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Abstract

Stable water isotope ratios are measured as a tracer of environmental processes in
materials such as leaves, soils, and lakes. Water in these archives may experience
evaporation, which increases the abundance of heavy isotopologues in a manner
proportional to the gradients in humidity and isotope ratio between the evaporating water
and the surrounding atmosphere. Until recently, however, the isotope ratio of the
atmosphere has been difficult to measure, and measurements remain scarce. As a result,
several assumptions have been adopted to estimate isotope ratios in atmospheric water
vapor. Perhaps the most commonly employed assumption in terrestrial environments is
that water vapor is in isotopic equilibrium with precipitation. We evaluate this assumption
using an 8-member ensemble of general circulation model (GCM) simulations that include
explicit calculation of isotope ratios in precipitation and vapor. We find that across the
model ensemble water vapor is typically less depleted in heavy isotopologues than expected
if it were in equilibrium with annual precipitation. Atmospheric vapor likely possesses
higher-than-expected isotope ratios because precipitation isotope ratios are determined by
atmospheric conditions that favor condensation, which do not reflect atmospheric mixing
and advection processes outside of precipitation events. The effect of this deviation on
theoretical estimates of evaporation isotope ratios scales with relative humidity. As a result,
the equilibrium assumption gives relatively accurate estimates of the isotope ratios of
evaporation in low latitudes, but performs increasingly poorly at increasing latitudes.
Future studies of evaporative water pools should include measurements of atmospheric

isotope ratios or constrain potential bias with isotope-enabled GCM simulations.
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1

2

z 54 1. Introduction

5 . . .. .

6 55 Phase changes throughout the water cycle drive spatial and temporal variation in water
7

8 56  isotope ratios, making these ratios excellent tracers of hydroclimatological and atmospheric

9

1(1) 57  processes (Gat, 1996). Variation in precipitation isotope ratios arises from preferential rainout of
12 . . . . . . .

13 58 heavy water isotopologues during condensation, generating spatiotemporal isotopic patterns
14

15 59 reflective of atmospheric drivers of advection and condensation across a wide range of scales
16

17 60 (Dansgaard, 1964; Rozanski ef al., 1993; Bowen and Good, 2015; Bowen et al., 2019). These
61  variations are thought to arise from changes in condensation temperatures (Dansgaard, 1964;

22 62  Rindsberger et al., 1983; Gat, 1996), precipitation amount (Dansgaard, 1964; Lee and Fung,

24 63  2008; Risi et al., 2008) or type (Aggarwal et al., 2016), vapor source (Rindsberger et al., 1983;
26 64 Liuetal, 2010), upwind precipitation anomalies (e.g., Vimeux et al., 2005; Fiorella et al.,

29 65  2015), or the residence time of atmospheric water vapor (Aggarwal et al., 2012). As a result,

31 66  stable isotope ratios are useful for reconstructing hydrological (e.g., Jasechko ef al., 2014;

33 67  Gibson et al., 2016) or ecological (e.g., Bowen et al., 2005; West et al., 2008; Matheny et al.,
68  2017) processes.

38 69 Rayleigh distillation is the prevailing model used to understand the evolution of the

40 70  isotope ratios in precipitation and atmospheric water vapor as water condenses along a transport
71  pathway (Dansgaard, 1964). Rayleigh distillation assumes that liquid water condenses in isotopic
45 72 equilibrium with the vapor from which it is condensing. Therefore, the change in the isotope

47 73  ratio of water vapor that has lost mass to condensation can be expressed as:

q Aeqg— 1
50 74 R,= RS(@) #(1)

75  where R, is the heavy-to-light isotope ratio in vapor, q is the specific humidity, a superscript 0

56 76  refers to conditions prior to any condensation. o.,q represents the equilibrium fractionation factor

3
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Hydrological Processes

between liquid and vapor, and is defined by the ratio of isotope ratios in liquid and vapor at
equilibrium:

Ry

aeq=R—V

#(2)

Equilibrium fractionation is temperature dependent (Merlivat and Nief, 1967; Horita and
Wesolowski, 1994), and o, >1 as heavy isotopologues preferentially enter or remain in the
liquid or solid phase. Precipitation isotope ratio change due to Rayleigh distillation can be

modeled by multiplying both sides of Equation 1 by o

q Qeg— 1
R, = Rgaeq(?) #(3)

These equations assume that all condensate leaves the air parcel as precipitation, but that air
parcel otherwise remains closed, with no additional sources or sinks of moisture. Despite these
limiting assumptions, Rayleigh distillation has remained a popular model for explaining variation
in water isotope ratios as it successfully captures—at least in trend—large-scale patterns of heavy
isotope depletion at high latitudes and elevations, while providing a simple, explicit process
linking isotope ratios in precipitation and water vapor.

Many water isotope ratio archives of environmental or paleoenvironmental interest are
evaporative systems, such as lakes (e.g., Gibson and Edwards, 2002; Kebede et al., 2009; Gibson
et al., 2016), soil waters (Barnes and Allison, 1988; Soderberg et al., 2012), and leaf waters (e.g.,
Flanagan et al., 1991; Farquhar and Cernusak, 2005; Cernusak et al., 2016), which are subject to
post-precipitation enrichment of heavy isotopologues by evaporation. The enrichment of heavy
water isotopologues in these pools is typically constrained using the Craig-Gordon model of

evaporation (Craig and Gordon, 1965), which predicts the isotope ratio of the evaporating flux

4
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across bulk concentration and isotope ratio gradients between liquid and vapor while accounting

for isotopic fractionation:

Ry
5 )

Ry = ax (ql o 4) In this equation, R is the heavy-to-light isotope ratio, with subscripts L, E,
and A referring to liquid water, the evaporating water flux, and atmospheric water vapor
respectively, h representing the ratio in vapor pressures between the observed vapor pressure of
the atmosphere and the saturation vapor pressure at the temperature of the liquid surface, and o
is the isotopic fractionation factor between liquid and vapor, which describes the magnitude of
isotopologues partitioning between the two phases. Subscripts eq and K refer to equilibrium and
kinetic fractionation factors respectively. One parameter in this equation, the isotope ratio of
atmospheric water vapor, has been difficult to measure at high temporal resolution until recently,
and the spatial and temporal scale of these measurements remains limited (Galewsky et al., 2016;
Wei et al., 2019). For reconstruction of past environments, isotope ratios of atmospheric water
vapor are not available.

