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ABSTRACT: In holographic duality, the entanglement entropy of a boundary region is pro-
posed to be dual to the area of an extremal codimension-2 surface that is homologous to
the boundary region, known as the Hubeny-Rangamani-Takayanagi (HRT) surface. In this
paper, we study when the HRT surfaces of two boundary subregions R, A are in the same
Cauchy slice. This condition is necessary for the subregion-subregion mapping to be local
for both subregions and for states to have a tensor network description. To quantify this,
we study the area of a surface that is homologous to A and is extremal except at possi-
ble intersections with the HRT surface of R (minimizing over all such possible surfaces),
which we call the constrained area. We give a boundary proposal for an upper bound of
this quantity, a bound which is saturated when the constrained surface intersects the HRT
surface of R at a constant angle. This boundary quantity is the minimum entropy of region
A in a modular evolved state — a state that has been evolved unitarily with the modular
Hamiltonian of R. We can prove this formula in two boundary dimensions or when the
modular Hamiltonian is local. This modular minimal entropy is a boundary quantity that
probes bulk causality and, from this quantity, we can extract whether two HRT surfaces
are in the future or past of each other. These entropies satisfy some inequalities reminiscent
of strong subadditivity and can be used to remove certain corner divergences.
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1 Motivation

In holographic duality [1-3], the Hubeny-Rangamani-Ryu-Takayanagi (HRT) formula [4—6]

()]
Sa = 4G N

(1.1)

relates the entanglement entropy of a boundary region A to the area of the extremal surface
~v(A) that is homologous to A. The HRT formula was originally proposed for geometries
with time translation symmetry, where extremality implies minimality on the preferred
Cauchy slice in the bulk. The extremal surface, known as the HRT surface, can also be
defined by a maximin procedure [7]: one can first find the minimal surface v(A)|x € &
in a given Cauchy surface ¥ which includes region A in its intersection at the boundary.
Then the actual HRT surface is obtained by varying ¥ and find the maximum of the area
of 7(A)|x. In this procedure it is clear that the extremal surface is always a saddle surface,
the area of which increases upon variations along space-like directions, and decreases upon
variations along time-like direction.

The HRT formula uncovers an intrinsic connection between spacetime geometry and
quantum entanglement. In gravity, there is no fundamental meaning to any particular bulk
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Figure 1. Ilustration of HRT surfaces for different boundary regions. (a) For a state with time
reflection symmetry, all HRT surfaces of different boundary regions lie in the same bulk slice, so
that HRT surfaces of boundary overlapping regions must intersect. (b) For a generic boundary
state defined by a boundary Cauchy slice, the HRT surfaces of two overlapping regions R and A
generically cannot be included in any bulk Cauchy slice, if they are time-like separated.

slice: different slices are all gauge equivalent. However, the HRT surface corresponding to a
boundary subregion lives in a proper subset of all possible gauge equivalent bulk slices. This
is a surprising property which suggests that when focusing on boundary subregions, not
all bulk Cauchy slices are equally preferred. As has been discussed in [8], the HRT surface
defines the entanglement wedge a as the bulk domain of dependence of an achronal bulk sur-
face (known as a homology hypersurface) whose boundary is A U~ (A). The entanglement
wedge plays an important role in subregion-subregion duality: the algebra of bulk operators
localized in the entanglement wedge a is encoded in the boundary region A [9, 10]. When
all HRT surfaces lie in the same bulk Cauchy slice, there is a preferred bulk slice where this
mapping between bulk and boundary subregions acts locally (figure 1(a)). However, generi-
cally, we expect that for two overlapping boundary subregions R, A, their HRT surfaces are
not in the same bulk Cauchy slice (i.e. they are time-like separated, see figure 1(b)). In this
situation, there cannot be a local description for both bulk algebras of operators in the same
Cauchy slice. In other words, the mapping from boundary operators in a region to bulk
local operators has to be different for R and A. This is reminiscent of the code subspace
story of [9]. The reason why reconstruction of bulk operators on the boundary is possible
is ultimately that bulk and boundary modular flows are the same [10-12] and, in this pa-
per, we will also see how this property of modular flow can be used to define a boundary
quantity that quantifies whether two HRT surfaces can be put in the same bulk slice.

An important motivation of studying whether HRT surfaces of different regions lie in
one bulk Cauchy slice comes from the tensor network picture. Since B. Swingle’s work [13]
there have been various proposals relating tensor networks to holographic duality [14-18].
Tensor networks are representations of many-body quantum states by contracting tensors
on a given graph. Some classes of tensor networks, such as random tensor networks with
large bond dimension in ref. [18] satisfy the RT formula for the entanglement entropy of any



boundary region, where the area of a surface is defined as number of links intersecting the
surface. Therefore if we consider a state in a holographic theory for which all HRT surfaces
lie in a single bulk Cauchy slice, it is natural to compare it with a tensor network state
with a graph geometry that is obtained by discretizing the particular Cauchy slice. For
more generic states, the HRT surfaces for two intersecting regions on the boundary do not
intersect in the bulk, and therefore there is no natural choice of Cauchy slice for considering
a tensor network representation.! The difficulty in a tensor network representation of such
states suggests that there shall be a quantum information measure of the boundary state
which probes whether the HRT surfaces for two regions in a holographic state intersect or
not. Finding such quantum information measure will help improve our understanding on
the relation of bulk dynamics and boundary entanglement structure.

To look for a measure of this property, we first quantify the difference between in-
tersecting and non-intersecting HRT surfaces by defining a constrained extremal surface
vr(A), which is homologous to a region A and is allowed to intersect the HRT surface
v(R) of the other region R, if this can reduce its area. The area difference between the
constrained surface and the actual HRT surface, |y(A)| — |[yr(A)|, is a measure of how far
away (in time) v(A) and «(R) are from each other. We propose a boundary dual of this
difference, which is an entropy reduction by modular flow. More precisely, when we have
constrained surfaces that intersect v(R) at a constant boost angle we will have a precise
boundary quantity that equals the area of yr(A), and more generally, it will be an upper
bound. We will provide more details of the definition later, but the basic idea is that by
modular evolving the state with respect to region R, i.e. by applying a unitary operator
that is defined as piﬁ to the state, the entropy of region A can be reduced, and the min-
imal entropy obtained by varying the modular flow time s is proposed to be dual to the
constrained extremal surface area (divided by 4Gy ).

