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Integrating magnets into resonant mechanical systems allows for intriguing capabilities, such as the ability to tune the mechanical
resonance frequency or induce coupling between resonators without any physical contact. Here, we present analytical models as
well as the experimental study of an integrated magneto-mechanical system. Using a point dipole approximation, we explore the
magneto-static spring effect, which can either soften or stiffen a spring depending on dipole orientation and spatial position of
the magnets. We use translational and rotational resonance as commonly encountered demonstrative cases and, experimentally,

demonstrate both the spring softening and stiffening effects.

Index Terms— Magneto-mechanics, nonlinear dynamics, spring softening, spring stiffening.

I. INTRODUCTION

ORCES that exhibit a linear dependence on the position
of a moving object produce an effect equivalent to a
mechanical spring and can tune the natural frequency of
a mechanical oscillator. This effect is responsible for well-
known phenomena such as electrostatic spring softening in
MEMS [1], [2] and atomic force microscopes [3], [4], as well
as the optical spring effect due to radiation-induced forces
in optomechanical systems [5], [6]. Magnetically sensitive
mechanical oscillators within nonuniform magnetic fields can
also experience a magnetostatic spring effect, which is the
basis of magnetic force microscopy [7], [8]. As magneto-
mechanical systems become increasingly relevant for energy
harvesting [9]-[11], sensors [12]-[14], actuators [15]-[17],
and metamaterials [18]-[20], understanding of this spring
effect becomes increasingly important. The magnetic spring
formed by concentric rings was investigated in [21]-[23],
whereas [24]-[27] focused on the nonlinear magnetic interac-
tion and close proximity forces. Here, we focus on a regime
where the magnetic interaction can be characterized by a point
dipole approximation and is dominated by linear behavior.
In this paper, we investigate the magnetostatic spring effect
in the context of magneto-mechanical oscillators undergoing
both translational and rotational resonances. We show that the
magnetostatic spring can either soften or stiffen an oscillator
depending on spatial location as well as vector orientation
of the dipole. This richness of behavior can also impact the
magnetically induced coupling within oscillator arrays and can
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uniquely generate both positive and negative inter-oscillator
coupling rates.

II. MAGNETOSTATIC SPRING EFFECT

For this paper, we select a simple two-magnet system,
each of which is allowed the same oscillatory degree of
freedom (DOF)—either translational or rotational—with the
assistance of restoring mechanical springs. Each magnet is
a source of a nonuniform magnetic field that influences the
dynamics of the other magnet. This arrangement is selected
as it provides a simple canonical example and yet demonstrates
the complexity of the magnetostatic spring effect. The methods
and inferences in this paper can readily be extended to more
complex systems composed of several magnetic oscillators
and more complex spatial field dependences. To simplify the
analysis, we treat the two magnets as point dipoles, which is
heuristically acceptable as long as the distance between them
is greater than their largest geometrical dimension. Generally,
a magnetic dipole m in a magnetic field B feels a force
F = V(- B) and a torque 7 = m x B, both depending
on the orientation and position of the dipole within the field.
The magnetic field produced by a point dipole is given by
B = (3(m - F)F — r2m)uo/4mr>. Therefore, for a two-magnet
system, the torque and force acting on magnet 1 due to magnet
2 take the forms

- 0 — - N s "
Ti2 = #—5(3”12 x (- F)F = r?(ima x i) @)
drr
and
- 3uo . ., B .
Fro = =3 oy - 7) + my(ma - F) + 7y - o)

—5F(my - F)(mz - 7). (2)

Here, 19 = 4 x 1077 N/A? is the magnetic permeability of
free space, 7 is a unit vector in the direction of ¥ = xX +yy+
zZ, which is the position of magnet 2 relative to magnet 1, and
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Fig. 1.  Schematic of a two-magnet system, n7] and nip are the dipole
moments, and 7 is their relative position vector. (a) Rotational DOF of the
magnets around Z. (b) Translational DOF of the magnets along .

my, my are the two magnetic dipoles. We separate our analysis
into two cases: 1) rotational resonance around Z [Fig. 1(a)]
to analyze the spring contribution from the magnetic torque
and 2) translational resonance along y [Fig. 1(b)] to analyze
the spring contribution of the magnetic force. For both cases,
the dipoles are assumed to be oriented along y at rest.

