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ABSTRACT: We introduce a framework to study the emergence of time and causal struc-
ture in quantum many-body systems. In doing so, we consider quantum states which
encode spacetime dynamics, and develop information theoretic tools to extract the causal
relationships between putative spacetime subsystems. Our analysis reveals a quantum
generalization of the thermodynamic arrow of time and begins to explore the roles of en-
tanglement, scrambling and quantum error correction in the emergence of spacetime. For
instance, exotic causal relationships can arise due to dynamically induced quantum error
correction in spacetime: there can exist a spatial region in the past which does not causally
influence any small spatial regions in the future, but yet it causally influences the union
of several small spatial regions in the future. We provide examples of quantum causal in-
fluence in Hamiltonian evolution, quantum error correction codes, quantum teleportation,
holographic tensor networks, the final state projection model of black holes, and many
other systems. We find that the quantum causal influence provides a unifying perspective
on spacetime correlations in these seemingly distinct settings. In addition, we prove a
variety of general structural results and discuss the relation of quantum causal influence
to spacetime quantum entropies.
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Figure 1. (a) The world lines of two Spin—% particles 1,2 in spacetime (red curves). Two operators

V1 and V5 probe the spins of the two particles at time ¢ = 0. (b) When the initial state of the spins
of the two particles forms an EPR pair, the effect of V3 ® V5 on particles 1 and 2 is equivalent to

applying VoVi! to particle 2 alone.

1 Introduction

Causal structure is an essential property of spacetime geometry. In relativistic classical
mechanics, the causal structure is determined by the behavior of null geodesics. The
future light cone of a point x comprises all of the points that may be influenced by an
arbitrary perturbation at z. In relativistic quantum field theory, we usually treat the
causal structure as classical, with well-defined light cones. In more general quantum many-
body systems which may be non-relativistic or do not posses quasiparticles resembling
massless excitations, there is still a generalization of the causal structure so long as there is
an upper-bound on the speed of information propagation. For example, for lattice models
with a local Hamiltonian, the Lieb-Robinson bound [1] gives a velocity vyr which defines
an analog of the speed of light. In particular, a local perturbation can only influence the
region inside its future Lieb-Robinson cone.

However, beyond these familiar cases, the causal structure in quantum mechanics can
be much richer. As a simple example, consider two spin—% particles 1,2 in figure 1 above.
At time ¢t = 0, particles 1 and 2 are at location z1 and x3. On a fixed time slice ¢ = 0,
suppose we probe the spin degrees of freedom of particles 1 and 2 with separate Hermitian
operators V; and V3, respectively. These two probe events are clearly spacelike separated.
Now if we prepare the spin degrees of freedom of particles 1 and 2 in an EPR pair state
% (1M1 119 + )1 4)5) at an earlier time ¢; < 0, applying Vi and V» to particles 1 and 2
at time ¢t = 0 is equivalent to applying VaV;! only to particle 2 at t = 0. (V;! is an operator
defined by the matrix transpose of Vj in the S, basis.) Therefore, for our particular initial
state of the spin degrees of freedom, it becomes ambiguous whether the two probe events
are spacelike or time-like separated.

Following the spirit of Einstein’s theory of relativity, one would like an observable way
to define the causal relation between events in a quantum many-body system, which is
uniquely determined by physical correlation functions and has an unambiguous interpre-
tation. This is the goal of the current paper. We propose a measure of quantum causal
influence that determines whether a spacetime region A has nontrivial influence on an-
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Figure 2. Depiction of regions A at time ¢; and B at time ¢, for a spin chain. The causal influence
is measured by inserting a unitary operator U, in region A (orange box) and studying its effect on
the measurement of an arbitrary operator Op in B (blue box).

other spacetime region B. The measure reproduces the ordinary causal structure for the
familiar case of relativistic classical systems, but also unveils various unconventional causal
structures that are unique to quantum mechanics.

Our emphasis on correlation functions and many-body states differs from previous
work on causality in quantum mechanics which emphasize few-body systems and causal
inference on data from decoherent measurements [2-14]. We are primarily interested in the
emergence of causal structure in quantum systems with many degrees of freedom, and the
flow of time experienced by observers inside the systems. For related work in this direction
using the quantum process tensor formalism and related formalisms, see [15-21].

To illustrate the idea of our proposal, let us first consider time evolution with a local
Hamiltonian. For concreteness, we can consider a (1 + 1)-dimensional model of N spins
labeled by x = 1,2,..., N with a Hamiltonian that couples neighboring spins. We will
refer to this system as the “main system”. Starting from an initial state |¢;) at time ¢ = 0,
the main system evolves as [¢(t)) = e *H? |1);) in the Schrodinger picture. Consider two
spatial regions, A at time t; and B at time t5, as shown in figure 2. Now suppose there
is an experimentalist who can only access the two spacetime regions A and B, but can
otherwise perform arbitrary operations. In particular, the experimentalist is a superob-
server who can couple her external apparatus to region A by performing a joint unitary
on A and her apparatus at time 1, and similarly for B at time to. We also assume that
the experimentalist has the ability to reset the whole system to the initial state [¢;) and
run the experiment an unlimited number of times. Now the question is, how can the ex-
perimentalist determine whether physical operations in A causally influence the region B?
Naturally, the experimentalist can run different experiments with different perturbations



on region A (by coupling her external apparatus to A in different ways) and measure some
physical quantity at region B. If the result of the measurement at B depends nontrivially
on the pertubation at A, we conclude that A causally influences region B.

However, it is important to distinguish causal influence and correlation. Even if A and
B are spacelike separated, operators in A and B can certainly have a nontrivial connected
correlation function. Measures of connected correlation (such as the quantum mutual
information between the two regions, if they are spacelike separated) are symmetric between
the two regions, and thus do not probe the causal structure. For instance, it may be the case
that A causally influences B but B does not causally influence A, and so causal influence
is necessarily an asymmetric relation. It turns out that a simple modification of the setup
can distinguish causal influence from other kinds of correlation. The experimentalist can
apply a unitary gate Ua to region A, which changes the state of the system but does
not introduce entanglement with her apparatus. Then, the experimentalist can couple her
apparatus to region B in the ordinary way, which generically entangles the main system
with the apparatus. If B has no overlap with the future light cone (or for a lattice model,
the Lieb-Robinson cone) of A, the unitary operator U4 does not change the reduced density
matrix of B and therefore does not change any physical property there.

The procedure described above may sound a bit trivial since it is exactly how we
do response theory in many-body systems. If we consider an infinitesimal unitary Uy =
exp (—ieJy4), and measure an operator Jp at B, the linear response function is determined
by the commutator —i[Ja(t1), JB(t2)] 6(t2 — t1), which vanishes outside the light cone.
However, the commutator expression depends on the Heisenberg picture, which relies on
picking a choice of time slicing (i.e., Cauchy surfaces). Since we want a measure of the
causal structure that is not predicated on pre-defined time slices, it is more natural to
work with tensor networks, which are not endowed with a pre-defined causal structure.
Indeed, our proposal allows us to study causal structure in systems with no obvious time
slicings. For example, in a hyperbolic “perfect tensor network” [22], there are isometry
relations between operators acting on different subsets of links, but there is no light cone
or preferred time-like direction. Our proposal allows us to start from scratch and probe
causal influence between different degrees of freedom in the system, without any a priori
knowledge of a time direction. In particular, there is no need to distinguish whether some
qubits (or more generally, degrees of freedom) in A and B are “the same qubits evolved in
time” or “independent qubits that are entangled”.

The remainder of the paper is organized as follows: we start by presenting the gen-
eral setup. For concreteness, we use the language of tensor networks to describe a general
quantum system, without needing to designate how degrees of freedom sit in a putative
spacetime. This is a very useful framework for “spacetime agnostic” descriptions of quan-
tum systems. Even if we have a continuum of degrees of freedom, as long as we assume
that accessible regions A and B comprise of discrete spacetime points, the system can be
described by a tensor network. We show how a general quantum system can be considered
as a tensor network with insertions of operators in links, and with a given boundary con-
dition. For example, in the more familiar setting of a quantum system with unitary time
evolution, the boundary conditions of the tensor network correspond to an initial density



operator (i.e., an initial state) and optionally a final density operator (i.e., a final state).
Ordinary quantum mechanics without a final state density operator is equivalent to having
a maximally mized final state density operator. We will discuss this in detail later.

Next, we provide the definition of quantum causal influence in the general setup.
With this probe of quantum causal structure at hand, we investigate various examples
and identify some key features of causal influence that are unique to quantum systems.
One feature is that the causal structure generically depends on the initial state, or more
generally the boundary conditions of the tensor network. In the familiar case of a quantum
system with unitary time evolution, the direction of the “future” is determined by the fact
that the final state is maximally mixed but the initial state is not. If the initial state
contains a region with a maximally mixed reduced density operator, the future light cone
of points in the domain of dependence of that region will be “erased”. Another example of
causal structure which is sensitive to the initial state is quantum teleportation. We show
how quantum teleportation corresponds to “erasing” part of the future light cone of the
teleportee due to a special initial state containing EPR, pairs.

The other unique feature of quantum causal influence is that it is generically nonlocal.
In classical mechanics, causal structure is determined by the causal relationships of pairs
of points. Classically, a spacetime region B is influenced by a spacetime region A if and
only if some points in B are in the future light cone of some points in A. This is not the
case for quantum systems. To fully understand the quantum causal structure of a system,
it is essential to consider the influence between regions A, B of generic size. In fact, the
quantum causal influence between subsystems of A and B do not generically determine
the quantum causal influence between A and B themselves. For instance, it is possible to
have smaller regions By and By which are not individually influenced by A, but for which
the union By U By is influenced by A. Such nonlocal influence is a key feature of quantum
erasure codes. The encoding map of a quantum erasure code takes quantum information in
a region A and maps it to B = B; U By nonlocally. If the influence of A to each subregion
By, By is trivial, the code is immune to local errors that occur in only one of B; or Bs.

The nonlocality of quantum causal influence provides a new perspective on the exotic
causal structures underlying holographic duality. In holographic tensor networks such as
perfect tensor networks or large bond dimension random tensor networks [23], all pairs
of small regions appear “spacelike separated” since no small region influences any other
small region. However, a small region (or more precisely, code subspace operators in a
small bulk region) can influence large regions and ultimately influence the boundary in
a nonlocal way, as is required by the reconstruction of bulk operators on the boundary.
Using quantum causal influence, we find that holographic tensor networks can admit exotic
quantum analogs of Cauchy slices comprising of concentric spheres. Another example we
study is the final state projection model of black holes [24], which utilizes post-selected
quantum mechanics. We discuss how causal influence between small regions does not know
about a post-selected random final state, while regions that are large enough have abnormal
causal relations and do detect the violation of unitarity by the final state.

After discussing various features and examples of quantum causal influence, we turn
to some more quantitative properties. We define a “superdensity operator” [25] of regions



A, B which determines all correlation functions involving these two regions. With this tool,
we investigate the averaged quantum causal influence by averaging over unitaries in A and
generic operators in B. The averaged causal influence is a quantum information theoretic
property of the superdensity operator. As two examples, we numerically computed the
averaged causal influence in quantum Ising spin chains and stabilizer code models.

We find that quantum causal influence provides a new probe of many-body chaos since
the influence between two small regions decays in a chaotic system even if the regions are
time-like separated. This is a consequence of operator scrambling and thermalization — a
local perturbation becomes non-local and at a later time has little effect on local regions
except by contributing to conserved quantities such as energy. We also discuss an upper
bound of the causal influence by spacetime quantum mutual information (which is again
defined for the superdensity operator) [25]. Finally, we discuss some open questions and
future directions.

Below is a brief summary, section by section:

e In section 2, we provide definitions of general tensor networks, graphical tensor net-
works, and quantum causal influence.

e In section 3, we explore how quantum causal influence depends on boundary condi-
tions. We provide many examples, and prove general, structural results.

e In section 4, we discuss the nonlocality of quantum causal influence in the context of
quantum error correction codes, scrambling, and quantum teleportation.

e In section 5, we give examples in the context of quantum gravity, specifically for
holographic tensor networks and models of a black hole final state.

e In section 6, we establish the relationship between the averaged quantum causal
influence and spacetime quantum entropies and mutual information. We use our
results to analyze quantum causal influence in quantum spin chains and stabilizer
tensor networks.

e In section 7, we make concluding remarks and discuss future directions.

e In the appendices, we provide classical and quantum generalizations of causal influ-
ence, review the superdensity operator formalism, and also review stabilizer tensor
networks.

2 General setup

2.1 General tensor networks

In order to define characteristics of quantum causal structure, we need to start from a
description of a quantum many-body system that does not pick out a time direction. A
suitable framework is general tensor networks [25-29]. Even though popular examples of
tensor networks often have a constrained form, the framework of general tensor networks



Figure 3. (a) An example of a tensor network describing a unitary operator W = (VU)M. Each
vertex is a two-qubit unitary gate with the inputs and outputs indicated by arrows pointing toward
or away from the vertex, respectively. (b) This is the tensor network obtained by contracting W
and WT with an initial state p; (the red box), and then taking a trace. In other words, the tensor
network computes tr(Wp;WT) = tr(p;) = 1. (c) The tensor network representation of a two-point
function defined in eq. (2.1).

is far broader and encompasses the entire scope of familiar (and unfamiliar) quantum
many-body systems.

We start from a simple example of a tensor network, before providing the most general
definition. Consider N qubits, where N is even, arranged in a line. First, we apply in
parallel two-qubit gates to adjacent qubits via the unitary U = Uj2 ® U4 ® --- @ Un—_1, N
Next, we apply another unitary on a different pairing of adjacent qubits, namely V =
Voz @ Vs @ - @ Vy_og y—1. Afterwards, we again apply U followed by V', and so on a
total of M times, as illustrated in figure 3(a). This procedure yields the unitary operator
W = (VU)M. The discrete time evolution implemented by sequential applications of U and
—iHt

V can be considered as a discretization of a continuous time evolution operator e where

H is a local Hamiltonian. Indeed, we can find U and V via a Suzuki-Trotter decomposition
of e,

Mathematically, the matrix W is obtained by contracting indices of small matrices
Usk—12k and Vo 241 along all internal links of the network in figure 3(a). We can then
contract W and a WT with some initial state p;, and then take a trace. This yields the tensor
network in figure 3(b), which computes tr(Wp;WT) = tr(p;) = 1. The tensor network is a
discrete analog of a partition function, which can be used to compute physical correlation

functions. For example, the time-ordered two-point function
(T By(t2)As(t1)) = tr | B,(VU)2 M A (VU1 p(UTVT)2| | (2.1)

where for concreteness we suppose t2 > t1, can be computed from the tensor network in
figure 3(b) by inserting the operators A, B, into links corresponding to = and y which
yields the tensor network figure 3(c). Indeed, the tensor network in figure 3(c) evaluates
to the two-point function in eq. (2.1) above.
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Figure 4. This tensor network is a special case of the one in figure 3(c). The network here specifies
a particular choice of p;, namely a matrix product operator (MPO), which is depicted within the
dashed red lines. We have also put in purple dashed lines to illustrate the fact that taking a trace
is equivalent to taking an inner product with a maximally mixed density matrix py = 1/d, up to a
normalization d (i.e., the Hilbert space dimension of a spatial slice).