The remainder of the paper is organized as follows: in section 2, we elaborate on
the constrained area and its conjectured boundary dual — the modular minimal entropy.
Section 3 exposes the evidence for this proposal. In section 4, we give some examples and
applications of the formalism. We conclude with section 5, where we comment on possible
extensions and further applications of our results.

During the completion of this work, we became aware of [19] which has some partial
overlap with the results of this paper.

2 Proposal

To begin with, we would like to propose a bulk quantity which quantifies whether two HRT
surfaces, 7(R),v(A) (corresponding to boundary regions R, A on a boundary Cauchy slice)
can be in the same bulk slice. As shown in [7], if R € A (or R € A), this is always possible
(entanglement wedge nesting). The non-trivial case is then when R, A have some partial
overlap. In this case, if the HRT surfaces do not intersect, they necessarily cannot be put in
the same bulk slice. In the rest of the paper we will say that two codimension-2 surfaces are

'More precisely, one can always describe such a state with a tensor network, but the geometrical entropy
upper bound will not be saturated for at least one of the two regions considered.
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Figure 2. Illustration of the definition of constrained surface ygr(A4). (a) When A and R do not
overlap, it is always possible to fit v(A) and (R) in the same Cauchy slice, so that any constrained
surface v (red dashed curve) that is extremal everywhere except for the intersection with y(R) will
have an area bigger than v(A). (b) When A and R overlap, it is possible to have a constrained
surface with smaller area than «(A), in which case this surface is yr(A4) (see text).

space-like separated when they can be put in the same Cauchy slice and time-like separated
when there does not exist a Cauchy slice which contains both surfaces. In this way, we
want to consider a new geometric object: the constrained extremal surface, defined as the
bulk extremal surface which is homologous to A and can intersect y(R) (as long as this

minimizes the area):
Yr(A) = minj, {7 is extremal except across v Ny(R),dy = 0A} (2.1)

In other words, the constrained extremal surface yg(A) has zero trace of the extrinsic
curvature everywhere in the bulk expect at possible intersections with (R). It is not
required to intersect with «(R), and in particular the original extremal surface y(A) also
satisfies the condition in eq. (2.1). Among all surfaces satisfying the condition in eq. (2.1),
the constrained extremal surface is the one with the smallest area. This definition is
illustrated in figure 2. If y(A),v(R) are space-like separated, they can be put in the same
Cauchy slice, so that any constrained surface « that satisfies eq. (2.1) and intersects v(R)
must have a bigger area than v(A). Therefore in that case yg(A) = v(A). In contrast, if
v(A) and «(R) are time-like separated, there exists a constrained surface with nontrivial
intersection with v(R) with a smaller area than v(A). The intersection is generically a
codimension-3 surface in the bulk.

We could also give a maximin definition as in [7], where the Cauchy slices are forced to
contain (R), but we find the above definition better because it is more local. By construc-
tion, |v(A)|—|yr(A)| > 0, and the inequality saturates if v(A), v(R) are spacelike separated.

We expect that the constrained surface is non-trivial even if 9A N R is non-empty
(which is generic in more than 2 dimensions). Even if these surfaces intersect in the
boundary, they generically will not have additional intersections in the bulk. As we will



Figure 3. Example of a situation with 9ANAJR = () when the boundary dimension is (2+1). The
HRT surface of A = A; U A, is also drawn schematically.

discuss later, the difference between the constrained area and the original area in this case
can be divergent. In higher dimensions, we can also have A N OR = () and, in these
situations, we do not expect the divergence structure to change: some examples of these
higher dimensional situations are two strips or A being two spheres Ay, A2 and R a bigger
sphere surrounding A; (see figure 3).

In order to have a precise boundary dual, we would further want to restrict to the
constrained surfaces that intersect v(R) at a constant boost angle:

Y7 (A) = min, {7is extremal except having constant boost angle across y Ny(R), 0y = DA}
(2.2)
For a generic y(R), at any point where yr(A) intersects the surface, there will be an
incoming and an outgoing vector. The boost angle is defined by the inner product of the
projection of these vectors to the normal plane of v(R) at that point. In d = 2 for one
interval, the constrained surfaces will all be at a constant boost angle. For multiple regions
in d = 2 and higher dimensions, it is not always guaranteed that there exists such a surface.
In the boundary, we expect that there is some quantum information quantity that
computes the area of the constrained surface, which we will call modular minimal entropy:
Sr(A). Given our state |¥) and pgr, we can use modular evolution (evolution with the
logarithm of the density matrix) to obtain a one parameter family of states:

[W(sp)) = ") (2.3)

Here sp is real, so that pgR is unitary.

For this family of states, we can compute the entanglement entropy of A, Sa(p(sgr))
and, in general, this entropy can be bigger or smaller than the original entropy (at sg = 0).
Our proposal is that the minimum of this object with respect to sr, which we call the
modular minimal entropy, is precisely the area of vz (A) divided by 4G y:

>
Sr(A) = ming, Sa(p(sg)) = th(AN (2.4)
N

This boundary definition of the modular minimal entropy trivially satisfies the condi-
tion S(A) — Sg(A) > 0. In the next subsection we will discuss how it is derived for two-
dimensional boundary theories and for the cases when the modular Hamiltonian is local.



In the situations where there does not exist any non-trivial 77 (A), we do not expect
Sr(A) to have a bulk interpretation in the original geometry. However, as we will show in
d = 2 (for multiple regions) and we conjecture for higher dimensions, we generally expect:

S(4) > Gp(4) > ) (2.5)
4G N
where vg(A) is the minimal constrained surface which does not necessarily intersect v(R)
with a constant boost angle. Because of this, S(A) — Sr(A) is still a good diagnostic of
whether the surfaces intersect: when they intersect, all inequalities will be saturated, and
we will necessarily have S(A) = Sg(A) = %.

