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Abstract: In holographic duality, the entanglement entropy of a boundary region is pro-

posed to be dual to the area of an extremal codimension-2 surface that is homologous to

the boundary region, known as the Hubeny-Rangamani-Takayanagi (HRT) surface. In this

paper, we study when the HRT surfaces of two boundary subregions R,A are in the same

Cauchy slice. This condition is necessary for the subregion-subregion mapping to be local

for both subregions and for states to have a tensor network description. To quantify this,

we study the area of a surface that is homologous to A and is extremal except at possi-

ble intersections with the HRT surface of R (minimizing over all such possible surfaces),

which we call the constrained area. We give a boundary proposal for an upper bound of

this quantity, a bound which is saturated when the constrained surface intersects the HRT

surface of R at a constant angle. This boundary quantity is the minimum entropy of region

A in a modular evolved state — a state that has been evolved unitarily with the modular

Hamiltonian of R. We can prove this formula in two boundary dimensions or when the

modular Hamiltonian is local. This modular minimal entropy is a boundary quantity that

probes bulk causality and, from this quantity, we can extract whether two HRT surfaces

are in the future or past of each other. These entropies satisfy some inequalities reminiscent

of strong subadditivity and can be used to remove certain corner divergences.
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1 Motivation

In holographic duality [1–3], the Hubeny-Rangamani-Ryu-Takayanagi (HRT) formula [4–6]

SA =
|γ(A)|
4GN

(1.1)

relates the entanglement entropy of a boundary region A to the area of the extremal surface

γ(A) that is homologous to A. The HRT formula was originally proposed for geometries

with time translation symmetry, where extremality implies minimality on the preferred

Cauchy slice in the bulk. The extremal surface, known as the HRT surface, can also be

defined by a maximin procedure [7]: one can first find the minimal surface γ(A)|Σ ∈ Σ

in a given Cauchy surface Σ which includes region A in its intersection at the boundary.

Then the actual HRT surface is obtained by varying Σ and find the maximum of the area

of γ(A)|Σ. In this procedure it is clear that the extremal surface is always a saddle surface,

the area of which increases upon variations along space-like directions, and decreases upon

variations along time-like direction.

The HRT formula uncovers an intrinsic connection between spacetime geometry and

quantum entanglement. In gravity, there is no fundamental meaning to any particular bulk
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Figure 1. Illustration of HRT surfaces for different boundary regions. (a) For a state with time

reflection symmetry, all HRT surfaces of different boundary regions lie in the same bulk slice, so

that HRT surfaces of boundary overlapping regions must intersect. (b) For a generic boundary

state defined by a boundary Cauchy slice, the HRT surfaces of two overlapping regions R and A

generically cannot be included in any bulk Cauchy slice, if they are time-like separated.

slice: different slices are all gauge equivalent. However, the HRT surface corresponding to a

boundary subregion lives in a proper subset of all possible gauge equivalent bulk slices. This

is a surprising property which suggests that when focusing on boundary subregions, not

all bulk Cauchy slices are equally preferred. As has been discussed in [8], the HRT surface

defines the entanglement wedge a as the bulk domain of dependence of an achronal bulk sur-

face (known as a homology hypersurface) whose boundary is A ∪ γ(A). The entanglement

wedge plays an important role in subregion-subregion duality: the algebra of bulk operators

localized in the entanglement wedge a is encoded in the boundary region A [9, 10]. When

all HRT surfaces lie in the same bulk Cauchy slice, there is a preferred bulk slice where this

mapping between bulk and boundary subregions acts locally (figure 1(a)). However, generi-

cally, we expect that for two overlapping boundary subregions R,A, their HRT surfaces are

not in the same bulk Cauchy slice (i.e. they are time-like separated, see figure 1(b)). In this

situation, there cannot be a local description for both bulk algebras of operators in the same

Cauchy slice. In other words, the mapping from boundary operators in a region to bulk

local operators has to be different for R and A. This is reminiscent of the code subspace

story of [9]. The reason why reconstruction of bulk operators on the boundary is possible

is ultimately that bulk and boundary modular flows are the same [10–12] and, in this pa-

per, we will also see how this property of modular flow can be used to define a boundary

quantity that quantifies whether two HRT surfaces can be put in the same bulk slice.

An important motivation of studying whether HRT surfaces of different regions lie in

one bulk Cauchy slice comes from the tensor network picture. Since B. Swingle’s work [13]

there have been various proposals relating tensor networks to holographic duality [14–18].

Tensor networks are representations of many-body quantum states by contracting tensors

on a given graph. Some classes of tensor networks, such as random tensor networks with

large bond dimension in ref. [18] satisfy the RT formula for the entanglement entropy of any
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boundary region, where the area of a surface is defined as number of links intersecting the

surface. Therefore if we consider a state in a holographic theory for which all HRT surfaces

lie in a single bulk Cauchy slice, it is natural to compare it with a tensor network state

with a graph geometry that is obtained by discretizing the particular Cauchy slice. For

more generic states, the HRT surfaces for two intersecting regions on the boundary do not

intersect in the bulk, and therefore there is no natural choice of Cauchy slice for considering

a tensor network representation.1 The difficulty in a tensor network representation of such

states suggests that there shall be a quantum information measure of the boundary state

which probes whether the HRT surfaces for two regions in a holographic state intersect or

not. Finding such quantum information measure will help improve our understanding on

the relation of bulk dynamics and boundary entanglement structure.

To look for a measure of this property, we first quantify the difference between in-

tersecting and non-intersecting HRT surfaces by defining a constrained extremal surface

γR(A), which is homologous to a region A and is allowed to intersect the HRT surface

γ(R) of the other region R, if this can reduce its area. The area difference between the

constrained surface and the actual HRT surface, |γ(A)| − |γR(A)|, is a measure of how far

away (in time) γ(A) and γ(R) are from each other. We propose a boundary dual of this

difference, which is an entropy reduction by modular flow. More precisely, when we have

constrained surfaces that intersect γ(R) at a constant boost angle we will have a precise

boundary quantity that equals the area of γR(A), and more generally, it will be an upper

bound. We will provide more details of the definition later, but the basic idea is that by

modular evolving the state with respect to region R, i.e. by applying a unitary operator

that is defined as ρisR to the state, the entropy of region A can be reduced, and the min-

imal entropy obtained by varying the modular flow time s is proposed to be dual to the

constrained extremal surface area (divided by 4GN ).

The remainder of the paper is organized as follows: in section 2, we elaborate on

the constrained area and its conjectured boundary dual — the modular minimal entropy.

