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Motivated by the need to produce small area estimates for the National Resources
Inventory survey, we develop a spatial hierarchical model based on the generalized
Dirichlet distribution to construct small area estimators of compositional proportions in
several mutually exclusive and exhaustive landcover categories. At the observation level,
the standard design-based estimators of the proportions are assumed to follow the gener-
alized Dirichlet distribution. After proper transformation of the design-based estimators,
beta regression is applicable. We consider a logit mixed model for the expectation of the
beta distribution, which incorporates covariates through fixed effects and spatial effect
through a conditionally autoregressive process. In a design-based evaluation study, the
proposed model-based estimators are shown to have smaller root-mean-square error and
relative root-mean-square error than design-based estimators and multinomial model-
based estimators.
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1. INTRODUCTION

The National Resources Inventory (NRI) is a longitudinal survey that monitors status and
trend in numerous characteristics, primarily related to natural resources and agriculture, on
nonfederal US land. It is the largest and one of the longest longitudinal surveys in the USA
and provides critical information on soil erosion, land management, and landcover change,
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which is important for the evaluation of climate change and effects of land conservation
practices. One of the parameters of interest in the NRI is the proportion of area for a
set of mutually exclusive and exhaustive land categories termed broaduses. Examples of
broaduses are cultivated cropland, pasture, forest, and developed land. The NRI sample
design is a two-phase stratified design, and data collection is largely through interpretation
of aerial photography. Section 2 reviews the essential features of the NRI sample design, data
collection, and estimation procedures for our application. Nusser and Goebel (1997) and
Breidt and Fuller (1999) provide further detail. Traditionally, the NRI publishes estimates
of broaduse proportions at state and national levels.

Accurate information on local landcover compositions is essential for developing con-
servation policies and land management plans. In particular, monitoring cultivated cropland
is important for agricultural planning and ensuring a sustainable food supply. Motivated by
such demand, Natural Resources Conservation Service (NRCS) asked us to develop county-
level estimates of broaduse proportions for NRI. Because of small sample sizes, standard
NRI estimators can have relatively large estimated coefficient of variation at the county
level. Additional sources of information, particularly auxiliary variables and explicit model
assumptions, are needed to improve the precision of the county-level estimators.

We would like the model applied to NRI estimators of county-level broaduse proportions
to have several characteristics. Estimators based on the model should respect the parameter
space for the proportions and satisfy a sum-to-one constraint. The model should allow
incorporation of covariates and spatial dependence structures to provide more information
to improve the estimators. As we will demonstrate in Sect. 3, including spatial dependence as
well as auxiliary information is important because the auxiliary variables do not fully explain
the spatial structure in the data. Additionally, it is desirable to incorporate the estimated
variance of the original design-based NRI estimators; since the NRI is a complex survey,
variance estimator can reflect the complexity of the design. The NRI county-level estimation
application is an example of a more general problem of estimating a vector of proportions
that sum to one for each small area.