A consistency check of this formula is the case where there is a Zy time reflection
symmetry. In this case, in the bulk, the two surfaces will be in the same slice and thus
the minimum will be at zero modular parameter smin,g = 0. In the boundary, we can
check that sgp = 0 is an extremum: around s = 0, we can use the first law of entanglement
entropy to derive 0sS4(pr(s))|s=0 = #({[KRr, K4a]). The operator on the right-hand side is
odd in time reflection symmetry, and thus has to vanish in a reflection symmetric state.

3 Evidence

In this section, we will discuss two cases when proposal (2.4) can be verified. The first case
is in general dimension, when the modular Hamiltonian — log pg is local. The second case
is for two-dimensional boundary theory with arbitrary regions (and states).

3.1 Local modular Hamiltonians

When the modular Hamiltonian is a local integral of the (CFT) stress tensor, modular
evolution is just Hamiltonian evolution and we can understand [i(sg)) explicitly. Two
known situations where this happens are when R is a spherical subregion in the vacuum
of a CFT (or the half-plane) or one CFT in the thermofield double state (TFD). In these
two cases, despite their simplicity we can get a non-trivial Sg(A) # S(A).

Consider the time-evolved TFD state:

ITFD(t)) = Z e—(§+it)Ei|E¢,L, Ei Rr) (3.1)

The entropy of the right CFT is time independent and given by the thermal entropy
Sr(t) = S(B). We would like to consider modular flow with respect to region R, which in
this case just corresponds to right time evolution: e *8rSR|TFD(t)) = [TFD(t + sg)).
We would like to define the modular minimal entropy for the union of two half-planes
on the left and right CFT: A = Ap U Ag. First, in the |TFD(t)) state, the corresponding
HRT surface y(A4;) is time dependent and goes through the interior of the black hole [20].
This surface is clearly not in the same Cauchy slice as the «(R;) which is the bifurcation
horizon (see figure 4). In this case, the modular minimal entropy is given by the area of
the surface that ends in 0A; and goes through ~(R;). Because of the symmetries of the
problem, this surface has the same area as the HRT surface that goes between 0Ar, ; and



Figure 4. (a) We consider the situation of the |TFD(t)) state, where v(A¢),v(R¢) are not in the
same Cauchy slice. The constrained surface yg(A;) crosses the bifurcation surface. (b) Modular
evolution shifts the endpoint of the HRT surface 7(A:). The entanglement entropy S(A) after
the modular evolution can be calculated through the length of the shifted HRT surface. (c) The
shifted HRT surface reaches minimal length when it goes through the bifurcation horizon v(R;).
By symmetry, the area of this surface is the same as that of yr(A:).

O0AR,—¢. Due to boost invariance, this area is independent of ¢, so that |yr(A:)| = |v(Ai=0)|-
On the other hand, the minimization over modular flow clearly happens when sz = —2t,
so Sr(A) = S(A;—¢) which coincides with the area of the constrained surface (see figure 4
for more details). In other words, in this case the modular flow minimizes entropy by
“undoing” the time evolution of the TFD state.

For spheres in the vacuum, the situation is pretty much the same. We want to divide
our system into four regions: Ay, Ar, Ar, Ar. The vacuum state in the original ¢ = 0
surface does not have any interesting dynamics, but we can consider more time dependent
slice: e~ r!|0) (or a more regular version of this). The two regions of interest are defined
as A=A UAR, R= ArU Ag. The details do not matter too much as long as OR is held
fixed and OA is not in the time reflection symmetric ¢ = 0 slice. In this case, v(R),v(A)
will not be in the same slice and thus vr(A) will be non-trivial. As in the TFD case, we
can think of the modular flow sg as moving the right endpoint of A, and the minimum will
be obtained when it aligns with the left endpoint of A (their HRT surface goes through
~v(R)). Then, because of symmetry this entropy will be the same as yr(A) and will be the
same as the entropy of A in the ¢t = 0 surface (see figure 5).

3.2 Non-local modular flows for 2-dimensional holographic theories

Beyond the local case, modular evolution will be non-local and rather complicated. Gen-
erally, we do not know how to think about the bulk dual of the modular flowed state, but
as we will explain below, in two boundary dimensions we can still make some progress.

Let us start from the formula for the integral over modular flow for local heavy oper-
ators of dimension ¢ > A > 1 from [12]:

/ dsp(O(x1)pr " T O(yR)PS™)y = max,e(ge 2142 ) (3.2)

This formula relates the integral over modular flow of the correlator of two local operators
in L, R with a geometric quantity: d(z,z*) + d(z*,y) is the minimal geodesic distance
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Figure 5. The sphere in the vacuum situation is similar. In the figures, we show how it works in
AdSs. (a) The surfaces y(A), v(R) and vg(A) are in color red, blue and purple, respectively. (b)
The role of the modular flow is to move the right endpoint of A, z. The minimum is obtained when
z is shifted to 2’ in the ¢ = 0 slice. Because of the symmetries, the purple and red surfaces have
the same area.

between the two points z,y with the constraint that it has to go through v(R), the HRT
surface dual to region R. In other words, the right hand side consists of the sum of two
geodesic distances between the boundary and the same bulk point in the HRT surface,
which is chosen in such a way that the total distance is minimized. The reason why this
formula is possible is that bulk and boundary modular flow are equivalent [11] and modular
evolution close to the HRT surface is constrained by locality. Since we expect the modular
evolved two point function to be exponentially suppressed in the mass of the heavy particle,
we also expect that, in this limit, the Lh.s. is dominated by some sg min, which maximizes
the value of the correlator:

/ " ds (0@ o O(yr)pE g ~ (O(21) Oy 5 min) v (3.3)

—00

We are interested in the previous quantity because the Rényi entropies tr p™ are given
=z(n? = 1). The
entanglement entropy is obtained by taking one derivative of the n — 1 limit of the twist

by the two point function of twist operators with dimension A, =
operators. A large ¢ and n ~ 1, the dimension of the operator will be O(c) but satisfies

A, /c ~ 0, so we can think of the twist operator as heavy but not backreacting operator [21].
In this way, we can obtain Sg(A) from:

SR(A) = _8n/ dSReic(nil)S"(A’sR)‘nzl

-~ _p, / ds p(To (DAL KRR, (9 A ) e Krsm)|,_, (3.4)



Figure 6. Situation when the constraint surface has two different boost angles and thus it is
different from Sp(A).

where the first equality follows from taking the saddle point in the s-integral, which makes
it localize at a particular s (from ¢ > ¢(n—1) > 1). Then, since to leading order in (n —1)
we can treat the twist operators as heavy but not backreacting local operators, we can
apply (3.2) to obtain:?