Section 3 exposes the evidence for this proposal. In section 4, we give some examples and

applications of the formalism. We conclude with section 5, where we comment on possible

extensions and further applications of our results.

During the completion of this work, we became aware of [19] which has some partial

overlap with the results of this paper.

2 Proposal

To begin with, we would like to propose a bulk quantity which quantifies whether two HRT

surfaces, γ(R), γ(A) (corresponding to boundary regions R,A on a boundary Cauchy slice)

can be in the same bulk slice. As shown in [7], if R ∈ A (or R ∈ Ā), this is always possible

(entanglement wedge nesting). The non-trivial case is then when R,A have some partial

overlap. In this case, if the HRT surfaces do not intersect, they necessarily cannot be put in

the same bulk slice. In the rest of the paper we will say that two codimension-2 surfaces are

1More precisely, one can always describe such a state with a tensor network, but the geometrical entropy

upper bound will not be saturated for at least one of the two regions considered.
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Figure 2. Illustration of the definition of constrained surface γR(A). (a) When A and R do not

overlap, it is always possible to fit γ(A) and γ(R) in the same Cauchy slice, so that any constrained

surface γ (red dashed curve) that is extremal everywhere except for the intersection with γ(R) will

have an area bigger than γ(A). (b) When A and R overlap, it is possible to have a constrained

surface with smaller area than γ(A), in which case this surface is γR(A) (see text).

space-like separated when they can be put in the same Cauchy slice and time-like separated

when there does not exist a Cauchy slice which contains both surfaces. In this way, we

want to consider a new geometric object: the constrained extremal surface, defined as the

bulk extremal surface which is homologous to A and can intersect γ(R) (as long as this

minimizes the area):

γR(A) ≡ min|γ|{γ is extremal except across γ ∩ γ(R), ∂γ = ∂A} (2.1)

In other words, the constrained extremal surface γR(A) has zero trace of the extrinsic

curvature everywhere in the bulk expect at possible intersections with γ(R). It is not

required to intersect with γ(R), and in particular the original extremal surface γ(A) also

satisfies the condition in eq. (2.1). Among all surfaces satisfying the condition in eq. (2.1),

the constrained extremal surface is the one with the smallest area. This definition is

illustrated in figure 2. If γ(A), γ(R) are space-like separated, they can be put in the same

Cauchy slice, so that any constrained surface γ that satisfies eq. (2.1) and intersects γ(R)

must have a bigger area than γ(A). Therefore in that case γR(A) = γ(A). In contrast, if

γ(A) and γ(R) are time-like separated, there exists a constrained surface with nontrivial

intersection with γ(R) with a smaller area than γ(A). The intersection is generically a

codimension-3 surface in the bulk.

We could also give a maximin definition as in [7], where the Cauchy slices are forced to

contain γ(R), but we find the above definition better because it is more local. By construc-

tion, |γ(A)|−|γR(A)| ≥ 0, and the inequality saturates if γ(A), γ(R) are spacelike separated.

We expect that the constrained surface is non-trivial even if ∂A ∩ ∂R is non-empty

(which is generic in more than 2 dimensions). Even if these surfaces intersect in the

boundary, they generically will not have additional intersections in the bulk. As we will
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Figure 3. Example of a situation with ∂A∩ ∂R = ∅ when the boundary dimension is (2 + 1). The

HRT surface of A = A1 ∪A2 is also drawn schematically.

discuss later, the difference between the constrained area and the original area in this case

can be divergent. In higher dimensions, we can also have ∂A ∩ ∂R = ∅ and, in these

situations, we do not expect the divergence structure to change: some examples of these

higher dimensional situations are two strips or A being two spheres A1, A2 and R a bigger

sphere surrounding A1 (see figure 3).

In order to have a precise boundary dual, we would further want to restrict to the

constrained surfaces that intersect γ(R) at a constant boost angle:

γ>R (A) = min|γ|{γis extremal except having constant boost angle across γ ∩ γ(R), ∂γ = ∂A}
(2.2)

For a generic γ(R), at any point where γR(A) intersects the surface, there will be an

incoming and an outgoing vector. The boost angle is defined by the inner product of the

projection of these vectors to the normal plane of γ(R) at that point. In d = 2 for one

interval, the constrained surfaces will all be at a constant boost angle. For multiple regions

in d = 2 and higher dimensions, it is not always guaranteed that there exists such a surface.

In the boundary, we expect that there is some quantum information quantity that

computes the area of the constrained surface, which we will call modular minimal entropy:

S̄R(A). Given our state |Ψ〉 and ρR, we can use modular evolution (evolution with the

logarithm of the density matrix) to obtain a one parameter family of states:

|Ψ(sR)〉 ≡ ρisRR |Ψ〉 (2.3)

Here sR is real, so that ρisRR is unitary.

For this family of states, we can compute the entanglement entropy of A, SA(ρ(sR))

and, in general, this entropy can be bigger or smaller than the original entropy (at sR = 0).

Our proposal is that the minimum of this object with respect to sR, which we call the

modular minimal entropy, is precisely the area of γ>R (A) divided by 4GN :

S̄R(A) ≡ minsRSA(ρ(sR)) =
|γ>R (A)|

4GN
(2.4)

This boundary definition of the modular minimal entropy trivially satisfies the condi-

tion S(A) − S̄R(A) ≥ 0. In the next subsection we will discuss how it is derived for two-

dimensional boundary theories and for the cases when the modular Hamiltonian is local.
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In the situations where there does not exist any non-trivial γ>R (A), we do not expect

S̄R(A) to have a bulk interpretation in the original geometry. However, as we will show in

d = 2 (for multiple regions) and we conjecture for higher dimensions, we generally expect:

S(A) ≥ S̄R(A) ≥ |γR(A)|
4GN

(2.5)

where γR(A) is the minimal constrained surface which does not necessarily intersect γ(R)

with a constant boost angle. Because of this, S(A) − S̄R(A) is still a good diagnostic of

whether the surfaces intersect: when they intersect, all inequalities will be saturated, and

we will necessarily have S(A) = S̄R(A) = |γR(A)|
4GN

.

A consistency check of this formula is the case where there is a Z2 time reflection

symmetry. In this case, in the bulk, the two surfaces will be in the same slice and thus

the minimum will be at zero modular parameter smin,R = 0. In the boundary, we can

check that sR = 0 is an extremum: around s = 0, we can use the first law of entanglement

entropy to derive ∂sSA(ρR(s))|s=0 = i〈[KR,KA]〉. The operator on the right-hand side is

odd in time reflection symmetry, and thus has to vanish in a reflection symmetric state.