Fay and Herriot (1979) and Battese et al. (1988) introduce the approach of using linear
mixed effects models to obtain more precise small area estimators. Rao and Molina (2015),
Jiang and Lahiri (2006b) and Pfeffermann (2013) review extensions to more complex mod-
els, including models with correlated random components and nonlinear expectation func-
tions. One approach for binary response variables is to model the small area counts (Rao
and Molina 2015). For example, He and Sun (2000) use a hierarchical Bayesian model with
spatial correlations that treats the realized counts as binomial random variables to estimate
hunting success rates. An alternative method is to model the proportions directly (Datta
etal. 1999). Jiang and Lahiri (2006a) use a beta linking model for the expectation of design-
based estimators of proportions. Liu et al. (2007) compare several hierarchical Bayesian
models for proportions in the context of small area estimation. In particular, models where
the design-based estimators are assumed to have beta distributions are compared to models
where the design-based estimators are assumed to have normal distributions. The models of
Liu et al. (2007) respect the sampling design and include covariates, but they do not incor-
porate spatial dependence structures. These methods for binary data do not apply readily to
a vector of proportions with a sum-to-one constraint.
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Analyzing a vector of proportions with a constraint can start from a multinomial or
Dirichlet distribution. Agresti and Hitchcock (2005) and Congdon (2005) review Bayesian
estimation of multinomial parameters. Molina et al. (2007) and L6pez-Vizcaino et al. (2013)
use multinomial-based mixed models to analyze labor force participation without consid-
ering spatial dependence. In Lépez-Vizcaino et al. (2015), the model was extended to a
time-correlated model with area random effects. Jin et al. (2013) use spatial multinomial
regression models for the purpose of understanding relationships between land ownership
history and forest landscape structure, an objective that is analytical in nature and differs
from small area prediction. Berg and Fuller (2014) use the covariance structure of the Dirich-
let distribution as a working model for small area prediction of vectors of proportions that
satisfy a restriction. Models based on the multinomial or Dirichlet distribution assume neg-
ative correlations between different categories, a structure that the real data may not satisfy.
The relationships between means and variances of different categories for these two distri-
butions may not hold for the survey estimators. The generalized Dirichlet (GD) distribution
is a flexible distribution for vectors of proportions that satisfy a sum-to-one constraint. We
can incorporate the sampling variances and preserve the sampling variance structure. Con-
nor and Mosimann (1969) discuss general properties of the GD distribution. Wong (1998)
discusses the use of the GD distribution as a prior for the multinomial distribution. One
convenient property of the GD distribution is that independent beta distributions with dif-
ferent parameters are obtained after proper transformation. Ferrari and Cribari-Neto (2004)
propose beta regression to model rates and proportions. In their model, they reparameter-
ize the beta density so that the parameters of the beta density function are an expectation
parameter and a dispersion parameter. Simas et al. (2010) extend beta regression to allow
a nonlinear term in the regression and model the dispersion parameter as well. Gamerman
and Cepeda-Cuervo (2013) consider spatial effects in both the mean and dispersion models
for beta regression models.

To specify a model appropriate for the NRI application, we begin with an assumption that
the observed county-level proportions are realizations from the GD distribution. The GD
assumption permits a transformation of the county-level proportions to independent beta
random variables with distinct mean and dispersion parameters. Spatial information can also
be used to improve small area estimation (Militino et al. 2006; Petrucci and Salvati 2006).
Spatial hierarchical Bayesian models are specified for the transformed variables here. The
expectation of the beta distribution is modeled as a logit-linear mixed model with covariates
describing large-scale structure and spatially correlated random effects for counties. The
spatial structure is specified through a spatial conditionally autoregressive (CAR) model,
as in Banerjee et al. (2014). The complexities of the NRI design and the availability of the
auxiliary information make area-level modeling preferable to unit-level models. We discuss
how the NRI motivates our model choice in more detail in Sects. 2 and 3.

Modeling the sampling variances of the survey estimators is essential in many small
area estimation applications because the survey-based variance estimators often provide
approximately unbiased variance estimators, but can have large variances due to small
sample sizes. Appropriately specified variance models can retain the information about the
sample design and estimation procedures contained in the design-based variance estimator,
while reducing the variance of the variance estimator by borrowing information across areas.
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Cho et al. (2002) model the sampling variances with log-normal distributions. Maples et al.
(2009), Dass etal. (2012), and Maiti et al. (2014) discuss the use of Chi-squared distributions
to model sampling variance. Gomez-Rubio et al. (2010) discuss both spatial models and
modeling the variance in small areas in a Bayesian setting. Our model for the design-based
estimators of the variances, described in more detail in Sect. 3, accomplishes two goals.
The first is to treat the survey-based variance estimators as approximately unbiased. The
second is to incorporate auxiliary information. Our variance model exploits both the Chi-
square distribution and the log-normal distribution to achieve these two ends. Our sampling
variance model extends that of Maiti et al. (2014) to incorporate covariates and uses Bayesian
instead of frequentist procedures for inference.

A design-based simulation study is conducted in Sect. 4 to compare our proposed model-
based estimators to design-based estimators and the estimators based on the multinomial
model proposed in Lépez-Vizcaino et al. (2013). We treat the NRI “foundation sample,” the
sample obtained in the first phase of the NRI's two-phase design, as the finite population for
the design-based simulation study and use a sample design similar to the NRI sample design
to select subsamples for the Monte Carlo (MC) study. The MC relative root-mean-square
error and mean square error are computed for both design-based estimators and model-based
estimators, using the complete foundation sample as the reference for constructing true
parameters. The results show that our proposed model-based estimators can reduce relative
RMSE and RMSE by 15% or more on average compared with design-based estimators and
perform better than the estimators based on the multinomial model.