Sn(4) = gln(4)] (35)

It should be noted that whenever 9A N R = (), by definition the entropy does not
depend on the modular flow (since the effect of the modular flow is only nontrivial when
one of the two operators experiences modular evolution). In the bulk, this is the statement
that when one of these constrained surfaces enters and leaves a disconnected component
of an entanglement wedge, there is no constraint in that region. Correspondingly, in the
bulk if the entanglement wedge of R has multiple disconnected components, the constraint
only depends on the component that has nontrivial overlap with 0A, i.e. the ones where
the constrained surface yr(A) ends at the boundary.

3.3 An example with no constant-boost-angle constrained surface

In general, it may not be possible to find a constrained surface with constant boost angle
at the intersection. This occurs generically when «(A) consists of multiple disconnected
surfaces. As an example, consider again the d = 2 case of the TFD state, but now with
R being the right CFT, A, being an interval at ¢ = 0 in the left CFT and A a boosted
interval, whose endpoints are at t = =+t respectively (see figure 6). v(A) will consist of
two disconnected surfaces in this case: one will be in the future of y(R) and the other in its
past. The constraint surface vr(A) will consist of two disconnected geodesics with different
boost angles. Because of the setup, there is no constant boost angle that can reach Ag
from v(R) and thus v5(A) does not exist.

2Using this expression is certainly justified when acting on states in the code subspace of low energy
states. Since modular flow acts in the code subspace, this approximation is well justified.



In this situation, since the constrained surface yr(A) has two different boost angles,
it can be thought as minimizing the object

(Tn(0AL1) e ERAT, (DAR ) e BRI, (DAL 2) e ER2T;, (D AR o) e 1K R52) (3.6)

independently with respect to si,se2. When s1 = so, this is S4(p(s1)), but when they are
different, it does not have a quantum information interpretation. Since this minimization
is less constrained than Sg(A) it will necessarily be smaller:
& lvr(A)|
Sr(A) > ——— 3.7
r(A) e (3.7)
More generally, for multiply disconnected regions, we expect each disconnected compo-
nent of the modular minimal entropy will be determined by a different local boost param-
eter, which as discussed in [19] corresponds to a different value for s, even in the non-local
setup. So, we expect that Sr(A) is generically an upper bound for the constrained area.

3.4 Divergence structure in higher dimensions

When the boundary dimension is two, the boundary of the two regions A and OR are
isolated points. In higher dimensions, the boundary of the two regions can have nontrivial
intersection. For example figure 7 shows an example with (2 + 1)-d boundary. In that
case, modular evolution of region R introduces a kink at OR. From our definition of the
modular minimal entropy, if A N AR # (), the modular evolved state will have this local
kink. This means that this constrained surface can change the structure of UV divergence.
For example, if we have a half boosted sphere in flat space and we evolve with modular
flow, the modular minimal entropy will maximally reduce the entropy of the sphere (see
figure 7), getting rid of the corner term divergence. Whether modular flow introduces or
removes this kink depends on the sign of the divergence. Space-like corner contributions
to entanglement entropy have been the subject of extensive study [22-24], but to our
knowledge, the case where the corner angle is a boost has not been studied. Note that
because this kink happens near R (which is kept fixed under modular evolution), the
change in the divergence structure of the entropy of A is universal: independent on the
state or whether the modular flow is non-local. While in the simplest situation yr(A)
only intersects y(R) once, there can be more general situations with several connected
components of the entanglement wedge of R where yr(A) might be force to enter and leave
the entanglement wedge of R multiple times. Whenever a surface has to enter and leave
an entanglement wedge, the constraint is lifted. So, if we had two connected components
of the entanglement wedge r1,72 and vr(A) had to exit r; as well as enter and exit ry, we
would only constrain it as yg, (A).

4 Further examples and causal relations

When the HRT surfaces v(R),v(A) are not in the same Cauchy slice (i.e. Sgr(A4) # S(A)),
~v(R) may intersect with the future domain of influence of y(A), or the past domain of
influence, or both. In two boundary dimensions when v(R) and v(A) each have a single

~10 -
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Figure 7. When A N OR # (), the modular flow can change the divergent structure. In this
example, we see how the modular flow can get rid of the kink of a half-boosted sphere.

component, it seems that there is a well-defined causal ordering between these two surfaces.
In other words, there exist 7(A) € ¥ 4,7(R) € X such that X is either entirely in the
future or entirely in the past of ¥4: Lp € J*[X4]. We will leave the rigorous proof
for future works, and focus on the case when such a causal ordering between v(R) and
v(A) can be defined. One could wonder whether this causal structure has any implication
for yr(A). Since yr(A) ends in JA (as 7(A)) and has to intersect v(R), we expect the
previous ordering to be preserved: Y.p € JT[34] implies that there exists some surface
Yr(A) € X4\ such that ¥4z € J*[X4] and similar when it is in the past.

Does this ordering have some boundary interpretation? We would like to conjecture
that, for the case of constant boost angle this is related with the sign of the minima of

modular flow:

J+[EA] if $pin > 0
YR € ’ 4.1
R’ {J‘[ZA], if Sy < 0 (41)

It is easy to see how this works for the thermofield double, and other cases with local
modular flow. See figure 4 for an illustration: for positive ¢, we have y(R) € J~[y(4)],
and we have sy, < 0 on the boundary. In d = 2, where we have the argument in terms
of heavy twist operators, one can also understand how this works. As was shown in [19],
Smin Should be interpreted as the relative local boost between the two geodesics as they
intersect v(R). In this way, their relative boost determines whether these geodesics are
pointing towards the future or the past respectively. Once this causal relation is chosen
locally, this fixes the global causal structure, as long as there is a causal relation between
v(A),v(R). Of course, if there is no global causal relation between these two surfaces, the
sign of spiy, will only give the local causal structure. We conjecture that this is also true
in higher dimensions: whenever there is the causal relation between the surfaces, the sign
of spin determines whether it is in the past or in the future, even if Sg(A) # % in the
absence of constant-boost constrained surfaces. In the case where the is a constant boost
surface, we expect that sy, is the value of the local boost.