3 Evidence

In this section, we will discuss two cases when proposal (2.4) can be verified. The first case

is in general dimension, when the modular Hamiltonian − log ρR is local. The second case

is for two-dimensional boundary theory with arbitrary regions (and states).

3.1 Local modular Hamiltonians

When the modular Hamiltonian is a local integral of the (CFT) stress tensor, modular

evolution is just Hamiltonian evolution and we can understand |ψ(sR)〉 explicitly. Two

known situations where this happens are when R is a spherical subregion in the vacuum

of a CFT (or the half-plane) or one CFT in the thermofield double state (TFD). In these

two cases, despite their simplicity we can get a non-trivial S̄R(A) 6= S(A).

Consider the time-evolved TFD state:

|TFD(t)〉 =
∑
i

e−(β
2

+it)Ei |Ei,L, Ei,R〉 (3.1)

The entropy of the right CFT is time independent and given by the thermal entropy

SR(t) = S(β). We would like to consider modular flow with respect to region R, which in

this case just corresponds to right time evolution: e−iKRsR |TFD(t)〉 = |TFD(t+ sR)〉.
We would like to define the modular minimal entropy for the union of two half-planes

on the left and right CFT: A = AL ∪ AR. First, in the |TFD(t)〉 state, the corresponding

HRT surface γ(At) is time dependent and goes through the interior of the black hole [20].

This surface is clearly not in the same Cauchy slice as the γ(Rt) which is the bifurcation

horizon (see figure 4). In this case, the modular minimal entropy is given by the area of

the surface that ends in ∂At and goes through γ(Rt). Because of the symmetries of the

problem, this surface has the same area as the HRT surface that goes between ∂AL,t and

– 6 –
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(a) (b) (c)

Figure 4. (a) We consider the situation of the |TFD(t)〉 state, where γ(At), γ(Rt) are not in the

same Cauchy slice. The constrained surface γR(At) crosses the bifurcation surface. (b) Modular

evolution shifts the endpoint of the HRT surface γ(At). The entanglement entropy S(A) after

the modular evolution can be calculated through the length of the shifted HRT surface. (c) The

shifted HRT surface reaches minimal length when it goes through the bifurcation horizon γ(Rt).

By symmetry, the area of this surface is the same as that of γR(At).

∂AR,−t. Due to boost invariance, this area is independent of t, so that |γR(At)| = |γ(At=0)|.
On the other hand, the minimization over modular flow clearly happens when sR = −2t,

so S̄R(At) = S(At=0) which coincides with the area of the constrained surface (see figure 4

for more details). In other words, in this case the modular flow minimizes entropy by

“undoing” the time evolution of the TFD state.

For spheres in the vacuum, the situation is pretty much the same. We want to divide

our system into four regions: AL, ĀL, AR, ĀR. The vacuum state in the original t = 0

surface does not have any interesting dynamics, but we can consider more time dependent

slice: e−iKRt|0〉 (or a more regular version of this). The two regions of interest are defined

as A = AL ∪AR, R = AR ∪ ĀR. The details do not matter too much as long as ∂R is held

fixed and ∂A is not in the time reflection symmetric t = 0 slice. In this case, γ(R), γ(A)

will not be in the same slice and thus γR(A) will be non-trivial. As in the TFD case, we

can think of the modular flow sR as moving the right endpoint of A, and the minimum will

be obtained when it aligns with the left endpoint of A (their HRT surface goes through

γ(R)). Then, because of symmetry this entropy will be the same as γR(A) and will be the

same as the entropy of A in the t = 0 surface (see figure 5).

3.2 Non-local modular flows for 2-dimensional holographic theories

Beyond the local case, modular evolution will be non-local and rather complicated. Gen-

erally, we do not know how to think about the bulk dual of the modular flowed state, but

as we will explain below, in two boundary dimensions we can still make some progress.

Let us start from the formula for the integral over modular flow for local heavy oper-

ators of dimension c� ∆� 1 from [12]:∫ ∞
−∞

dsR〈O(xL)ρ−isRR O(yR)ρisRR 〉ψ = maxz∈γ(R)e
−∆[d(x,z)+d(z,y)] (3.2)

This formula relates the integral over modular flow of the correlator of two local operators

in L,R with a geometric quantity: d(x, z∗) + d(z∗, y) is the minimal geodesic distance

– 7 –
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(a) (b)

Figure 5. The sphere in the vacuum situation is similar. In the figures, we show how it works in

AdS3. (a) The surfaces γ(A), γ(R) and γR(A) are in color red, blue and purple, respectively. (b)

The role of the modular flow is to move the right endpoint of A, x. The minimum is obtained when

x is shifted to x′ in the t = 0 slice. Because of the symmetries, the purple and red surfaces have

the same area.

between the two points x, y with the constraint that it has to go through γ(R), the HRT

surface dual to region R. In other words, the right hand side consists of the sum of two

geodesic distances between the boundary and the same bulk point in the HRT surface,

which is chosen in such a way that the total distance is minimized. The reason why this

formula is possible is that bulk and boundary modular flow are equivalent [11] and modular

evolution close to the HRT surface is constrained by locality. Since we expect the modular

evolved two point function to be exponentially suppressed in the mass of the heavy particle,

we also expect that, in this limit, the l.h.s. is dominated by some sR,min, which maximizes

the value of the correlator:∫ ∞
−∞

dsR〈O(xL)ρ−isRR O(yR)ρisRR 〉ψ ≈ 〈O(xL)O(yR, sR,min)〉ψ (3.3)

We are interested in the previous quantity because the Rényi entropies tr ρn are given

by the two point function of twist operators with dimension ∆n = c
12n2 (n2 − 1). The

entanglement entropy is obtained by taking one derivative of the n→ 1 limit of the twist

operators. A large c and n ∼ 1, the dimension of the operator will be O(c) but satisfies

∆n/c ∼ 0, so we can think of the twist operator as heavy but not backreacting operator [21].