In Sect. 2, we introduce the National Resources Inventory survey in detail. In Sect. 3, the
proposed models are described. Then, we compare design-based and model-based estimators
through a design-based Monte Carlo study, in which we treat the foundation data as the target
finite population and sample it using a sampling design that reflects the properties of the
NRI sampling design in Sect. 4. In Sect. 5, the proposed models are applied to estimate the
proportions of area in several broaduses for Iowa counties in 2012. Section 6 summarizes
and identifies areas for future work.

2. NATIONAL RESOURCES INVENTORY

The NRI is supported by the US Department of Agriculture Natural Resources Conser-
vation Service and conducted in cooperation with Iowa State University. The NRI sample
design has two phases of sample (Nusser and Goebel 1997). The first-phase sample, called
the “foundation sample,” consists of approximately 300,000 segments (primary sampling
units), each of which contains 2 or 3 sampled points (secondary sampling units). From 1982
to 1997, the full NRI foundation sample was observed in 5-year intervals (1982, 1987, 1992,
and 1997). In 2000, the NRI transitioned to an annual sample design to facilitate special
studies and spread the workload more evenly. Because observing all 300,000 segments in the
foundation sample on an annual basis is too expensive, the annual samples are subsamples of
original foundation sample. In the annual samples, approximately 40,000 segments, called
“core” segments, are observed every year. The rest of the foundation sample is divided into



SMALL AREA ESTIMATION OF PROPORTIONS 513

several supplemental panels, each with approximately 30,000 segments that are observed
periodically. About 70,000 segments are observed every year since 2000.

Data collection in the NRI is primarily through visual interpretation of aerial photogra-
phy supplemented by local data collection and integration of administrative records. Some
information is collected at the point level, such as the type of crop planted in the field
containing a point. Other information is collected at the segment level, such as the urban
area in the segment. An estimation procedure creates imputed points to represent segment
information and imputes data to create a complete time series for points not observed in
a particular year. All the information is transformed to points with associated weights to
represent the sample design and adjustments to administrative control totals. In the final
data set, each record corresponds to a real or imputed point, each of which contains a com-
plete time series and an associated weight. Weighted sums of characteristics for points are
considered approximately unbiased for the corresponding population parameters.

Each year, a point y; is classified into a set of mutually exclusive and exhaustive landcover
categories called broaduses. The standard NRI design-based estimator of the proportion of
area in broaduse k (k = 1, ..., 12) for the state in a particular year is defined as

L X willy =k
Pk = ! Nstate ’ (1)

2_1 W

where w; is the weight for point j in the state, /[y; = k] is the indicator that point j is
classified in category k, nguee 1s the number of points in the state, and the subscript for year
is omitted because we focus on a single time point. Because the NRI uses the area of the
state as control, '
estimator of the proportlon of county i in broaduse k is defined as

n stdte

w; is equal to the area of the state. Similarly, the NRI design-based

an 1 wljl[yl] = k]
an 1 Wij ’

Pri = 2

where n; is the number of points in county #, and ij indexes the jth point in the ith county.
Because the first-phase strata are contained in counties, it is reasonable to treat the sampling
errors for estimators for two different counties as independent. Because of the complexity
of the NRI design, jackknife method is used for variance estimation. The jackknife variance
estimator for category k and county i is defined as

V (i) =—Z(ﬁ,ﬁi’) 7] 3)

5?) is the estimate based on the bth set of replicate weights, pegt is the mean of the B

where p;;
replicate estimates, and in the NRI, B = 29. To define the replicate weights, the NRI sample
is sorted geographically and divided into 29 groups. The weight for an element assigned to
group b is set to zero in replicate b, and ratio adjustments similar to those used to construct

the original weights are repeated to construct the replicate weights.
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The design-based county estimates defined in (2) are not published. Since the survey
is designed for state-level estimates, the summation of all weights in one county may not
match the area of the county. In addition, due to the relatively small sample sizes for counties,
particularly in the annual samples, the county-level estimators are often judged unreliable in
terms of estimated coefficient of variation (CV). For example, the estimated CV for cultivated
cropland at the state level is 0.57% in 2012. However, estimates of CV for counties range
from 10 to 30%. For pastureland, the average estimated CV across counties is 40%. Thus,
we consider model-based estimators to improve the precision of the county-level estimators.