We first analyze the rotational resonance case shown
in Fig. 1(a). Assuming that the angular amplitude is small,
the magnetostatic torque acting on magnet 1 oriented along
unit vector Z is given by

omina
712(01, 6h) = Aoz

15 (=290

+@2x% = y2)0 —3xy)  (3)

where 6 and 6, are the angles of rotation of magnets 1 and
2, respectively. The equation of motion for magnet 1 can then
be written as

16} + cb; + k0, = 11201, 62) 4

where [ is the cross-sectional moment of inertia, x represents
the torsional mechanical restoring spring constant, and c is the
viscous damping coefficient. In this paper, we do not consider
the effects of dry friction [28]. Since 712 # 0 for 8 = 6, =0,
the system is not at equilibrium for zero deflections, and
to obtain the magnetic effect, we must linearize the system
around the new equilibrium deflections Geq,1, feq,2. However,
by assuming small magnetic interaction or large mechanical
stiffness, this equilibrium can be neglected (a full deriva-
tion without this assumption is provided in the Appendix).
This allows substitution of (3) into (4) to produce the lin-
earized equation of motion

01 + 6y + (0} — 7)01 —abr =0 5)
where
s C Ky pomimax? =2y
[T T azr3 12
2 2
- a nomimy 2x= —y R
a=—; a= ;r=1r|. 6
I 473 r2 Il ©®

From (5), we see that the coefficient j acts as an additional
spring term and a is a coupling coefficient between the two
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Fig. 2. Calculated magnetostatic spring effect for a system with a rotational
DOF. (a) Color map of normalized y [the spring modification parameter given
in (6)] as a function of the relative position in x and y of two magnets.
(b) Fractional frequency shift calculated for specific values of ), m;, k based
on our experiments. Striped green area marks where Ocqj > 10‘5 and our
linearized approximation does not hold (see the Appendix).

magnets. These coefficients can take on either positive or neg-
ative values and can, therefore, introduce either a spring soft-
ening or stiffening effect as well as either negative or positive
coupling between the resonators. Fig. 2(a) presents a computed
2-D map of the rotational magnetostatic spring effect due to
y with respect to the purely geometrical coordinates x and y.

We can also write the fractional shift of the natural
frequency as (w, — wg)/wo = (1 —y/x)1/? — 1, where
w, = (a)% — 7)1/2) is the new resonance frequency. Fig. 2(b)
presents the 2-D spatial variation of this fractional fre-
quency shift evaluated for the position independent pre-factor
uo my ma/drx = 1.5-10% 1/m3, corresponding to the
experimental measurements discussed later in this paper. Since
we are assigning specific values to the system parameters,
the assumption of large mechanical stiffness or small magnetic
interaction may not be valid, therefore, we include Ocq;; in our
calculations.

We use a linearized approximation around §; = 0 to find
Ocq,i» therefore, the calculated frequency shift is only valid
when 0 ; are in the vicinity of the original linearization point
(see the Appendix). As a threshold for producing Fig. 2(b),
we used Oeqi < 1072,
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Fig. 3. Calculated magnetostatic spring effect for a system with a translational
DOE. (a) Color map of normalized 4 (the spring modification parameter) as a
function of the relative position in x and y of two magnets (full expression for

A is in the Appendix). (b) Fractional frequency shift plotted for specific values
of up, mj, k based on our experiments. Striped green area marks where y'rﬂ >

102 and our linearized approximation does not hold (see the Appendix).

We now proceed to analyze the translational system illus-
trated in Fig. 1(b). The magnetostatic force acting on magnet
1 in the y direction is

3uomimy
Fo=——+——
12 Az rdS

where y; and y, are the linear displacements of magnets
1 and 2, respectively, and yg is the initial spacing between
the magnets. As mentioned earlier, there is a non-zero mag-
netostatic force (F12 # 0 if y; = y2 = 0) that may introduce
initial deflections yeq,1, yeq,2 at equilibrium. However, as in
the case of the torque, if the magnetic interaction is assumed
to be small, or the mechanical spring constant is assumed
to be large, we can reasonably neglect this contribution (a
full derivation is in the Appendix). The linearized equation of
motion of magnet 1 is then written as

5 _ 3
[3(y0+y1 ) M} %

Vi + &1 + (03 — Dy1 + Ay2 = Fia ®)
where
- C 2 k ~ A ~ F]2
TuM N Ty MR T Ty ©
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Fig. 4. (a) Illustration of the experimental system comprised of a small
magnet mounted on a serpentine mechanical spring. The system is driven
to resonance using a coil and deflections are sensed using a Hall sensor.
(b) Torsional resonance mode. (¢) Bending resonance mode. (d) Photograph
of a fabricated device with Hall sensor and driving coil. (e) Photograph of
the experiment setup including the resonating magnet and the fixed magnet
used to induce the spring effect.

Here, M is the mass of the magnet, k is the mechanical spring
constant, ¢ is a damping coefficient, and A = (6 F12)/(0y) (see
the Appendix) functions as both the effective magnetic spring
as well as the coupling coefficient between the resonators.
Similar to the rotational case, 4 can be either positive or neg-
ative and, therefore, produce either a softening or a stiffening
effect, and either negative or positive coupling. Fig. 3(a)
presents a 2-D map of the translational magnetostatic spring
effect due to A with respect to the purely geometrical parame-
ters x and y.

