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We study nonreciprocity in spatiotemporally modulated 1D resonator chains from the perspective of
equivalent 2D resonator arrays with a synthetic dimension and transverse synthetic electric and magnetic
fields. The synthetic fields are respectively related to temporal and spatial modulation of the resonator
chain, and we show that their combination can induce strong transmission nonreciprocity, i.e., complete
isolation with only a weak perturbative modulation. This nonreciprocal effect is analogous to the Hall effect
for charged particles. We experimentally implement chains of two and three spatiotemporally modulated
resonators and measure over 58 dB of isolation contrast.
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Reciprocity is a fundamental property of wave propa-
gation in linear, time-reversal symmetric systems that
implies invariance under a spatial inversion of inputs and
outputs [1,2]. Because of this constraint, reciprocal systems
cannot provide important functions such as source protec-
tion [3] and directional signal routing [4], which are critical
to many electromagnetic, optic, and acoustic applications.
Reciprocity can be broken in linear systems biased with a
vector quantity that is odd under time reversal [5,6], such as
a magnetic field [4,7]. However, because nonreciprocal
devices that require magnetic fields are often difficult to
integrate into larger systems, especially on-chip or in
sensitive superconducting circuits, recent research has
increasingly employed frequency-converting spatiotempo-
ral modulation to break reciprocity through directional
scattering [8–22] or amplification [23–25].
In this Letter we study nonreciprocity in one-dimen-

sional chains of coupled photonic resonators with spatio-
temporally modulated resonance frequencies. We use a
synthetic-dimension description of the modulated resonator
chains, which can be interpreted as unmodulated 2D
resonator arrays with a synthetic frequency dimension
[26]. The synthetic dimension holds frequency-shifted
copies of the original chain that are equivalent to the
sidebands produced by modulation. This description is
particularly useful because the frequency and phase of the
modulation become equivalent to a “photonic gauge
potential” with similar properties to the electromagnetic
vector potential that couples to charged particles [27–30].
This gauge potential can generate synthetic electric [31]
and magnetic [15] fields for photons in the resonator array,
enabling a rich variety of physical phenomena such as

Bloch oscillations [31], topological insulators [29,32,33],
and the Aharonov-Bohm effect [12,13].
Reciprocity can be broken in synthetic arrays having a

magnetic field, but doing so requires an additional mirror-
symmetry breaking in the frequency dimension [29] since
the synthetic magnetic field is always perpendicular to the
plane of the array. Previous work has relied on additional
elements such as filters [12,13] or added loss [29] to break
this symmetry. Here we introduce a new approach that uses
a synthetic electric field to break mirror symmetry in the
frequency dimension. When a synthetic magnetic field that
breaks time-reversal symmetry is also present, the combi-
nation of the two synthetic fields breaks transmission
reciprocity. A major advantage of this method is its
simplicity: both synthetic fields are generated from the
same reconfigurable modulation process, and the additional
lossy elements required in previous work [12,13,29] are
unnecessary. This effect is analogous to the Hall effect for
charged particles, where perpendicular electric and mag-
netic fields induce a current in the E⃗ × B⃗ direction [34]. We
show that this combination of synthetic fields can produce
strong nonreciprocity, i.e., complete isolation with a weak
perturbative modulation, when the both synthetic fields are
tuned to maximize their respective symmetry breaking. We
experimentally verify this concept using short chains of
coupled resonators implemented in microwave-frequency
microstrip circuits and observe greater than 58 dB (approx-
imately 6 orders of magnitude) of isolation contrast.
As an illustrative case, we first consider a chain of two

identical coupled resonators with intrinsic resonance
frequencies ω0, as illustrated in Fig. 1(a). The coupling
rate between the resonators is λ, and each resonator is also
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coupled to a port, forming a two-port coupled-cavity
waveguide. The resonance frequency of the resonators is
modulated sinusoidally with frequency ωM according to

ω0;1 ¼ ω0 þ β cosðωMtÞ;
ω0;2 ¼ ω0 þ β cosðωMtþ ϕÞ: ð1Þ

The excitation amplitudes a1;2 of resonators 1 and 2 [left
and right circles in Fig. 1(a), respectively] can be collected
in a vector jaðtÞi ¼ ½a1ðtÞ; a2ðtÞ�T. Following Ref. [35],
jaðtÞi evolves in time according to