In the absence of atmospheric water vapor isotope measurements, it has been suggested
that water vapor isotope ratios could be assumed to be in equilibrium with precipitation (Gat,
1996, 2000). The relative abundance of precipitation isotope ratios, which have been measured in
locations around the globe for decades, compared to the paucity of long-term vapor isotope ratio
measurements, makes this an attractive assumption. However, this assumption has not been
widely nor rigorously tested. When posed by Gat (1996, 2000), this assumption was validated by
paired vapor-precipitation measurements from a handful of locations, such as Heidelberg,
Germany (Jacob and Sonntag, 1991), Krakow, Poland (Schoch-Fischer ef al., 1984), and Manaus
and Bélem, Brazil (Matsui et al., 1983). In many cases, however, vapor only approached

equilibrium with precipitation when data were averaged over multiple years, with significant

5
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seasonal and monthly deviation from equilibrium observed (Schoch-Fischer et al., 1984; Jacob
and Sonntag, 1991). More recent high-resolution vapor isotope measurements have further
demonstrated that water vapor isotope ratios can be far more dynamic than can be explained by
an assumption of equilibrium with monthly or annual precipitation isotope ratios (e.g., Lee et al.,
2006; Welp et al., 2008; Noone et al., 2013; Aemisegger et al., 2014; Fiorella et al., 2018).
These studies and many others have shown that vapor isotope ratios change in response to a wide
variety of processes including air-mass mixing (e.g., Noone et al., 2011), condensation,
precipitation, and rainfall evaporation processes (e.g., Lee and Fung, 2008; Risi ef al., 2008;
Tremoy et al., 2012), evapotranspiration (e.g., Welp et al., 2008; Berkelhammer et al., 2013;
Good et al., 2014), and dewfall (e.g., Wen et al., 2012). As a result, it is not clear where, when,
and over what timescales this assumption may hold, and its evaluation has been hampered due to
a lack of spatially extensive paired vapor and precipitation isotope measurements. Despite these
uncertainties, this assumption is often used in isotopic studies of lake water balances (Kebede et
al., 2009; Gibson et al., 2016), soil water evaporation (Barnes and Turner, 1998), and leaf water
enrichment and transpiration (West et al., 2008; Cernusak et al., 2016).

In the absence of long-term near surface observations of water vapor isotope ratios, we
evaluate the assumption of equilibrium between vapor and precipitation globally at monthly to
climatological timescales using an ensemble of eight general circulation models that explicitly
simulate water vapor and precipitation isotope ratios. We find that the assumption that
atmospheric water vapor is nearly in equilibrium with annual precipitation holds best in low
latitudes, but performs increasingly worse poleward of 30° latitude, with vapor isotope ratios
much higher than would be anticipated were vapor in equilibrium with annual precipitation. At

these latitudes, advection of moisture from lower latitudes is required to sustain precipitation

6
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rates, allowing for the possibility for vapor isotope ratios to drift from being in equilibrium with
precipitation. In addition, admixture of small amounts of vapor with a high isotope ratio can
generate vapor isotope ratios much higher than anticipated via Rayleigh condensation
precipitation pathways. As a result, vapor isotope ratios are often decoupled from precipitation
isotope ratios via isotopic variation in time and space, where precipitation events only reflect
atmospheric conditions during a small fraction of time, and advection supplies isotopically

distinct moisture from different source locations.

2. Methods

2.1 Climate model data processing
We generated an ensemble of global climate model simulations (Table 1) that include water
isotopes by combining the Stable Water Isotope iNtercomparison Group, version 2 (SWING?2;
Risi et al., 2012a) simulation archive with more recent global simulations from Nusbaumer et al.
(2017) and Steiger et al. (2017). Ocean boundary conditions for all simulations were historical
sea surface temperatures (Hurrell et al., 2008; Risi et al., 2012b; Nusbaumer ef al., 2017; Steiger
etal.,2017). We extracted a common period of 1980-2000 across all simulations. Precipitation
isotope ratios were retained where monthly precipitation rates were above 0.1 mm/day, as some
models exhibited non-physical isotope ratios at small moisture flux rates. As these situations
represent a negligible fraction of precipitation mass, we view them as numerical artifacts that can
be dropped from further analysis. Large-scale patterns are not strongly affected by the choice of
this threshold, with qualitative differences observed only in the driest regions.

Water isotope tracers are implemented in each model by constructing parallel

representations of the hydrological cycle for each major isotopologue (e.g., 'H,'°0, 'H,!80, and

7
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'H?H'®O) (Noone and Sturm, 2010). Water isotopologues are treated identically to bulk water
during advection processes, and equilibrium and kinetic isotopic fractionations are added to the
model physics parameterizations where phase changes occur. The representations of water
isotope physics are similar across the model ensemble. Liquid condensate in clouds is assumed
to be in isotopic equilibrium with cloud vapor, while vapor deposition onto ice requires more
detailed treatment of kinetic isotope effects (e.g., Noone and Sturm, 2010). All models include a
representation of evaporation and equilibration of raindrops as they fall through the sub-cloud
column. Apart from initial condensation and transit of a raindrop through the sub-cloud model
layers, no equilibrium between atmospheric water vapor and precipitation is assumed or
prescribed. There are a few differences between water isotope physics across the model
ensemble. First, seven of the eight models use kinetic fractionation factors determined by
Merlivat (1978), while the HadAM3 model uses kinetic fractionation factors from Cappa et al.
(2003). We therefore expect simulated isotope ratios to vary in HadAM3 from the other models
where diffusive processes are important, such as in ice clouds at high latitudes (e.g., Jouzel and
Merlivat, 1984). Second, each model estimates fractionation and isotopic exchange processes as
a raindrop falls through the sub-cloud column, but this process is implemented differently across
models. HadAM3, ECHAMS, and MIROC assume that a fixed proportion of water droplets
equilibrate with water vapor in the sub-cloud column: 45% of raindrops fully equilibrate for
convective clouds (50% in MIROC), while 95% of raindrops fully equilibrate in stratiform
clouds (Hoffmann et al., 1998; Werner et al., 2011). In contrast, rain evaporation and sub-cloud
equilibration processes are based on Stewart (1975) for the remaining models and provide a more
explicit representation of raindrop evaporation and equilibration with the sub-cloud water vapor.