For concreteness, in figure 4 we have chosen an initial density matrix p; which is a
matrix product operator (MPO). We will not use MPO’s later in the paper, but it suffices
to say that the state p; is represented by the partially contracted tensors in the red dashed
box in figure 4. The tensor network representation of figure 3(b) also highlights the fact
that taking the trace in eq. (2.1) is, up to a normalization, equivalent to taking an inner
product with another density matrix py = 1/d, which is the maximal entropy state on a
spatial slice (here, we suppose that the Hilbert space dimension of a spatial slice is d). This
is just to say that correlation functions, such as the two-point function in eq. (2.1), can be
written as

tr [pry(VU)tT“Az(VU)“ pi(UTVT )ﬂ o tr [By(VU)tHle(VU)tl pi(UT VT)f2] (2.2)

since py is proportional to the identity. Although this may seem like a trivial rewriting, we
will see later that it is significant.

By making both p; and py explicit, we see that p; and p; play symmetric roles. More
general tensor networks with insertions on links provide a powerful framework for describ-
ing physical processes of quantum many-body systems. Much like a partition function, a
tensor network is an object into which operators can be inserted to compute correlation
functions. However, partition functions require a Hamiltonian or action that implicitly or
explicitly specifies spatial and temporal degrees of freedom. For instance, Hamiltonians
and actions specify dynamical degrees of freedom such as spins, particles or fields, and
designate both spatial and temporal coordinates. By contrast, a tensor network is a com-



pletely general contraction of quantum operators which is a priori agnostic to distinctions
of space and time.

Going back to our example, we have so far viewed the network in figure 3(b) as an
initial state with unitary time evolution vertically and two operator insertions at A, B,.
However, the tensor network is agnostic to the words we use to describe it: we could
instead equivalently say that the tensor network implements non-unitary evolution hori-
zontally, and that what we formerly called spatial open boundary conditions correspond
here to temporal boundary conditions (such as initial and final states). From this perspec-
tive, p; and py now play the role of spatial boundary conditions. Also from this point of
view, the operator insertions A, B, compute a two-point correlation function in a different
physical system.

This example may seem somewhat contrived, since we intuitively know that viewing
the tensor network as implementing evolution vertically yields the familiar form of unitary
time evolution, whereas viewing the tensor network as implementing evolution horizontally
leads to peculiar non-unitary evolution. Thinking carefully about this distinction, we might

“vertical” point of view more natural than the “horizontal”

ask: what precisely makes the
point of view, for this example? More generally, we may have a tensor network that
does not have an obvious causal structure. So then we may ask, how do we diagnose the
causal structure of a general tensor network? Which tensor networks yield familiar causal
structures, either exactly or approximately? Are there new kinds of causal structures which
are natural but specific to quantum systems? These are the questions which we begin to
study in this paper.

Now, let us give the most general definition of a tensor network:

Definition (general tensor network). A tensor network is specified by a triple
{{H;},|L), pp} comprised of:

1. A set of Hilbert spaces {H;} which each correspond to a spacetime subsystem i,
2. A link state |L) € H = Q), i,
3. A density operator pp acting on the same Hilbert space H.

The most general correlation function of the tensor network is computed by (L|Q1 pp Q2|L)
where Q1, Q2 are operators acting on H.

In other words, a general tensor network is like a quantum many-body state given
by |L), except that the inner product is defined by positive semi-definite quadratic form
pp instead of the ordinary inner product in the Hilbert space. Furthermore, a general
tensor network can encode correlations in time, since we regard each tensor factor H; as
a subsystem in spacetime. For instance, if our tensor network described standard unitary
time evolution, the contracted tensor network would have unitary time evolution operators
connecting subsystems corresponding to adjacent times.



(a)

Figure 5. (a) A graph G = (V, E) is shown in blue. (b) A representation of the link state |L).
Each line with a dot at each end represents an EPR pair, with the dots corresponding to qudits.
The dotted red circles designate the collections of qudits corresponding to vertices v of the graph
G. The number of qudits at a vertex of the graph is the same as the degree of that vertex.

2.2 Tensor networks based on graphs

Here we explain a useful type of tensor network, called a graphical tensor network (GTN).
We will utilize GTN’s throughout the paper. A GTN is defined for an undirected graph
G = (V, E) where V is the set of vertices and F is the set of edges. For a given vertex v,
let deg(v) (i.e., the degree of v) denote the number of edges which attach to it. The GTN
corresponding to G has a Hilbert space

"= H. (2.3)

veV

where H, ~ ((Cd)®deg(”). In words, each Hilbert space H, corresponding to a vertex
v comprises of deg(v) tensored copies of C%, also known as deg(v) qudits.! It will be
convenient to write the full Hilbert space as

deg(v)

H=QQ Q M, (24)

veV j=1

where H,,; ~ C?, and vj denotes the jth qudit of H,.

Then |L) is a “link state” comprised of a tensor product of EPR pair states as follows.
(The explanation of the construction of |L) is slightly involved, but has a simple picto-
graphic interpretation given in figure 5 above). Let us denote by (v,w) an edge e of the
graph which connects the vertices v and w. Since our graph G is undirected, (v,w) is an
unordered pair. Now we define a function f which assigns a pair of qudits to each edge e.
The function f has two properties:

LA qudit is a d-level system (hence qudit), whereas a qubit is a 2-level system.



1. f((v,w)) = {vm,wy,} for some m,n with 1 < m < deg(v) and 1 < n < deg(w). In
words, in this case f assigns (v, w) to the mth qudit of H, and the nth qudit of H,,.

2. For every pair of distinct edges e, e/, we have f(e) N f(e') = 0. In words, f assigns to
each edge e a unique pair of qudits which does not intersect with the qudits assigned
to any other edge.

Let |[EPR,,,w,) denote some EPR state, say ﬁ Zle |i)|7), between the mth qudit of H,,
and the nth qudit of H,,. Then |L) is given by

L) = Q) |IEPRy()) - (2.5)
eclk
For clarity, consider the graph in figure 5(a) above. Then we can visualize |L) by EPR
pairs organized as in figure 5(b) above. Indeed, we can imagine that the edges of the graph
have been “replaced” by EPR pairs. Finally, the state pp has the structure

ppP ::CSD‘FZ (2'6)
veV
where P, is a projector on H,. Hence, pp is furnished with a subscript P (for “projector”).
In some graph-based tensor networks, pp is not restricted to comprise of a tensor product
of projectors, and can instead be any density matrix on @),y Ho-

As an example of a GTN, we consider correlation functions in a matrix product state
(MPS) tensor network. To construct the MPS tensor network, we start with a link state |L)
and density operator pp = (|¢){¢| ® 1)®N for some N, as depicted in figure 6(a). Here, (|
and |p) are 3-qudit states, and are each represented, respectively, by an upper and lower
blue triangle in figure 6(a). The identity operator 1 acts on one qudit, and is depicted as a
blue box in figure 6(a). Contracting (L| and pp and |L) as (L|pp|L), we obtain the tensor
network in figure 6(b). Here, the green boxes can be omitted since they are just identity
operators. We can sever the vertical links to obtain two MPS states [MPS) and (MPS|, as
in figure 6(c). Indeed, we have (MPS|MPS) = (L|pp|L). Finally, to compute correlation
functions of the MPS state [MPS), we contract (MPS| and A and B and |MPS) to obtain
(MPS|AB|MPS), which is depicted by the tensor network in figure 6(d).

The Trotter networks in figures 3(b), 3(c), and 4 are also examples of GTN’s. For
these GTN’s, the state pp is

M
pp =pi @ Q) | Q) Uiis1)(Uii1] ® Q) V1) (Vijsl (2.7)
t=1 i J

where |U; ;41) and |V} ;,) are Choi-Jamiolkowski representations of the local unitary opera-
tors U; ;41 and Vj j41. For instance, for a unitary two-qubit gate U; ;41 with matrix elements
[Uz’,i+1]l% in some basis, one can define its Choi-Jamiolkowski representation which is the

four-qubit state
1 5
Uii+1) = 5 > U]z 1a) 8) 1) 1) -

aByd
The states |V} j41) are represented similarly.

~10 -



(a) (b)

L Cighy Py

oo g AN X AN XJ

L)
f’ N oTS eTs
\ L Sgal?

U

~’ '~ ~

(Llpp|L) <

AAA
N N L
vVvy

T j\ /[\ @) [ AAA
(MPS| o
(MPS|AB|MPS) < AO ®
IMPS) { r T
SR AL
Figure 6. (a) A diagrammatic representation of |L) and pp for a nascent MPS tensor network.
The blue triangles represent the 3-qudit pure states (p| (each upper triangle) and |¢) (each lower
triangle), and the green boxes are 1-qudit identity operators. Therefore, pp = (|¢) (| ® 1)®V for
some N. (b) A diagrammatic representation of (L|pp|L). The green boxes can be omitted since

they are identity operators. (c) If we split (L|pp|L) by cutting through the vertical links, we obtain
two MPS states. (d) A diagram of the two-point function (MPS| AB |MPS).

Then |L) comprises of qubit EPR pairs which link together the Choi-Jamiolkowski
representations of the local unitary operators {U; 11} and {Vj 41}, as well as the initial
state p;, to form the tensor networks in figures 3(b), 3(c), and 4. Here, the role of |L) is to
“unwrap” the Choi-Jamiolkowski isomorphism and glue the appropriate unitaries together
in space (for instance, U;;y1 should linked on the right with Ujyqi42) and in time (for
instance, U’s are followed in the next time step by V’s).

Although much of the tensor network literature is centered around GTN’s, our discus-
sion of quantum causal influence below applies to general tensor networks.

2.3 Defining quantum causal influence

In the framework of general tensor networks, we now define our measures of quantum
causal influence. Roughly speaking, the key idea is to distinguish causal influence from
other forms of correlation by using unitary operators. The causal influence of a region R;
on a region Ry is characterized by how correlations within Ry can be changed by arbitrarily
varying a unitary operator acting on R;. As a prerequisite for this discussion, a unitary
acting on R; has to preserve the norm of the tensor network, namely

(L|Ug, pp U}, |L) = (Llpp|L), (2.8)

- 11 -



which is generically not true due to the “metric” pp. Therefore we define the concept of
unitary regions.

Consider a tensor network with a Hilbert space decomposition into subsystems as
H = Q,cq Hi, where €2 indexes the subsystems. Let us call the subsystems indexed by
) the fundamental subsystems, since they are prescribed by the definition of the tensor
network. A unitary region is a subsystem R, with R C €), and an associated Hilbert space
Hr = Q;cr Hi such that

(L|Ur pp URIL) = (L| pp |L) (2.9)

for arbitrary unitaries Ur supported on R. In other words, a unitary region is a subsystem
for which acting with local unitaries preserves the norm of the tensor network. We also
say that two regions Rj, Ry are mutually unitary regions if

(L| U, Ur, pp Uk, Uk, |L) = (Ll pp |L) (2.10)

for arbitrary unitaries Ugr, supported on R; and arbitrary unitaries Ug, supported on Rs.
Notice that if R;, Rs are mutually unitary regions, then they are each unitary regions
individually. The converse is not generally true.

For concreteness, in the Trotter networks in figures 3(a), 3(b), 3(c) and 4, we can define
45° lines as “light cones”. Using these light cones, it is easy to see that all regions that
only contain only “spacelike” separated points are unitary regions. All pairs of such regions
are in fact mutually unitary regions. In contrast, a region with two time-like separated
points x,y is not a unitary region. As another example, for a general MPS tensor network
as depicted in figure 6(d), only the sites obtained by breaking apart vertical links are
unitary regions.

Given a unitary region R, its causal influence on another region Rj is reflected in the
following quantity:

M(Ug, : Og,) = (L| (U, ® Og,) pp (UL, ® OF )|L) (2.11)

If M(Ug, : Og,) has nontrivial dependence on Ug,, this means that physical operations
on region R; have a nontrivial causal influence on physical observables in region Ro.

Using M (Ug, : Og,), one can define different measures of quantum causal influence
that are independent from the choice of operators Ug,,Og,. For example, one can define
the maximal quantum causal influence (henceforth, mQCTI)

CI(Rl :RQ) = Sup A2 ‘Z\J(UR1 :ORQ) — /dURl M(UR1 :ORQ) s (2.12)
UR17OR2 HOR2H2
and the averaged quantum causal influence (henceforth, aQCI)
2
CI(R; : Ro) = /dUR1 /|O . dOgr, |M(Ug, : Og,) — /alUR1 M(Ug, : Ogr,)| (2.13)
Ry 2:1

where in egs. (2.12) and (2.13), Ug, is integrated via the Haar measure, and in eq. (2.13)
Og, is averaged with the uniform measure on the unit sphere defined by ||Og,||3 = 1 in
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Pi

Figure 7. A spacetime state with initial state p;. Two spacetime points = and y are designated,
along with their mirror copies =’ and vy’

the linear space of operators Opg,. In the rest of the paper, when we discuss whether the
quantum causal influence is zero or non-zero, we do not need to distinguish between the
mQCI and aQCI, and so will refer to the QCI more broadly. In section 6, we will discuss
more quantitative properties of the aQCI. Variations of quantum causal influence for non-
unitary regions can be found in appendix A. A discussion of causal influence for classical
systems is in appendix C.

With our definitions at hand, we would like to gain more intuition about quantum
causal influence by studying some of its key features through various examples.

3 Boundary condition dependence of quantum causal influence

Before discussing more abstract properties of quantum causal influence for general tensor
networks, we first present examples which exhibit interesting causal features. Our exam-
ples in figures 3(b), 3(c) and 4 in the previous section have a natural form which can be
abstracted as follows. They comprise of some initial state p; conjugated by some (not
necessarily unitary) operator W which implements evolution, followed by a trace.

A more abstract representation is drawn in figure 7. We call such a representation a
“spacetime state” to distinguish it from other kinds of tensor networks. The green boxes on
either side of p; represent W (on the left) and W7 (on the right). The tensor contractions
at the top of the diagram represent a trace. Analogously to figures 3(b), 3(c) and 4 which
comprise of a mesh of links (i.e., EPR pairs), we treat the W and W7 boxes in figure 7 as
comprised of a mesh of links which we can break open to insert operators. For instance,
in figure 7 we label the positions of two (hidden) links x and y, which can be broken to
insert operators. We imagine that x and y are spacetime points. Likewise, 2’ and 3/ are
mirroring spacetime points. By inserting A into z, B into y, AT into 2/ and BT into ¢/, the
tensor network computes

(P B, A, p; AL BI) (3.1)
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where the path ordering P is defined by the contracted tensor network. Indeed, if W corre-
sponds to Hamiltonian time evolution or some discrete-time analog thereof, then eq. (3.1)
is merely a standard correlation function with an initial state p;. In this case, we imagine
that slicing the W or WT boxes along a horizontal line and contracting operators with
the exposed links corresponds to operator insertions at a fixed intermediate time. This is
directly analogous to figures 3(b), 3(c) and 4.

The causal structure of a spacetime state can depend on its boundary conditions
— namely the initial state p;, and the trace taken over Wp,Wt. In this section, we
illustrate the boundary condition dependence of causal influence in spacetime states in

)

several examples. Our results suggest an explanation of “time’s arrow” in a quantum

many-body system.