The cropland data layer (CDL) is a classification of square pixels into several mutually
exclusive and exhaustive landcover categories, which classified satellite readings into land-
cover categories using NASS survey data and administrative data as ground truth. See Han
et al. (2012) for further details on the CDL. The CDL has been released annually from 2006
through the present. We decided to obtain auxiliary information from the cropland data
layer because it is nationally consistent and timely. NRI and CDL categories are similar
enough that we are able to build a map between CDL and NRI categories based on the
definitions. And CDL contains categories that are relatively straightforward to map to NRI
categories. However, the goals of the NRI and CDL projects are different, and a one-to-one
mapping between the NRI and CDL does not exist. After mapping NRI categories to CDL
categories, the specific covariate used in the models is the proportion of pixels in a county
classified in a particular NRI broaduse. Because the NRI and CDL use different definitions
and data collection procedures, the correlations between the covariate and the NRI estima-
tors defined in (2) vary across categories. For example, the linear correlation is 0.9651 for
cultivated cropland, but for pastureland, the linear correlation is 0.5029. For pastureland,
the spatial dependence has the potential to help improve the model-based estimators, even
after considering auxiliary information.

3. SPATTAL HIERARCHICAL MODELS FOR PROPORTIONS

As mentioned in Sect. 2, the NRI county-level estimates have large values of estimated
coefficient of variation. Thus in this section, we propose to use the spatial Bayesian hier-
archical models for small area estimation of NRI county-level proportions. In Sect. 3.1,
we introduce the generalized Dirichlet (GD) distribution and present the transformation to
independent beta random variables. In Sect. 3.2, we specify the hierarchical models used for
small area estimation, which begin with an assumption that the NRI estimators of propor-
tions are realizations from GD distributions and variance estimators are realizations from
Chi-squared distributions. Section 3.3 presents specific details required for the Bayesian
inference.

3.1. GENERALIZED DIRICHLET DISTRIBUTION

LetO < pr < 1,k =1,..., K be the proportion of the kth category with Z,le Pk =
1. The probability density function of the generalized Dirichlet distribution (Connor and
Mosimann 1969) is
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where p = (p1..... px—1. )M = (1. - k-1 10 = (a1, . ... ma.x—1) T, and
B(n1i, n2;) is the beta function. We denote f(p, |97, 1,) as GD(ny, n,). From Connor and
Mosimann (1969), the GD distribution has a useful connection to a collection of independent
beta random variables. To define this relationship, let

== fork=1,... K —1. (5)
Zj:k pj
It can be shown (Connor and Mosimann 1969) that {zx,k = 1, ..., K — 1} is a collection

of independent random variables with beta distributions, where the parameters governing
the distribution of z; are nx and nok. Let oy = E(zx), from the transformation in (5) and
the independence of z;’s, the expectations of pj’s are given by

o] k=1,
E(po=qullZi(1-w)) k=2.....K—1, (6)

M5 (1-a) k=K.

The properties of the GD distribution are useful for the NRI application. Compared
with the Dirichlet distribution, the GD distribution has more parameters, permitting greater
flexibility. For Dirichlet distribution, the variance and the mean have a specific relationship
and this relationship can be more flexible and is controlled by an extra parameter for the GD
distribution. The functional restrictions of the Dirichlet distribution also lead us to prefer
the flexibility that the GD distribution allows.

3.2. MODEL SPECIFICATION

Leti = 1,...1 be the index for area and k = 1, ... K be the index for category. In the
NRI application, the categories correspond to different landcover classes (broaduses), and
the small areas are counties. Let py; be the design-based estimator of the proportion of the
kth category in county i. Assume that a design-based estimator of the sampling variance,
denoted \7( Dki), is available. In the NRI, \7( Pri) is obtained by jackknife variance.

Assume (pii, ..., pxi)' follows GD (1]1,-, 172,»), where ny; = (1145 -- - m,(K_l)i)T
and ny; = (2,115 - - -, ng,(K_l)i)T . Based on the properties of the GD distribution, we use
the following transformations,

P

ki= = A (7)
Y Pkt Pri
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where zy; nd Beta(n1 ki, n2.ki) for k = 1,..., K — 1. Then the problem becomes a beta
regression problem. We follow Ferrari and Cribari-Neto (2004) and Simas et al. (2010)
and model the expectation parameters ax; = E(zxi) = n1.ki/(N1.ki + 12.xi) and dispersion
parameters ¢r; = 11 ki + N2.ki-

The model structure we consider for the transformed expectation ay; has following form,

logit(aki) = Bro + xki Br1 + Uki. ®)

Since 0 < a; < 1, we use a logit link function, that is logit(x) = log(x/(1 — x)). xt; is a
covariate, which can have more than one dimension in general. B0 and Sy are regression
coefficients. We also consider the spatial information Uy;, since adjacent counties may have
similar characteristics which are not fully explained by the auxiliary information.