Third, calculation of isotope ratios of continental evapotranspiration varies across the models.

8
http://mc.manuscriptcentral.com/hyp

Page 8 of 49



Page 9 of 49

oNOYTULT D WN =

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

Hydrological Processes

Most of the models assume that water returning to the atmosphere is unfractionated relative to
soil water, while GISS ModelE and CAMS explicitly calculate the isotope ratio of
evapotranspired water, including fractionation (Aleinov and Schmidt, 2006; Wong ef al., 2017).
We discuss the potential impacts of these differences in the fluxes from the land model to our
results in section 4. Further details of water isotope tracer implementations, as well as
descriptions of parameterizations used to simulate the hydrological cycle (e.g., cloud and
convective parameterizations), are given in references for each model in Table 1.

Native model resolutions varied from ~1x1° (ECHAMS and CAMS) to 2.5x3.75°
(HadAM3 and LMDZ4) (Table 1). As a result, representation of the land surface and topography
were slightly different across models. Water isotope ratios vary strongly with elevation
(Siegenthaler and Oeschger, 1980; Rozanski et al., 1993; Bowen and Revenaugh, 2003; Fiorella
et al., 2015), and poor representation of surface elevation may bias simulated water isotope
ratios, particularly at coarse resolutions. As we are primarily interested in the difference between
simulated precipitation and vapor isotope ratios, we expect the impact of this bias to be
minimized as it would affect both vapor and precipitation isotope ratios. Coarser resolutions may
not be able to resolve small-scale dynamical and transport processes that influence these isotope
ratios, however. Simulations were regridded from their native resolution to a common 2x2° grid,
which is common practice in multi-model comparisons (e.g., Sanderson et al., 2017). Flux
variables were regridded using a second-order conservative method that preserves the global
integral (Jones, 1999), while state variables were regridded using bilinear interpolation.

Isotope ratios are expressed in 0 notation, where & = 1000(R,/R44-1) and R and Ry are
the heavy-to-light isotope ratio of a sample x and a standard isotope ratio, respectively. The

standard water isotope ratios for '#0/1°0 is 2005.2 x 10, while the standard 2H/'H ratio is

9
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155.76 x 1079, as defined from Vienna Standard Mean Ocean Water (VSMOW) geochemical

standard (Coplen, 1996).

2.2 Evaluation of the assumption of equilibrium between precipitation and vapor isotope
ratios
To evaluate the assumption of equilibrium between vapor and precipitation, we compare the
isotope ratio of water vapor in the lowest model level with vapor in equilibrium with the long-

term mean precipitation isotope ratios for each grid cell. This difference can be expressed as:

Rp
ARy =Ry — (l_ (5)
eq

where R, and Rp are the isotope ratios of atmospheric vapor and precipitation, respectively, and
Oq 1s the temperature-dependent equilibrium fractionation factor that relates isotope ratios in
vapor and liquid (or ice) phases at equilibrium (Equation 2). Where monthly temperatures in the
lowest model level were > 0°C, o was calculated between liquid and vapor using fractionation
factors from Horita and Wesolowski (1994). If temperatures were < 0°C, o.q Was calculated
between ice and vapor using fractionation factors from Merlivat and Nief (1967). Equation 5 can
be expressed in d notation by substituting R, ., which represents the isotope ratio of vapor in
equilibrium with precipitation, for Ry/oleq:

1000AR 4¢m

A(Satm) = =6q— 617,3#(6)

Rstd
We use a A(d) notation to clarify that we are expressing a difference in isotope ratios, which is

distinct from the A notation for isotopic enrichment that is commonly used in leaf water models

(e.g., Cernusak et al., 2016).
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Hydrological Processes

For further insight into the processes driving A(d,m), we compare 3, and J, . to isotope
ratio predictions from air mass mixing and Rayleigh condensation processes. These models
predict different responses to isotope ratios with changes in humidity, and define a range of
vapor isotope ratios that can be obtained through simple advection, mixing, and condensation
processes (Noone, 2012; Bailey et al., 2015; Fiorella et al., 2018). Isotope ratios consistent with
Rayleigh distillation are calculated using an initial specific humidity of 28 mmol/mol and an
initial 3°’H composition of -80%.. Condensation was modeled by lowering the temperature in
0.5°C steps and calculating the new isotope ratio of the remaining vapor using Rayleigh
distillation (Equation 1). This curve describes the evolution of vapor isotope ratios along a
trajectory as water is lost to condensation and independent of the conditions promoting
condensation. A mixing model was also constructed with end members specified from equatorial
and high-latitude specific humidity and isotope ratios derived from the model ensemble. This
yielded a dry end member with a specific humidity of 1 mmol/mol and a 6°H value of -340%o
and a moist end member with a specific humidity of 28 mmol/mol and a 6°H value of -80%o.
Finally, the difference between mixing or Rayleigh model isotope ratio predictions and ensemble
average 9, and J, values are calculated by subtracting simple isotope model predictions from

the GCM ensemble value at the same humidity.