3.1 Initial state dependence

Suppose we have a spacetime state comprised of an initial state p; = |¢)(¢)| which is
then unitarily evolved in time. In other words, W implements unitary time evolution.
As mentioned above, slicing the W or W boxes along a horizontal line and contracting
operators with the exposed links corresponds to operator insertions at a fixed intermediate
time. In figure 7, we allow insertions of operators into the spacetime points = and y,
and then contract the spacetime state (i.e., take its trace) at some later time. Unpacking
eq. (2.9) for our case, we find that = is a unitary region if

(PU pi UL) = (Pps), (3.2)

and similarly for y,
(PU, piU}) = (Ppi). (3.3)

Each of the above equations is satisfied, and so any such points z and y are unitary regions.
In fact, we have also
(PU. Uypi U UL) = (Ppi) (3.4)

for all such pairs x, y, and so all pairs of points x, ¥ form mutually unitary regions.

Say that we insert a unitary U, at y and UJ at y'. This U, and UJ will cancel one
another along the upper contraction of the spacetime state in figure 7. The reason is that
the unitary evolution that occurs after i and v cancels across the trace — see, for instance,
the red boxes in figure 8. These red boxes clearly cancel across the trace (i.e., the upper
contracted legs), and so allow U, at y and UJ at 3y to similarly cancel. If we insert some
Hermitian operator O, at x and Ol at 2/, then these operators will be unaffected by the
cancellation of U, and UJ. Therefore,

MU, : Oy) = (P U, O, p; OL U} (3.5)

is independent of Uy, and thus
Cl(y : z£) =0

meaning that y does not influence x. Similarly, CI(y : z) = 0, although we will focus on
the mQCI in this section.
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Figure 8. A spacetime state, such that operators are not inserted later than a time 7. Then the
unitary evolution U after time T cancels out with the corresponding unitary evolution U,

But now suppose that we insert U, at x and O, at y, and U;;r at 2’ and O; at y'. We
cannot cancel out U, with Ul along the lower contraction of the spacetime state, since we
are obstructed by the boundary condition p; (i.e., the initial state). We might be able to
cancel U, with U;I along the upper contraction of the spacetime state, but the operator
insertions O, and O;S may obstruct us. If O, and OL obstruct the cancellation of U, and U}L
along the upper contraction, then M (U, : Oy) would depend on Uy, and thus CI(z : y) # 0.
In summary, we would have

Clly : z£) =0 and CI(z : y) #0 implies y is in the future of x .

If instead O, and O; do not obstruct cancellation of U, and U; along the upper contraction,
then M (U, : O,) would not depend on U, and so CI(z : y) = 0. Then in this case, we
would have

Cl(ly : x) =0 and CI(z : y) =0 implies z and y are spacelike separated.

The interesting feature here is that the state p; induces a causal structure in which
time flows away from p; via the unitary evolution comprising the spacetime state. In other
words, the initial state has picked out a preferred arrow of time. Crucially, there is not a
“final state” at the top contraction of the spacetime state. This is perfectly physical, since
we often start in an initial state and evolve it up to some time, perhaps making operator
insertions intermediately. If we only consider operator insertions up to a finite time T,
then we only have to consider the spacetime state evolved up until that T'. If we evolve the
state further thereafter, when computing expectation values this additional time evolution
would cancel out, as depicted in figure 8. In the figure, the time evolution U in the left red
box cancels out the time evolution UT in the right red box.

There is another complementary perspective which is useful. Instead of thinking of the
upper end of the spacetime state (where the trace is) as a “cutoff time” after which we do
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not care about making operator insertions, we can instead imagine that we are inserting
a mazximally mized state 1/d as a final-time state. Here, d is the Hilbert space dimension
of a spatial slice. As far as any of our analysis is concerned, these two perspectives are
mathematically equivalent, up to an overall multiplicative rescaling of the spacetime state
by d. The benefit of this change of perspective is that we can think about p; and 1/d on
more equal footing. In particular, we can say:

e The initial state p; can obstruct unitary cancellation across the initial-time boundary.
e The final state 1/d can allow unitary cancellation across the final-time boundary.

In this manner, the initial state p; acts as a barrier and a source of causal flow, and the
final state 1/d acts as a passageway or sink of causal flow. It is no coincidence that the
flow of time coincides with the disparity between the entropy of the initial and final states:
namely, we have the von Neumann entropies S[p;] = 0 and S[1/d] = log(d) and so time is
flowing from a lower entropy state to a higher entropy state. One might naively guess that
more generally, given an initial state p; and final state p, there would be a forward arrow of
time if S{p;] < S[py|, but this is not generally true. There needs to be additional relations
between p; and py to get a forward arrow of time, but we will leave this for future work.

Now suppose that we choose both the initial state p; and the final state p; to be the
maximally mixed state, namely p; = 1/d, and that we multiplicatively rescale the resulting
spacetime state by d. Then we have

meaning that y does not causally influence z. Then x and y are spacelike separated. Indeed,
when the past and future are maximally mixed states, the unitary evolution in between
does not impose a particular directionality of time.

3.2 Conceptual remarks

In standard discussions of the arrow of time, a key ingredient is that the initial conditions of
the universe provide a low-entropy initial state.? Tied to the arrow of time is the production
of coarse-grained entropy, and ultimately the universe becomes a high-entropy equilibrium
state. Once the universe has reached equilibrium, there ceases to be an arrow of time in
any conventional sense, since there is no longer entropy growth. In blunt terms, there are
no local clocks in thermal equilibrium.

In the context of this paper, we find a new twist on these ideas. Above, we found that
when both boundaries of a spacetime state are maximally mixed, which we can think of as
infinite temperature (or maximum entropy) states, all pairs of spacetime points in between
are spacelike separated. If we attach the word “past” to one of the boundaries and attach

2In our universe, it seems that cosmic inflation provides us with such a low-entropy initial state.
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Figure 9. In the Trotter network, CI(z : y) = 0 unless y is in the future light cone of x.

the word “future” to the other boundary, we can say: If the putative past and future have
maximal entropy, then all spacetime points in between are spacelike separated and there is
no flow of time.

We also saw that by fixing one of the boundaries to be a low-entropy state, such as a
pure state, we can induce an arrow of time. We will later show that by imposing more inter-
esting boundary conditions on both boundaries, we can have even richer causal structures
and local arrows of time. Intuitively, we will see that for fine-tuned boundary conditions,
regions of boundary states which have higher and lower entropies act as sinks and sources
for causal flow, respectively, which is consistent with more conventional intuitions from
thermodynamics. Presumably some version of our analysis applies to more general initial
and final states, but such a generalization is beyond the scope of this work.

3.3 Trotterized tensor network

A nice example of a spacetime state which implements the above constructions is a Trot-
terized tensor network, such as in figures 3(b), 3(c) and 4 above. For example, consider
figure 9 below which is a spacetime state with Trotterized time evolution and initial state
pi. We see that in the contracted network, CI(x : y) = 0 unless y is in a future cone of
x, which is in fact the future light cone of x. Notice that figure 9 is folded relative to the
spacetime states in figures 7 and 8 — in particular, p; is in the middle, W is on top, W
is on the bottom, and the trace is looped behind.

As we discussed earlier, the quantum causal structure generically depends on the initial
state. For example, consider the spacetime state in figure 10, which has an initial state
1r/dg ® pz. The figure only displays part of the tensor network, namely W (1g/dr ® pg),
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and we have not depicted W7 or the trace.? Since the initial state is maximally mixed on
a subregion R, the spacetime has an interesting causal structure. For instance, applying a
unitary U to 1 can cancel with a UT applied to x across the R region at the initial time,
rather than canceling across the trace at the final time. Consequently, the quantum causal

4 vanishes. Similarly, z1 does

influence of x1 on any point in its usual future light cone
not causally influence any point in its usual past light cone because unitaries acting at x;
can still be canceled at the future boundary. Therefore, 1 does not causally influence any
single site regions. However, 1 can have a quantum causal influence on larger regions.
When we consider a spacetime region that overlaps with both the usual future light cone
and usual past light cone of x1, such as y; Uy, the quantum causal influence CI(z1,y1 Uys2)
is generically non-zero since it is not possible to push a unitary operator at x; to either
the future boundary or the past boundary (since it is obstructed by the operators inserted
at both y; and y2) to cancel with a corresponding Hermitian conjugate unitary.

More generally, any region A in the domain of dependence of R (the red shaded region
in figure 10) does not causally influence its usual causal future I*t(A). The only regions
that are causally influenced by A are those that overlap with both the usual causal future
I (A) and the usual causal past I~ (A). Thus, we see that specifying a special initial state
may erase some regions from the causal future of a given region. Although some of the
causal future of a given region may be erased (such as y2), nonlocal regions can still remain
in the causal future (such as y; Uyz). These observations are quite general, and we will see
them instantiated in many contexts throughout the paper.

3.4 Final state dependence (post-selection)

There are many possibilities for including both initial and final states (i.e., pre-selection
and post-selection), but we will only examine one case here to give a general flavor for
the sorts of causal structures that can occur. Consider the spacetime state comprised of
Trotterized time evolution in figure 11, with initial state 1g,/dr, ® pg, and final state
1gr,/dRr, ® PR,- Similar to the previous figure, this figure only displays part of the tensor
network, namely

(1r,/dr, ® p,) W (1g,/dr, ® pg,) -

Accordingly, we have not depicted W' or the trace.” Suppose that R; and Ry are regions
of the same size, and that PR, = PR, are pure states. Then we see than there is a flow of
time from bottom to top in the region shaded in green, but there is a flow of time from top
to bottom in the region shaded in yellow. Then every pair of points in the pink regions
are spacelike separated, and the region in orange is not even a unitary region (and so, in a
sense, does not have any preferred direction of time at all). (See appendix A for diagnostics
quantum causal influence within nonunitary regions.) This example emphasizes that pure
states act as sources of causal flow, and maximally mixed states act as sinks of causal flow.

3The full diagram would give us tr(W (1r/dr ® pg) W1).

4The usual future light cone of a point is defined by extending 45° lines from that point, as per figure 9.
This “usual” future light cone is in fact the region which a point can causally influence if the initial state
is pure.

®Here, the full diagram would give us tr [(1r,/dr, ® PE,) W (1R, /dr, ® pg,) wi].
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Figure 10. In a Trotter network with a special initial state, some causal influence can be lost.
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Figure 11. In a Trotter network with a special initial and final state, there can be multiple arrows
of time, as depicted by the arrows.

The pink regions are created by two sinks of causal flow (i.e., the maximally mixed states
on each boundary), whereas the orange region is due to the interplay of two sources of
causal flow (i.e., the pure states pg and pg,).

3.5 General results

In this subsection we summarize some generic features that can be observed from examples
above, and describe them more quantitatively.

3.5.1 Sinks of causal flow

Having worked through explicit examples of the interplay between the initial and final
states of a spacetime state and its causal structure, we now move towards more general
and abstract results. First, we present a result about GTN’s that has played a role in all
of the above examples. The result generalizes the observed fact that in spacetime states,
maximally mixed subsystems of initial and final states act as sinks of causal flow.
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Suppose we have a GTN on a graph G = (V, E), with the structure specified in
section 2.2. As per eq. (2.4), the corresponding Hilbert space is

deg(v)

H=0) Q) M,

veV =1

Let ¥ C V be a subset of the vertices (which may correspond to a subregion in a putative
spacetime), and partition V as V = X UX. We can write the link state |L) as

L) = [Lses) @[ Lyo5) @ [ Lyyw) - (3.6)
In the above equation,
e |Lyoyx) are the EPR pairs associated with edges e = (v, w) with v,w € ¥;
e |Ly,.5) are the EPR pairs associated with edges e = (v,w) with v € ¥ and w € ;
e |Ly,.5) are the EPR pairs associated with edges e = (v, w) with v,w € .

See figures 12(a) and 12(b) for a diagrammatic depiction. So, for instance, each EPR pair
in |Ly, ,5) comprises of one qudit in ¥ and one qudit in 3. Let the Hilbert space of the
qudits in |Ly,,5) which lie in ¥ be denoted by Hss. Then the total Hilbert space H
decomposes as

H="Hs ®Hox ® Hyggs - (3.7)

Now, let p% := trss(pp), and consider the state
0% = try [(pp ® 1ox) (Lvos){Luos| ® Ly s) (Leosl)] - (3.8)
This state 0% is a density matrix on Hgs. Now we make the following proposition:

Proposition. Suppose we decompose Hys, into subsystems as

Hoxs = HrR @ Hp. (3.9)
If we have
1
)y R
for some pg, then
CI(R:S5)=0 (3.11)

for any region S such that SN (X UIX) =0, i.e. S does not intersect o or 9.

Proof. Let us compute M (Ug : Og), where Ug is a unitary on R and Og is some Hermitian

operator on S. Let pIZDUaE = tryuss(pp). Then

(L|UR O pp OLULIL) = tr [UR 05 pp OL UL |L) (Ly}
= Usios {UR Os pp-> OL U} (082 ® L5 <LiH§!)}

= t505% [OS PP 0% (URJBZU}T% ® |L§Hi><L§H§N :
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Figure 12. (a) The link state |L) is depicted. The region ¥ is outlined in blue, and in this case
contains 3 vertices and 11 qudits. (b) The state |Lyx) ® |Ly,,5) is shown. The EPR pairs lying
within ¥ form |[Lyey), and the EPR pairs crossing the boundary of ¥ form |Ly,, . 5). The qudits

lying outside of ¥ form the Hilbert space Has. (c) By taking two copies of |Lyeys) ® |y, %)

and partially contracting their ¥ regions with the state plzg, we obtain the density matrix o>,

which is depicted in the figure. The light blue region represents the contraction of the ¥ regions

of |Lses) @ |Ly,,5) and (Lyox| ® (Ly, 5| with pB. We see that the density matrix %% maps

Hiy ® Hox, — C, since a state on Hpy, can be contracted with the exposed legs on the right-hand
side, and a dual state on Hgy can be contracted with the exposed legs on the left-hand side.

But since 0% = 2—1’: ® pg we have URUaEU};t = 0%% and so the U dependence drops out
of the above equation. Then

(L|UR Og pp OL ULIL) = (L|Os pp OF|L)
and so M (Ug : Og) does not depend on Ug. Therefore, CI(R : S) = 0, as claimed. O

The proposition is a technical way of saying that we can cancel out a Ur with a UIT{
in a GTN if there is a bridge (built out of tensor contractions) between them which is a
maximally mixed state. Thus, the proposition specifies how maximally mixed states are
sinks of causal flow in GTN’s. In the special case of spacetime states, we see that initial
and final states with maximally mixed subsystems act as sinks of causal flow since they
provide a pathway for unitary cancellation.
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3.5.2 Structure theorem

It is interesting to consider how causal relationships between regions of spacetime points
affect the structure of correlation functions comprised of operator insertions at those points.
A particular question along these lines is:

Suppose we have two spacetime points x and y, where x s a unitary region.
If x does not causally influence y so that Cl(z : y) = 0, then what restric-
tions does this impose on the structure of spacetime correlation functions of the
form (L|A; By pp B;; AL|L> for a general tensor network, or as a special case
(P Ay By pi BZT/ AL) for a spacetime state?