The fractional shift of natural frequency can also be
evaluated as (o, — wo)/wo = (1 —4/k)1/2 — 1, where
oy = (a)é — )2 and is presented in Fig. 3(b). This
plot is evaluated using the position independent pre-factor
no mp my/mrk = 2.5 x 107! 1/m3, corresponding to the
experiments shown below. As in the rotational case, since
we are assigning specific system parameters we include the
equilibrium calculations in this plot. We use linearization
around y; = 0 to find yeq,, therefore, the calculated frequency
shift is only valid when yeq; are in the vicinity of the original
linearization point (see the Appendix). As a threshold for
producing Fig. 3(b), we used (yeq,i)/7 < 10°2.

II1. EXPERIMENTAL RESULTS

To experimentally verify our analysis, we fabricated a
mechanical resonator with a small neodymium magnet acting
as the magnetic mass [Fig. 4(a)]. The serpentine spring struc-
ture was cut using wire electrical discharge machining (EDM)
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Fig. 5. Measured fractional frequency shift of the torsional resonance as
a function of the distance between the resonating magnet and the fixed
magnet. (a) Parallel (blue) and anti-parallel (red) arrangements, showing a
softening and stiffening effect, respectively. (b) Series (blue) and anti-series
(red) arrangements, showing a stiffening and softening effect, respectively.
Solid lines: theoretical model predictions.

from 0.4-mm-thick aluminum, allowing the structure to sup-
port both a torsional (rotational) resonance mode [Fig. 4(b)]
and a bending (translational) resonance mode [Fig. 4(c)]. We
drive the resonator using a coil that generates a time-varying
magnetic field and measure the motion of the magnet using a
Hall sensor [Fig. 4(d)]. The amplitude of the magnetic field
produced by the coil is experimentally confirmed to be at
least an order of magnitude smaller than the field produced
by the resonating magnet. In addition, the drive amplitude is
kept very small to keep the resonator in the linear response
regime and to also ensure negligible background magnetic
field that might affect measurements. In order to isolate the
spring effect from the coupling effect, magnet 1 was mounted
on the spring, while magnet 2 was fixed to an xyz stage
resulting in 6, y, = 0 [Fig. 4(e)]. Here onward, we refer
to magnet | as the resonating magnet and magnet 2 as the
fixed magnet. We first measured the unperturbed torsional
mode resonance frequency (515 Hz) and the bending mode
resonance frequency (370 Hz) of the isolated resonator to
establish a baseline.

To test the magnetostatic spring effect, we measured the
fractional shift of each resonance frequency in two cases: a
parallel configuration (z = y = 0 and the magnets are only
spaced in x) and a series configuration (z = x = 0 and
the magnets are only spaced in y). For the torsional mode,
we anticipate from (6) that the parallel configuration will
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Fig. 6. Measured fractional frequency shift of the translational resonance

as a function of the distance between the resonating magnet and the fixed
magnet. (a) Parallel (blue) and anti-parallel (red) arrangements, showing a
softening and stiffening effect, respectively. (b) Series (blue) and anti-series
(red) arrangements showing a softening and stiffening effect, respectively.
Solid lines: theoretical model predictions. Dashed lines: predictions based on
Ansys Maxwell simulations of the force.

result in a positive value of y, producing a spring softening
effect. In contrast, the series configuration should result in
a negative value of y, producing a spring stiffening effect.
For the bending mode, we expect that 4 will be positive
for both the parallel and series configurations, implying a
spring softening effect for both. The two magnets can also
be arranged in anti-parallel and anti-series configurations by
flipping one of the dipoles so that it points in —3, thereby
changing the sign of y, 1.

Experimental measurements of the fractional frequency shift
for the torsional mode are shown in Fig. 5. We find good
agreement between the predicted and measured frequency
shift in all four (parallel, anti-parallel, series, and anti-series)
configurations.

The experimentally measured fractional frequency shift for
the bending mode is shown in Fig. 6. We again find good
agreement between the predicted and measured frequency
shift for the parallel and anti-parallel configurations. How-
ever, in the series and anti-series configurations, the pre-
dicted frequency shift is noticeably greater than the measured
shift, especially for small separation distances. Finite-element
simulations using Ansys Maxwell solver revealed that this
discrepancy is due to shape effects that are not captured by the
point dipole model, which reduce the effective dipole moment.
The magnetic translational resonance is more sensitive to these
shape effects than the rotational resonance due to its stronger
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dependence on the position of the dipole, as can be seen by
comparing Figs. 2 and 3. This effect decreases with relative
distance and ultimately becomes negligible at long distances
where the magnets are well-approximated by a point dipole.

IV. CONCLUSION AND DISCUSSION

We have presented an analytic model describing magneto-
static spring and coupling effects that arise from the interaction
of magnetized mechanical resonators. These magnetostatic
effects can produce either softening or stiffening of the res-
onator’s effective spring constant, depending on the dipole
orientation and the ambient magnetic field distribution. We
verified our analytic model with simple experimental tests
for resonators undergoing either rotational or translational
resonant motion. We additionally note that the magnetic spring
effect is generally nonlinear and the linearized approximations
we use here are only valid for low amplitudes of motion and
small driving forces. This type of system can, therefore, offer
a reconfigurable platform for the investigation of non-linear
effects in arrays of coupled nonlinear resonators.
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