∂
∂t jaðtÞi ¼ ½iΩ0 þ iΩ1ðtÞ − Γ�jaðtÞi þ iKT jsþðtÞi; ð2Þ

where the system parameters are written as the matrices

Ω0 ¼
�
ω0 λ

λ ω0

�
; Γ¼

�
γ 0

0 γ

�
; K ¼

�
k 0

0 k

�
;

Ω1ðtÞ ¼
�
β cosðωMtÞ 0

0 β cosðωMtþϕÞ

�
;

and jsþðtÞi; js−ðtÞi are vectors that, respectively, corre-
spond to the input and output amplitudes at the ports. The
coupling between the ports and resonators is described by
the coupling matrixK (k is the coupling constant between a
resonator and a port). The total decay rates of the resonators
are described by the matrix Γ (γ is the decay rate of each
resonator), which satisfies 2Γ ¼ K†K þ κ [35]. The K†K
term accounts for the fields decaying into the ports, while
the diagonal matrix κ accounts for any resistive or radiative
losses in each resonator. The output of the system can be
written as

js−ðtÞi ¼ jsþðtÞi þ iKjaðtÞi: ð3Þ

Since the system is periodic in timewith frequencyωM, it
is convenient to work in the frequency domain. Using the
Fourier transform jaðωÞi ¼ R

dtjaðtÞie−iωt, in steady state
Eq. (2) becomes

ωjaðωÞi ¼ H0jaðωÞi þ KT jsþðωÞi
þ Bjaðω − ωMÞi þ B†jaðωþ ωMÞi; ð4Þ

where H0 ¼ Ω0 þ iΓ and

B ¼ β=2

�
1 0

0 eiϕ

�
:

The applied modulation converts the input signal up
and down in frequency such that inputs with a single
frequency will generate infinitely many sidebands equally
separated by multiples of �ωM. These sidebands are
coupled to each other through the B matrix. Thus, Eq. (4)
is actually a set of infinitely many equations that can be
written as [36]

ωjαðωÞi ¼ HjαðωÞi þKT jσþðωÞi; ð5Þ

where K is a block-diagonal matrix where each block is K,
and H is the block-tridiagonal matrix

H ¼

0
BBBBBBBBBB@

. .
. . .

.
0 0 0

. .
.

H0 − ωMI2 B 0 0

0 B† H0 B 0

0 0 B† H0 þ ωMI2
. .
.

0 0 0 . .
. . .

.

1
CCCCCCCCCCA
:

The amplitude vectors jαðωÞi and jσ�ðωÞi are

FIG. 1. (a) A chain of two coupled resonators coupled to two
ports. The resonance frequencies ω0;n are time varying, as
described by Eq. (1). (b) Transmission τðωÞ for the chain of
coupled resonators in the absence ofmodulation. Amplitude (solid
blue line) and phase (dashed red line) are shown separately. The
transmission phase is normalized to 0 at ω0. (c) Pictorial repre-

sentation ofH using synthetic electric field E⃗ andmagnetic field B⃗.
The electric field generates a potential of ∓ωM on the upper and
lower chains, respectively, and the magnetic field generates a
direction-dependent phase shift of ϕ around each closed loop.
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jαðωÞi¼

0
BBBBBBBB@

..

.

jaðωþωMÞi
jaðωÞi

jaðω−ωMÞi
..
.

1
CCCCCCCCA
; jσ�ðωÞi¼

0
BBBBBBBB@

..

.

js�ðωþωMÞi
js�ðωÞi

js�ðω−ωMÞi
..
.