To answer such a question, we need to utilize a formalism which organizes the data of
spacetime correlation functions for spacetime states. This is called the “superdensity oper-
ator formalism” [25], which is reviewed in appendix B. In short, a superdensity operator g
is a multilinear map taking operators to correlation functions (which evaluate to complex
numbers). In our question of interest, we will use a superdensity operator

0: B*(Hy) ® B*(Hy) @ B(H,) ® B(H,) — C (3.12)

defined by
olAl, B} ; Ay, By) := (L|A, By pp B} AL|L). (3.13)

In the special case of spacetime states, the right-hand side of the above equation becomes
(P A, By pi B AL).

As an example, in figure 13(a), we depict o diagramatically for a spacetime state with
Trotterized time evolution. This tensor network can be more abstractly represented by the
diagram in figure 13(b). The diagram in figure 13(b) is completely general for spacetime
states, and simply expresses that the superdensity operator is a multilinear object which
takes as input operators on B(H,) ® B(H,) as well as dual operators on the dual space
B*(H,) ® B*(H,), and outputs a complex number.

Using the superdensity setup, we prove the following structure theorem about general
tensor networks:

Structure theorem. If and only if Cl(z : y) = 0, then for fized B, the spacetime
correlation function (L|A, By pp Bg AI,;\L> can be written as

(L|Ay By pp B AL|L) = atr(O1 Ay AL) + Btr(AL A, O2) (3.14)

for all A,, where o and B are complexr numbers and Oy and Oy are operators which are
independent of Ag.

Let us give a more intuitive interpretation of this theorem. First, we note that we can
rewrite eq. (3.14) in terms of the superdensity operator o given in eq. (3.13) as

olAl, Bl; Ay, B)] = atr(O1 A, A) + Btr(AL 4, O). (3.15)

This equivalence is depicted diagrammatically in figure 14. We see from the figure a
nice interpretation of the result: the causal influence is trivial if and only if the two-site
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Figure 13. (a) A Trotterized network comprised of a spacetime state contracted with its Hermitian
conjugate with initial state p;, and broken legs to allow the insertion of operators into x and y as
well as 2’ and y’. (b) A more abstract superdensity operator, allowing for operator insertions at x
and y as well as 2/ and 7/.
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Figure 14. If CI(z : y) = 0, then the superdensity operator with fixed y insertions can be written
as a linear combination of a tensor network with a maximally mixed past, and a tensor network
with a maximally mixed future.

superdensity operator is a linear superposition of a tensor network with the final state being
mazximally mized and another tensor network with the initial state being mazximally mized.
With this in mind, we prove the theorem.

Proof. For fixed By, we can generically write

d?—1
(L|As By pp By ALIL) = S Ky tr(M7 A, Mt al) (3.16)
4,j=0
where K;; are complex numbers, { M 1 is a complete set of orthonormal operators satisfying
tr(MIMIT) = di;, and H, is a d-dimensional Hilbert space. Note that the K;;’s depend on
By, but not on A,.
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If CI(x : y) =0, then
(LU, By pp By U|L) = (L|U, By pp B} Uf|L)

for all unitaries U, and ﬁx Therefore,

d2_1 d2—1
N Ky te(M U MITUD) = 3 Ky te(M7 U, MITUY) (3.17)
i,j=0 4,j=0

for all U, (~]x In eq. (3.17) above, the terms for which either ¢ or j is zero have vanishing
trace. Also, the i = j = 0 term evaluates to one. Then eq. (3.17) simplifies to

?-1 d2-1
> Kiytr(M U, MITUS) = Y K te(M' U, M71U) (3.18)
i,j=1 i,j=1
where the sums now run from 4, = 1,...,d? — 1. Letting U, = 1, we find that
d2-1 . . d2-1
Y Kijtr(MU, MU =Y K;=C (3.19)
ij=1 i=1

for all U, and some constant C. Using the Haar unitary integral

1
we find
/dUz > Kijtr(M U, MITUS) =0 (3.21)
ij=1
Therefore C' = 0, implying that
d2-1 ' '
> Kijtr(M'U, MPTUf) =0 (3.22)
ij=1
for all U,. Then we have
d?—1 ' ' 2
> Kijtr(M' U, MPTUD| =0 (3.23)
ij=1

for all U,. Using the Haar unitary integral

1
/ du Uﬁlml U;:ng Uky0Ukoty, = P21 |:6n1 k1 Omi 1y Ongky Oma s+ OnykyOmy s Ongky Omsty

1 1
- g 5n1k1 6n2k25m1€25m261 - g 6n1k25n2k1 5m1f16m2€2

(3.24)
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we obtain )

d?—1 d?—1
/ AU, | Y Kiyte(M U, MITUY)| = G2 = (3.25)
4,j=1 ,j=1
so that K;; =0 fori,j =1,...,d* — 1.
It follows that
d2—1 d2— 1

r(MiA 1AL +Z Ojtr 1A, M1 AL

Ko
(L|A.ByppBJAL|L) = gKootr(lA 1AD+ Y 7

=0 \/;l
(3.26)
which we can repackage into the desired equation

(L|Ay By pp B} AL|L) = atr(O1 Ay AL) + Btr(AL A, O2).

Conversely, if  (L|Az By pp B; AL\L> =atr(O) Ay AL) + 3 tr(AL Az O9), then
(L|Uy By pi B; UJ|L) is independent of unitaries U, which implies CI(z : y) = 0. O

4 Nonlocality of the quantum causal influence

Quantum causal influence captures the ability of one subsystem of a tensor network to
affect another subsystem. As remarked above, the quantum causal influence can behave
in a peculiar way under the union of subsystems: in particular, we can have CI(R : S;) =
CI(R : S2) = 0, whereas CI(R : S U S2) > 0. In words, R does not influence either S;
or Sy individually, but R does influence their union S U Se. More modest cases are also
possible — we may simply have that CI(R : S;), CI(R : S3) are close to zero whereas
CI(R : S1US3) > 0 is significantly larger than zero.

How do we interpret the above cases, especially in the context of spacetime? We will
find that a core mechanism is the non-local encoding of information in spacetime. For
instance, in the spacetime setting, perturbations at R can be non-locally encoded in the
spacetime region S; U S, but not in the spacetime regions S; or Ss alone. We can find
natural examples in which S7 and S5 can be vastly separated in both space and time. Our
analysis indicates that the non-local encoding of information in spacetime is a ubiquitous
phenomenon.

A key tool for analyzing non-local quantum causal influence is the theory of quantum
error correction codes. We begin by discussing quantum error correction, and show how
quantum error correction codes allow us to construct examples of non-local causal influence.
We then give a natural example of scrambling in a chaotic quantum many-body system.
Finally, we explore the causal structure of quantum teleportation.

4.1 Quantum error correction codes

Nonlocal features of quantum causal influence are intimately related to quantum error cor-
rection codes. First, we briefly review quantum error correction codes, and quantum erasure
codes in particular. A nice overview written for high energy physicists is given in [30].
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There are many equivalent definitions of quantum error correction codes, so we choose
one which is most convenient for our analysis here. Consider two Hilbert spaces Ha, Hp
with dimH 4 < dim Hp. We may think of A as subsystem of B, so that Hp = Ha ® Hy.
Intuitively, imagine we have a noisy quantum system B, and that we want to construct a
protocol which protects the state of some subsystem A against our particular form of noise.
The idea is to redundantly encode the state of the subsystem A into a state of the larger
system B, in such a way that the larger encoded state is robust to our form of noise. Then
we can subsequently decode the larger encoded state to obtain the original state on B.

Now we formalize this intuition. The space of density matrices on each Hilbert space
Ha, Hp are S(Ha) and S(Hp), respectively. Suppose we have three quantum channels
(i.e., completely positive trace-preserving (CPTP) maps):

E: S(Ha) — S(Hp)

N: SHp)— S(Hp)
R: SMHp) — S(Ha).

—~~
N =
S~—

The channel € is the “encoding” channel, which maps density matrices on the subsystem A
to density matrices on the larger system B. The channel A is the “noise” channel, which
induces errors on density matrices on B. Finally, the channel R is the “recovery” channel,
which decodes density matrices on B to density matrices on A. Then we have a quantum
error correction code if

(RoNo&)(p)=p, foralpeS(Ha). (4.4)

In words, the above equation means that for all states on the subsystem A, applying the
encoding channel &, the noise channel A/, and finally the recovery channel R gives back
the state that we started with.

Notice that the description of a quantum error correction code depends on a specified
form of noise, as provided by the given noise channel A/. There are many kinds of quantum
error correction codes which protect against varied forms of noise. For our purposes, we will
be most interested in noise which erases information. The corresponding form of quantum
error correction code which is robust to erasure errors is called a quantum erasure code.
These kinds of code are robust to an entire collection of noise channels {Ng}, which we
will define shortly.

To formally define a noise channel which causes erasure errors, consider again the
Hilbert space Hpg, and let S be a subsystem of B with Hilbert space Hg. Then let Ng be
a channel taking S(Hp) — S(Hp) which erases all information on the subsystem S. The

channel Ny is given by
1g

dim(Hg)

where 1g/dim(#g) is the maximally mixed state on the subsystem S.

Ns(p) = trs(p) ® (4.5)

Now supposing that our system is a collection of qudits, let |S| denote the number
of qudits comprising the subsystem S. Equivalently, |S| = log,;(dim(*gs)). Then a k-
qudit quantum error correction code is given by quantum channels £ : S(H4) — S(Hp),
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Rs:S(Hp) — S(Ha) such that
(RsoNgo&)(p)=p, forallS such that |S| <k, and all p € S(H4). (4.6)

In words, the k-qudit quantum error correction code can correct for the erasure of at most
k qudits of B. Hence, the k-qudit quantum error correction code corrects for the entire
collection of noise channels {NS}| s|<k- Notice that the recovery channel Rg depends on
the choice of subsystem S that is erased.

Now we provide an example of a 1-qutrit® quantum erasure code, called the “three
qutrit code” [30-33]. This code protects against the erasure of a single qutrit, among three
qutrits. Let H4 = span{|0),|1),|2)} be the space of a single qutrit (so that dimH, = 3)
and let Hp be the space of three qutrits (so that dim Hp = 27). The encoding channel &
is a unitary channel

g(ﬁ) = Uencode P Ugncode (47)

where Ugycode acts by

3 3 _
Uencode Z C; |l> - Z C; |Z> (48)
1=0 7=0
and

Usncode (0) @ [00)) = [0) = ;g (1000) + [111) + [222)) (4.9)
Uencode (1) ® 00)) = [T) = ;g (1012) + [120) + |201)) (4.10)
Uencode (12) © 00)) = [3) = ;g (1021 + [102) + |210)) - (4.11)

Then the noise channels Mg have the form of eq. (4.5), where S is either {1}, {2} or {3},
corresponding to erasing either the first, second or third qutrits. Then the recovery maps
Rg are

Rs(p) = trg(?)us( (Ug@ 15') P (U%(X) 15) ) (4.12)

where S can be {1,2},{2,3} or {1,3}, and g({1,2}) ={1}, g({2, 3}) = {2}, and g({1,3}) = {3}.
Here Uy is a unitary that takes

Ugl00) = 00), Uglil) =[01), Ugl22) = |02), (4.13)
UglOl) = [12), Ugl12) = |10), Ugl20) = [11), (4.14)
Ugl02) = [21), Ugll0) = |22), Ug|21) = |20). (4.15)

This code has the property that for any operator O on a qutrit state |¢)) in H 4, we have
the equivalences

Uencode 0|¢> = (612 & 13)|"Z> = (623 ® 11)|"Z> = (615 b2y 12)|"Z> (4'16)

for some operators 612, 523 and 613. This result expresses that the effect of any operation
on the original state can be expressed by an equivalent operator on any two of the three
qutrits of the encoded state.

5A qutrit is a three-level system, i.e. a qudit with d = 3.
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Figure 15. The spacetime state for the three qutrit code.

Now let us consider the three qutrit code in spacetime. A diagram of a spacetime state
which implements the three qutrit code is shown in figure 15. The initial state of the qutrit
we wish to encode is p;, and the other two qutrits are initialized to |0). From eq. (4.16), it
immediately follows that

Cl(z :y1) =Cl(z : y2) = CI(z : y3) = 0. (4.17)
However, we have
Cl(z : y1y2) = Cl(z : y2y3) = Cl(z 1 y1 y3) > 0 (4.18)
and
CI(z : y1y2y3) > 0 is maximal. (4.19)

By “maximal”, we mean that CI(z : yjy2ys) is as large as possible. Taken together,
egs. (4.17), (4.18) and (4.19) demonstrate how a peturbation at xz can be non-locally en-
coded in space so that in the future the perturbation can be detected by any two (or more)
qutrits, but not any single qutrit. More generally, all quantum erasure codes have non-local
quantum causal influence between appropriate combinations of subsystems before and after
the encoding.

4.2 Scrambling

While engineered quantum erasure codes provide examples of systems with nonlocal quan-
tum causal influence, they are somewhat fine-tuned examples. However, approximate quan-
tum error correction codes occur in various contexts in more natural systems. The simplest
example is that of a chaotic quantum many-body system which scrambles information. The
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Figure 16. A perturbation is made at some initial time, which then spreads out over a scram-
bling time t., inside a cone (shown as dotted orange lines) bounded by the butterfly velocity
vp [36, 42, 43]. Here, time runs from bottom to top. (a) A perturbation at a barely causally influ-
ences the subregion B, since B is less than half of the system size. (b) and (c) A perturbation at a
strong causally influences B, if B is greater than half of the system size. The two figures illustrate
the cases when region B is a contiguous spatial region or the union of many contiguous regions.
The conclusion applies to both cases.

scrambling of information is ubiquitous in nature, since most all physical systems exhibit
many-body chaos. However, the most extreme examples of scrambling systems are black
holes, which are the fastest scramblers in nature [34-37]. It was in the context of black
holes that scrambling was first explored. We will not focus on any particular scrambling
system, but instead use generic features of scrambling for our analysis.

There are many definitions of information scrambling in the literature. (See, for in-
stance, [37-40]. For a short review of diagnostics of scrambling at infinite temperature, see
appendix A of [41]). Suppose we have a system with a large number N of sites, and that
the initial state of the system is p;. If the time evolution U(t) of the system is chaotic,
then the scrambling time ¢, is the smallest time such that for any subsystem a of O(1)
size and any subsystem B of size N/2+ 1, there exists a quantum channel Rp_;, such that

Risa |trg (Ultse) p: Ul (teer)) | ~ tra(py). (4:20)

In other words, any O(1)-sized subsystem can be approximately recovered from just over
half of the state after a scrambling time. In this sense, unitary evolution for a scram-
bling time in a chaotic quantum system creates an (approximate) erasure code for initial
subsystems of O(1) size. The length of the scrambling time ¢s, depends on the types of
interactions in the system, and typically scales with the number of degrees of freedom N
either polynomially in N (if the interactions are geometrically local) or logarithmically in
N (for instance, if the interactions are k-local for k ~ O(1)).