In this way, we can obtain S̄R(A) from:

S̄R(A) = −∂n
∫ ∞
−∞

dsRe
−c(n−1)Sn(A,sR)|n=1

= −∂n
∫ ∞
−∞

dsR〈Tn(∂AL)eiKRsRTn(∂AR)e−iKRsR〉|n=1 (3.4)

– 8 –
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Figure 6. Situation when the constraint surface has two different boost angles and thus it is

different from S̄R(A).

where the first equality follows from taking the saddle point in the s-integral, which makes

it localize at a particular s (from c� c(n−1)� 1). Then, since to leading order in (n−1)

we can treat the twist operators as heavy but not backreacting local operators, we can

apply (3.2) to obtain:2

S̄R(A) =
c

6
|γR(A)| (3.5)

It should be noted that whenever ∂A ∩ R = ∅, by definition the entropy does not

depend on the modular flow (since the effect of the modular flow is only nontrivial when

one of the two operators experiences modular evolution). In the bulk, this is the statement

that when one of these constrained surfaces enters and leaves a disconnected component

of an entanglement wedge, there is no constraint in that region. Correspondingly, in the

bulk if the entanglement wedge of R has multiple disconnected components, the constraint

only depends on the component that has nontrivial overlap with ∂A, i.e. the ones where

the constrained surface γR(A) ends at the boundary.

3.3 An example with no constant-boost-angle constrained surface

In general, it may not be possible to find a constrained surface with constant boost angle

at the intersection. This occurs generically when γ(A) consists of multiple disconnected

surfaces. As an example, consider again the d = 2 case of the TFD state, but now with

R being the right CFT, AL being an interval at t = 0 in the left CFT and AR a boosted

interval, whose endpoints are at t = ±t0 respectively (see figure 6). γ(A) will consist of

two disconnected surfaces in this case: one will be in the future of γ(R) and the other in its

past. The constraint surface γR(A) will consist of two disconnected geodesics with different

boost angles. Because of the setup, there is no constant boost angle that can reach AR
from γ(R) and thus γ>R (A) does not exist.

2Using this expression is certainly justified when acting on states in the code subspace of low energy

states. Since modular flow acts in the code subspace, this approximation is well justified.
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In this situation, since the constrained surface γR(A) has two different boost angles,

it can be thought as minimizing the object

〈Tn(∂AL,1)eiKRs1Tn(∂AR,1)e−iKRs1〉〈Tn(∂AL,2)eiKRs2Tn(∂AR,2)e−iKRs2〉 (3.6)

independently with respect to s1, s2. When s1 = s2, this is SA(ρ(s1)), but when they are

different, it does not have a quantum information interpretation. Since this minimization

is less constrained than S̄R(A) it will necessarily be smaller:

S̄R(A) >
|γR(A)|

4GN
(3.7)

More generally, for multiply disconnected regions, we expect each disconnected compo-

nent of the modular minimal entropy will be determined by a different local boost param-

eter, which as discussed in [19] corresponds to a different value for s, even in the non-local

setup. So, we expect that S̄R(A) is generically an upper bound for the constrained area.

3.4 Divergence structure in higher dimensions

When the boundary dimension is two, the boundary of the two regions ∂A and ∂R are

isolated points. In higher dimensions, the boundary of the two regions can have nontrivial

intersection. For example figure 7 shows an example with (2 + 1)-d boundary. In that

case, modular evolution of region R introduces a kink at ∂R. From our definition of the

modular minimal entropy, if ∂A ∩ ∂R 6= ∅, the modular evolved state will have this local

kink. This means that this constrained surface can change the structure of UV divergence.

For example, if we have a half boosted sphere in flat space and we evolve with modular

flow, the modular minimal entropy will maximally reduce the entropy of the sphere (see

figure 7), getting rid of the corner term divergence. Whether modular flow introduces or

removes this kink depends on the sign of the divergence. Space-like corner contributions

to entanglement entropy have been the subject of extensive study [22–24], but to our

knowledge, the case where the corner angle is a boost has not been studied. Note that

because this kink happens near ∂R (which is kept fixed under modular evolution), the

change in the divergence structure of the entropy of A is universal: independent on the

state or whether the modular flow is non-local. While in the simplest situation γR(A)

only intersects γ(R) once, there can be more general situations with several connected

components of the entanglement wedge of R where γR(A) might be force to enter and leave

the entanglement wedge of R multiple times. Whenever a surface has to enter and leave

an entanglement wedge, the constraint is lifted. So, if we had two connected components

of the entanglement wedge r1, r2 and γR(A) had to exit r1 as well as enter and exit r2, we

would only constrain it as γR1(A).

4 Further examples and causal relations

When the HRT surfaces γ(R), γ(A) are not in the same Cauchy slice (i.e. S̄R(A) 6= S(A)),

γ(R) may intersect with the future domain of influence of γ(A), or the past domain of

influence, or both. In two boundary dimensions when γ(R) and γ(A) each have a single

– 10 –
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Figure 7. When ∂A ∩ ∂R 6= ∅, the modular flow can change the divergent structure. In this

example, we see how the modular flow can get rid of the kink of a half-boosted sphere.

component, it seems that there is a well-defined causal ordering between these two surfaces.

In other words, there exist γ(A) ∈ ΣA, γ(R) ∈ ΣR such that ΣR is either entirely in the

future or entirely in the past of ΣA: ΣR ∈ J±[ΣA]. We will leave the rigorous proof

for future works, and focus on the case when such a causal ordering between γ(R) and

γ(A) can be defined. One could wonder whether this causal structure has any implication

for γR(A). Since γR(A) ends in ∂A (as γ(A)) and has to intersect γ(R), we expect the

previous ordering to be preserved: ΣR ∈ J+[ΣA] implies that there exists some surface

γR(A) ∈ ΣA|R such that ΣA|R ∈ J+[ΣA] and similar when it is in the past.

Does this ordering have some boundary interpretation? We would like to conjecture

that, for the case of constant boost angle this is related with the sign of the minima of

modular flow:

ΣR ∈

{
J+[ΣA], if smin > 0

J−[ΣA], if smin < 0
(4.1)

It is easy to see how this works for the thermofield double, and other cases with local

modular flow. See figure 4 for an illustration: for positive t, we have γ(R) ∈ J−[γ(A)],

and we have smin < 0 on the boundary. In d = 2, where we have the argument in terms

of heavy twist operators, one can also understand how this works. As was shown in [19],

smin should be interpreted as the relative local boost between the two geodesics as they

intersect γ(R). In this way, their relative boost determines whether these geodesics are

pointing towards the future or the past respectively. Once this causal relation is chosen

locally, this fixes the global causal structure, as long as there is a causal relation between

γ(A), γ(R). Of course, if there is no global causal relation between these two surfaces, the

sign of smin will only give the local causal structure. We conjecture that this is also true

in higher dimensions: whenever there is the causal relation between the surfaces, the sign

of smin determines whether it is in the past or in the future, even if S̄R(A) 6= |γR(A)|
4GN

in the

absence of constant-boost constrained surfaces. In the case where the is a constant boost

surface, we expect that smin is the value of the local boost.