1
CCCCCCCCA
:

The output of the system jσ−ðωÞi can be found through the
expression

jσ−ðωÞi ¼ jσþðωÞi þ iKjαðωÞi: ð6Þ

The relation between the input and output of the system
is given by the expression jσ−ðωÞi ¼ SðωÞjσþðωÞi, where
the full scattering matrix SðωÞ can be found by solving
Eqs. (5) and (6). However, the linear scattering matrix
SðωÞ which only relates inputs and outputs at the same
frequency and satisfies js−ðωÞi ¼ SðωÞjsþðωÞi is typically
more useful, especially if the input is monochromatic
jσþðωÞi ¼ jsþðωÞi. This simpler scattering matrix can
be found by using perturbation theory that ignores sideband
terms beyond a certain order in the squared modulation
amplitude β2. In order for a system to be nonreciprocal, or
different under an exchange of inputs and outputs, the
scattering matrix must be asymmetric [SðωÞ ≠ STðωÞ]. In
the following analysis, we aim to illustrate the origin of the
linear nonreciprocal effect and therefore solve for SðωÞ by
keeping only the first-order sidebands (perturbation order
β2) [37] and neglecting the coupling between the sidebands
and the ports. See Supplemental Material [38] for details on
the calculation of the scattering matrix.
The complex transmission function of the unmodulated

two-resonator chain described by H0, which can be found
by solving Eqs. (2) and (3) with Ω1 ¼ 0, is

τðωÞ ¼ k2λ
½γ þ iðω − ω0Þ�2 þ λ2

: ð7Þ

The transmission amplitude and phase, shown in Fig. 1(b),
are, respectively, symmetric and antisymmetric about the
center frequency ω0. As we will later show, the antisym-
metry of the phase response is vital to breaking reciprocity.
There are two peaks in the transmission amplitude, corre-
sponding to the eigenmode frequencies ω0 � λ. Near these
resonant frequencies, the transmission phase is ≈∓π=2
relative to the transmission phase at ω0.
The modulated chain can be interpreted as a time-

invariant 2D array with a synthetic dimension arising in
frequency space. This array consists of the original chain
and two additional chains for each perturbation order (one
additional chain for each sideband). To first order, the
system consists of three unmodulated two-resonator chains
separated in frequency, as shown in Fig. 1(c). The coupling
rate β=2 between neighboring chains is determined by the

amplitude of the applied modulation. We can capture the
effects of the modulation frequency and phase by intro-

ducing two synthetic fields—an electric field E⃗ pointing

parallel to the frequency axis and a magnetic field B⃗
pointing out of the 2D plane. The electric field manifests as
a potential gradient of ωM between the resonator chains,
and is equivalent to the frequency offset of the H0 matrix
along the diagonal of H. The magnetic field produces a
magnetic flux that induces a direction-dependent phase
shift of ϕ in each plaquette [12,15], equivalent to the phase
term eiϕ in the B matrix. For simplicity, and because
distance is not well defined in the synthetic dimension, we

adopt units where jE⃗j ¼ ωM and jB⃗j ¼ ϕ.
Transmission through the system shown in Fig. 1(c) can

be calculated as the sum of transmission through three
channels: the central channel with no potential offset, the
lower channel with a positive offset þωM, and the upper
channel with a negative offset −ωM. The lower and upper
channels both enclose a synthetic magnetic flux which
induces an additional direction-dependent phase shift of
�ϕ, such that the total transmission, written as a sum of
symmetric and antisymmetric parts, is

S21ðωÞ≈τþβ2

4
f½τþþτ−�cosðϕÞ− i½τþ−τ−�sinðϕÞg;

S12ðωÞ≈τþβ2

4
f½τþþτ−�cosðϕÞþ i½τþ−τ−�sinðϕÞg; ð8Þ

where τ ¼ τðωÞ and τ� ¼ τðω� ωMÞ.
From Eq. (8), we find that the symmetric part of the

transmission is identical between S21 and S12 (i.e., is
reciprocal), while the antisymmetric part differs (i.e., is
nonreciprocal). It is immediately clear that if either syn-
thetic field vanishes, the system must be reciprocal, since
sinðϕ ¼ 0Þ ¼ 0 and τþ ¼ τ− if ωM ¼ 0. Furthermore, the
strongest nonreciprocal response will arise when both ωM
and ϕ are tuned such that transmission is maximally
antisymmetric with respect to the sign of either quantity.
This occurs when the input frequencyω ¼ ω0, the synthetic
flux ϕ ¼ �π=2, and the synthetic potential ωM ≈ λ, such
that the lower and upper paths are resonant and respectively
provide opposite �π=2 phase shifts due to the antisym-
metric phase of τðωÞ. The resonance of the lower and upper
paths also maximizes the amplitudes of τ� and therefore the
β2 term of Eq. (8), further increasing the nonreciprocal
contrast.
The effect of the synthetic electric and magnetic fields