Now consider figure 16 below, which shows a system scrambling (time goes from bottom
to top). In figure 16(a), we see that the causal influence Cl(a : B) ~ 0 since B is less than
half of the system size. However, in figure 16(b), the causal influence CI(a : B) is sizeable,
since B is greater than half of the system size. Finally, in figure 16(c), we have that
CI(a : B) is sizeable since B is greater than half the system size, even though B is not a
spatially contiguous subregion.

We emphasize that any O(1)-sized region at the initial time will have a negligible causal
influence with any O(1)-sized region in the future after the scrambling time, and conversely
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Figure 17. A spacetime diagram of the quantum teleportation protocol. Space runs horizontally,
and time runs vertically from bottom to top. The consequence of teleportation is that the future
of x (the teleportee Cy right before teleportation happens) shrinks from the ordinary future light
cone 31 to a subset ¥y (the future of the point where teleportation is finished). Note that the EPR
pair of Ay, By is still outside the future of x, as is expected by microscopic causality.

as well. Relatedly, from the point of view of quantum causal influence, local subsystems
in the present will appear approximately spacelike separated with local subsystems in the
future after the entire system has thermalized. Indeed, local notions of time disappear after
a system thermalizes — local properties of the past only weakly influence local properties
of the far future.

4.3 Quantum teleportation

Now we explore how quantum teleportation [44] nonlocally encodes information in space-
time. Quantum teleportation can be described by a tensor network, as shown in figure 17
below. In the figure, space runs horizontally, and time runs vertically from bottom to top.
Let us walk through the protocol step by step.

Consider the setup in figure 17. We suppose that all of the states involved are encoded
into photons (say, in their polarization degrees of freedom), which have lightlike trajectories.
We start with a Bell state (i.e., an EPR pair of two qubits)

1)1 = (|0>AO|O>BO i 11>A0\1>Bo) ,

a state |¢)c that we wish to teleport (i.e., the teleportee), and an ancillary qubit |0)p,.
One qubit of the Bell pair, as well as the joint state |¢)c, ®|0) p,, are fed into a “teleporter”
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owned by Alice, denoted in the figure by an orange triangle. Letting

) = \g (10)[0) + [1)[1))
By) = \}5 (10)[0) — [1)[1))
B5) = \}5 (10)[1) + [1)[0})
1B4) = —— (|0)[1) — [1)[0))

5

2

denote the Bell states (which are the basis vectors of the Bell basis), the teleporter imple-
ments the unitary

4

Ut 40000 = Y 1®5)(®5] 4605 ® 1)y (0 + - - (4.21)

j=1

which couples the AgCy state in the Bell basis to the ancillary qubit Dgy. The teleporter
then outputs the Ay, Cy and Dy subsystems, now denoted A1, C7 and D;. The A; and Cy
subsystems are discarded, while the D; subsystem goes on to Bob. In the meantime, the
B subsystem of the Bell state is directed towards Bob with a mirror. When Bob receives
By and D1, he applies the unitary

4
Us, Booy = »_ Ubo,j ® |5) D, (il (4.22)
j=1
which is denoted by an orange box. The unitary Us p,p, applies the unitary Up, ; to the
By subsystem, controlled by the state of D;. The output of the By subsystem will be the
original state of Ay, namely |¢), which has successfully been teleported to Bob.
Now we analyze the causal future of the initial state |¢)¢,, denoted by the initial sub-
system Cy. Apparently in the protocol, the future of Cy is B;. In fact it can be checked that

CI(Cy : B1) >0 is maximal. (4.23)

(As before, “maximal” means that the quantum causal influence is as large as possible.)
However, denoting y; = A1 U Cy U Dy, we also have that

CI(Co:y1)=0 (4.24)

and thus Cj is spacelike separated from A; U Cy U Dy and any subset thereof. We also
have that
CI(C() : y2> =0 (4.25)

which means that Cj is spacelike separated from Bjy. This is consistent with the causal
structure which figure 17 inherits from Minkowski space.

In summary, even though it appears that Cy should be able to influence its whole
future light cone Y1, it can only causally influence the subset 5. In words:

Cy cannot influence any local region while it is being teleported. (4.26)
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Even though CI(Cy : y1) = 0 and CI(Cy : y2) = 0, we still have that
CI(Co:y1Uya) >0 (4.27)

which is in fact maximal. Thus, while the state of Cj is not encoded in either A; UC; U Dy
alone or By alone, Cy is encoded in (41 U C1 U D) U By.

From another point of view, the example of quantum teleportation shows again that
the causal structure depends on properties of the initial state, in this case the presence of
the Bell state |®1). Fine-tuning of the initial state can only reduce the size of the putative
future of spatial subregions. Said simply, special initial states can remowve regions from
the future.

5 Quantum gravity examples

In this section, we discuss several examples in holography as well as models of black holes for
which quantum causal influence is a useful measure. In section 5.1 we discuss holographic
tensor networks and show how the causal influence correctly reproduces the bulk causal
structure. In section 5.2 we discuss the causal structure in the Horowitz-Maldacena final
state projection model of black hole.

5.1 Holographic tensor networks
5.1.1 Holographic states

An interesting instantiation of quantum error correction codes in high energy physics is in
holographic systems, and specifically AdS-CFT [45, 46]. In AdS-CFT, there is a duality
between a (d + 1)-dimensional quantum gravity theory in AdS space (i.e., the bulk the-
ory), and a d-dimensional conformal field theory which lives on a space isomorphic to the
conformal boundary of AdS (i.e., the boundary theory). There is necessarily an intricate
relationship between degrees of freedom in the bulk and the boundary, and in fact, low-
energy degrees of freedom in the bulk are non-locally encoded in the boundary theory in
the form of a quantum erasure code [30]. In particular, a local low energy operator acting
in the bulk can be reconstructed from many distinct spatial regions in the boundary theory.

The quantum error correction property of AdS-CFT duality can be captured in toy
models known as holographic tensor networks [22, 23]. We will consider quantum causal
influence in holographic tensor networks, and study its relation to the bulk causal structure.

As an example, we consider the hyperbolic perfect tensor network state defined by the
work of Pastawski et al. [22], shown in figure 18. (All the discussion in the following also
applies to the random tensor networks in large bond dimension limit proposed in ref. [23].)
A perfect tensor network state represents a many-body quantum state of the boundary
legs, with its wavefunction defined by contracting perfect tensors. Each perfect tensor is
a rank 2n tensor T}, ...q,, such that the bipartition of its indices into sets A and A¢ with
|A| < |A€| defines an isometry from A to A® up to a normalization constant. In figure 18, we
have considered the case n = 3, and the only uncontracted legs of the tensor network state
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Figure 18. A hyperbolic perfect tensor network in which y is not in the future of z, as U, can
be pushed to the boundary only using the circuit on the left-side of the geodesic (red dashed line).
A multi-site region such as z (6 yellow links) can be causally influenced by z since there is no
way to push U, to boundary without passing through z. This type of non-local causal influence is
characteristic of holographic systems, and does not occur, for example, on a fixed Cauchy slice for
a quantum field theory. This figure is adapted from [22].

live near the boundary of a hyperbolic disk.” Thus, the tensor network state in figure 18
forms a so-called “holographic state”, which we denote by |¥). The essential feature of this
state is that if we break open any bulk leg (i.e., a non-boundary leg) of the tensor network
state and stick in an operator, we can (non-uniquely) push it through the isometries out
to the boundary, and so rewrite the operator as a “boundary” operator. This mimics the
AdS-CFT correspondence: operators inserted into the bulk can be rewritten non-uniquely
as operators applied to some boundary state.

Suppose we break open two links x and y of |¥) to insert operators. If we insert
operators A, and By into x and y, respectively, we denote the resulting state by |W[A;, By]).
While we can express (V|¥) as

(W) = (L|pp|L) (5.1)

and similarly express (U[A,, B,]|¥[A;, By]) as
(V[Az, By|W[Az, By]) = (L‘B;r/ Al pp Aq By|L) (5.2)

As per our definition of GTN’s, pp is the tensor product of vertex tensors (where we choose
the boundary vertex tensors to be identity operators) and |L) is the link state comprised
of EPR pairs.

"The hyperbolic disk has infinite area. We have imposed a radial cutoff so that it has finite area. The
uncontracted tensors live on the radial cutoff.
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We usually speak of the causal structure of a fully contracted tensor network (such as
the one which computes (¥|¥)), but here is it convenient to speak of the causal structure of
the state |¥) (which has uncontracted legs). This is purely for terminological convenience
— we always have in mind computing expectation values like (V[A,, By]|V[A, By]). So
when we say “the causal structure of |¥)”, we mean “the causal structure of |¥) contracted
with itself”.

With our terminology defined, we now discuss quantum causal influence for the holo-
graphic state |¥) in figure 18. For any two links z and y, as long as they can be separated
by a geodesic line on the hyperbolic disk, a unitary U, inserted at x can be pushed to the
boundary without using the y link, so that y is not in the causal future of . Examination
of the holographic state reveals that any two links can be separated by a geodesic line on
the holographic disk, and therefore

(V[Uyz, Oy]|¥[Uy, Oy)) is independent of U, ,
(¥[04,Uy]|¥[O,, Uy)) is independent of U, .

It follows that Cl(x : y) = CI(y : ) = 0, so that any two links = and y in network are
“spacelike separated”.

Our operational definition of causal structure explains why perfect tensor network
states should be understood as spatial tensor network states even if their isometry condi-
tions allow one to push operators around. Indeed, the perfect tensor network state is an
example where all small enough regions are spacelike separated, but larger size regions may
be causally dependent (i.e., if such regions cannot be separated by a geodesic line on the
hyperbolic disk). For example, in figure 18, x does not influence y, or any of the yellow
points 21, z9,... individually. Furthermore, z does not influence the pair z; U z9, since
x can be separated from z; U 29 by a geodesic on the hyperbolic disk. However, x does
causally influence the subregion that is the union of all the yellow dots, since there is no
way to push operators at x to the boundary without overlapping with this subregion.

5.1.2 Exotic quantum Cauchy slicings of holographic states

In figure 19, we provide some further illustration of the unconventional causal structure
in the holographic tensor network state |¥). In the figure, the tensor network has been
abstracted to a gray disk. Consider a set of concentric rings on the hyperbolic disk (the red
circles in figure 19). Each red ring defines a subsystem into which we can insert operators
(i.e., corresponding to inserting operators into all links that the red ring cuts through).
Then we find that the subsystem corresponding to a red ring R; causally influences a
subsystem corresponding to any bigger red ring Ro that encloses R;. The influence is
in fact maximal since there is an isometry from R; to Rs. Indeed, a pair of subsystems
corresponding to a pair of concentric red rings has timelike separation with respect to the
QCI. Therefore, the concentric red rings are quantum analogs of Cauchy slicing of the
holographic state. We will not attempt to define quantum Cauchy slices in full generality,
but will comment further in section 7. The concentric ring subsystems provide an exotic
causal structure where the radial direction acts as time — this is dramatically different
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Figure 19. Exotic quantum Cauchy slices of the HaPPY code holographic state.

from more familiar examples. For instance, this exotic causal structure does not admit
light cones.

There are many possible, incompatible Cauchy slicings of the holographic state, corre-
sponds to different sets of concentric rings. For instance, in figure 19, the set of blue rings
is another Cauchy slicing with the same property as the red rings. However, the red and
blue Cauchy slicings are not compatible with each other, since the subsystem correspond-
ing to some red ring may not be time-like separated with the subsystem corresponding to
some blue ring. This situation never occurs with standard Cauchy slicings of a classical
spacetime with Lorentzian signature. The exotic Cauchy slicing found here is essential for
bulk reconstruction to be consistent with the homogeneity of the bulk (i.e., there is no
preferred point or preferred direction on the hyperbolic disk), which is the key difference
between perfect tensor network states (as well as random tensor network states) and earlier
proposals of MERA [47, 48].

In summary, the nonlocality of quantum causal influence characterizes how bulk lo-
cality is consistent with bulk reconstruction, as a consequence of the bulk’s quantum error
correction properties. The bulk contains a redundant encoding of boundary quantum in-
formation as is evident in the Cauchy surface structure, but this redundancy is invisible
for local observers.

5.1.3 Explicit time direction

The discussion above can be further generalized by considering an ezplicit time direction via
unitary evolution of the holographic state |¥). This section will be more technical, and we
refer readers to [23] and [49] for details. To describe the bulk dynamics of low-energy degrees
of freedom, consider the holographic mapping (or holographic code) defined by a random
tensor network with bulk and boundary indices. Such a network defines a linear map

M : Hyuk — Huay (5.3)
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(b)

Ry

Figure 20. Causal influence for two bulk regions at different times. (a) Bulk time evolution is
defined by pulling back the boundary time evolution using a holographic tensor network (see text).
(b) An illustration in a (24+1)d bulk. An operator on a small region A can be reconstructed in a
boundary region R, which evolves into a slightly bigger region Ra; after a short time At. Therefore,
all operators in the complement entanglement wedge ¥z still commute with the operator at A,
which proves that A has no causal influence on any region B C Xz

from low-energy bulk degrees of freedom to the boundary. The map is an isometry when
the included bulk degrees of freedom have low enough dimension [23]. We call the image
of Hpuik under M the “code subspace” of Hpgy, which we denote by Heode := M (Hpuik)-
Indeed, we have Hcode C Hibdy-

In figure 20, we illustrate such a mapping M in the red dashed box. (The drawing is for
a (1+1)d bulk for convenience, but the setup applies to arbitrary dimensions.) With this
mapping M, boundary time evolution can be “pulled back” to the bulk and to define the
bulk time evolution. With the boundary time evolution operator e *74t for small At, the
bulk time evolution is given by Upyk = M e tHAL 1t (which is unitary in the code subspace
if the boundary time evolution preserves the code subspace). Naively, this time evolution
is very nonlocal in the bulk, since we have to map all operators to (non-local) operators on
the boundary and then map them back after the time evolution. However, the quantum
error correction properties and locality of boundary dynamics actually guarantees that the
bulk evolution also has a local causal structure [49].

The basic idea is illustrated in figure 20(b). An operator ¢4 in a small bulk region A
can be reconstructed in a boundary region R. Then due to boundary locality, the operator
¢4 at a slightly later time At will live in a slightly larger region Ra¢. Consequently, all bulk
operators in the entanglement wedge YR of the complement Ra; still commute with the
(slightly) Heisenberg-evolved operator ¢.4. This implies that for any bulk region B € Y7,
we have CI(A : B) = 0. Since the reconstruction can be done on different boundary regions
R, the argument applies to each possible R. As long as B is included in the complement of
the entanglement wedge of some Ra;, there will be no causal influence from B to R or Ra;.
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Figure 21. (a) The Penrose diagram of a Schwarzchild black hole with infalling matter (black
curve) and infalling and outgoing Hawking radiation (blue lines). The red line represents singularity.
(b) The Horowitz-Maldacena final state projection model, with the infalling matter and infalling
Hawking qubits projected to a pure state at the singularity. A, By, By are small regions of infalling
matter, infalling radiation and outgoing radiation, respectively. C4,Cy are bigger regions of the
infalling radiation, for which artifacts of the final state projection are detectable.