2.3 Calculation of evaporative effects
The Craig-Gordon (1965) model is used to estimate the isotopic composition of
evaporating vapor (Equation 4). The evolution of the isotope ratio in an evaporating pool, Ry,

can be modeled solving equation 4 for Ry (e.g., Dongmann et al., 1974; Flanagan et al., 1991):
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Rg(1—h)
Ry =apg|——

+ hRA]#(7)

A second version of equation 7, where R, is assumed to be in equilibrium with annual

precipitation (e.g., Ra = R, . = Rp/oieq), can be expressed as:

Re(1—h) hRp
+

g deq

#(8)

RL = Ueq

Subtracting equation 8 from equation 7 yields an expression for the bias introduced by this
assumption:

AR}, = [ateqRa — Rp]h#(9)
More sophisticated versions of the Craig-Gordon model have been derived for modeling leaf and
soil water isotope enrichment (Flanagan ef al., 1991; Soderberg et al., 2012), though these
models also reduce to equation 9 when a similar difference is calculated.

Using equation 9, and substituting AR yjseq for aeqR4 — Rp, and converting this equation to

d notation yields:

R = M) #(10)

A(8iseq) can be directly converted to A(8,m) by dividing by a4, and the two values represent the
same metric but from the perspective of the evaporating water or the atmosphere, respectively.
Rp and R, are extracted from each model to calculate A(S1), A(Biseq), and A(Oam). Rp 18
calculated for each grid cell as the precipitation amount mass-weighted in A(8giseq) and A(Saim)
are calculated from 20-year means in the GCM simulations or from monthly Rp values. Ry is
extracted from the lowest model level, which is broadly representative of atmospheric boundary
layer values. Equilibrium fractionation factors were calculated using the temperature of the

lowest model level after Horita and Wesolowski (1994), except for ECHAMS where 2-m air
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temperature was used instead as data from the lowest model level were not archived. We used
temperature from the lowest model level instead of surface temperature as the latter quantity was
not archived for all models. We calculated A(J,,) using all combinations of surface, 2-m, and
lowest-model-level air temperature available in the archive to determine if this choice impacted
our results. The spatial pattern (Fig. S1) and distribution (Fig. S2) of A(8.m) values exhibited
qualitative differences across different temperature sources to calculate o.q, though the
differences were small compared to large-scale patterns. Finally, h was estimated using the
relative humidity of the lowest model level, as the humidity gradient between saturation specific
humidity at the surface and the overlying atmosphere could not be calculated without the surface
temperatures. As a result, h may be overestimated where the skin temperature exceeds the air
temperature. Finally, GCM-simulated relative humidity values can exhibit supersaturation at
high latitudes during winter (Ruosteenoja et al., 2017); we have limited relative humidity values

to 100% in the calculation of A(Jy).

3. Results

3.1 Spatial patterns of A(Oum)

Several consistent spatial features are observed across the model ensemble. First, values
of A(8,tm) > 0, which imply vapor with a higher isotope ratio than predicted by the equilibrium
assumption, are more common than A(8,,,) < 0. Second, seven of the GCM simulations have low
absolute values of mean annual A(J,y,) in the tropics and subtropics that generally increase away
from the equator (Fig. 1). At high latitudes, A(8,,) can exceed ~8%o for 680 and ~60%o for 6°H,
whereas equatorial A(8,m) tends toward ~1%o for 380 and ~12%o for 8”H. The exception to this

trend is isoGSM (Fig. 1f), which has a flatter meridional gradient in A(8,,). The relationship

1
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across the ensemble is strongly linear between A(3°H,) and A(8'80,y,) (Fig. S3), therefore we
focus primarily on A(8°H,,) moving forward.

Values of A(8’°H,n) are most positive over land in sub-Saharan Africa, East Asia, East
India, northern North America, and most of South America, whereas the most positive values of
A(8"H,m) over the ocean are observed where there is perennial or seasonal sea ice (Fig. 1).
HadAM3 exhibits a distinct response in the northern high latitudes, however, as the only model
that suggests negative A(d,um) values in this region (Fig. 1f). The negative A(O,) values
observed in HadAM3 at high latitudes is likely due to this model’s use of diffusive fractionation
factors from Cappa et al. (2003), while the remainder of the models use fractionation factors
determined by Merlivat (1978). In addition, HadAM3 has the highest supersaturation parameter,
which describes the increase of supersaturation with decreases in temperature, of any model in

this study (Pope ef al., 2000; Tindall et al., 2009), increasing the importance of diffusive

processes at cold temperatures and high latitudes (e.g., Jouzel and Merlivat, 1984) for this model.

Negative A(d.m) values are observed across the model ensemble in the Sahara, the Middle East,
and East Antarctica over land, and under the subtropical highs over the ocean (Fig. 1).
Responses differ in sign across models for northeastern Siberia, West Antarctica,
Australia, Greenland, and the southwestern United States. In particular, Antarctic values of
A(Oatm) vary dramatically across models, with the ensemble standard deviation usually exceeding
40%o for 8’°H (Fig. 1j). Given the low evaporation rates and cold temperatures over Antarctica,
and the strong sensitivity of water isotope ratios to parameterizations of ice supersaturation
(Jouzel and Merlivat, 1984), which likely vary across the model ensemble, we exclude values
over Antarctica from further analysis. Over Siberia, values of A(d.,) are weakly positive for

CAM2, GISS ModelE, and MIROC (Fig. 1a,d,h), positive for CAMS5 (Fig. 1b), and negative for
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ECHAMS, HadAM3, isoGSM, and LMDZ (Fig. 1c,e,f,g). High intermodal spread in this region
may also be due to parameterizations of isotopic fractionation under cold conditions. In contrast,
over Australia and the southwestern United States, absolute values of A(3°H,,,) and its variance
across the model ensemble tend to be low (Fig. 1).

