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ABSTRACT

To design and manage office buildings that are both energy-efficient

and productive work environments, we need a better understanding

of the relationship between building and occupant systems. Past

data-driven building research has focused on energy efficiency and

occupant comfort, but little work has used building sensor data

to understand occupant organizational behavior and dynamics in

buildings. In this initial work, we present a methodology for us-

ing distributed plug load energy consumption sensors to infer the

social/organizational network of occupants (i.e., the relationships

among occupants in a building).We demonstrate how plug load data

can be used to model activities, and we introduce how statistical

methodsÐin particular, the graphical lasso and the influencemodelÐ

can be used to learn network structure from time-series activity

data. We apply our method to a seven-person office environment

in Northern California, and we compare the inferred networks to

ground truth spatial, social, and organizational networks obtained

through validated survey questions. In the end, a better understand-

ing of how occupants organize and utilize spaces could enable more

contextual control and co-optimization of building-human systems.

CCS CONCEPTS

·Applied computing→ Engineering; Sociology; ·Computer sys-

tems organization → Sensor networks;

KEYWORDS

Social networks, network inference, organizational theory, building

management, energy efficiency

ACM Reference Format:

Andrew J. Sonta and Rishee K. Jain. 2018. Inferring Occupant Ties: Auto-

mated Inference of Occupant Network Structure in Commercial Buildings.

In The 5th ACM International Conference on Systems for Built Environments

(BuildSys ’18), November 7ś8, 2018, Shenzen, China. ACM, New York, NY,

USA, 4 pages. https://doi.org/10.1145/3276774.3276779

1 INTRODUCTION

Commercial office buildings fundamentally exist to enable effec-

tive work. Successful office buildingsÐthrough their design and
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managementÐaccomplish this by enhancing certain qualities of the

occupant experience, including comfort and productivity. Given

the large environmental impact of buildings, good office buildings

should also aim to be as energy-efficient as possible.

The new paradigm of sensor data availability in buildings has

given researchers more avenues for understanding the operation

of buildings through these lenses of environmental performance

and human activity. Recent work at the building-human interface

has focused on understanding the energy and comfort implica-

tions of building operation, such as occupancy-driven operation

of HVAC and lighting (e.g., [7]). Fewer studies have focused on

using sensor data to model human activity patterns and the natural

structure of occupant relationships in commercial buildings. As

researchers in the field of organizational behavior have long noted,

understanding these relationships can enable more effective space

management, for example by suggesting new office layouts that

improve workplace satisfaction [9]. Organizational relationships,

or ties, are typically modeled through surveys that take consider-

able time and effort to administer. Often, ties are not measured at

all, leaving managers with simple organizational charts that de-

scribe workforce breakdowns by department or project and lack

any subtle insights into the true nature of office relationships. An

understanding of occupant ties has also been shown to be useful

for reducing energy consumption in office spaces. For example,

the efficacy of information campaigns targeted at reducing energy

consumption through individual behavior can be largely attributed

to social network structure [1]. In recent work [10], we have found

that ties can be used to suggest spatial shifts in occupant layouts

to more closely match occupant behavior with energy-intensive

building systems, thereby reducing overall energy consumption.

Among organizational leaders, the importance of understanding

the structure of organizations is well-known. For the University

of California systemÐwhose 2016/17 operating budget is public

dataÐtotal employee salaries, wages, and benefits were roughly 74

times more expensive than utility bills, underscoring the notion

that organizations are rational if they prioritize the productivity of

their workforce over energy efficiency. While changes to occupant

behavior and layout can be key areas for reducing energy consump-

tion, managers would be unlikely to make changes if they worry

about disruptions to productivity. At the same time, new research

is showing that changes in spatial configurations of offices can

improve employee wellbeing and communication [5, 9]. As a result,

suggestions for new layouts could be improved if they are made to-

gether with an understanding of their effects on work. Using sensor

data to gain insight into the occupant network through automatic

inference can enable new methods for co-optimizing building and

human systems that are fundamentally intertwined.
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2 RELATEDWORK

In the building energy domain, recent work has considered the occu-

pant network as it relates to energy-related behavior and decision-

making among occupants. [1, 10]. In the domain of workspace and

organizational theory, researchers have noted an intimate relation-

ship between office design/layout and occupant satisfaction and

performance [5, 9]. In fact, recent work has pointed to the notion

that spatial configuration can heavily impact key indicators of pro-

ductivity, such as collaboration [5]. An accurate picture of true

relationships among occupants can be a critical tool in understand-

ing the nature of work in buildings, and ultimately for suggesting

spatial shifts that improve occupant performance [9].