If we consider regions B that are infinitesimal disks on the At time slice, any B that
is outside the domain of support of A at time At is not influenced by A. In figure 20(b),
we see that any small blue disk B which does not intersect the green disc (which is the
domain of support of A at time At) is spacelike separated from the green disc. Therefore,
we recover the ordinary causal structure expected for the bulk theory. The boundary of
the domain of support of A at time At (i.e., the green region in the figure) defines an upper
bound of the bulk speed of light [49].

Now, if we consider more generic regions B that are not small discs, the influence of B
with the domain of support of A at time At can be nontrivial even there is no intersection
between these regions. For example, if B is a ring enclosing the domain of support of A
at time At, the causal influence will be nontrivial, since the reconstruction of operators in
boundary region Ra; must use a bulk region that overlaps with B. This is similar to the
exotic quantum Cauchy surfaces discussed above for the equal-time case.

5.2 Black hole final state

In section 3.4 we discussed how for spacetime states, the causal influence depends in a
similar manner on both the initial and final states. The initial and final states act as
boundary conditions for the spacetime state. An interesting example of a nontrivial final
state is the final state projection model of the black hole singularity, proposed by Horowitz
and Maldacena [24]. This model is illustrated in figure 21. There is infalling matter (the
black curve), as well as infalling and outgoing radiation. The outgoing radiation is Hawking
radiation, and the infalling radiation can be thought of as the “Hawking partner” of the
Hawking radiation [50]. The outgoing and infalling radiation form a maximally entangled
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state.® The hypothesis is that there is a (post-selected) final state at the singularity, and
that all matter and radiation falling into the singularity are projected onto that fixed
final state. Such a projection will generically violate unitarity, but when the final state is
chosen properly, the information content of infalling matter is mapped unitarily to outgoing
radiation. This is much like quantum teleportation: a desired state (infalling matter) and
half of a maximally entangled state (infalling radiation) are jointly measured (projection
onto black hole final state), and the desired state is teleported to the other half of the
maximally entangled state (outgoing Hawking radiation).

For example, suppose the black hole final state |¥¢) is a Haar random state. The state
|W ) lives on the Hilbert space Hyr ® Hr where H s is the Hilbert space of the infalling
matter and Hp is the Hilbert space of the infalling radiation. Then |¥) has the form

Up) = cijlidm @ [5)r -

.3

By dualizing s to Hj, (and thus [i)yr — (i[ar), we can re-express |Vy) as a mapping

Vv, : Hy — Hp from the infalling matter to the infalling radiation as

!

Vi, = > cijli)rliln (5.4)

0]

Indeed, if |W) is Haar random and dim #Hjy; < dim#y (i.e., the Hilbert space dimension
of infalling matter is smaller than that of the infalling radiation), the mapping Vi, is
an isometry (up to exponentially small corrections in the number of degrees of freedom).
Since the infalling and outgoing radiation are maximally entangled, the net effect is that the
information in the infalling matter is preserved in the outgoing Hawking radiation, and the
unitarity of the quantum mechanics of the exterior region is restored (up to exponentially
small corrections in the number of degrees of freedom) [51, 52].

Since the final state plays the role of an (approximately) isometric mapping from the
infalling matter to infalling radiation, unitary operations at A have nontrivial causal influ-
ence on both the infalling and outgoing radiation. However, when [¥¢) is a Haar random
state, its corresponding (approximately) isometric mapping Vy, is a random (approximate)
isometry, and so the quantum causal influence of A is highly nonlocal. Accordingly, the
quantum causal influence of A on any small subsystem such as By, Bs nearly vanishes. The
influence due to A is only nontrivial on large enough regions such as Cy,Cs. This is the
same phenomenon as the nonlocal causal influence we observed in quantum error correction
codes (see [52] for a related discussion).

The near vanishing of both CI(A : By) and CI(A : Bs) is consistent with the causal
structure in the Penrose diagram in figure 21(a), since the Penrose diagram suggests that
A is spacelike separated from both B; and By. When we consider the quantum causal
influence from A to larger regions such as C; and Cs, we can observe abnormal causal
structure that is at odds with the Penrose diagram. For example, we have CI(A : C1) #0

8The situation is more complicated when the entanglement is not maximal, but we will not discuss
this here.

— 38 —



and CI(A : C3) # 0. Furthermore, the quantum causal influence between pairs of large
regions also unveils abnormal quantum causal influence, for instance CI(C1,C3) # 0 and
CI(Cy,C1) = 0, which means that the time ordering of big regions Cp,Cs for infalling
radiation has been reversed due to the final state projection. The reverse time ordering
is consistent with the observation that measurements involving large regions can detect
violations of standard (non-post-selected) quantum mechanics [53, 54].

6 Averaged quantum causal influence and spacetime quantum entropies

In this section, we perform a more quantitative analysis of the averaged quantum causal
influence (aQCI) and discuss its relation to spacetime quantum entropies in the superden-
sity operator formalism. We also use our results to analyze the quantum causal structure
of evolving quantum spin chains as well as stabilizer tensor networks.

6.1 Relation to spacetime quantum Rényi entropies

In section 2 we presented two measures of quantum causal influence. The aQCI defined in
eq. (2.13) is easier to compute than the mQCI defined in eq. (2.12). For the aQCI, we can
in fact explicitly carry out the average over Uy and Op. The aQCI can be written as

2

CI(A:B)—/

l0Bl3=1

dOB/dUA M (U - oB)yQ—/ 0

l0Bl3=1

/dUAM(UA . Op)
(6.1)

To obtain a more explicit expression of CI(A : B), we define an orthonormal basis {|n4)}
of H4, and similarly {|ng)} of Hp. Since M (U, : Op) is quadratic in U4 and in Op, we

can define a tensor Rﬁﬁiﬁ, such that

M(Ua: Op) = U™ O3 R JUKOY, (6.2)
Here, R can be thought of as a positive semidefinite operator mapping

R:B(Ha) @ B (Ha) ® B(Hp) ® B*(Hp) — C (6.3)

which is depicted in figure 22(a). Since B(Ha) ~ Ha, ® Ha, where Ha, ~ Ha and
Ha, >~ Ha (and similarly for B*(Ha), B(Hg), B*(Hp)), we can treat R as a mapping

R:(Ha ®@Ha,) ® (Ha, @Ha,) ® (Hp, @ Hp,) ® (Hp, ® Hp,) — C (6.4)

which is depicted in figure 22(b). If A and B are each unitary regions, with proper nor-
malization, R for a spacetime tensor network is an example of a superdensity operator [25].

-39 —



— — Hp, — s,
B(Hzs) B*(Hg)

- Hp, L,

— — Hay —— — 0,
B(Ha) B*(Ha)

_— | Hay —] |,

Figure 22. (a) A diagrammatic representation of the R tensor, as per eq. (6.3). (b) An equiv-
alent diagrammatic representation of the R tensor, where tensor legs have been relabelled by the
isomorphism of Hilbert spaces as per eq. (6.4).

The Haar average of U4 and Op can be carried out with the following identities:

1
/dU U;mng = df 5nk5mé
A

N 1
/ | 0035055 = = SB35
||O||2:1 B

* * 1
/dU Un1m1 Un2m2 Uklél Uszz = P2 1 [5n1k1 6m1115n2k25m2€2 + 5n1k25m1525n2k15m241
A

1 1
- 5711]61 6712/{:2 5m1€2 57712[1 - 5711/{:2 5n2k1 57711[1 5m2€2
da da

N 1
/0”2_1 do 031,31 Oa2ﬂ20’)’151 07252 = m [50417150127255151 6ﬁ252 + 5041725042715516255261}
2—

Using these identities, CI(A : B) can be written as

14 14 14 14
tr| ( X4, — 2 ® 1><X -2 2)
wgqﬂ%+@)[<m da ~ da )\" T da T da

X ((131 & 131) (%9 (132 & 132) + Xp, ®XBQ) R®2]
(6.5)

CI(A:B) =

where X4, is the swap operator [X 4, ] = OpykyOngky O Ha, ® Ha, (and so swaps

ning,ki1k
the Ay subsystem of the first copy of R1 vsitil 2the A; subsystem of the second copy of R),
and Xa,, Xp,, XB, are defined similarly.

If A and B are mutually unitary regions, we can relate R to the superdensity operator
o for operator insertions on the regions A and B. (For a review of superdensity operators,

see appendix B.) In this case, if we multiplicatively normalize the tensor network so that

M(14:15) =1, (6.6)
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then by the definition of mutually unitary regions in section 2 and eq. (2.10), we have

- / U4 dUp M (Us : Up) = ——— tr(R) | (6.7)

dadp
and thus

1
= R
dadp

0 (6.8)

is a superdensity operator. As per eq. (6.4), we can treat ¢ as a density operator on
Ha, @ Ha, @ Hp, ® Hp,. Interestingly, we can write CI(A : B) in terms of Rényi-2
entropies S of o as

4

)= [5(2) _g®
T (@) (B

1/ _s» _g®
Aq +€ A1A231B27d7 e Ao +e Ao B1 By
A

@) ) (2)
1 e_SA21 +e_Sz4213152 +i 1+e_SB2132 - (6.9)
da di

In the above equation, we have, for instance

CI(A:B

51(421) = —log tr(gal)

where g4, = tra,n,B,(0). The Rényi-2 entropies of other combinations of subsystems are
defined similarly. Note that eq. (6.9) is particularly interesting since it relates causality to
spacetime entropies.

6.2 Spin chain examples

The aQCI, CI(A : B), serves as an unbiased measure of causal influence, which only
depends on the A, B regions and the tensor network. To obtain more intuition about its
behavior, we study CI(A : B) in an example system. Consider a spin chain with continuous
time evolution. Here, A and B are single-site subsystems at two different times t¢1, to, as is
illustrated earlier in figure 2. It should be noted that the tensor network description and the
definition of causal influence apply to continuous time evolution, since we can treat a time

evolution operator such as U(ty, 1) = e *H(t2=t)

as a big tensor with 2L legs (i.e., L input
legs and L output legs), when the spin chain has L sites. Our numerical results for CI(A : B)
are shown in figure 23. We studied the dependence of CI(A : B) on initial states and the

Hamiltonian. The model we consider is an Ising model with a generic magnetic field:

L L
H=1J Z on05 L+ Z ha Z o (6.10)
n=1 n=1

a=x,Y,z

The model is integrable if the magnetic field h is in the xy-plane, and the model is chaotic
otherwise.

As seen in figure 23, the aQCI is strong and long-lasting if the system is integrable
and the initial state is the ground state. If the system is chaotic and the initial state is the
ground state, the aQCI is a bit weaker, but still lasts for long times. In contrast, if the
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Figure 23. The averaged quantum causal influence CI(A : B) for a quantum spin chain for length-1
regions A and B. Region A is at site 5 in the middle of the chain at time ¢t = 0. The heat maps depict
CI(A : B) as a function of the position and time of B. Results are obtained for two different initial
states: the ground state and the “all-up” state. The calculation is done for a quantum Ising model
with 10 sites. The Hamiltonian has nearest neighbor ZZ interactions with coupling J = 1, a trans-
verse field, and open boundary conditions. The coupling for the transverse field is h= (1,0,0) for
the integrable model (see (a) and (b)) and i = (1.48,0, —0.7) for the chaotic model (see (c) and (d)).

system is integrable and the initial state is a finite energy density state (here we use the
“all-up” state as an example), the causal influence has some revivals but otherwise decays.
Finally, if the system is chaotic and the initial state is a finite energy density state, the
causal influence decays uniformly with time.

To further investigate the initial state dependence of quantum causal influence, we
start from the ground state |G) of the spin chain and apply a Haar random unitary Ug to
the right half of the system (see figure 24). The resulting state Ur|G) has a high energy
density in its right half (sites 6 through 10 in the figure) and the ground state energy
density in its left half (sites 1-5). Evolving the system in time, energy propagates into
the left half and ultimately heats up the whole system. Consequently, the quantum causal
influence of a region in the left half, such as site 1 at ¢ = 0, behaves like quantum causal
influence in the ground state until the “heat wave” arrives. This is consistent with the
numerical results in figure 24 (b).
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Figure 24. Initial state dependence of the aQCI. (a) The aQCI, CI(A : B), of the quantum Ising
model with region A being site 1 at ¢ = 0, as a function of the position and time of the single site
region B. The initial state is the ground state |G). (b) The same quantity with the initial state
Ugr|G), where U is a Haar random unitary operator acting on the right half of the system. The red
dashed line is a visual guide of the “heat wavefront”. The calculation is performed for the quantum
Ising model with J =1, h= [1.48,0,0.70], with open boundary conditions.

6.3 Stabilizer tensor network examples

Here we apply our formula for the aQCI to stabilizer tensor networks [55], which provide
a numerically tractable toy model for Trotterized Hamiltonian evolution. Stabilizer tensor
networks are reviewed in appendix D. In such networks, the entanglement entropy of
any subsystem, as well as reduced density matrices of small subsystems, can be evaluated
exactly in polynomial time in the network size [56]. Our chosen geometry is shown in
figure 9, where every vertex tensor is a stabilizer code. The horizontal direction is viewed
as space (with periodic boundary conditions) and the vertical direction is viewed as time.
As the network structure is periodic with respect to pairs of layers of tensors, the time is
set to increase by one for every two layers. Furthermore, links in each layer are positioned
at 1, 2, ...so that the speed of light in figure 9 is ¢ = 2.

In the following, we will consider two examples of qutrit stabilizer tensor networks (i.e.,
there is a three-dimensional Hilbert space assigned to each link in the network) with stabi-
lizer initial states p;. For clarity, details of the stabilizers and algorithms are recapitulated
in appendix D and only physically relevant features of these codes will be discussed here.
In the first example, all tensors are chosen to be the swap code; as a unitary two-to-two
gate each tensor is written as |i)|j) — |j)|i) where 7, j € F3. This may serve as a toy model
for integrable systems where particles propagate ballistically without scattering.

In the second example, all tensors are chosen to be the perfect [[4, 0, 3]] code,
[i)|7) — |%)]%) where division by two is evaluated in Fs. It is straightforward to verify
that the tensor, viewed as a gate from any two of the four links to the other two, is unitary
(such tensors are called perfect, as mentioned in section 5.1.1). Interestingly, the Heisen-
berg evolution of operators in such networks exhibits the growth of operator length (linearly
in time), which captures some salient physics of scrambling in systems with spatial locality.
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Figure 25. The causal future of a link at ¢ = 0 (pointing to the upper left in the center of the
lowest layer) is colored orange. In particular, the orange points are individually causally influenced
by the link at the initial time. The vertical axis is time and the horizontal axis is space (links)
with periodic boundaries. Top-left: the integrable swap code with a random stabilizer initial state;
top-right: the perfect [[4,0,3]] qutrit code with the same initial state; bottom-left: the same perfect
code with initial state @ |0)(0|; bottom-right: the same perfect code with an infinite temperature
initial state in the region marked red and @) |0)(0| marked blue. Dashed lines are visual guides for
the light cones of the red regions.

For a fixed U, insertion at time ¢ = 0, all positions y for which CI(z : y) > 0 are
colored orange in figure 25. In the case of swap codes, the information from the U,
insertion propagates ballistically and the causal future coincides with the future light cone
of z. The specific direction of information propagation in the figure depends on which link
(left- or right-moving) U, acts on.