In NRI, the covariate is obtained from the CDL, as discussed in Sect. 2. To define the
covariate xx;, we begin by defining a set of CDL proportions to have the same categories as the
NRI proportions. The same transformation defined in (7) is applied to the CDL proportions
to obtain proportions p. x;’s fork = 1, ..., K — 1. The covariate xy; is obtained by applying
a logit transformation to the p. x;. The CAR model (Banerjee et al. 2014) is used to model
the spatial effect in (8), which is defined by conditional distributions (Uy; |Uyj, j # 1) ~
N(ox Y. i CijUij/Ciy, 8k/Cit), where py is the spatial dependence parameter, §; is the
variance component of category k, C is the adjacency matrix with diagonal element C;; = 0
and ijth off-diagonal element C;; = I[ counties i and j share a common boundary], and
Cip = Zj#i Cij. The joint distribution of Uy = (U1, ..., Uxr) is N (0, 8 (D — o0,
where D = diag(Ci4, ..., Cy+). In order to guarantee D — p C is positive definite, o
should satisfy P -l

min max>
maximal positive eigenvalues of D~!/2C D~!/2 respectively. The ability of this formulation

< pr < A where Apmin and Apax are the minimal negative and
to accommodate different spatial dependence parameters and different regression parameters
is particularly important for the NRI application. As explained in Sect. 2, the correlations
between NRI proportions and CDL proportions vary by category, as well as the strength of
the spatial dependence. To allow this flexibility, we consider the general model in which
different categories have different spatial dependence parameters p.

Next, we will build a model on the dispersion parameters ¢y;. The most general assump-
tion for dispersion parameter allows a different ¢; for each area and category. Under this
assumption, one approach of estimating ¢y; is to estimate ¢; with the design-based esti-
mators and variance estimators of the proportions and then to treat the estimated ¢y; as
fixed quantities in the models. Treating a design-based estimate of the variance as the true
variance is an approach that has been used in the small area estimation literature (Jiang and
Lahiri 2006a). For this approach, according to the definition of beta distribution, we have

~ (1 — zZki
bri = sl = o) )
V (zki)

where zz; is obtained from the estimators of proportions as defined in (7) and V(Zki) can be
approximated by Taylor series approximation given in (10),
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The covariance is calculated asﬁc;(ﬁk,-, Dji) = Prj.ir/ V(ﬁki) . V(ﬁji), where p; ; is
replaced by the sample correlation between py and p; with p; = (pr1, .. -, pri)T. The
model based on fixed quantities of ¢y; in (9) is denoted as “M1.” That is, in “M1,” the
expectation model is logit(ax;) = Bro + Xki Bk1 + Uk and ¢y;’s are estimated from (9).

The other approach is to model ¢; through modeling the sampling variance. As in Maiti
etal. (2014), we can build a joint model with both means and variances. The variance model is
built using both Chi-squared and log-normal distributions in (11) and (12), allowing us to use
the unbiased NRI variance estimators in the model, respect the mean—variance relationship
in the beta distribution, and incorporate covariates. For the variance model, assume

D (ep) ~ L&) 00 (11)

i

where V (zx;) = axi (1 — axi)/(¢r; + 1). The dispersion parameter ¢; is modeled as
log(¢ri) = yko + Vk1uki + ek, (12)

where yxo and yi are coefficients to estimate, uy; is a covariate, and eg; S N (0, 841). Here
we use the same covariate in both mean model and variance model. In the NRI, we use
the number of the primary sampling units (PSUs) in a county as the value of g;, where we
use the number of PSUs instead of the number of sampled points because we expect that
a positive intracluster correlation would cause the variance estimate based on the number
of sampled points to be too small. The model combining variance model in (11) is denoted
as “M2.” In our application, we prefer to use the model “M2,” which combines the mean
model in (8) and the variance model (11) together. That is, in “M2,” the expectation model
is logit(axi) = Bro + xkiBr1 + Uki, and ¢y;’s are modeled through the variance model
V(zki) ~ x*(a)V (zki) /-