In this section we will explore the modular minimal entropy in two example systems: a

bulk calculation in the Vaidya geometry and a boundary calculation in a free fermion model.
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4.1 Vaidya geometry

An interesting example of time-dependent spacetime is matter collapsing and forming a

black hole. In holographic theories, this process is dual to the thermalization process in the

boundary CFT (see [6, 21, 25, 26] for some references). In this section, we will investigate

the collapse of a spherically symmetric, infinitely thin shell of massless particles in 2+1

dimensional AdS spacetime, creating a BTZ black hole. We will focus on the behavior of

the constrained surfaces in this geometry, which are then dual to the modular minimal

entropies in the thermalization process by our proposal. The metric of the spacetime is

given by

ds2 = −f(v, r)dv2 + 2dvdr + r2dφ2, (4.2)

where v is the ingoing time.

f(v, r) = r2 + 1− θ(v)(r2
+ + 1), (4.3)

with θ(v) the Heaviside step function. For convenience, we have set the AdS radius of

curvature LAdS = 1. The infinitely thin shell locates at v = 0. Inside the shell (v < 0),

the spacetime is pure AdS3, while outside the shell (v > 0), the spacetime is given by the

BTZ black hole metric, with event horizon of radius r+. Inside the shell, the static time t

is given in terms of v and r by

t = v − tan−1 r +
π

2
. (4.4)

Let r →∞, we find t∞ = v being the boundary field theory time coordinate, and the thin

shell starts to fall in at t = 0.

The geodesic equations for spacelike geodesics are:

L = r2φ̇, (4.5)

E = f(v, r)v̇ − ṙ, (4.6)

ṙ2 = E2 −
(
L2

r2
− 1

)
f(v, r). (4.7)

The geodesics whose endpoints lie at equal time on the boundary are studied in [27, 28] in

detail. However, in general, the constrained surfaces are not constituted of geodesics with

endpoints at equal times. Suppose we are looking at the constrained surface of boundary

region A, denoted by γR(A), that is constrained to cross the HRT surface γ(R) of boundary

region R once. γR(A) will be the union of two pieces of geodesics γR(A)L and γR(A)R,

joined on γ(R), with extremal total length.

To do this calculation, we first pick a point P on γ(R), then find the geodesics γR(A)L
and γR(A)R connecting P to the boundary points of region A, then do the minimization

of the total length with respect to the position of P . In the examples, we choose the

horizon radius r+ to be equal to the AdS radius. When we calculate the length of the HRT

surface or the constrained surface, we need to subtract the divergent part 2 log 2r∞. In the

following, we will show two examples, one with |A| < |R|, and the other with |A| > |R|.
For the special case of |A| = |R|, since there is a spatial Z2 symmetry interchanging A and

R, the HRT surfaces γ(A) and γ(R) always cross, so that the constrained surface has the

same area as the HRT surface |γR(A)| = |γ(A)|.
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(a)
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(b)

Figure 8. (a) Choice of the regions A and R. (b) Lengths of the HRT surfaces |γ(A)| and |γ(R)|
as functions of time.

1. The |A| < |R| case. In this example, we choose |A| = π/3, |R| = 5π/6 and

|A ∩ R| = π/12 (as shown in figure 8a). In figure 8b, we also calculated the geodesic

lengths of HRT surfaces |γ(A)| and |γ(R)|, which grows as functions of t. According to the

HRT proposal, this growth captures the growth of the entanglement entropies in boundary

field theory in the thermalization process. Note that the entanglement entropy of larger

region saturates later. In the bulk, the saturation happens when the HRT surface no longer

crosses the shell and lies entirely in the BTZ part. Thus, when the entanglement entropies

of both regions saturate, the two HRT surfaces will both lie in the static BTZ part of

the spacetime, and thus cross each other, in which case the constrained surface coincides

with the HRT surface. Before this time, the constrained surface is different from the HRT

surface, and their lengths have a finite difference δ|γ(A)|. The difference is computed and

plotted in figure 9.

In figure 9, there are four special points marked by t1,2,3,4, which can help us understand

the behavior of the various surfaces. When t < t1, the three surfaces γ(A), γR(A), γ(R)

all cross the infalling shell v = 0. After time t1, the crossing point P moves outside the

shell. After t2 the constrained surface γR(A) starts to lie entirely in the BTZ part, while

the HRT surface γ(A) still crosses the shell until t3. t4 is the time after which γ(R) does

not cross the shell anymore, and thus δ|γ(A)| = 0.

To get a sense of what the constrained surface γR(A) looks like, in figure 10, we provide

two examples corresponding to two different times. In the left figure, all three surfaces cross

the shell, while in the right figure, only the HRT surface γ(R) crosses the shell.

One can intuitively see from figure 10 that in both cases, time orderings can be defined

among the surfaces, as the HRT surface γ(A) lies in the past of both the HRT surface γ(R)

and the constrained surface γR(A).

In the Vaidya spacetime example, if |A| < |R|, we have γ(R) ∈ J+[γ(A)] and γR(A) ∈
J+[γ(A)]. We will compare this property with the sign of the minima of modular evolution

in the field theory example.
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Figure 9. δ|γ(A)| = |γ(A)| − |γR(A)| as a function of time.

(a) t = 0.4 (b) t = 0.7

Figure 10. In the figures, the blue cylinder represents the asymptotic boundary, the orange cone

denotes the infalling shell and the yellow circle denotes the constant time slice of the boundary.

The HRT surfaces γ(A) and γ(R) are in color blue and black. The constrained surface γR(A) is

the union of the red curve and the green curve.

2. The |A| > |R| case. In this example, we choose |A| = 7π/12, |R| = π/4 and |A∩R| =
π/12 (as shown in figure 11a). In figure 11b, we also calculated the geodesic lengths of HRT

surfaces |γ(A)| and |γ(R)|. In this case, the length of γ(A) saturates later than γ(R).

We computed the difference between |γR(A)| and |γ(A)|, as shown in figure 12. The

dependence on time has similar form as the previous case. In the plot, there are three

special points marked by t1,2,3, whose meanings are different from the previous example.

– 14 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
3

(a)

0.5 1.0 1.5 2.0 t

-2.0

-1.5

-1.0

-0.5

|γ|

|γ(A)|

|γ(R)|

(b)

Figure 11. (a) Choice of the regions A and R. (b) Lengths of the HRT surfaces |γ(A)| and |γ(R)|
as functions of time.