Results for the perfect code are remarkably different. For a generic initial state, as
shown in the top-right panel of figure 25, the causal influence of a point = at ¢ = 0 on local
regions in the future is small and vanishes for late times, which shows that information
at x spreads into nonlocal degrees of freedom. However, for the special initial state p; =
® 10)(0], the causal future of = (with respect to local subregions) is the filled future light
cone. Although there is not a sharp notion of thermal initial states in stabilizer tensor
networks, such a causal influence structure suggests that p; is similar to a “cold” low-
energy state of a local Hamiltonian (although energy is not well-defined in this Trotterized
tensor network) because the causal influence does not decay substantially in the future
(and hence does not quickly “thermalize”). Previously, we saw that low energy states of a
quantum Ising model exhibit similar behavior, justifying our use of “cold” and “low-energy”
in describing ) |0)(0| for our stabilizer tensor network.

In figure 25 we have implemented an initial state p; = @0, 31 ® Qo [0)(0] where
in “hot” regions the initial state is at infinite temperature and in “cold” regions it is the
product state. The causal future of x terminates when it is engulfed by heatwaves from the
infinite temperature subsystem. The initial state dependence of quantum causal influence
is manifest in these examples.
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6.4 An upper bound by spacetime quantum mutual information

Recall that the quantum mutual information provides a bound on spacelike connected
correlation functions [57]. An analogous bound on spacetime correlation functions was
given in terms of superdensity operators in [25] (a short discussion of this can be found
in appendix A). It is natural that the causal influence between two regions is bounded by
the spacetime mutual information of a corresponding superdensity operator. Here, we will
prove such an inequality:

Bound on causal influence by spacetime quantum mutual information. Consider
two spacetime subregions A and B corresponding to Hilbert spaces H4 and Hp, and a
corresponding superdensity operator p4p. If A, B are mutually unitary regions, we have

Cl(A:B)*<2d41,,,(A: B) (6.11)

where I,,, (A : B) is the superdensity quantum mutual information between A and B.

Proof. The proof of the inequality is easiest to understand diagrammatically. First we
write CI(A : B)? as

2

CI(A:B)*= sup —— |M(Ua: OB)—/dUAM(UA : Op) (6.12)
Ua,0B HOB”Q
which can be expressed diagrammatically in superdensity operator notation as
2
Op o} Op
1
CI(A: B)* = sup —
4,05 1052
PIES
l’ \\
(6.13)

The dotted lines denote the [dUja integration. The identity [dU UijUiie = 16,081 is
depicted by

d (6.14)
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and so our diagram for CI(A : B) becomes

2
ol Op O},
CI(A : B)? . !
: = sup — ——
Ua,Op ||()BHL2l dA
(6.15)

Now consider the identity

1 Ug UE,
—dB m— — f dUpg
[ Ua Ul

(6.16)
The term inside the integral on the right-hand side is actually independent from U,4 and
Ug if A, B are mutually unitary regions. Then we can replace the U4 contractions by an
average over Uy,

1@ 1@
in = _dAdB = !

(6.17)

where the last equivalence is just the statement tr(¢4p) = 1. Then we can insert this factor
of unity into our expression for CI(A4 : B)? to obtain

T |
O Oy 0}

CI(A: B)? = sup % —_ !
va.05 1052 il
[ AURB

(6.18)
The term inside the absolute value bars is a connected correlation function with respect
to the superdensity operator pap. Thus, we can use the superdensity operator quantum
mutual information bound on connected correlation functions (see [25] and appendix B for
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a review), which gives us

2
| B @
dads
D
(6.19)

Comparing to our expression for CI(A : B)?, we obtain the desired inequality CI(A : B)? <
2d41,,,(A: B). O

1

2| U4 |O5]3 <1I,,.(A:B)
2(|Uall2 108ll3 0an

7 Conclusion and further discussion

In this paper, we have proposed a new measure of causal structure, the quantum causal
influence, in quantum many-body systems. We used the framework of general tensor
networks to describe quantum many-body systems without a pre-fixed causal structure. In
this framework, we showed how the causal influence between two spacetime regions A, B
can be probed by the effect of unitary operations in region A on observables in region
B. Unitarity plays an essential role in the asymmetry of the causal influence between
two regions. Accordingly, the entanglement inherent in a general tensor network can be
seen as building up space, time, and the causal relationships between local and collective
spacetime degrees of freedom. Our definition of quantum causal influence provides a new
unified perspective on many seemingly disconnected phenomena.

Through examples and more abstract results, we have shown that the quantum causal
influence, and therefore the direction of “time’s arrow”, depends on the initial state and
final state of the time evolution. In particular, a maximally mixed subregion of either the
initial or final state cannot causally influence other regions. It would be interesting to un-
derstand in detail what happens when the initial or final states have subsystems that merely
have high entropy (instead of having maximal entropy by virtue of being maximally mixed).

An important feature of the quantum causal influence is its nonlocality: a region A
can have trivial influence on regions B, C' while having nontrivial influence on their union
B U C. Quantum error correction and quantum teleportation are both examples of such
non-local causal influence. The non-locality of causal influence plays an essential role
in holographic duality, where small disk-shape regions in the bulk have ordinary causal
structure as prescribed by general relativity, while nonlocal regions have a different (and
more exotic) causal structure required by the holographic principle. Specifically, any given
bulk operator can be reconstructed on a big enough region of the boundary, which means
(using our definition) the quantum causal influence of a bulk point on the boundary is
nontrivial, even if the point is spacelike separated from the boundary from a Riemannian
geometry point of view.

We also discussed how unconventional causal structures appear in the Horowitz-
Maldacena final state proposal of the black hole singularity, where again the non-locality
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of quantum causal influence plays an essential role in reconciling the ordinary causal struc-
ture of the black hole geometry (between small disks) and the unitarity of time evolution.
Additionally, we studied multiple probes of quantum causal influence, and discussed their
relation to other quantum information quantities such as the quantum mutual information
and Rényi entropies.

There are many open questions that can be studied with the quantum causal influence.
For instance, it is interesting to ask whether there is a precise generalization of Cauchy
surfaces defined in terms of the QCI. For instance, such a plausible quantum generaliza-
tion of Cauchy surfaces is a foliation of a general tensor network into disjoint subsystems
C1,Cs,...,Cn such that C; only has nontrivial causal influence with Cj if j > 4. In addi-
tion, one should require that for each C;, all of its disjoint subregions are spacelike separated
from one another other. In 5.1.2 we discussed an example of such quantum Cauchy surfaces
in holographic tensor networks. In general systems, can Cauchy surfaces always be found?
When Cauchy surfaces are defined, is it always possible to define a “quantum state” on
each surface, as in the (semi-)classical setting?

Another open question is how to generalize the quantum causal influence to measure
(the quantum generalization) of spacetime geometry. In a similar vein, there have previ-
ously been proposals relating spatial distances between local subsystems to their quantum
mutual information [58, 59]. It would be interesting to investigate whether a combina-
tion of these ideas can lead to a generalization of quantum causal influence which probes
a (quantum generalization of a) spacetime metric. An even more general question con-
cerns whether quantum causal influence can be applied to spacetime tensor networks with
fluctuating geometries, such as those proposed in [60].
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A Quantum causal influence for non-unitary regions

Suppose we have a general tensor network given by {{H;},|L),ppr}, and that R; is a
subregion which is mot a unitary region. This means that

(L|Ug, pp Ul |L) # (L|pp|L) (A1)

for some unitary Ug,. This situation can occur even in some more modest examples, such
as systems with post-selection.
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In this context, it is natural to define quantum causal influence for non-unitary regions.
We let ) :
(LI(Ur, ® OR,)pp (Up, @ O, )|L)

(L|Ug, pp U}, L)

M'(Ug, : Og,) = (A.2)

where R; is not a unitary region. Here, M has been furnished with a prime ’ to distinguish
it from the usual M (Ug, : Op,). Then the corresponding mQCI for non-unitary regions is

CI'(Ri: Ry) = sup ——— |M'(Ug, : Og,) — /dUR1 M'(Ug, : Og,) (A.3)
UR1 7OR2 ‘ |OR2 ‘ |2
and similarly, the corresponding aQCI for non-unitary regions is
2
Cl'(Ry : Ry) = /dUR/ O, |M'(Un, : Op,) — /dURl M'(Ug, : Og,)
IR, |l3=1
(A.4)

Notice that modified mQCI and the modified aQCI are also furnished with primes ’ to
distinguish them for their unmodified counterparts.
Note that if R; is a unitary region, then

CI'(Ry : Ry) = (L‘plpm CI(R; : Ry) (A5)
CI'(Ry : Ro) = M(}I(Rl  Ry), (A6)

meaning the modified and unmodified mQCI and aQCI are related by a multiplicative
constant in this case. Of course, if (L|Ug, pp U;rzl |L) = 1 for all Ug,, then the multiplicative
constant becomes one.

B Review of the superdensity operator formalism

Throughout the paper, we make use of the superdensity operator formalism to analyze
spacetime correlation functions. We review superdensity operators here, and a full exposi-
tion can be found in [25].

A superdensity operator is a spacetime analog of a density operator, so first we begin
by examining density operators. Consider a Hilbert space H of dimension d so that the
space of density operators on H is denote by S(#H). A density operator is denoted by p
and is defined by:

Definition (density operator). A density operator p is a bilinear form
pH"@H—C

satisfying the conditions:

L. pt=p (Hermitian)
2. p = 0, meaning (¢|p|®) > 0 for all |¢p) (positive semi-definite)
3. tr(p) =1 (unit trace)
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Since p : H* @ H — C, we can represent p by the tensor diagram
p

P

where

(o1 P |P2) (D1l p|P2)

Equivalently, we can think of p as a map from operators in B(#) to correlation functions
(i.e., a map from B(H) — C) by re-writing the tensor diagram as

where similarly

A — tr(Ap)

Now we introduce a new object which may at first appear peculiar, but will later
appear natural. It is given diagramatically by

1

This object satisfies

1 |

and so is a bilinear form from B*(H) @ B(H) — C.
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This new object is clearly a repackaging of p, since it contains all of the same data.
Now let us write this new object in non-diagrammatic notation, and call it gsyper. Consider
the space of operators on #, denoted by B(H). Let {Xi}fil be an orthonormal basis of
operators for B(H), so that tr(X;er) = 0;;. Since B(H) is itself a Hilbert space, we can
write its basis in bra-ket notation as {|X;) glil where (X;|X;) := tr(XiTXj) = 0j;. Then we
can write gsuper in this basis as

d2

1
Osuper = 8 Z tr(Xi pX]T) |XZ><XJ’ . (Bl)
ij—=1
Then we have 1
<A‘ Osuper ‘B> = g tl"(ApBT) (B.Q)

which matches the diagram above.

Several comments are in order. The object gsuper is our first example of a superdensity
operator, which we will define shortly. While a standard density operator p is a map
p:H*®H — C, the object gsuper i @ map Osuper : B*(H) @ B(H) — C. In fact, it is easy
to check that gguper is Hermitian, positive semi-definite, and has unit trace. Therefore, just
as p is a density operator on H, we have that gsuper is a density operator on B(#H) (and
hence a superdensity operator).

So far, we have merely repackaged p as the superdensity operator gsuper- Both objects
capture the data of correlation functions of a system at a single time. But now suppose we
want to capture the data of the correlation functions of a system at two times. Letting U
be the unitary evolution between these two times, we can write down the new superdensity

operator Tgyper, namely

which satisfies

|
A Df
1 | | 1
7 U 2 ﬁtr(AUBpCTUTDT)
| |
B ct
|
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and can be written non-diagrammatically as

d2
1
Tsuper = 75 > tr(X; U X5 p X U XY | X0 (X0 @ | X3) (X (B.3)
i,J,k =1

Here, osuper maps operators at an initial time ¢; and operators at a final time t to a
correlation function. We can write this map as

Osuper - (B*(Htl) X B(Htl)) X (B*(HtQ) &® B(Hm)) — (C, (B.4)

or isomorphically

Osuper : B (Hi, @ Hiy) @ B(Hiy, @ Hy,) — C. (B.5)

Indeed, oguper is Hermitian, positive semi-definite, and has unit trace. Therefore, ogyper is
a density operator on the operator space B(H:, ® Ht,). We refer to Hilbert spaces of the
form @), H;, such as Hy, ® Hy,, as “history Hilbert spaces”.

As illustrated above, oguper contains the data of two-time correlation functions of a
system, all packaged into a density operator on an appropriate operator space (for instance,
B(H:, @ Hi,)). The reason we package this data into a density operator is because we can
immediately use many of the tools and techniques of quantum information theory, which
are designed for generic density operators (although they are typically applied only to
standard density operators). For instance, one can compute spacetime quantum entropies,
spacetime quantum mutual information, and so on, and the results are physically and
mathematically meaningful (see [25] for an in-depth discussion of these points). We will
remark on the quantum mutual information below.

Of course, our construction above naturally generalizes to any number of times
t1,t2,...,t,. The construction also generalizes to subsystems of the Hilbert space in the
following way. Consider a Hilbert space H which has (possibly overlapping) subsystems
Ha and Hp with dimensions d4 and dp, respectively. We will consider, for concreteness,
a two-time superdensity operator Xsuper, given diagrammatically by

Hp| Mg HE| | My
[ ]

S
S

dadp

Ha| |Hz Tl | HA
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satisfying

= 1d tr ((QB R15)U(Pa® 1) p(Sho1) U (SL o 15))
AUB

and written in non-diagrammatic notation as

d? d2
1 A B 5 B A .
Xouper = o 30 3w (XF 915) U (X @ 1) p (X 917) UT (X170 15))
i,j=1 k=1
< XX @ [ XP) (X (B.6)

In this case, Xsuper is @ map from
Xsuper - B*(HA,tl ® HB,tg) X B(HA,tl & HB,tQ) — C, (B?)

and is likewise Hermitian, positive semi-definite, and has unit trace. Then xguper captures
the data of two-time correlation functions with operators on the subsystem A at time ¢y
and operators on the subsystem B at time t9. This construction generalizes naturally to
many times t1,ts,...,t, and arbitrary subsystems at each time.

The superdensity operators we have considered so far have a particular form: an initial
state followed by slots for operator insertions, followed by unitary evolution, followed by
more slots for operators insertions, and so on until a final trace is taken. These kinds of
superdensity operators can also be thought of as the quantum state of ancillary apparatus
which couples to an evolving system in a certain manner (see [25] for details).