can be interpreted as a Hall effect for photons. In the
ordinary Hall effect, current flows perpendicular to applied
electric and magnetic fields because the combination of
fields exerts a force that makes it more favorable for
electrons to move in one direction. Here, the same
combination of fields makes it more favorable for photons
to move in one direction, leading to transmission
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nonreciprocity. This effect is resonantly enhanced in our
system, leading to a strong nonreciprocal contrast.
To test these predictions we implemented a chain of

two coupled resonators with modulated resonance
frequencies in a microwave circuit using microstrip stub
resonators, as pictured in Fig. 2(a) (see Supplemental
Material S4 for additional details [38]). Each resonator
has an initial loaded resonance frequency ω0=2π ≈
1.35 GHz and is terminated in a varactor diode that
modulates the resonance frequency in response to an
applied voltage. We used external tunable phase shifters
to control the phase shift ϕ between the sinusoidal voltage
biases applied to the resonators.

We first swept the amplitudes of the synthetic fields
(by adjusting the modulation frequency and phase) to find
the values that produce the strongest nonreciprocity.
Figure 2(b) shows the measured isolation contrast for an
input frequency of ω0 as a function of the synthetic

potential ωM ∝ E⃗ and synthetic magnetic flux ϕ ∝ B⃗. As
predicted, the contrast is maximized near specific values of
these parameters: ωM=2π ≈ λ=2π ≈ 48 MHz and ϕ ≈ π=2.
The frequency dependence of the circuit components
produces an additional asymmetry, not accounted for in
our model, which has frequency-independent parameters,
that shifts the maximum contrast to ωM=2π ¼ 53 MHz.
The measured transmission amplitude for an input at ω0 is
shown in Fig. 2(b) for ωM=2π ¼ 48 MHz. There is good
agreement between the measured transmission and theo-
retically calculated transmission. This experiment also
clearly demonstrates that the synthetic electric and mag-
netic fields work together to produce a strong nonreciprocal
response. The measured transmission with no synthetic flux
(ϕ ¼ 0) is fully reciprocal, and the isolation contrast
decreases as the synthetic potential moves away from
ωM ≈ λ ≈ 48 MHz, as expected.
Next we increased the modulation amplitude to mini-

mize the transmission amplitude in the forward direction
(S21 ≈ 0) while maximizing isolation contrast. Figure 2(c)
shows the measured and calculated values of the power
transmission, jS12ðωÞj2 and jS21ðωÞj2, under modulation
with this critical amplitude. Here, the modulation frequency
has been increased to ωM=2π ¼ 53 MHz in order to
maximize the contrast. The measured forward transmission
approaches zero (≈−79 dB) at ω0, and measured isolation
contrast at ω0 is >64 dB. The calculated transmission
matches the measured data well and the result is consistent
with the prediction of Eq. (8). We note that the spectral
asymmetry in the experimental data is caused by the
frequency-dependent coupling rate of the capacitors, which
is not included in the theoretical model.
The synthetic electric and magnetic field interpretation of

a modulated resonator chain can be extended to chains of an
arbitrary length. The form ofH remains the same regardless
of chain length; only the inner matricesH0 and B change to
accommodate more resonators. A detailed explanation of
the coupled-mode theory for longer modulated chains is
provided in the Supplemental Material S1 [38].
Since all resonator chains have an antisymmetric phase

response about their center frequency, a combination of
synthetic electric and magnetic fields can break reciprocity
in a chain of any length through the nonreciprocal mecha-
nism that we have identified. The outermost eigenmodes of
resonator chains always follow the pattern found in the
two-resonator chain: the phase difference between adjacent
resonators, relative to the phase difference at ω0, is þπ=2
for the lowest-frequency mode and −π=2 for the highest-
frequency mode. Strong transmission nonreciprocity will
occur for inputs at the center frequency ω0 when the