In this section we will explore the modular minimal entropy in two example systems: a
bulk calculation in the Vaidya geometry and a boundary calculation in a free fermion model.

- 11 -



4.1 Vaidya geometry

An interesting example of time-dependent spacetime is matter collapsing and forming a
black hole. In holographic theories, this process is dual to the thermalization process in the
boundary CFT (see [6, 21, 25, 26] for some references). In this section, we will investigate
the collapse of a spherically symmetric, infinitely thin shell of massless particles in 2+1
dimensional AdS spacetime, creating a BTZ black hole. We will focus on the behavior of
the constrained surfaces in this geometry, which are then dual to the modular minimal
entropies in the thermalization process by our proposal. The metric of the spacetime is
given by
ds® = — f(v,r)dv? + 2dvdr + r*d¢?, (4.2)
where v is the ingoing time.
flo,r)=r*4+1- 0(2})(7“_2F +1), (4.3)

with #(v) the Heaviside step function. For convenience, we have set the AdS radius of
curvature Lags = 1. The infinitely thin shell locates at v = 0. Inside the shell (v < 0),
the spacetime is pure AdSs, while outside the shell (v > 0), the spacetime is given by the
BTZ black hole metric, with event horizon of radius r. Inside the shell, the static time ¢
is given in terms of v and r by

t:v—tan_1r+g. (4.4)
Let » — 00, we find t, = v being the boundary field theory time coordinate, and the thin

shell starts to fall in at t = 0.
The geodesic equations for spacelike geodesics are:

L =r?%p, (4.5)
E= f(’l),?“)?'} =7,

.2 2 L?

r°=E° — <7"2 — 1> f(v,r). (4.7)

The geodesics whose endpoints lie at equal time on the boundary are studied in [27, 28] in
detail. However, in general, the constrained surfaces are not constituted of geodesics with
endpoints at equal times. Suppose we are looking at the constrained surface of boundary
region A, denoted by yr(A), that is constrained to cross the HRT surface v(R) of boundary
region R once. yr(A) will be the union of two pieces of geodesics vr(A)r and Yr(A)rg,
joined on y(R), with extremal total length.

To do this calculation, we first pick a point P on «(R), then find the geodesics yYr(A4)r,
and vYgr(A)R connecting P to the boundary points of region A, then do the minimization
of the total length with respect to the position of P. In the examples, we choose the
horizon radius r4 to be equal to the AdS radius. When we calculate the length of the HRT
surface or the constrained surface, we need to subtract the divergent part 2log 2r,. In the
following, we will show two examples, one with |A| < |R|, and the other with |A| > |R|.
For the special case of |A| = |R|, since there is a spatial Z; symmetry interchanging A and
R, the HRT surfaces v(A) and v(R) always cross, so that the constrained surface has the
same area as the HRT surface |yr(A)| = |y(4)|.
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Figure 8. (a) Choice of the regions A and R. (b) Lengths of the HRT surfaces |y(A)| and |y(R)|
as functions of time.

1. The |A| < |R| case. In this example, we choose |A| = 7/3, |R| = 57/6 and
|JAN R| = w/12 (as shown in figure 8a). In figure 8b, we also calculated the geodesic
lengths of HRT surfaces |y(A)| and |y(R)|, which grows as functions of t. According to the
HRT proposal, this growth captures the growth of the entanglement entropies in boundary
field theory in the thermalization process. Note that the entanglement entropy of larger
region saturates later. In the bulk, the saturation happens when the HRT surface no longer
crosses the shell and lies entirely in the BTZ part. Thus, when the entanglement entropies
of both regions saturate, the two HRT surfaces will both lie in the static BTZ part of
the spacetime, and thus cross each other, in which case the constrained surface coincides
with the HRT surface. Before this time, the constrained surface is different from the HRT
surface, and their lengths have a finite difference §|y(A)|. The difference is computed and
plotted in figure 9.

In figure 9, there are four special points marked by 1 2 3 4, which can help us understand
the behavior of the various surfaces. When ¢ < t1, the three surfaces y(A4), vr(A), v(R)
all cross the infalling shell v = 0. After time t;, the crossing point P moves outside the
shell. After ty the constrained surface yr(A) starts to lie entirely in the BTZ part, while
the HRT surface y(A) still crosses the shell until ¢3. t4 is the time after which v(R) does
not cross the shell anymore, and thus d|v(A)| = 0.

To get a sense of what the constrained surface yg(A) looks like, in figure 10, we provide

two examples corresponding to two different times. In the left figure, all three surfaces cross
the shell, while in the right figure, only the HRT surface v(R) crosses the shell.

One can intuitively see from figure 10 that in both cases, time orderings can be defined
among the surfaces, as the HRT surface (A) lies in the past of both the HRT surface v(R)
and the constrained surface yr(A).

In the Vaidya spacetime example, if |A| < |R|, we have y(R) € J"[y(A)] and yr(A) €
JT[y(A)]. We will compare this property with the sign of the minima of modular evolution
in the field theory example.
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Figure 9. d|v(A)| = |v(4)| — |vr(A)] as a function of time.

Y

(a) t =04 (b) t = 0.7

Figure 10. In the figures, the blue cylinder represents the asymptotic boundary, the orange cone
denotes the infalling shell and the yellow circle denotes the constant time slice of the boundary.
The HRT surfaces v(A) and v(R) are in color blue and black. The constrained surface yr(A) is
the union of the red curve and the green curve.

2. The |A| > |R| case. In this example, we choose |A| = 77 /12, |R| = /4 and |[ANR| =
7/12 (as shown in figure 11a). In figure 11b, we also calculated the geodesic lengths of HRT
surfaces |y(A4)| and |y(R)|. In this case, the length of v(A) saturates later than v(R).