Seasonal patterns in A(8?°H,,) show large-scale consistency in trend (Fig. 2), with the
exception of high-latitude winter. Highly positive values of A(8”H,y,) are found in the southern
ocean for all seasons (Fig. 2). During boreal winter / austral summer (DJF), high-latitude
A(8’H,yy,) values are generally greater than 0 (Fig. 2a), except for HadAM3, which predicts
A(6°H,m) values much less than zero and is likely a result of HadAM3’s use of the Cappa et al.
(2003) kinetic fractionation factors. DJF ensemble mean A(8?H,y,) are ~10%o between 30° and
30°S (Fig. 2a), and gradually increase between 30° and 60° latitude in both hemispheres. When
ocean grid cells are excluded, ECHAMS and LMDZ also predict A(6’H,,) values below 0 at
high northern latitudes, and A(8°H,,) values between 60°S and 60°N are more variable (Fig. 2b).
During boreal summer / austral winter (JJA), ensemble mean A(3°H,;,,) values are near zero in
the northern hemisphere subtropics, and generally increase moving away from these latitudes,
with a small local minimum in the southern hemisphere midlatitudes (Fig. 2c). Similar patterns
for JJA are observed when A(8°H,yy,) is calculated using land cells only, though the local
minimum in the southern hemisphere midlatitudes is more pronounced, and the northern
hemisphere subtropical minimum in A(8?H,,) values is less than 0 (Fig. 2d), likely a result of
negative values throughout the Sahara desert (Fig. 1). These seasonal patterns demonstrate in
summer, when evaporative fluxes are highest, A(8’°H,,) values are generally positive outside of

the northern hemisphere subtropics.
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These patterns observed in the ensemble do not seem to be sensitive to the timescales
over which long-term averages of A(6°H,,) are calculated. For example, restricting calculation
of A(8°H,q,) to months where the mean temperature was above zero (e.g., following West et al.,
2008) does not reduce values of A(8°H,y) (Fig. S4). Similarly, weighting values of A(6°H,,) by
monthly evaporation (Fig. S5) or precipitation (Fig. S6) fluxes has little impact or even increases
values of A(8”H,m) (Fig. S7). Therefore, we retain the annual average values for the remainder of
the analysis.

For each model, >75% of all grid cells have A(8?H,y,) and A(8'30,,) > 0 when
Antarctica is excluded (Fig. 2ab). CAMS has the highest median A(J,,) values, while LMDZ
has the lowest (Fig. 2ab). CAMS A(0.m) values are nearly universally positive, with >97% of all
grid cells having A(8’°H,m) and A(8'80,m) > 0. When ocean cells are also excluded, median
values of A(6°H,q,) and A(8'80,,) are not meaningfully changed, but the distribution shifts from
tending to have a long tail of highly positive A(0,m) values to being more centered (Fig. 2cd),
with the exception of HadAM3. However, despite changes in the distributions when ocean cells

are excluded, >75% of land grid cells still exhibit A(d,,) values > 0.

3.2.  Atmospheric moisture balance and transport govern A(Ou,,) values

Patterns in A(d.m) can be related to fundamental features of the balance of precipitation
to evaporation, atmospheric circulation and moisture transport. Simulation of precipitation minus
evaporation, or P-E, was similar between all model simulations (Fig. S8). Large differences in P-
E were only observed in the deep tropics, where the position of the Intertropical Convergence
Zone varied between simulations, perhaps due to in part to variations in model resolution. Values

of A(8’Hum) < 0 tended to occur in regions where precipitation and evaporation rates were both
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low and near equal to each other (Fig. 4a) in regions of atmospheric subsidence (Fig. 4b). In
these regions, atmospheric vapor is lighter than would be expected from an assumption of
equilibrium with precipitation, likely reflecting the admixture of dry air in the descending limb
of the Hadley cell. Subtropical deserts, which are associated with large-scale atmospheric
subsidence, indeed tend to have A(8?°H,,) < 0 across all of the model simulations (Fig. 1).
Negative A(8*H,m) values over land tend to be more negative than over the ocean, perhaps due
to lower local evaporative fluxes over land than over the ocean in these regions. In contrast,
regions where precipitation exceeds evaporation tend to have A(6°H,,) > 0 (Fig. 4ac), and also
have vertical pressure velocities either close to zero or indicative of ascent (Fig.4b). Two distinct
patterns associated with A(8°H,,) > 0 are observed: tropical regions with high precipitation
rates, and mid- and high-latitude regions with moderate precipitation rates. A common feature of
mid- and high-latitude sites with high A(8”H,,) is that they tend to be regions where
precipitation vastly outweighs evaporation, indicating that moisture must be advected into these
regions to sustain these precipitation rates. Regions where atmospheric vapor is nearly in
equilibrium with annual precipitation tend to be regions where evaporation is much higher than
precipitation (Fig. 4ac), and precipitation rates are low (Fig. 4c).

These patterns can be unified by considering atmospheric processes underlying the water
budget of these different hydroclimatic regimes, as humidity changes associated with
condensation and meridional mixing should produce distinct changes in isotope ratios (Fig. 5ab).
Water vapor 8*H values simulated by the GCMs cluster close to the mass-balance model
(following Noone, 2012) predictions for atmospheric mixing (Fig. 5a). In contrast, vapor in
equilibrium with modeled annual precipitation clusters close to the Rayleigh condensation model

prediction at low and high humidities and traces an intermediate path between mixing and
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Rayleigh end members in between (Fig. 5b). As a result, the mixing model captures trends in
modeled atmospheric vapor quite well, while it tends to overestimate isotope ratios of vapor in
equilibrium with precipitation (Fig. 5c). Likewise, the Rayleigh model tends to underestimate
isotope ratios for modeled vapor and vapor in equilibrium with precipitation, but the magnitude
of the underestimation of the latter is less than the former (Fig. 5¢).