While this previous work has noted the importance of under-

standing the occupant network for energy and occupant perfor-

mance, little work has been focused on inferring the true occupant

network. Some statistical and data mining tools have been pro-

posed as methods specifically for inferring network structure from

time-series data. These methods have typically been applied to

biostatistical problems [2], though some recent work has consid-

ered the problem of inferring social networks from time series data

about human activity [8]. In this paper, we adopt network inference

methods for the problem of inferring the occupant network struc-

ture from distributed plug-load energy sensorsÐsensors which are

becoming ubiquitous and, as discussed in our previous work, can

be used to model individual activity states at the desk level [11].

3 METHODOLOGY

In this section, we introduce a two-step process for inferring the

occupant network from raw sensor data. The first step makes use

of a method introduced in [11]: raw sensor data are collected from

distributed plug-load power strip sensors, and these data are trans-

formed into abstracted states of occupant activities. In the second

step, two different models for measuring occupant activities are

adapted from the literature and introduced for estimating the net-

work relationships among occupants as defined by their activities.

We note that collecting and analyzing data related to occupant net-

work relationships comes with several risks and ethical concerns

if misused (e.g., loss of privacy, potential social embarrassment).

In order to minimize such risks and concerns, we collected and

analyzed data in accordance with the Institutional Research Board

(IRB) and ACM’s Code of Ethics which included creating a transpar-

ent process for obtaining consent for data collection, minimizing

personal information collected and automating anonymization of

data during collection and analysis.

3.1 Determining occupant activities through

plug load energy data

Consistent with previous work [11], we define a time series of

plug load energy use collected at the desk level for each occupant:

Xi,d = {x1, ...,xT } where i is the occupant index (for all occupants

1, ..., I ), d is the day index (for all days 1, ...,D), and T is the total

number of time steps at which data are collected in a single day

(e.g., if data are collected at 15-min intervals, T = 96). For the full

dataset, we complete a component selection process based on varia-

tional Bayesian inference to determine the number of activity states

present in the plug load data (the method is designed to adapt to

different building settings, so that the number of states can be vary

among study areas). An activity state can be defined as abstracted

and categorized information describing occupant behavior based

on plug load energy consumption. Once the number of activity

states is inferred, we complete a classification process that ascribes

each plug load energy datum to an activity state. The result is an

abstracted time series that describes overall changes in activity

states for all occupants in the study: Xi,d 7→ Si,d where S contains

the activity states. At each time interval, all occupants are classified

into one of the same number of states. For complete details on this

state classification method, we refer the reader to [11]. In this work,

we have found that plug load sensors provide accuracy comparable

to sensors specifically designed for occupant detection, and we

have shown that shifts between states correspond accurately which

actual changes in behavior, such as going to a meeting.

3.2 Estimating the occupant network

Given time series data about occupant activities, the next step is to

infer the occupant network as defined by relative similarities in the

activity data.We define an occupant network as a graphG = (V,A),

whereV is the set of occupants and A is the adjacency matrix of

the graph. We explore two options for inferring the adjacency

matrix: the graphical lasso, which estimates the inverse covariance

matrixÐoften interpreted as a graphical adjacency matrix [2]; and

the influence model, which estimates an ‘influence matrix’ that is

commonly used to describe tie strengths in a network [8]. In this

previous work, each of these methods has been shown to scale well

to large networks and large time series.

Graphical lasso: The graphical lasso was developed as a method

for inferring sparse undirected graphical modelsÐalso known as

Markov random fieldsÐthrough L1 (lasso) regularization. In the

literature [2], the data are defined as N multivariate observations

with dimension p, mean µ, and covariance Σ. In our case, N = D ·T

(the total number of time steps), and p = I (the number of work-

stations/individuals). The graphical lasso makes use of coordinate

descent to estimate the inverse covariance matrix (Σ−1), which is

often considered as the adjacency matrix in a Markov random field.

Influence model: The influence model, discussed in [8], models

the interaction among entities quite differently. The model is based

on a generally coupled Hidden Markov Model (HMM), in which

the state of each entity (in our setting, Si ) at any given time point t

is determined by the state of all entities S1, ..., I at the previous time

point t − 1. A graphical representation of the Influence Model is

shown in Figure 1. The authors use Expectation Maximization to

estimate the parameters of the model. One of the key parameters

of the model that is learned is the matrix RÐthe ‘influence matrix’Ð

often interpreted as an adjacency matrix in a network.