Figure 12. δ|γ(A)| = |γ(A)| − |γR(A)| as a function of time.

When t < t1, the three surfaces γ(A), γR(A), γ(R) all cross the shell v = 0. After time

t1, the crossing point P moves outside the shell, and after t2 the HRT surface γ(R) lies

entirely in the v > 0 region, i.e. the BTZ part. At time t3, γR(A) and γ(A) become the

same surface, and come out of the shell at the same time.

In figure 13, we provide two examples corresponding to two different times. The left

figure corresponds to earlier time when all three surfaces cross the shell. The right figure

corresponds to later time when the HRT surface γ(R) lies entirely outside the shell.

As can be seen from figure 13, in the Vaidya spacetime example, if |A| > |R|, we have

γ(R) ∈ J−[γ(A)] and γR(A) ∈ J−[γ(A)]. The time ordering is reversed comparing to the

case when |A| < |R|.

Intuitive explanation

We believe that the result here is not specific to the particular solution and is a generic

feature of chaotic system after a global quench. For a system obeying the eigenstate

thermalization hypothesis (ETH) [29, 30], we can understand this result based on the
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(a) t = 0.4 (b) t = 0.7

Figure 13. In the figures, the blue cylinder represents the asymptotic boundary, the orange cone

denotes the infalling shell and the yellow circle denotes the constant time slice of the boundary.

The HRT surfaces γ(A) and γ(R) are in color blue and black. The constrained surface γR(A) is

the union of the red curve and the green curve.

following argument. For small enough R, ETH tells that ρR ∼ e−βH . On the boundary, if

the system is undergoing a thermalization process, a negative modular parameter smin < 0

corresponds to evolving backward in time, which lowers the entropy. In the bulk, we will

see in the Vaidya spacetime example, for |R| � |A|, we have ΣR ∈ J−[ΣA].

4.2 Free fermions

In holographic theories, our proposal relates the modular minimal entropy of boundary

theory to a geometrical object, the constrained surface in the bulk. For theories without

a gravity dual, we do not expect the geometric picture to hold. Nevertheless, it remains

an interesting question to study the behavior of modular minimal entropy. To gain some

insight beyond holographic theories, in this section, we study the modular minimal entropy

in a simple model of free fermions on a lattice.

We put the fermions on a one-dimensional lattice of length L, with the end of the

lattice attached to the beginning and forms a loop. The Hamiltonian of the free fermion

lattice system is written in a tight binding form

H = −
∑
〈ij〉

c†icj +m
∑
i

(−1)ini, (4.8)

where ni = c†ici. The Hamiltonian contains a hopping term (with hopping constant set

as one) between nearest neighbor sites and a staggered potential. The staggered potential

opens up a gap in the band, and gives the fermions a mass. We first prepare the system in
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ground state of non-zero mass m, and at half filling. The Hamiltonian can be diagonalized in

momentum space as H =
∑

k

(
Ek+d

†
k+dk+ + Ek−d

†
k−dk−

)
with Ek± = ±

√
m2 + 4 cos2 k

2 .

dk± are superpositions of ci that annihilate fermions in the upper and lower bands, respec-

tively. The ground state is

|ψ〉 = |GS〉 ≡
∏
k

d†k− |vac〉 . (4.9)

At time t = 0, we quench the system by switching off the fermion mass m. The evolution

of the system is reflected in the evolution of the operators d†k−(t), i.e.,

|ψ(t)〉 =
∏
k

d†k−(t) |vac〉 . (4.10)

For states having the form of (4.10) that Wick theorem applies, the reduced density matrix

of a subsystem can be calculated through correlation functions (see for example [31]). The

reduced density matrix of region R can be written as

ρR(t) =
1

ZR
exp

−∑
i,j∈R

HR,ijc
†
icj

 , (4.11)

where ZR is a normalization factor, and matrix HR is determined by

HT
R = log

(
1− C
C

)
. (4.12)

In the equation, T means transpose and C is the correlation matrix defined as

Cij = 〈ψ(t)| c†icj |ψ(t)〉 . (4.13)

We can further use the reduced density matrix to calculate the entanglement entropy

S(R). After the quench, the entanglement entropy S(A) of region A will increase and then

saturate at a maximum value3 (see figure 14).

Due to the quadratic form of the modular Hamiltonian, if we use ρR(t) to do a modular

flow on the system,

ρ(t, s) = ρisR |ψ(t)〉 〈ψ(t)| ρ−isR = |ψ(t, s)〉 〈ψ(t, s)| , (4.14)

the form of the state |ψ(t, s)〉 is preserved as

|ψ(t, s)〉 =
∏
k

d†k−(t, s) |vac〉 . (4.15)

Thus the above method of calculating reduced density matrix still applies.

Before we study how the modular minimal entropy behaves after the quench, we can

first look at how the modular flow changes the entanglement entropy in the initial state.

3It should be noted that the free fermion system is integrable, such that the entropy saturation only

lasts for a short time proportional to L−|A|, in contrast to thermalizing system (such as the dual of Vaidya

geometry we studied in previous subsection), which stays in equilibrium for exponentially long time.
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Figure 14. The entanglement entropy of a region grows with time and approaches an equilibrium.

In the plot, the size of the total system is L = 202, and the size of the subsystem is |A| = 6. Fermion

mass m = 1/100.

(a) t = 0 (b) t = 2

Figure 15. The entanglement entropy of region A as a function of the modular parameter sR. (a)

t = 0 (before the quench). (b) t = 2 (after the quench).

In the numerics, We choose m = 1/10, fix the total size of the system being L = 202, and

choose regions A and R with |A| = 6, |R| = 10, |A ∩ R| = 3. The entanglement entropy

of region A as a function of the modular parameter sR is shown in figure 15(a). From

the figure, we can see that s = 0 corresponds to a local minimum of the entanglement

entropy, which is expected since the ground state preserves time reversal symmetry. After

the quench, the local minimum position smin will be shifted away from zero, as shown in

figure 15(b).

After the quench, the modular minimal entropy of region A will grow, similar to

the behavior of the entanglement entropy. We focus on the difference δS(A) = S(A) −
SR(A), which, as shown in figure 16, increases and then decreases. As entropy reaches

the saturation value, δS(A) returns to zero, which is qualitatively the same as the Vaidya

geometry case. Another quantity that we are interested in is the modular parameter s

at the minimum, which we denote as smin. When smin is small, by taking a quadratic

approximation around the s = 0 curve we see that δS(A) ∝ s2
min at lowest order. smin as a
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(a) δS(A)− t (b) smin − t

Figure 16. In the plots, m = 1/10, L = 202, and |A| = 6, |R| = 10, |A ∩ R| = 3. (a) δS(A) − t
curve. (b) smin − t curve.