We computed the difference between |yr(A)| and |y(A)|, as shown in figure 12. The
dependence on time has similar form as the previous case. In the plot, there are three
special points marked by ¢1 23, whose meanings are different from the previous example.
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Figure 11. (a) Choice of the regions A and R. (b) Lengths of the HRT surfaces |y(A)| and |y(R)|
as functions of time.
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Figure 12. 6|v(A)| = |7(A)| — |7r(A)| as a function of time.

When ¢ < t;, the three surfaces 7(A), 7r(A4), 7(R) all cross the shell v = 0. After time
t1, the crossing point P moves outside the shell, and after t5 the HRT surface v(R) lies
entirely in the v > 0 region, i.e. the BTZ part. At time t3, yr(A) and y(A) become the
same surface, and come out of the shell at the same time.

In figure 13, we provide two examples corresponding to two different times. The left
figure corresponds to earlier time when all three surfaces cross the shell. The right figure
corresponds to later time when the HRT surface v(R) lies entirely outside the shell.

As can be seen from figure 13, in the Vaidya spacetime example, if |A| > |R|, we have
v(R) € J7[v(A)] and yr(A) € J7[7(A)]. The time ordering is reversed comparing to the
case when |A| < |R|.

Intuitive explanation

We believe that the result here is not specific to the particular solution and is a generic
feature of chaotic system after a global quench. For a system obeying the eigenstate
thermalization hypothesis (ETH) [29, 30], we can understand this result based on the
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(a) t = 0.4 (b) t = 0.7

Figure 13. In the figures, the blue cylinder represents the asymptotic boundary, the orange cone
denotes the infalling shell and the yellow circle denotes the constant time slice of the boundary.
The HRT surfaces v(A) and v(R) are in color blue and black. The constrained surface yr(A) is
the union of the red curve and the green curve.

following argument. For small enough R, ETH tells that pr ~ e #. On the boundary, if
the system is undergoing a thermalization process, a negative modular parameter sy, < 0
corresponds to evolving backward in time, which lowers the entropy. In the bulk, we will
see in the Vaidya spacetime example, for |R| < |A|, we have Xp € J~[X4].

4.2 Free fermions

In holographic theories, our proposal relates the modular minimal entropy of boundary
theory to a geometrical object, the constrained surface in the bulk. For theories without
a gravity dual, we do not expect the geometric picture to hold. Nevertheless, it remains
an interesting question to study the behavior of modular minimal entropy. To gain some
insight beyond holographic theories, in this section, we study the modular minimal entropy
in a simple model of free fermions on a lattice.

We put the fermions on a one-dimensional lattice of length L, with the end of the
lattice attached to the beginning and forms a loop. The Hamiltonian of the free fermion
lattice system is written in a tight binding form

H=-— Z c;-rcj + mZ(—l)ini, (4.8)
(ig) i

where n; = c;rci. The Hamiltonian contains a hopping term (with hopping constant set
as one) between nearest neighbor sites and a staggered potential. The staggered potential
opens up a gap in the band, and gives the fermions a mass. We first prepare the system in
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ground state of non-zero mass m, and at half filling. The Hamiltonian can be diagonalized in
momentum space as H = >, Ek+d£+dk+ + Ek_dl_dk_ with Eyy = £4/m? + 4 cos? g
di+ are superpositions of ¢; that annihilate fermions in the upper and lower bands, respec-
tively. The ground state is

) = |GS) = HdT lvac) . (4.9)

At time t = 0, we quench the system by switching off the fermion mass m. The evolution
of the system is reflected in the evolution of the operators dz_ (t), i.e.,

H dT t) lvac) . (4.10)

For states having the form of (4.10) that Wick theorem applies, the reduced density matrix
of a subsystem can be calculated through correlation functions (see for example [31]). The
reduced density matrix of region R can be written as

pr(t) = —exp Z Hp zchc] , (4.11)
,JER

where Zg is a normalization factor, and matrix Hpg is determined by

1-C
HE =log [ —— ). 4.12
F=tox (1) (1.12)
In the equation, T" means transpose and C' is the correlation matrix defined as

Cij = (W(t)| cle; [ (t)) . (4.13)

We can further use the reduced density matrix to calculate the entanglement entropy
S(R). After the quench, the entanglement entropy S(A) of region A will increase and then
saturate at a maximum value?® (see figure 14).

Due to the quadratic form of the modular Hamiltonian, if we use pr(t) to do a modular
flow on the system,

p(t.s) = pii [0 () (W (O] pR™ = [¥(t, 5)) (Wt 5)] (4.14)

the form of the state |y (¢, s)) is preserved as
s)) = [[ di_(t ) lvac) . (4.15)
k

Thus the above method of calculating reduced density matrix still applies.
Before we study how the modular minimal entropy behaves after the quench, we can
first look at how the modular flow changes the entanglement entropy in the initial state.

3Tt should be noted that the free fermion system is integrable, such that the entropy saturation only
lasts for a short time proportional to L —|A|, in contrast to thermalizing system (such as the dual of Vaidya
geometry we studied in previous subsection), which stays in equilibrium for exponentially long time.
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5 10 15
Figure 14. The entanglement entropy of a region grows with time and approaches an equilibrium.

In the plot, the size of the total system is L = 202, and the size of the subsystem is |A| = 6. Fermion
mass m = 1/100.

Sa(p(sr))

16

Figure 15. The entanglement entropy of region A as a function of the modular parameter sg. (a)
t = 0 (before the quench). (b) t = 2 (after the quench).

In the numerics, We choose m = 1/10, fix the total size of the system being L = 202, and
choose regions A and R with |A| = 6, |R| = 10, |[A N R| = 3. The entanglement entropy
of region A as a function of the modular parameter s is shown in figure 15(a). From
the figure, we can see that s = 0 corresponds to a local minimum of the entanglement
entropy, which is expected since the ground state preserves time reversal symmetry. After
the quench, the local minimum position sy, will be shifted away from zero, as shown in
figure 15(b).

