both
responses and predictors. Because the field sites were concentrated
close to each other in some locations, the observations were not all
independent. But in this case, standard cross-validation error estimates
can be overoptimistic (Hijmans, 2012), and favor too flexible models
(Le Rest et al., 2014). To obtain sound cross-validation error estimates
based on spatially auto-correlated data and select the best models and
predictors, observations must therefore be assigned to folds such that
test observations are sufficiently far away from the training observa-
tions (Burman et al., 1994; Le Rest et al., 2013, 2014). Indeed, we found
that relying on 10-fold cross-validation and out-of-bag errors would
have led us to underestimate the models' prediction errors, and in the
case of kelp choose a too flexible model, as expected. Future research
using statistical and machine learning methods to link human pressures
to ecosystem condition should carefully rule out this problem. Spatial
block cross-validation is a good solution when observations are spa-
tially dependent (Roberts et al., 2017).

4.3. Model performance

We compared the predictive skill of different models using spatial
block cross-validation. Compared to null models, the best of these
methods improved prediction errors by approximately 25% for biodi-
versity and fish biomass in kelp forests. This suggests that the tested
predictors captured some relevant spatial trends. However, the models
failed to predict the high local variability of the indicators. This may be
caused by factors that operate at fine spatial scales (like local disease
outbreaks), but which were excluded from the models because no data
were available; by temporal variability of both stressors and ecological
conditions that could not be captured in the models because of low
temporal resolution and temporal mismatch of the available data; and
by the coarse spatial resolution of some data sets used as predictors.
Furthermore, modeling rocky intertidal biodiversity led to smaller im-
provements compared to the null model.

It should be noted, though, that spatial block cross-validation tends
to produce comparatively high estimates of prediction error, because
observations from a whole sub-region of the study area are withheld
when training models. Because our models were intended to predict the
indicators for the whole coast of California, and long stretches of the
coast had no observations, we consider estimating prediction perfor-
mance for unobserved sub-regions to be an appropriate test.
Furthermore, maps of ecological indicators and cumulative human
impacts have the potential to inform coastal management. In this case,
making wrong predictions may have serious real-world consequences.
Subjecting the models to a “harder” test is therefore preferable to using
methods that may provide over-optimistic error estimates.

4.4. Lessons for future research

Statistical and machine learning methods are increasingly used in
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multiple stressor research. While works like Parravicini et al. (2012),
Large et al. (2015), Teichert et al. (2016), Samhouri et al. (2017) and
Jones et al. (2017) show that cumulative effects studies based on sta-
tistical learning have much potential, we found that in our study area,
low signal-to-noise ratio in combination with small sample sizes lead to
overfitting of the more flexible models and thereby prevented us from
harnessing one of their major advantages. We conclude that data
quality was a main barrier to using the flexible methods to their full
potential, and to thereby gaining insights into the complex effects of
multiple stressors. We thus join a growing body of research calling for
data collection that is tailored to the demands of multiple stressor effect
studies (Dafforn et al., 2016; Nõges et al., 2016).

Our results suggest four lessons for future research using statistical
and machine learning to link marine ecosystem condition to human or
environmental stressors. First, when testing models, it is important to
account for non-independent observations, as explained in Section 4.2.
Second, given the typically small sample sizes of ecological data, it is
important to limit noise, to the greatest extent possible, in the response
variables, especially if stressor data are only available as long-term
averages. One way to achieve this is using composite indicators that
change only slowly over time, like the marine territory status or the
ecological quality ratios that Parravicini et al. (2012) and Teichert et al.
(2016) predicted. Third, human use and stressor data available for our
study area were noisy at fine spatial scales. Furthermore, they were
only available for inconsistent time periods, a common issue in multiple
stressor modeling studies (Murray et al., 2015). This is especially pro-
blematic because ecological impacts depend on the timing of stressors
(Cheng et al., 2015; Wu et al., 2017), and fine temporal resolution of
both predictors and response variables would be needed to detect ef-
fects of short-term stress with moderate recovery times. If this is not
possible, focusing on persistent stressors or stressors with long asso-
ciated recovery times is more promising; such stressors with long-term
impacts are also of major conservation concern. For these reasons,
while more ecological data are becoming available through legally
mandated, harmonized reporting (Schinegger et al., 2016) and through
promising new methods for constructing indicators (e.g. based on en-
vironmental DNA; Kelly et al., 2014), equal improvements of human
use and stressor data sets are necessary if statistical and machine
learning is to shed new light on and produce accurate maps of multiple
stressor effects. Fourth, while we focused on spatial prediction, statis-
tical learning methods can also identify important stressors, interac-
tions, and thresholds (Jones et al., 2017; Large et al., 2013, 2015;
Samhouri et al., 2017; Teichert et al., 2016). However, soundly disen-
tangling the effects of several predictors is difficult if they are correlated
(Freckleton, 2011; Grueber et al., 2011). For example, while random
forests are able to make good predictions also with correlated pre-
dictors, estimates of predictor importance can be biased in this situation
(Nicodemus et al., 2010).

Studies aiming to use statistical and machine learning to draw in-
ferences about multiple stressors should thus approach data collection
as designing a quasi-experiment. For example, if no manipulation is
possible in the field, ecologists often use gradients of the variables of
interest to mimic experimental designs (e.g. Wernberg et al., 2010).
Unfortunately, stressors often vary along similar gradients. For ex-
ample, many stressors originate from population centers (Mach et al.,
2017), or follow a land-sea gradient (e.g. pollution runoff) along which
also natural conditions change. Nevertheless, at least some stressors can
be geographically separated if study areas and field sites are chosen
appropriately. For example, along-coast pollution gradients can exist
surrounding the mouths of major rivers that drain densely populated
and industrialized areas, and protected area networks exclude stressors
like fishing from specific locations (Sala et al., 2012). Such places where
stressors are geographically separated are thus preferable study areas
for investigating multiple stressor effects, and data collection sites
should be chosen to capture the geographic variation of stressors. In any
case, statistical and machine learning studies drawing conclusions

about ecosystem responses to multiple stressors must carefully rule out
the possibility that inferences are disturbed by correlated predictors.
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