(a) (b) (c)

Figure 17. (a) |A| = 6, |R| = 10, |A ∩ R| = 3, (b) |A| = |R| = 2|A ∩ R| = 10, (c) |A| = 18,

|R| = 10, |A ∩ R| = 9. m = 1/100 and L = 202 are chosen. As the figure shows, smin is positive

when |A| < |R|, negative when |A| > |R|, and stays zero when |A| = |R|.

function of t is shown in figure 16(b). The oscillations in the figure is a result of the finite

bandwidth (UV cutoff) of the system. For small perturbation m� 1, we can expand smin

in terms of m. since smin is odd under the Z2 transformation m↔ −m, we have smin ∝ m2,

and thus δS(A) ∝ m4.

In the above example, |A| < |R|, and we observe that smin > 0. In figure 17, we show

that the sign of smin changes when the order of |A| and |R| switches, just like the Vaidya

case. When |A| = |R|, smin stays at zero as expected.

5 Discussion

5.1 Modular flow with multiple nested regions

As explained, given a region A, we generically expect a non-trivial modular minimal en-

tropy with respect to R as long as R,A are partially overlapping. As a generalization, we

can constrain ρA with respect to a nested set of subregions R ≡ {R1, R2, . . . , Rm}, with

Ri ⊂ Ri+1 (see figure 18). To obtain a nontrivial result, each of the regions should have

non-trivial overlap with A and its complement. According to ref. [7], the entanglement

wedge of Ri are also nested in the bulk, and, because of this nesting, the bulk constrained
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Figure 18. Illustration of a constrained surface (red dashed curve) that is extremal except at

intersections with multiple HRT surfaces γ(Ri) (blue curves), with nested regions Ri.

surface will remain space-like.4 In this way, we can defined theR-modular minimal entropy:

S̄R(A) = minsRSA(ρ(sR)) =
|γ>R(A)|

4GN
≥ |γR(A)|

4GN
(5.1)

where

|ψ(sR)〉≡ e−iKmsm . . .e−iK2s2e−iK1s1 |ψ〉; γR(A) = minγ(Rm)...γ(R2)γ(R1)γ, ∂γ= ∂A (5.2)

and γ>R(A) is the constrained surface at constant boost angle. In this case sR = (s1, . . . sm)

is a vector whose values are such that they minimize the entropy. There are many directions

in which one could explore this R-modular minimal entropy, such as taking the continuum

limit or understand other orderings, which we leave for future work. In the next subsection,

we will explore the case of two regions R = {R1, R2}, where there seem to be some

interesting inequalities.

5.2 Strong subadditivity-like inequalities for 2-modular minimal entropies

An interesting direction to explore this further is to consider modular evolution with re-

spect to two regions R1, R2. In this situation, we will have 4 bulk surfaces of interest:

γ(A), γ1(A), γ2(A), γ12(A) (see figures 19, 20), for simplicity of notation we will keep track

of the constraining surface by a subindex and 12 means that it is constrained to go through

both R1 and R2.

Here, we would like to understand whether there is some relation between these four

surfaces. As has been discussed, we expect that γ(R1), γ(R2) will be past/future related

with γ(A): either γ(R1), γ(R2) ∈ J±[γ(A)] or γ(R1) ∈ J±[γ(A)], γ(R2) ∈ J∓[γ(A)].5

4If we considered an arbitrary ordering of the regions, the constrained surface will have kinks and become

time-like.
5Where, by this causal relation between surfaces, we mean that causal relation between Cauchy surfaces

that include them, as in section 4.
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(a) (b)

Figure 19. This is the case for constructive interference. In the right figure we see how we can

apply the strong subadditivity (SSA) proof to this situation by projecting the surfaces γ1, γ2 to the

same slice where γ, γ12 are. We recombine the projected surfaces γ̃1 and γ̃2 into the dashed part

and the dotted part, then the length of the dashed part is less than γ, while the length of the dotted

part is less than γ12.

In the boundary these two cases differ by the relative sign of s1,min, s2,min. When we

do the combined modular flow, we expect the signs of smin to interfere constructively or

destructively, depending on whether they are the same or different. Let us analyze these

two cases from the bulk point of view, illustrated by figures 19, 20, respectively.

Constructive interference (same signs of smin)

When we have that γ(R1), γ(R2) ∈ J±[γ(A)], since we expect constraining to preserve

the ordering (see previous section ), we have that γ1(A), γ2(A), γ12(A) ∈ J±[γ(A)]. This

implies that we can construct a time-like surface T where γ(A), γ12(A) lie. We can project

γ1(A) and γ2(A) to surface T as γ̃1(A) and γ̃2(A), which because of maximin will have

larger area: γ1(A) < γ̃1(A) and γ2(A) < γ̃2(A). In this time-like surface where all these

four surfaces intersect we can apply the arguments of [7, 32] (but with an opposite sign

since these are maximal surfaces in T ) where we think of γ12(A) + γ(A) as the sum over

the areas of two surfaces which have the same boundary conditions as γ1(A), γ2(A) (see

figure 19). We conclude that

γ(A) + γ12(A) > γ̃1(A) + γ̃2(A) > γ1(A) + γ2(A) (5.3)

which we can write in terms of boundary quantities when γR = γ>R :

S(A)− S̄R1(A) > S̄R2(A)− S̄R1,R2(A) ≥ 0 (5.4)

This expression suggests that by adding further constraints in a constructive way (with the

same sign of smin), we can reduce the entropy further.

Destructive interference (different signs of smin)

In the opposite case, since γ(R1), γ(R2) are in opposite orderings with respect to γ(A),

this implies that γ1(A) ∈ J±(γ2(A)). Note that, in contrast with the previous case, where

γ12(A) was in the future or past of γ(A) (and thus one could set a time-like surface

that interpolates between them), in this case, there is a time-like surface T where all
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(a) (b)

Figure 20. This is the case for destructive interference. In (b) we see how we can apply the

SSA proof to this situation by projecting the surfaces γ12 to the same slice where γ1, γ2, γ are. We

recombine γ and the projected surface γ̃12 into the dashed part and the dotted part. The length of

the dashed part is less than γ2 and the length of the dotted part is less than γ1.