These trends likely arise for two reasons. First, precipitation reflects atmospheric
conditions that favor condensation by definition. Precipitation only occurs over land ~8% of the
time, and the fraction of the time it rains is below 50% even in the rainiest locations (Trenberth
and Zhang, 2018). Therefore, even if precipitation is in equilibrium with vapor where and when
it occurs, precipitation represents only a subset of atmospheric conditions that is by nature biased
toward the Rayleigh model. Second, the shape of the mixing relationship suggests that
atmospheric isotope ratios change little across large ranges in humidity when sufficiently wet,
and are always greater than those predicted by Rayleigh distillation. As a result, small additions
of vapor with comparatively high isotope ratios at times when precipitation is not occurring can
cause strong positive deviations from the Rayleigh curve. Additionally, the space between the
Rayleigh and mixing curves is small at high humidities, but grows as humidity decreases. At
high humidities, isotope ratios predicted from air-mass mixing or Rayleigh condensation are
similar, and the transition from one process to the other cannot have a large impact on isotope
ratios without a large change in humidity. We suspect this factor is the origin of small magnitude
values of A(87H,,) are observed in the deep tropics (Fig. 1) despite high precipitation relative to
local evaporation (Fig. 4, S8). In contrast, at the lower humidities characteristic of the mid- and
high-latitudes, the isotope ratio range between Rayleigh and mixing model predictions is large

(Fig. 5). Large positive A(8*H,y,) values over humid land areas and over seasonal sea ice likely
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(Fig. 1) arise from the tendency of vapor isotope ratios to be higher under large-scale air-mass

mixing than during condensation processes.

3.3.  Impact of A(Oun) on isotope ratios of evaporating water pools

If these model-simulated differences between vapor 8”H values and precipitation-
equilibrated vapor values are reflective of the real world, however, their impact on theoretical
estimates of the isotopic composition of evaporation also scales with relative humidity (Eqn. 10).
We analyze this impact for grid cells corresponding to land, where such estimates are widely
used to interpret data from lakes, leaf waters, and soils. We multiply A(8,m) values by aleq to
yield A(8giseq), and then scale these values by relative humidity to obtain A(dr). Since o.eq 1S
greater than—but close to—1, the absolute values of A(34iseq) are similar to but larger than the
absolute values of A(8,um). Due to o increasing with decreasing temperatures, however, this
transformation does increase the equator-to-pole gradient slightly (Fig 5a). As mean relative
humidity is generally below 100% (Fig. 6b), A(Sy) is lower than A(84isq) at all latitudes (Fig. 6¢),
but particularly in the subtropics where relative humidities are < 50% on average (Fig. 6b).
Equatorward of 30°, A(6*Hy) values are small (typically < 10%o, Fig. 6¢), as A(S4iseq) is low in
the deep tropics (Fig. 6a) while relative humidity is low in the subtropics (Fig. 6b). At these
latitudes, the assumption that vapor is in equilibrium with precipitation may be useful. Poleward
of ~45°, however, relative humidity and A(J4iseq) both increase, yielding A*H; values that exceed
~20%o at many latitudes (Fig. 6¢). At these latitudes, adopting an assumption of equilibrium
between vapor and precipitation is likely to introduce substantial bias in the interpretation of

water isotope ratio data.

1
http://mc.manuscriptcentral.com/hyp



oNOYTULT D WN =

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

Hydrological Processes

4. Discussion

The assumption that atmospheric water vapor isotope ratios are in equilibrium with local
annual precipitation isotope ratios rarely holds across an ensemble of isotope-enabled GCMs.
We find a broadly consistent pattern across GCMs where atmospheric vapor usually has a higher
heavy isotopologue content than anticipated for atmospheric vapor in isotopic equilibrium with
annual precipitation. As a result, Craig-Gordon calculations are prone to underestimate the
isotope ratio of evaporating waters in most places when adopting this assumption. Exceptions to
this trend include regions of persistent atmospheric subsidence, where admixture of highly
distilled vapor in descending air nudge water vapor isotope ratios to be lower than 9, ., and
regions where evaporation far exceeds precipitation, where 8, approaches 6, .. The deviations of
isotope ratios from the Craig-Gordon model predictions described here are distinct from a
different source of deviations commonly described in leaf water studies. Several studies in leaf
waters have shown a tendency of the Craig-Gordon model to overestimate leaf water enrichment,
as leaf waters frequently possess isotope ratios that are lower than predicted isotope ratios (e.g.,
Flanagan et al., 1991; Cernusak et al., 2016). Our results using GCMs here suggest that
assuming J, and J, . are equal may partially mask this effect, as Craig-Gordon-modeled isotope
ratios would be even higher for leaf waters were 9, used in place of 8, .. Finally, we have
characterized these trends using isotope ratios in GCMs as paired vapor and precipitation isotope
records remain rare. However, new large-scale observational networks such as the National
Ecological Observatory Network (Thorpe et al., 2016), or improved processing of satellite
observations of water vapor isotope ratios to yield better estimates of near-surface vapor isotope

ratios (e.g., Worden et al., 2012), will allow broad testing and validation of our results.
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4.1. Over what timescales is precipitation in equilibrium with atmospheric water vapor?
Decoupling of 8, from 0, occurs across both time and space due to the relative rarity of
precipitation with respect to moisture advection in the atmosphere. Precipitation selects for a
particular set of atmospheric conditions that favor condensation or ice nucleation. Equilibrium
between atmospheric water vapor and precipitation is commonly observed for sufficiently long
precipitation events (e.g., Stewart, 1975; Lee and Fung, 2008), yet in order for d, to remain
coupled to O, this relationship must persist after precipitation ends. In fact, many studies (e.g.,
Lee et al., 2006; Angert et al., 2008; Welp et al., 2008; Griffis et al., 2016) have shown
substantial deviations from the equilibrium assumption when precipitation and vapor are
compared at monthly timescales. Furthermore, rapid changes in vapor isotope ratios are apparent
with weather events such as frontal passages (e.g., Lee et al., 2006; Aemisegger et al., 2015;
Fiorella et al., 2018), and large diurnal variability driven by evapotranspiration and boundary
layer mixing is commonly observed in high-resolution vapor isotope records (e.g., Lai and
Ehleringer, 2011; Welp et al., 2012; Fiorella et al., 2018). Differences emerge between d, and
dy. therefore, because precipitation is a relatively rare occurrence and other processes with
distinct isotopic effects may dominate the atmospheric water budget during periods of non-
precipitation. In particular, even slight moistening by mixing with moist air that has not
experienced substantial condensation can push 9, to much higher values than would be
consistent with Rayleigh condensation. Isotope ratios predicted by simple mixing and Rayleigh
models converge at the humidity extremes, but diverge quite substantially at intermediate
humidity values (Fig. 5). As mixing and/or advection contribute to atmospheric re-moistening
during periods between precipitation events, this will systematically push vapor values away