After the quench, the modular minimal entropy of region A will grow, similar to
the behavior of the entanglement entropy. We focus on the difference §S(A) = S(A) —
Sr(A), which, as shown in figure 16, increases and then decreases. As entropy reaches
the saturation value, §S(A) returns to zero, which is qualitatively the same as the Vaidya
geometry case. Another quantity that we are interested in is the modular parameter s
at the minimum, which we denote as spyi,. When sy, is small, by taking a quadratic

approximation around the s = 0 curve we see that §S(A) s?nin at lowest order. spin as a
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Figure 16. In the plots, m = 1/10, L = 202, and |A| = 6, |R| = 10, |]ANR| = 3. (a) §S(A) —t
curve. (b) spin — t curve.
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Figure 17. (a) |[A| = 6,|R| = 10,|ANR| = 3, (b) |A| = |R| = 2|[ANR| = 10, (¢) |A] = 18,
|R| = 10,]ANR| =9. m =1/100 and L = 202 are chosen. As the figure shows, Spin is positive
when |A] < |R|, negative when |A| > |R|, and stays zero when |A| = |R).

function of ¢ is shown in figure 16(b). The oscillations in the figure is a result of the finite
bandwidth (UV cutoff) of the system. For small perturbation m < 1, we can expand Spin
in terms of m. since Smin is odd under the Z5 transformation m <+ —m, we have Spin o< m?2,
and thus 05(A) oc m*.

In the above example, |A| < |R|, and we observe that spyin > 0. In figure 17, we show
that the sign of smin changes when the order of |A| and |R| switches, just like the Vaidya
case. When |A| = |R|, smin stays at zero as expected.

5 Discussion

5.1 Modular flow with multiple nested regions

As explained, given a region A, we generically expect a non-trivial modular minimal en-
tropy with respect to R as long as R, A are partially overlapping. As a generalization, we
can constrain p4 with respect to a nested set of subregions R = {Ry, Ra,..., Ry}, with
R; C Ri;1 (see figure 18). To obtain a nontrivial result, each of the regions should have
non-trivial overlap with A and its complement. According to ref. [7], the entanglement
wedge of R; are also nested in the bulk, and, because of this nesting, the bulk constrained
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Figure 18. Illustration of a constrained surface (red dashed curve) that is extremal except at
intersections with multiple HRT surfaces y(R;) (blue curves), with nested regions R;.

surface will remain space-like.? In this way, we can defined the R-modular minimal entropy:

Sr(A) = ming, Sa(p(sr)) = Vfcgi)‘ > ’Téi” (5.1)

where

[Yp(sp)) = e Kmsm e 252671 KAS1 )y (A) =ming(g,) (Ro)y(R))Y, O7V=0A (5.2)

and 7 (A) is the constrained surface at constant boost angle. In this case sg = (s1,. .. Sm)
is a vector whose values are such that they minimize the entropy. There are many directions
in which one could explore this R-modular minimal entropy, such as taking the continuum
limit or understand other orderings, which we leave for future work. In the next subsection,
we will explore the case of two regions R = {Rj, Ra}, where there seem to be some
interesting inequalities.

5.2 Strong subadditivity-like inequalities for 2-modular minimal entropies

An interesting direction to explore this further is to consider modular evolution with re-
spect to two regions Rp, Ro. In this situation, we will have 4 bulk surfaces of interest:
Y(A),v1(A),v2(A),v12(A) (see figures 19, 20), for simplicity of notation we will keep track
of the constraining surface by a subindex and 12 means that it is constrained to go through
both R; and R».

Here, we would like to understand whether there is some relation between these four
surfaces. As has been discussed, we expect that v(R;),v(R2) will be past/future related
with y(A): either y(R1),7(R2) € JH[y(A)] or v(R1) € J*[y(A)],v(R2) € JTy(A)].°

*If we considered an arbitrary ordering of the regions, the constrained surface will have kinks and become
time-like.

5Where, by this causal relation between surfaces, we mean that causal relation between Cauchy surfaces
that include them, as in section 4.
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Figure 19. This is the case for constructive interference. In the right figure we see how we can
apply the strong subadditivity (SSA) proof to this situation by projecting the surfaces 1,2 to the
same slice where v, v12 are. We recombine the projected surfaces 4; and 7, into the dashed part
and the dotted part, then the length of the dashed part is less than -, while the length of the dotted
part is less than ~is.

In the boundary these two cases differ by the relative sign of 51 min, S2,min. When we
do the combined modular flow, we expect the signs of sy, to interfere constructively or
destructively, depending on whether they are the same or different. Let us analyze these
two cases from the bulk point of view, illustrated by figures 19, 20, respectively.

Constructive interference (same signs of smin)

When we have that y(R;),v(Rs) € J¥[y(A)], since we expect constraining to preserve
the ordering (see previous section ), we have that v1(A),72(A),y12(A) € JE[y(A)]. This
implies that we can construct a time-like surface 7 where y(A),v12(A) lie. We can project
v1(A) and y3(A) to surface T as 41(A) and A2(A), which because of maximin will have
larger area: 71(A4) < 41(A) and v2(A) < F2(A). In this time-like surface where all these
four surfaces intersect we can apply the arguments of [7, 32] (but with an opposite sign
since these are maximal surfaces in 7)) where we think of y12(A) + v(A) as the sum over
the areas of two surfaces which have the same boundary conditions as v;(A),v2(A) (see
figure 19). We conclude that

V(A) +72(4) > F1(A) +72(4) > 71(A) +12(4) (5.3)
which we can write in terms of boundary quantities when g = ’yE:
S(A) = Sk, (A) > Sgy(A) = Spy,Ry(4) 20 (5.4)

This expression suggests that by adding further constraints in a constructive way (with the
same sign of spiy), we can reduce the entropy further.

Destructive interference (different signs of spyin)

In the opposite case, since y(R1), 7(R2) are in opposite orderings with respect to v(A),
this implies that 1 (A) € J¥(y2(A)). Note that, in contrast with the previous case, where
~v12(A) was in the future or past of v(A) (and thus one could set a time-like surface
that interpolates between them), in this case, there is a time-like surface T where all

- 21 —



Figure 20. This is the case for destructive interference. In (b) we see how we can apply the
SSA proof to this situation by projecting the surfaces 12 to the same slice where 1, v2, 7y are. We
recombine y and the projected surface 712 into the dashed part and the dotted part. The length of
the dashed part is less than 75 and the length of the dotted part is less than ;.