3.3. BAYESIAN ESTIMATION

We specify the following priors: 7 () o 1, w(y) o 1, and pg ~ Unlform(kmln, )LI;;X)
As in Gelman (2006) and Polson and Scott (2012), the inverted-beta prior is used as the
prior distribution for variance parameters, which is equivalent to the use of half-Cauchy

prior for the standard deviation parameter. We use Gibbs sampling to simulate from the
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posterior distributions. Because the full conditional distribution for vx; = logit(oy;) does
not have a closed form, Metropolis—Hastings algorithm is used to sample from the posterior
distributions of these parameters using the techniques in Diggle et al. (1998). For pf, since
the posterior distribution of p is proportional to a log-concave function, adaptive rejection
sampling (Gilks and Wild 1992) is used here. To diagnose convergence, we use the scale
reduction factor (Gelman and Rubin 1992). The burn-in value is 5000 iterations, and the
next 5000 iterations are used to approximate the posterior distributions in the simulation
study. In real data analysis, the 50,000 iterations after burn-in size 10,000 iterations are used.

4. DESIGN-BASED SIMULATION STUDY

In this section, we conduct a design-based Monte Carlo (MC) study to evaluate the
properties of the estimators under conditions reflective of the NRI. The first-phase NRI
sample (the foundation sample) serves as the finite population for the simulation study. The
parameters of interest are the county-level proportions in the categories cultivated cropland,
pastureland, and the remainder (a combined category containing all other 9 categories)
for the year 1997, the last year in which the full foundation sample was observed. The
full foundation sample is considered as the finite population. Samples are drawn from the
population. For each sample, we calculate the design-based estimates and model-based
estimates. We compare estimators based on the models proposed in Sect. 3 (“M1” and
“M2”) to design-based estimators in (2) and estimators based on the multinomial model of
Lépez-Vizcaino et al. (2013).

The sample design for the simulation study is a stratified single-stage cluster sample with
counties as strata. The primary sampling unit is an NRI segment, and all points in a selected
segment are included in the sample. Iowa has 99 counties, and the number of segments per
county in the finite population for Iowa ranges from 46 to 259. We use pivotal sampling
(Deville and Tille 1998) implemented in the R package Tille and Matei (2016) (sampling)
to select a without-replacement sample of segments with specified selection probabilities.
The initial inclusion probability for each segment is proportional to the weight of the seg-
ment, which is the summation of all the point weights in the segment. For each county, the
sampling fraction is 0.2, which is close to that in the NRI annual sample. The design-based
estimators (Horvitz—Thompson estimator) (Sédrndal et al. 2003) and the corresponding vari-
ance estimators (Stehman and Overton 1989) are calculated. The estimation procedure is
implemented by the R package Lumley (2011) (survey) .

In the foundation sample (the finite population for the simulation), the area of each of
the three categories (cultivated cropland, pastureland, and the remainder) that we consider
is greater than zero in every county. A design-based estimate for a random sample, however,
may equal zero. Because the support of the beta distribution does not contain zero, we use a
simple procedure to replace zero estimates with positive values. The weight of each point is
rounded to 100 acres, and we know the area of each county. A zero estimate for a category
therefore means that estimate of the area of that category in the county, without rounding
the weights, would fall between 0 and 1/7; acres, where T; is the known area of county
i in units of 100 acres, which ranges from 2523 to 6331. We replace a zero design-based
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estimate with the small proportion 0.5/ 7;, which is the midpoint between the lower bound
of 0 and the upper bound of 1/7;. The percentage of zero estimates is around 4% .

Figures 1 and 2 show the MC root-mean-square error (RMSE) and the MC relative
root-mean-square error (RRMSE), respectively, for model-based estimators and the design-
based estimator. The relative RMSE is calculated as RMSEy; / pxi, where RMSEy; =
\/ R-IY R (ﬁ,ﬁ? — i) ﬁ,g) is the estimator (model-based or design-based) of the pro-
portion in category k and county i in MC sample r, and py; is the finite population proportion
for the simulation. The number of MC samples is R = 200. The estimator based on the
multinomial model of Lépez-Vizcaino et al. (2013) is denoted “Mult.”