from precipitation-equilibrium values, as observed in most regions here.
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Precipitation could be in equilibrium with vapor at shorter time scales but out of
equilibrium when averaged at annual timescales. However, changing the basis of comparison
from annual precipitation isotope ratios to the current month’s precipitation isotope ratios does
not meaningfully change the distribution of A(8,,) (Fig. 7). Persistence of this bias when using
monthly modeled precipitation isotope ratios indicates that precipitation timing and moisture
advection processes continuously promote decoupling of 8, from 0, .. Furthermore, it suggests
that this bias is not primarily driven by seasonal changes in moisture source or precipitation type.
Gat (2000) noted that equilibrium between 8, and J, is often inhibited for snow or ice
hydrometeors, as isotopic exchange between these hydrometeors and the atmospheric column
they fall through is attenuated. Our results suggest that processes promoting differences between

d, and o, . are more fundamental, and occur throughout the year and at all latitudes.

5. Conclusions
Modeling the evaporative enrichment of heavy isotopologues in evaporating water pools,

such as leaves, lakes, and soils, has relied on the Craig-Gordon model and requires knowledge or
assumptions about the isotope ratios in atmospheric water vapor. Until recently, measurements of
the isotope ratio of atmospheric water vapor have been labor intensive and difficult to obtain,
leading to assumptions about how to estimate the isotope ratio of atmospheric water. We show
that the assumption that atmospheric vapor is in equilibrium with annual precipitation isotope
ratios (Gat, 1996, 2000) is rarely valid using an ensemble of GCM simulations that include
explicit modeling of vapor and precipitation isotope ratios. Atmospheric vapor is typically less
depleted in heavy isotopologues than would be expected were it in equilibrium with annual

precipitation, and is most prominent in regions where advection and moisture convergence are
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the dominant sources of water vapor and precipitation instead of evaporation. The magnitude of
this deviation from equilibrium generally increases from equator to pole. Vapor isotope ratios in
equilibrium with precipitation are nudged toward predictions from a Rayleigh condensation
model, while modeled vapor isotope ratios are better described by a simple equator-to-pole
atmospheric mixing model. This result suggests that adopting an assumption of equilibrium
between vapor and precipitation in using the Craig-Gordon model overvalues the role of
precipitation in setting vapor isotope ratios, as precipitation reflects only a subset of atmospheric
conditions that promote their variability. The salient exception to this trend occurs where large-
scale atmospheric subsidence dominates, producing vapor isotope ratios that are more depleted
in heavy isotopologues than expected from an assumption of equilibrium between vapor and
precipitation due to the admixture of heavily-distilled water vapor transported in the subsiding
air.

The impact of deviation in atmospheric vapor isotope ratios from equilibrium with
precipitation on evaporating water pools, however, depends on the humidity gradient between
the atmosphere and the evaporating water. For latitudes equatorward of ~30°, the combination of
lower relative humidities and/or comparatively small A(J,y,) values result in small values of
A(8y). In these cases, the assumption that atmospheric vapor is in equilibrium with precipitation
may hold sufficiently well. Poleward of ~30°, however, adopting the assumption that A(dy,) is
near zero will produce estimates of the isotope ratio of atmospheric water vapor that are biased to
have too low of a heavy isotopologue content. This pattern is reinforced by higher mean relative
humidity values. To account for these systematic biases, future studies should incorporate
measurements of the isotope ratio of atmospheric water vapor or, particularly for

paleoenvironmental reconstructions, consider using constraints from an isotope-enabled GCM.
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826  Tables
827  Table 1. Summary of models used in this study.
Model Native Isotopic Meteorological Model Isotopic
Name Resolution variables Variables Reference Reference
CAM2 T42 Precipitation, T,Q,U, V, Q, (Collins et (Lee et al.,
(~2.8x2.8°) | vapor, and Pyt al., 2002) 2007)
evaporation
flux
CAMS 0.9x1.25° | Precipitation, T,Q,U,V, Q, (Neale et (Nusbaumer et
vapor, and Pyt al.,2010) al., 2017,
evaporation Wong et al.,
flux 2017)
ECHAMS T106 Precipitation Tser Qstes U, V, | (Roeckner (Werner et al.,
(~1.1x1.1°) | and vapor only | Py etal.,2003) | 2011; Steiger
etal.,2017)
GISS 2x2.5° Land T,Q,U, V, Py | (Schmidter | (Schmidt et
ModelE evaporation, al., 2006) al., 2007)
global
precipitation
and vapor
HadAM3 2.5x3.75° | Precipitation, T,Q,U,V (Pope et al., | (Tindall et al.,
vapor, and 2000) 2009)
evaporation
flux
1soGSM 2.5x2.5° | Precipitation, T,Q,U,V, Q, (Kanamitsu | (Yoshimura et
vapor, and Pyt etal.,2002) | al.,2008)
evaporation
flux
LMDZ4 2.5x3.75° | Precipitation T,Q,U,V, Q, (Hourdin et | (Risi et al.,
and vapor only | Py al., 2006) 2010)
MIROC T42 Precipitation, T,Q,U,V,Q (K-1 model | (Kurita et al.,
(~2.8x2.8°) | vapor, and developers) | 2011)
evaporation
flux
828
829
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Figure Captions

Figure 1. Annual average A(6°H,,) values for historical simulations spanning 1980-2000 for (a)
CAM2, (b) CAMS, (c) ECHAMS, (d) GISS ModelE, (¢) HadAM3, (f) isoGSM, (g) LMDZ4, and
(h) MIROC. The final two panels provide an equal-weight ensemble mean (i) and standard

deviation (j) for A(8”Ham).

Figure 2. Zonal average A(6°H,,,) values for DJF (a and b) and JJA (c and d) for each model in
the ensemble, with the ensemble average shown as a solid black line. Extreme values south of
70°S are truncated to better show variations between other latitudes. The left column shows all

grid cells (land and ocean, a and c¢) while the right column shows only land grid cells (b and d).