γ1(A), γ2(A), γ(A) lie. Therefore, the construction goes in the opposite way: we should

project γ12(A) to T , γ̃12(A) > γ12(A) and then divide γ(A), γ12(A) into two surfaces with

less area than γ1(A), γ2(A) (see 20). We obtain:

γ1(A) + γ2(A) > γ(A) + γ12(A) (5.5)

which we can write in terms of boundary quantities when γR = γ>R :

S̄R2(A)− S̄R1R2(A) ≥ S(A)− S̄R1(A) ≥ 0 (5.6)

This equation shows that adding the extra constraint on R2 decreases the entropy reduction

by constraint on R1.

At this point it is not clear to us if these inequalities are purely information theo-

retical or are only true for holographic theories, as for the positivity of tripartite mutual

information [33].

5.3 Relation to the entanglement of purification

The entanglement of purification is a function of two overlapping subregions A,R. It is

defined by minimizing the entropy of A over all states in the Hilbert space that have the

same density matrix in R:

EP (R,A) = minρR=trR̄|ψ̃〉〈ψ̃|
S(ρA,ψ̃) (5.7)

In comparison, our modular minimal entropy is obtained from a constrained minimiza-

tion, where we only minimize with respect to states generated by the modular flow of R

and not all states that preserve the density matrix. Therefore, by definition, it satisfies:

EP (R,A) ≤ S̄R(A) (5.8)

In [34, 35], a holographic proposal for this quantity was put forward,6 in terms of the

minimal surface anchored to γ(R) which could be in principle extended to end in ∂A, but

6Note that we are using an equivalent but different notation, more suited to compared it with the

modular minimal entropy. In our notation Rours = A ∪B, Aours = A ∪A′, Rours ∩Aours = A.
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does not intersect with the complement of the entanglement wedge of R (so this surface

only ends in the boundary if ∂A ∩ R 6= 0). Our bulk construction has some similarities,

but in our case, the surfaces are always anchored to the boundary. While one could try

to get something similar to the entanglement of purification by averaging our modular

minimal entropies over boundary regions, this procedure is not completely satisfactory. In

particular, from our perspective it is not clear how one could get rid of the boundary UV

divergences using modular flow.

Based on the conjecture of refs. [34, 35] on entanglement of purification and our con-

jecture on modular minimal entropy, we can geometrically derive the following inequality:

EP (R,A) + EP (R̄, A) ≤ S̄R(A) (5.9)

since EP (R,A) + EP (R̄, A) describes an extremal surface that ends in ∂A and intersects

γ(R), but the respective contributions from the entanglement wedge of R, R̄ don’t have to

be glued along γ(R). Therefore this area can clearly be made lower than the constrained

surface, which is connected along γ(R).

5.4 Higher dimensions

While we have mainly focused in d = 2, we believe our conjecture holds in higher dimen-

sions: with a precise equality when there exists a constant boost constrained surface and

an inequality when there is none. It would be nice to have a proof of the modular minimal

entropy formula in higher dimensions, which would require understanding twist operators

in higher dimensions, maybe along the lines of [36, 37].

It would be interesting to explore further how the modular evolved states |Ψ(sR)〉
change the divergence structure of SA. We expect that this divergence structure is de-

termined by geometric invariant terms in the codimension-3 surface ∂A ∩ ∂R and that

such terms are subleading to the area law divergence. These divergences were studied for

singular space-like corners in [22].

A related aspect that would be nice to understand is to look for a boundary interpre-

tation for the constrained surfaces without a constant local boost angle, and to give a more

formal proof of its boundedness by the modular minimal entropy.

5.5 Quantum corrections

From the boundary definition of this object, the quantum (1/N) corrections are com-

pletely well defined. Following [38], the bulk quantum correction corresponds to the bulk

entanglement entropy in the |ψ(smin)〉 state. This contribution, while well defined, would

require understanding the dual to the modular evolved state (as opposed to the entropy

of A in this state), maybe using the discussion of [39]. Furthermore, given that bulk and

boundary modular flow are the same, one might be able to compute these quantum cor-

rections directly from bulk modular evolution. In other words, the equality between bulk

and boundary modular flow seems to naturally imply:

S̄R(A) =
|γ>R (A)|

4GN
+ S̄bulk,r(ΣA|R), ∂ΣA|R = A ∪ γ>R (A) (5.10)
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the constrained area at constant boost plus the bulk modular minimal entropy.

S̄bulk,r(ΣA|R) is the bulk entropy of the “constrained homology hypersurface” ΣA|R (the

region between the constrained surface and A) after evolving with the modular flow in the

entanglement wedge of R, r. Of course, whether one computes these quantum corrections

from the bulk entropy of the dual of the modular evolved the state or by computing bulk

modular minimal entropy in the original state, one should get the same answer.

In this way, classical and quantum contributions combine even if the bulk surface

is not extremal, but the bulk quantum contribution is not simply a bulk entanglement

entropy. So our work doesn’t shed light on the definition of the “generalized entropy”

A + Sbulk for non-extremal surfaces. Since that structure seems crucial for subregion-

subregion duality [9], this doesn’t give any evidence for subregion-subregion duality in

the “constrained entanglement wedge” corresponding to γR(A) (defined as the domain of

dependence of ΣA|R).

This gives us a new perspective in the interpretation of smin: in the bulk, the diver-

gences of the entanglement entropy renormalize GN . However, it seems unlikely that any

renormalization scheme can get rid of divergences arising from kinks. In order for a bulk

quantity to have a clear boundary interpretation, it should be bulk divergence free. In this

way, the bulk modular minimal entropy should not have these extra divergences and thus

smin can be interpreted as the local boost necessary to not have a kink along γR(A). If the

constrained surface γR(A) doesn’t have a constant boost angle along γ(R), the naive bulk

definition of the modular minimal entropy can’t be made kink divergence free and thus

there can not be a well defined boundary quantity dual to it.

As an example, consider the thermofield double state (figure 4(c)). The quantum

corrections to the modular minimal entropy will be given by the entanglement entropy

in the entanglement wedge of At(−2tR) (which is bounded by the red surface). This is

not the same as the entanglement entropy in the region between the constrained surface

γR(At) (purple surface) and At, this is easy to see because since γR(At) has a kink, the

bulk entanglement entropy between this surface and At will have a divergence arising from

the kink which is clearly not physical. In this case, the bulk modular minimal entropy is

minimized by getting rid of the kink (since this gives rise to a bulk divergence) and thus

we get the bulk entropy in the entanglement wedge of At(−2tR).
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