In terms of mean and median RMSE and RRMSE, the proposed model-based estimators

perform better than the design-based estimators and the estimators based on the multinomial
model. As mentioned above, all the components in multinomial distribution are assumed
to be negatively correlated. For the GD distribution, only the first component is negatively
correlated with other components. For this finite population, the estimators for cultivated
cropland are negatively correlated with other two categories, while the estimators for pasture
and the remainder are positively correlated with each other. The ability of the GD distri-
bution to describe this correlation structure may explain why the estimators based on the
GD distribution are more efficient than estimators based on the multinomial distribution.
Estimators based on M1 have the smallest mean and median RMSE and RRMSE. The esti-
mators for the pasture domain have larger RRMSE than the estimators for the remainder
category because the finite population proportions for pasture are typically small.

We also evaluate the posterior variance as an estimator of the MC variance. The MC
variance is defined as the variance of R estimates, V (py;) = Zle (ﬁ,ﬁi - ﬁzzg)z J(R—1),
where ﬁgg is the mean of the R estimates. In order to evaluate the bias of the poste-
rior variance as an estimator of the MC variance, we calculate the MC relative bias as
E(V(ﬁki))/V(ﬁki) — 1, where E(V(ﬁki)) is the MC mean of the posterior variance. For
“M1,” posterior variances of the GD-based estimators have positive bias for cultivated crop-
land and the remainder category, but a negative bias for pastureland. The posterior variance
based on the “M2” model has a positive bias for the MC variance for all categories. Even
though the posterior variance is not expected to be an unbiased estimator of the design-
variance of the estimators, the average of posterior variances is smaller than the variance of
the design-based estimators, demonstrating that the posterior variance captures the efficiency
gain due to the use of the spatial hierarchical Bayesian model.

5. APPLICATION TO 2012 NRI

In this section, we apply models M1 and M2 to 2012 NRI data to obtain estimates of
county-level proportions. The parameters of interest in the application are the proportion
of area in each of Iowa’s 99 counties in the categories of cultivated cropland, pastureland,
and the remainder, which is a set containing all other 9 categories, in 2012. All of these
three categories have nonzero estimates. As discussed in Sect. 2, the estimated coefficients
of variation for design-based NRI estimates at the county level are often large. Model-based
estimators are considered here to improve the reliability of the design-based estimators. The
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Table 1. Model assessment p values and DIC values.

p value
Cultivated cropland Pastureland Others DIC
Ml 0.0470 0.8802 0.9501 —357.8808
M2 0.2204 0.2387 0.9087 —340.8546

estimated variance of z;; is calculated using jackknife replicate weights prepared for the
2012 NRL

The model assessment is based on the posterior predictive distribution (Gelman et al.
2014). Because state-level estimates are considered stable in the NRI, we choose state-level
estimates as the characteristics of the data to which we compare data generated from the
model. The following method is used to assess the model.

1. Calculate NRI design-based proportions py fork =1, ..., 3 at state level.
2. Simulate z,((';') from the posterior predictive distribution for i = 1,...,I,m =
1,..., M from M1 and M2, where m denotes the Gibbs iteration.

3. Transform z,(:i") back to ﬁ,i'i").

) _ o

4. Calculate state-level proportions ﬁ,ﬁm =37, ﬁ,(c'zl) 27’: L Wi/ Y Z'}’: | Wije

5. Calculate p values as % Z,A,:Izl I(ﬁ,im) > Dr)s

where n is the number of counties, n; is the number of points in county 7, and w;; is the
weight of point ij. If we have really small p values or really large p values, that means
the county-level estimates based on models cannot capture the characteristics, state-level
estimates, of the data set. We also use DIC (Spiegelhalter et al. 2002) to compare different
models. The model with smaller DIC is preferred.

Table 1 shows the results of the model assessment for considered models. In terms of
p values, M2 is better, while M1 is better according to DIC. Based on these results, M2
reproduces the state-level proportions better than M1. The predictive posterior distribution
and DIC give different preferred models. In our application, we want the selected model to
respect the original data structure and characteristics. Thus, we prefer M2 over M1 for this
application, since we consider the state-level estimates as important characteristics.