FIG. 2. (a) Photograph of the experimental circuit implement-
ing two coupled resonators with variable resonance frequencies.
The bias ports are used to apply a voltage to the varactor diodes
(white boxes) and thereby modulate the resonant frequency.
(b) Left: Measured isolation contrast at ω0 as a function of ωM
and ϕ. Right: Measured forward and backward transmission
amplitude at ωM=2π ¼ 48 MHz, which corresponds to the
dashed line on the left. (c) Measured and fitted power trans-
mission for the circuit in (a), with ωM ≈ λ, ϕ ¼ π=2, and β tuned
to minimize forward transmission amplitude.
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synthetic flux ϕ ¼ π=2 and the synthetic potential
ωM ¼ Δω, where Δω is the frequency separation between
the outermost eigenmodes and the center frequency. In the
shortest case of two resonators, Δω ¼ λ, but as the chain
length increases, Δω → 2λ. A theoretical analysis of how
this mechanism works in a three-resonator chain is pro-
vided in the Supplemental Material S2 [38].
We implemented a longer chain of three modulated

resonators using three microstrip resonators with voltage-
controlled resonance frequencies (Fig. S2 in Supplemental
Material [38]). Here, each resonator has an initial loaded
resonance frequency ω0 ≈ 1.32 GHz. The measured and
calculated transmission spectra are shown in Fig. 3(a) for
ϕ ¼ π=2 and ωM=2π ¼ Δω=2π ≈ 141 MHz, where the
modulation amplitude is tuned to minimize the forward
transmission amplitude. As in the two-resonator chain, the
measured forward transmission near ω0 approaches zero
(≈ − 80 dB), and there is strong nonreciprocal con-
trast (≈59 dB).
We also simulated longer chains using the coupled-mode

theory model with intrinsic resonator linewidth κ, λ ¼ 10κ,

k ¼ 2
ffiffiffi
κ

p
, ϕ ¼ π=2, and keeping sideband terms up to

�5ωM. As the chain length increases, the number of
eigenmodes of the chain increases proportionally, even-
tually forming a flat passband around ω0 as the modes
overlap due to their finite linewidth. Additionally, the
backward transmission (insertion loss) approaches the
reciprocal transmission of an unmodulated resonator chain
(see Supplemental Material S3B for more detail on inser-
tion loss [38]). We plot the forward (S21) and backward
(S12) transmission spectra for chains of 8 and 13 resonators
under modulation with ϕ ¼ π=2, ωM ¼ Δω, and β tuned to
minimize S21ðω0) in Figs. 3(b) and 3(c). Despite the
increased number of eigenmodes forming a passband
instead of discrete resonances, the major nonreciprocal
feature remains the large nonreciprocal dip near ω0. The
spectrum is approximately reciprocal between the central
frequency and the band edges, indicating that the main
nonreciprocal mechanism is the first-order process related
to the antisymmetric eigenmodes. Accordingly, the band-
width of the nonreciprocity is primarily determined by the
linewidth of these two modes. However, we note that the
bandwidth is also influenced by the modulation frequency,
amplitude, and phase, such that no simple expression
relates it to the mode linewidth (see Supplemental
Material S3A for more detail [38]).
The synthetic field interpretation of spatiotemporal

modulation discussed here can be directly applied to a
wide variety of nonreciprocal systems [9,11–15,20].
Additionally, the nonreciprocal mechanism we proposed
is general and can be realized without added filters in any
system of coupled resonators with the appropriate anti-
symmetric modes, including chains of coupled photonic or
electronic crystal defects. Since resonance frequency
modulation is practical across a variety of resonator types
[14,40–42], the proposed method for generating strong
nonreciprocity can be implemented across domains, in
optical, microwave, or mechanical resonators. Furthermore,
analogous modulation schemes that make use of both the
lower and upper sidebands could also be realized using
other methods of modulation, such as with Josephson
parametric converters [8,43,44].
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