The output of each model is a matrix that we consider as the

adjacency matrix defining a weighted, directed network. For con-

sistency, we refer to these matrices as Aglasso and A
infl, where the

entry Ai, j represents the strength of the tie from occupant i to

occupant j. The two models proposed here for learning network

structure are based on fundamentally different assumptions. In the

graphical lasso, the entries of the Aglasso can be interpreted as mea-

sures of conditional dependence (i.e., if the entry i, j is zero, entities

i and j are conditionally independent given all other variables).
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overall trends in feature representations for each of the networks

are quite similar in Figure 2. Occupants 1 and 7 tend to be cen-

trally located in all 2-dimensional representations. If we define a

simple centrality measure for an occupant in this R2 space as the

sum of Euclidean distances between that occupant and all others,

in all three networks occupant 1 has the smallest value and occu-

pant 7 has either the second or third smallest value. Knowing the

real context of the office environment, this trend makes intuitive

sense: occupant 1 is the director of the group, and occupant 7 is

the highest-ranking member in the organizational structure, who is

often relied on for work-related information and advice. Occupant

6, however, is also centrally located near occupants 1 and 7 in the

2-dimensional representation of the nodes. While this occupant has

no structural centrality in the organizational network, inspection

of the overall ground truth network reveals that this occupant has

relatively strong ties as measured by degree centrality in the ground

truth network. Occupant 6’s in-degree centrality (
∑
i A

∗
i,6) is larger

than the mean in-degree centrality, and their out-degree centrality

(
∑
i A

∗
6,i ) is the largest. The survey data shows that this occupant’s

degree centrality results in large part from the social and spatial

components of the ground truth.

This inclusion of occupant 6 as one of the central nodes in the 2-

dimensional representations of the network demonstrates the value

of the automated network inference method proposed in this paper.

While a manager of an organization might guess that occupant 1

(the director) or 7 (the highest-ranking member) would be central

nodes in the network, he or she might not be able to guess that

occupant 6 also has a relatively central role. When scaled to large

networks, analyses such as these could provide subtle insights into

the true structure of the occupant network that could not easily be

obtained simply by knowing the structure of the organization. We

can also observe from Figure 2 the difference in the vector repre-

sentations of occupants 2 (orange) and 5 (cyan). While occupant

2 is far away from the central cluster in the graphical lasso net-

work (squares), he or she is more centrally located in the influence

model network (triangles). This may suggest that the two models

are biased toward capturing different types of relationships given

their different assumptions. According to the social component of

the ground truth survey, occupants 4 and 5 are close friends, while

2 and 5 are not. Because the influence model assumes that each

entity’s state at time t is influenced by all entities’ states at time

t − 1, it may be more capable of capturing spontaneous similarities

in behavior among occupants. For example, given occupant 4 and

occupant 5’s social relationship, they may be more likely to take

breaks or eat lunch together, resulting in the similarities shown in

the R2 representation of Ainfl.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we introduce a method for automatically inferring the

structure of the occupant network from plug load energy consump-

tion data collected at the desk level in an office setting. We have

shown that the method is capable of capturing network relation-

ships and centralities that are both expected based on high-level

organizational structure and that are ‘hidden’ in more subtle aspects

of occupant relationships (e.g., friendships and spatial configura-

tion). In a 7-person office study, we show that both the graphical

lasso and the influence model are capable of capturing these key

centralities, and we discuss how some key differences in assump-

tions might affect eachmodel’s network inference output.While the

small size of the study limits generalizability of our inferences, our

results do demonstrate the potential for this method to effectively

and automatically infer organizational structure. Future work is

required to methodically demonstrate that inferences like the ones

we describe above can be made in larger, more complex settings.

In future work, we aim to more fully explore the difference

between each of the modeling techniques as they related to inferred

network structure. Additionally, we aim to explore how using data

from different times of the day might impact the inferred network

structures (e.g., employees might tend to have similar behavioral

patterns as their friends during lunchtime, versus similar patterns

as their teammates during other hours). Similarly, by extending

these inference models to allow the networks to change over time,

future work can begin to understand the co-evolution of space

design and organizational science and how such insights could

inform control paradigms for commercial buildings that co-optimize

building and occupant systems. In the end, a deeper understanding

of the occupant dynamics within a building could enable the design

and management of productive and energy-efficient spaces.
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