71(A),72(A),v(A) lie. Therefore, the construction goes in the opposite way: we should
project y12(A) to T, 12(A) > v12(A) and then divide v(A),v12(A) into two surfaces with
less area than 71 (A),v2(A) (see 20). We obtain:

Y1(A) +72(A4) > 7(A) + 12(A) (5.5)

which we can write in terms of boundary quantities when yg = 75
SRQ (A) - 511"_311{2 (A) > S(A) - 531 (A) >0 (5'6)

This equation shows that adding the extra constraint on Ry decreases the entropy reduction
by constraint on R;.

At this point it is not clear to us if these inequalities are purely information theo-
retical or are only true for holographic theories, as for the positivity of tripartite mutual
information [33].

5.3 Relation to the entanglement of purification

The entanglement of purification is a function of two overlapping subregions A, R. It is
defined by minimizing the entropy of A over all states in the Hilbert space that have the
same density matrix in R:

Ep(R, A) = min, _ 0150515 (Pa,5) (5.7)

In comparison, our modular minimal entropy is obtained from a constrained minimiza-
tion, where we only minimize with respect to states generated by the modular flow of R
and not all states that preserve the density matrix. Therefore, by definition, it satisfies:

Ep(R, A) < Sr(A) (5.8)

In [34, 35], a holographic proposal for this quantity was put forward,® in terms of the
minimal surface anchored to v(R) which could be in principle extended to end in A, but

SNote that we are using an equivalent but different notation, more suited to compared it with the
modular minimal entropy. In our notation Rous = AU B, Aours = AU A’} Rours N Aours = A.
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does not intersect with the complement of the entanglement wedge of R (so this surface
only ends in the boundary if A N R # 0). Our bulk construction has some similarities,
but in our case, the surfaces are always anchored to the boundary. While one could try
to get something similar to the entanglement of purification by averaging our modular
minimal entropies over boundary regions, this procedure is not completely satisfactory. In
particular, from our perspective it is not clear how one could get rid of the boundary UV
divergences using modular flow.

Based on the conjecture of refs. [34, 35] on entanglement of purification and our con-
jecture on modular minimal entropy, we can geometrically derive the following inequality:

since Ep(R, A) + Ep(R, A) describes an extremal surface that ends in A and intersects
v(R), but the respective contributions from the entanglement wedge of R, R don’t have to
be glued along «(R). Therefore this area can clearly be made lower than the constrained
surface, which is connected along v(R).

5.4 Higher dimensions

While we have mainly focused in d = 2, we believe our conjecture holds in higher dimen-
sions: with a precise equality when there exists a constant boost constrained surface and
an inequality when there is none. It would be nice to have a proof of the modular minimal
entropy formula in higher dimensions, which would require understanding twist operators
in higher dimensions, maybe along the lines of [36, 37].

It would be interesting to explore further how the modular evolved states |¥(sg))
change the divergence structure of S4. We expect that this divergence structure is de-
termined by geometric invariant terms in the codimension-3 surface A N IR and that
such terms are subleading to the area law divergence. These divergences were studied for
singular space-like corners in [22].

A related aspect that would be nice to understand is to look for a boundary interpre-
tation for the constrained surfaces without a constant local boost angle, and to give a more
formal proof of its boundedness by the modular minimal entropy.

5.5 Quantum corrections

From the boundary definition of this object, the quantum (1/N) corrections are com-
pletely well defined. Following [38], the bulk quantum correction corresponds to the bulk
entanglement entropy in the [t)(smin)) state. This contribution, while well defined, would
require understanding the dual to the modular evolved state (as opposed to the entropy
of A in this state), maybe using the discussion of [39]. Furthermore, given that bulk and
boundary modular flow are the same, one might be able to compute these quantum cor-
rections directly from bulk modular evolution. In other words, the equality between bulk
and boundary modular flow seems to naturally imply:

>

_ A _
Sr(A) = %Nﬂ + Spulk,r (Zajr), 0¥ar = AU (A) (5.10)
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the constrained area at constant boost plus the bulk modular minimal entropy.
Spuler (2 A|r) is the bulk entropy of the “constrained homology hypersurface” 3 4 (the
region between the constrained surface and A) after evolving with the modular flow in the
entanglement wedge of R, r. Of course, whether one computes these quantum corrections
from the bulk entropy of the dual of the modular evolved the state or by computing bulk
modular minimal entropy in the original state, one should get the same answer.

In this way, classical and quantum contributions combine even if the bulk surface
is not extremal, but the bulk quantum contribution is not simply a bulk entanglement
entropy. So our work doesn’t shed light on the definition of the “generalized entropy”
A + Spux for non-extremal surfaces. Since that structure seems crucial for subregion-
subregion duality [9], this doesn’t give any evidence for subregion-subregion duality in
the “constrained entanglement wedge” corresponding to yr(A) (defined as the domain of
dependence of ¥ 4|).

This gives us a new perspective in the interpretation of syi,: in the bulk, the diver-
gences of the entanglement entropy renormalize G . However, it seems unlikely that any
renormalization scheme can get rid of divergences arising from kinks. In order for a bulk
quantity to have a clear boundary interpretation, it should be bulk divergence free. In this
way, the bulk modular minimal entropy should not have these extra divergences and thus
Smin can be interpreted as the local boost necessary to not have a kink along yr(A). If the
constrained surface yr(A) doesn’t have a constant boost angle along (R), the naive bulk
definition of the modular minimal entropy can’t be made kink divergence free and thus
there can not be a well defined boundary quantity dual to it.

As an example, consider the thermofield double state (figure 4(c)). The quantum
corrections to the modular minimal entropy will be given by the entanglement entropy
in the entanglement wedge of A;(—2tg) (which is bounded by the red surface). This is
not the same as the entanglement entropy in the region between the constrained surface
vr(A¢) (purple surface) and A, this is easy to see because since yr(A;) has a kink, the
bulk entanglement entropy between this surface and A; will have a divergence arising from
the kink which is clearly not physical. In this case, the bulk modular minimal entropy is
minimized by getting rid of the kink (since this gives rise to a bulk divergence) and thus
we get the bulk entropy in the entanglement wedge of Ai(—2tR).
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