More generally, we might be agnostic to the internal structure of a superdensity oper-
ator p, and notate it as

1 | 1
(I I
r—1 | 1
N e A
1 | 1
(I N E—
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which is a bilinear map
0+ B (Hnist.) ® B(Hnist.) — C (B.8)

for some Hilbert space Hpist. that we designate as the history Hilbert space (in keeping
with our previous terminology). We may require that g is Hermitian, positive semi-definite,
and has unit trace, so that it is formally a density operator (albeit on an operator space
B(Hpist.)). This brings us to the definition:

Definition (superdensity operator). A superdensity operator o is a bilinear form
0 : B*(Huist.) ® B(Hnist.) — C
satisfying the conditions:
1. of =op (Hermitian)
2. 0> 0, meaning (W|o|W) > 0 for all |W) (positive semi-definite)
3. tr(p) =1 (unit trace)

As mentioned above, measures of quantum information of density operators can be up-
graded to be measures of spacetime quantum information of superdensity operators. These
upgraded measures are meaningful [25]. For instance, recall the quantum mutual informa-
tion bound [57]

1 2
m tr(PAa® Q@) p) —tr(Pap)tr(Qpp)| <I,(A:B) (B.9)

where H = Ha® Hp ® --- and I,(A : B) is the quantum mutual information between A
and B with respect to p. Here, A and B are arbitrary disjoint spatial subregions.
One can straightforwardly show [25] that the superdensity analog is

1
2Pl 1@5lI3 | Rl 15413

2
x| ((Pal@(QB|) tiuper (154) @ R)) = (Paltrsg) (0diper) 1540 (Qltrie.0) (Ohiper) | R5)

<I,az (A:B) (B.10)

Osuper

where B(Hist.) = B(Ha) @ B(Hp) @ -+ and Ipap (A : B) is the (spacetime) quantum

mutual information between A and B with respect to oAB_ which can be depicted by

super
— — 1
B(Hp) B*(Hg)
L [
E3
B(Ha) B*(Ha)
L |
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Here, by contrast, A and B are arbitrary disjoint spacetime subregions. The spacetime
quantum mutual information bound can be depicted diagrammatically by

! 1@2

< ID:AB (A:DB)

2||Pal @Bl I RBZ 1SAl13 dadp Q o

which we utilize in section 6.4.

C Classical analog of non-local causal influence

In this paper, we have been primarily focused on causal influence in quantum systems.
Here, we will explore features of causal influence in classical systems, and in particular
focus on non-local aspects of causal influence. We will compare and contrast with the
quantum case, and find key differences.

In order to adapt our framework to the classical setting, we find it convenient to embed
a classical system into a quantum system, and continue to use bra-ket notation and the
operator formalism. First, we establish how to present a classical system in this notation.
Suppose we have n qubits, and consider the canonical basis {|i - - - in>}'}17---7in20 which picks
out the z-basis for every qubit. We will refer to this basis as the classical basis, and write
it more compactly using multi-index notation as {|I)};cfo,1y»- We require that a classical
density operator pelassical 1S & convex combination of projectors onto classical basis elements,
namely of the form

pelassical = Y pr [T, > pr=1, pr=0foralll.  (C1)
I€{0,1}n Ie{o,1}n

In words, a classical density operator is a probabilistic (incoherent) mixture of classical
states in which each qubit has a definite z-direction.

Now we construct operators which act on classical states. An arbitrary operator A has
the form

A= 3wl (C.2)
Ie{0,1}n

where f is an arbitrary function f : {0,1}"™ — {0,1}" and the a;’s are complex numbers.
Notice that this operator maps pure classical states to pure classical states (up to a complex
scalar prefactor) since O|J) = c;|f(J)). We can specialize to Hermitian operators B which
have the form

B= Y b|f(M)I,  fof=Tdentity, by ="bf. (C.3)
I1e{0,1}»

Here, we see that f : {0,1}" — {0,1}" is its own inverse, meaning that f o f is the
identity map.
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Now we turn to observables. In the classical context, observables C' are Hermitian
operators that satisfy the superselection rule (I|O|J) = 0 if I # J, so that the eigenvectors
cannot be superpositions of classical states. Thus, observables have the form

o= alnl (C.4)

Ie{o0,1}n

where the cj’s are real numbers.
Finally, the classical analog of unitary operators are invertible operators satisfying
P'P = PP' = 1. Comparing to eq. (C.2), we see that such a P must have the form

P= > |f()],  f invertible. (C.5)

Ie{0,1}™

This means that P is a permutation operator on the classical basis elements. This is
intuitive: the classical analog of unitary evolution can only interchange classical states.

Now we define the classical analog of causal influence for our n-qubit system. Analo-
gous to eq. (2.12), we define the classical maximal influence by

! M(PA:OB)—% > M(Pa:0p)|.

" P4€Perms

CIclassical<A : B) = sup 5
P4 € permutations on A ||0B | |2
Opé€E classical operators on B

(C.6)
Having set up classical causal influence, we turn to an example.? We will consider a
hallmark of classical cryptography: the one-time pad. Suppose we have two parties Alice
and Bob, and that Alice has a secret message that she wishes to share with Bob. For
concreteness, suppose that this secret message M comprises of an n-bit string. In the one-
time pad protocol, Alice and Bob share in advance a secret key K, called the one-time pad,
which is likewise an n-bit string that is unknown to anyone else. This secret key K has been
sampled from a uniform distribution on all n-bit strings and must be discarded the protocol
is completed (i.e., only used “one time”). Suppose Alice’s messages is (z1, x2, ..., x,) with
x; € {0,1}, and the secret key is (y1, 92, ...,yn) with y; € {0,1}. Then Alice produces an
encrypted message E, whose ith bit is the sum, modulo 2, of the ith bits of M and K.
The encrypted message E would be

(z1®y), (22D Y2),.., (X0 D Yn)) , (C.7)

where here @ denotes summation modulo 2. This encrypted message is then sent to Bob.
Bob decodes the message by taking its ith bit, and adding it modulo 2 to the ith bit of the
secret key. The result is

(1 @y ®y1), (2@ Y2 D Y2)s- - (Tn B Yn D Yn))
= (xla:EZa"-vxn)v (08)

which is exactly Alice’s original message M. The secret key K (i.e., the one-time pad)

cannot be used in subsequent instantiations of the protocol since an eavesdropper can

9We thank Robert Spekkens for suggesting this example.
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Okey

Pmessage

Figure 26. A diagram for the one-time pad. Here, pmessage is the state of the message, oyey is the
state of the secret key, and P is encrypts the message using the secret key, as described in eq. (C.9)
and the surrounding text.

glean information about encrypted messages by looking for patterns, although we will not
discuss this in detail here.

Let us express the encoding step of this protocol in terms of a superdensity operator.
Consider the diagram in figure 26 below. Let pmessage = |M)(M |, which is a classical state
corresponding to the secret message. Let oy, be the uniform distribution over classical
states, namely the maximally mixed state oyey = 5= > gefonn DI = 1. We also let
P map

Phe|J)=|Ie&J)x|J]), (C.9)

where I @ J represents bitwise addition modulo 2 as per eq. (C.2). Then we have

1
P(pmessage @ Okey)PT = — > M@ ) (M@ J|&|J)J|. (C.10)

n
Je{0,1}n
Now let us consider the classical causal influence between m (a place where an opera-
tor insertion affects the message) and e (a place where an operator insertion probes the
encrypted message). Since

1
trkey (P(pmessage & Ukey)PT> = 27 1, (C.ll)
it follows that
CIclassical(m : 6) =0. (012)
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This is intuitive — it means that manipulating the message at m does not affect the
encrypted message at e, and hence no information from the message is contained in e
alone. Thus, if an eavesdropper was positioned at e and could tamper with the encrypted
message, the secret message could not be discovered.
Similarly, we can consider the classical causal influence between m and k (a place
where an operator insertion probes the secret key). Since
1
trencrypted message (P(pmessage & Ukey)PT) = 27 1 3 (Cl?’)
we find
CIclassical(m : k) =0. (014)

This is not surprising at all, since the initial message is not correlated with the secret key.
However, if we consider the classical causal influence between m and e U k, we find

CIclassical(m el ]{7) >0. (0.15)

The result again is intuitive, since given access to both the encrypted message and the
secret key, one can recover the initial message. This is an example of classical non-local
causal influence: even though m does not influence either e and k, it influences e U k.

This example appears superficially similar to examples of non-local causal influence
earlier in the paper, such as the quantum erasure code example in section 4.1 above.
However, there are key differences. In our classical example, we treated the state of the
key as a uniform distribution over all n-bit strings. But in an actual instantiation of the
protocol, a particular key K is chosen, and so oyey = |K) (K| would be a pure state. In this
case, we would find Clgjassical(m : k) = 0, Clyjassical(m : €) > 0 and Clgjassical(m : eUk) > 0,
which is not an example of non-local causal influence.

So why did we choose oyey = 1/2"? We did this because in the context of the protocol,
a putative eavesdropper has a uniform prior on the state of the key, and so to her it is as
if the key was in a maximally mixed state. But this is a reflection of the eavesdropper’s
particular knowledge, and not the state of the universe in which she lives.

If the classical universe of the protocol starts in a pure state, it will remain in a pure
state for all time, and so it would instead be correct to use oey = |K) (K| for some particular
K. In such a universe, there can be no non-local causal influence. If the universe was, in
fact, at least partially in a mixed state, then we could harness some of the randomness to
produce something like oy, = 1/2".

Now we summarize the key point. In the classical setting, if the global state of the
system is pure (i.e., not a probabilistic mixture), then the state of any subsystem is likewise
pure. This is emphatically not the case for a quantum system due to entanglement, and so
subsystems of a pure quantum state are often mixed states. If a classical universe starts
in a pure classical state which remains pure and classical for all time, then there cannot
be non-local causal influence with respect to subsystems. However, if a quantum universe
starts in a pure quantum state which is pure for all time, then there can be non-local causal
influence with respect to subsystems.
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Figure 27. Ordering of links in two simple geometries: one rank-four tensor and two rank-four
tensors with a pair of links contracted.

D Numerical recipe for stabilizer tensor networks

Here we review stabilizer tensor networks, and explain how we implement numerical cal-
culations of these networks as discussed in section 6.

To begin, stabilizer tensor networks are tensor networks comprised of connected unit
stabilizer codes. Each unit stabilizer code is a tensor defined as the state fixed by a set of
operators (stabilizers). Pictorially, a tensor can be represented as a vertex, and there is a
Hilbert space on each link. The basic units we consider here are rank-four qutrit codes,
i.e., there is a three-dimensional Hilbert space associated with each link and each vertex is
degree four. The space of operators on each three-dimensional Hilbert space has a complex
basis X" Z™ where n,m =0, 1,2, and

010 1 0 0
X=1001|, Z=|o0e2/3 o , (D.1)
100 0 0 eWn/3

in a preferred basis {|0), |1), |2)} of the Hilbert space. Note that XZ = exp(i27/3)ZX, and
so the basis operators X™Z™ all commute up to phases. Stabilizer operators are products
of such basis operators, for example, X ® I ® X ® I, where operators on different links are
separated by ® and links are ordered as in figure 27.

A more convenient notation for stabilizer operators would be vectors with elements
in 3, i.e., the field of three elements. For example, stabilizer operators for the rank-four
swap code can be written as (denote X = X2 = X"tand Z = 72 = Z71)

010001000 XlIeoXelIl
000100010 I X®I®X
& - , (D.2)
001000200 ZRI®Z®I
000010002 IRZ®I®Z

that is,

(k‘nl mi ng M2 N3 M3 Ny My ) < e2mk/3 X g g X2 g2 @ X8 Zms g X4 7
(D.3)

Indeed, it is easy to verify that the code

Yo lhelel)el) (D.4)

i,j€F3
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is (up to a multiplicative constant) the only state fixed by these four stabilizers given by the
rows of eq. (D.2). If we regard this state as a unitary gate from links 3, 4 to 1, 2, it merely
transports the state from link 3 to 1, and from link 4 to 2, hence is called a “swap” gate.
The dynamics of multiple catenated and layered swap gates simply propagates qutrits along
diagonal lines in the stabilizer tensor network, and so clearly corresponds to integrable time
evolution.
Another code that we use is the [[4,0, 3]] perfect code where the state is (note that
division is in F3)
Y el @l —4)/2) @i +5)/2), (D.5)
1,j€F3
corresponding to a set of stabilizers

001010001 707017
001020100 AW AP

& (D.6)
0010100010 XXIoX
0/10201000 XXX®I

Of course the full set of stabilizer operators of this code should contain products of these
operators as well, so the choice of four generating operators is not unique.

Now we proceed to finding stabilizers for networks composed of simple rank-four ten-
sors. As an example, consider contracting two swap codes (identifying links 2 and 8 as in
figure 27). Taking the product of operators corresponds to addition in the vector notation,
so a general stabilizer (up to phase factors) of two swap codes takes the form

1000100000000000
0010001000000000
0100020000000000
0001000200000000
0000000010001000 |’
0000000000100010
0000000001000200
0000000000010002

where we have temporarily suppressed the prefactor column for simplicity. The stabilizers

(a1 a2 az ag4 b1 b2 b3 b4>

on contracted links should cancel to give an operator acting on the remaining links only.
Specifically, if the stabilizer on link 2 is X™Z™, then the stabilizer on link 8 must be
X"Z~™. To find such solutions, only columns 3, 4 (link 2) and columns 15, 16 (link 8) in

the matrix are relevant. The algebraic equation in F3 is thus

0000
1000
0000 10
0100 01
(alwagMb1@b3M) coooll Ziol=0 (D.8)
0010 01
0000
0002
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and the solution is as = by, aqg = by and a;, b; € Fs for i = 1,2, 3,4, i.e., the row space of

10000000
01000100
00100000
00010001
00001000
00000010

Hence a generating set of stabilizers is the product of (D.9) with (D.7) (with columns
corresponding to contracted links dropped)

101000000000 XR®XRQXIITIRI®IRI
000010001000 IRIRXRVITRKXRI
010200000000 7207201111
& — , (D.10)
000002000100 IQIRZRITIRZRI
000000100010 IQIRTRXRXTRX
000000010002 IRIRI®RZRI®RZ
which are indeed stabilizers for
Yo iy el @h) @ k) @ 15) @ |k). (D.11)

1,J,k€F3

Intuitively, this code transports states from link 3 to 1, 4 to 6 and 7 to 5.

For general codes, phase factors must be taken into account when multiplying oper-
ators. Addition rules for phases are modified due to the non-commutativity of X and Z
operators. For each link,

XnZm Xn’Zm’ _ e—i27rmn’/3Xn+n’Zm+m’ (D12)
that is,
(k‘n m) + (k"n’ m’) = (k—i—k:’—mn"n—i—n’ m—i—m') . (D.13)
And the total phase is a sum of contributions from each link 4:
(k\nZ mz) + (k/‘n; mg) = (k + kK — Zimin;‘ni +n; m; +m;> : (D.14)

Then determining stabilizers of the network is reduced to a linear algebra problem
that can be solved in time polynomial in the network size. More specifically, the algorithm
consists of three steps:

1. List the stabilizers of all constituent tensors;

2. Solve the linear equations imposed by requiring that operators on contracted links
cancel;

3. Use the solution to the linear equations to find combinations of the stabilizers in
step 1 that are the identity on the contracted links (taking into account the phase
additions).
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Given stabilizers Oy, ..., O,, the state fixed by all stabilizers is then the eigenstate of
O1 + -+ - + O, with eigenvalue n because the spectrum of each operator O; only contains
values exp(i27k/3), k = 0,1,2. The superdensity operator of stabilizer tensor networks
with few-vertex insertions (as shown in figure 13) is then itself a stabilizer state which can
be computed up to a prefactor in polynomial time. The prefactor can be fixed by requiring
the trace of the superdensity operator to be one. Causal influence is evaluated according
to eq. (6.5) using the superdensity operator, which produces figure 25.
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