Table 2 shows posterior means and standard deviations for different parameters. For the
spatial effect pi, the 95% credible intervals based on 2.5 and 97.5% quantiles are (— 1.575,
0.967) and (0.799, 0.999) for cultivated cropland and pastureland, respectively. For cultivated
cropland (k = 1), the spatial effect does not differ significantly from zero. The reason is that
the covariate CDL itself has a strong spatial effect (Moran’s I p values less than 2716), and
the NRI and CDL cultivated croplands also have a strong correlation (95% credible interval
of B1 is (0.833, 1.116) in Table 2). Thus, the CDL explains the spatial structure in the NRI
cultivated cropland estimates. In contrast, for pastureland (k = 2), the relationship between
the NRI and CDL is not very strong (95% credible interval of 8 is (—0.106, 0.687), and the
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Table 2. Estimates of parameters.

k =1 est(sd) k = 2 est (sd)
Bo 0.234 (0.062) —1.033 (0.48)
B1 0.973 (0.072) 0.288 (0.201)
Y0 2.822(0.072) 2.963 (0.101)
Y1 —1.041 (0.086) —0.708 (0.206)
) 0.071 (0.06) 0.756 (0.238)
P —0.075 (0.755) 0.952 (0.056)
8¢ 0.271 (0.047) 0.575 (0.096)

spatial effect becomes highly significant, which is used to reduce the uncertainty in county
estimates.

Because of the assumption of generalized Dirichlet distribution, the sum-to-one constraint
is satisfied automatically. Since NRI is designed for state estimates, we also want that the
aggregated county-level model-based estimates are equal to the design-based survey state
estimates. Thus, benchmarked estimates are considered, which satisfy both the sum-to-one
constraint and the aggregated state-level estimates based on the county-level estimates equal
to the NRI state-level estimates. Specifically, the benchmarking constraints are,

3
Y =1 fori=1_.n, (13)
k=1
n
> hiAi = Aopr. fork=1,....3, (14)

i=1

where A; is the known area of county i, and Ag = Z?:l A;, which is the administrative state
area. (13) and (14) are for the sum-to-one constraint and state-level estimates constraint,
respectively. We use raking method (Kalton 1983) to benchmark the estimates. Figure 3
shows the estimates of different categories.

According to You et al. (2004), the posterior mean square error (PMSE) of the bench-
marked estimator can be calculated as,

s ( ~(bench ~post _ (benchy)?
PMSE (5 ") = (™) + (5 = p2"™) (1)

where ﬁE?St is the model-based estimator, V ( ﬁE?St) is the posterior variance of py;, and
ﬁg)ench) is the benchmarked estimator. The PMSE includes the corrections due to the
benchmarking process. The benchmarked estimates do not differ much from the original
model-based estimates. For cultivated cropland and pastureland, the benchmarked estimates
are larger than the original model-based estimates. But for the remainder, the benchmarked
estimates are smaller.

Figure 4 shows the estimates and 95% confidence intervals of the design-based estimates

and 95% posterior intervals of the benchmarked model-based estimates for cultivated crop-
land. The confidence intervals are defined as py; & 1.96,/ ‘A/(ﬁk,-), where py; is the NRI
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design-based estimate and V( Dri) is the jackknife variance. And the posterior intervals are

defined as ﬁ,ﬁ?emh) + 1.96,/ m( ﬁ,ﬁ?enCh)). Figure 4 demonstrates the efficiency gain
due to the spatial hierarchical Bayesian model. This has important implication for policy

because county estimates with better accuracy can provide better guides for land manage-
ment planning at county level.

6. DISCUSSION

This paper uses the generalized Dirichlet distribution to model design-based estimates
of proportions and obtain small area estimators of compositional proportions. Based on
the relationship between the GD distribution and the beta distribution, a spatial Bayesian
hierarchical model with beta regression is formulated and applied to NRI data. Another
innovation is the introduction of a model for the dispersion parameter of the beta distribution
that utilizes both Chi-squared and log-normal distributions. In a design-based Monte Carlo
study that represents the NRI data, the model-based estimators are superior to design-based
estimators and multinomial model estimators in terms of RMSE and relative RMSE. The
use of the posterior predictive distribution validates the use of the variance model for the
NRI application.

The approach based on the GD distribution has several advantages for the NRI application.
The GD distribution allows greater flexibility than both the multinomial distribution and the
Dirichlet distribution. The variance model allows us to incorporate auxiliary information
in the design-based variance estimators. The model allows different covariates, regression
parameters, and spatial effects for different categories.

The study generates several questions for future work. The proposed models assume
that all proportions are greater than 0. While this is not an important limitation for this
application, in the future we will consider a zero-inflated model that allows zeros for both
estimated proportions and true values. An extension to include a temporal component has
the potential utility for forecasting and estimation of change.

[Received February 2018. Accepted June 2018. Published Online July 2018.]
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