Figure 3. Box-and-whisker plots showing the distribution of A(d,,) values across the model
ensemble, with values from Antarctica excluded. Distributions for land and ocean grid cells are
shown in the top row (a and b), while distributions for land grid cells only are shown in the
bottom row (¢ and d). The left column shows A(8*H,,) while the right column shows A(83'80,).
Boxes correspond to the 25%-75% percentile with the median indicated with a solid black line,
while the whiskers extend to the 2.5™ and 97.5" percentiles and indicate the central 95% of the

data.

Figure 4. Relationships between A(8°H,,) and meteorological variables derived from the model
ensemble. (a) Evaporation (mm/day) against precipitation (mm/day) colored by A(6°H,m), with
the 1:1 relationship between evaporation and precipitation shown as a dashed black line. (b) 500

hPa vertical pressure velocity (hPa) against precipitation colored by A(8”Haum). (¢) A(8?Haum) (%o
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VSMOW) plotted against precipitation (mm/day), colored by the precipitation to evaporation

ratio.

Figure 5. Modeled atmospheric vapor and vapor in equilibrium with precipitation in relation to
isotopic models. (a) 6°H of annual ensemble mean vapor (6°H,) and (b) 8’H of vapor in
equilibrium (87H, ) with annual ensemble mean precipitation against specific humidity (g,
mmol/mol). In (a) and (b), box-model predictions representing air-mass mixing along an equator-
to-pole gradient (red line) and Rayleigh distillation (black line) are shown. (¢) Distributions
showing the deviation of 8*°H, and 8°H,  from air-mass mixing and Rayleigh distillation model

predictions.

Figure 6. Zonal average A(3°Haiseq) Over land and its incorporation into evaporating waters. (a)
Zonal annual average A(8’Hgiseq) (b) zonal annual average relative humidity, and (c) zonal annual
average A(8?Hy) for each model. HadAM3 is missing from panels (b) and (¢) as this model did

not provide variables required to estimate relative humidity.

Figure 7. Comparison of °H, to 6°H, . when 6°H, . is calculated with respect to (a) long-term
annual average precipitation isotope ratios, and (b) monthly precipitation isotope ratios.
Distributions of 3°H,—8%H, . for each of these assumptions is shown in (c), with box plots
indicating the central 50% (boxes) and 95% (whiskers) of the data. A 1:1 line is shown in (a) and

(b) for reference.
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Figure 5. Modeled atmospheric vapor and vapor in equilibrium with precipitation in relation to isotopic
models. (a) 8°H of annual ensemble mean vapor (32Hy) and (b) &%H of vapor in equilibrium (52Hy,e) with
annual ensemble mean precipitation against specific humidity (g, mmol/mol). In (a) and (b), model
predictions representing air-mass mixing along an equator-to-pole gradient (red line) and Rayleigh

distillation (black line) are shown. (c) Distributions showing the deviation of 32Hy and &%Hy e from air-mass
24 mixing and Rayleigh distillation model predictions.
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This supporting information document contains eight supplementary figures.
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Figure S1. Comparison of A(8’Ham) values calculated using fractionation factors calculated from
(a) lowest model level temperature, (b) 2-meter temperature, or (c) surface skin temperatures.
Differences between pairs of A(8?Ham) values are shown in the bottom row: (d) A(8?°Ham) using
bottom level temperatures compared to 2-meter temperatures, (e) bottom level temperatures
compared to surface temperatures, and (f) surface temperatures compared to 2-meter
temperatures.
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Figure S2. Global distribution of A(8?Ham) values for all grid cells except Antarctica (a) and only
30 land grid cells (b), calculated using fractionation factors calculated from lowest model level
31 temperature (orange), 2-meter temperature (green), or surface skin temperatures (purple).
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Figure S3. Relationship between A(8*Ham) and A(8'804um) for all cells (a) and land cells only (b),
54 with cells from Antarctica masked. Data are plotted showing the frequency of grid cells, placed
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Figure S4. Average A(8°Ham) values for historical simulations spanning 1980-2000, including
only months with T > 0°C, for (a) CAM2, (b) CAMS, (c) ECHAMS, (d) GISS ModelE, (e)
HadAMS3, (f) isoGSM, (g) LMDZ4, and (h) MIROC. The final two panels provide an equal-
weight ensemble mean (i) and standard deviation (j) for A(8*Ham). Gray areas indicate no
months were had T > 0°C.
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Figure S5. Annual average A(8*Ham) values for historical simulations spanning 1980-2000,

51 weighted by the monthly evaporation flux, for (a) CAM2, (b) CAMS, (c) ECHAMS, (d) GISS

52 ModelE, (e) HadAM3, (f) isoGSM, (g) LMDZ4, and (h) MIROC. The final two panels provide
53 an equal-weight ensemble mean (i) and standard deviation (j) for A(8*Ham). No data are provided
>4 for LMDZ, as the SWING?2 archive did not store evaporation fluxes for this model.
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Figure S6. Annual average A(8*Ham) values for historical simulations spanning 1980-2000,
weighted by the monthly precipitation flux, for (a) CAM2, (b) CAMS, (c) ECHAMS, (d) GISS
ModelE, (e) HadAM3, (f) isoGSM, (g) LMDZ4, and (h) MIROC. The final two panels provide

an equal-weight ensemble mean (i) and standard deviation (j) for A(8*Ham).
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standard deviations are small except in the tropics; large tropical variation arises from

differences in the ITCZ position between models. GISS ModelE and LMDZ4 are excluded from

this figure as evaporative fluxes were not archived for these models.
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Accurate modeling of water
isotopes during evaporation
requires an estimate of the
isotope ratio of atmospheric water
vapor and is often assumed to be
in isotopic equilibrium with
precipitation. We test this
assumption using an ensemble of
isotope-enabled climate models.
We find this assumption works
well at low latitudes, but that
moisture transport causes vapor
isotope ratios to be higher than
equilibrium-predicted values at
high latitudes.
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