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ABSTRACT
In this paper we study the adaptive complexity of submodular opti-

mization. Informally, the adaptive complexity of a problem is the

minimal number of sequential rounds required to achieve a con-

stant factor approximation when polynomially-many queries can

be executed in parallel at each round. Adaptivity is a fundamental

concept that is heavily studied in computer science, largely due

to the need for parallelizing computation. Somewhat surprisingly,

very little is known about adaptivity in submodular optimization.

For the canonical problem of maximizing a monotone submodular

function under a cardinality constraint, to the best of our knowl-

edge, all that is known to date is that the adaptive complexity is

between 1 and Ω(n).
Our main result in this paper is a tight characterization showing

that the adaptive complexity ofmaximizing amonotone submodular

function under a cardinality constraint is Θ̃(logn):

• We describe an algorithmwhich requiresO (logn) sequential
rounds and achieves an approximation that is arbitrarily

close to 1/3;

• We show that no algorithm can achieve an approximation

better than O ( 1

logn ) with fewer than O (
logn

log logn ) rounds.

Thus, when allowing for parallelization, our algorithm achieves a

constant factor approximation exponentially faster than any known

existing algorithm for submodular maximization.

Importantly, the approximation algorithm is achieved via adap-

tive sampling and complements a recent line of work on optimiza-

tion of functions learned from data. In many cases we do not know

the functions we optimize and learn them from labeled samples.

Recent results show that no algorithm can obtain a constant factor

approximation guarantee using polynomially-many labeled sam-

ples as in the PAC and PMAC models, drawn from any distribution.

Since learning with non-adaptive samples over any distribution

results in a sharp impossibility, we consider learning with adaptive

samples where the learner obtains poly(n) samples drawn from a

distribution of her choice in every round. Our result implies that

in the realizable case, where there is a true underlying function
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generating the data, Θ̃(logn) batches of adaptive samples are neces-

sary and sufficient to approximately “learn to optimize" a monotone

submodular function under a cardinality constraint.
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1 INTRODUCTION
In this paper we study the adaptive complexity of maximizing a

submodular function. For the past several decades submodularity

has been heavily studied in theoretical computer science, machine

learning, and operations research. This is largely due to the fact

that submodular functions capture a broad range of applications in

diverse domains and are amendable to optimization.

Inmany cases we do not know the objective functionwe optimize

and instead learn it from data. In the standard notions of learnability

for submodular functions such as PAC [Val84] and its generalization
PMAC [BH11], the input is a collection of sampled sets and their func-

tion values, and the goal is to produce a surrogate thatmimics the be-

havior of the function on samples drawn from the same distribution

(e.g. [BH11, FK14, BDF
+
12, BCIW12, FV13, FV15, Bal15, NPS15]).

In order to investigate the approximation guarantees achiev-

able when a function is learned in the PAC and PMAC models, a

recent line of work has been devoted to optimization from sam-

ples [BRS17]. In this framework the input is a collection of samples

and the goal is to find a solution that approximates the optimum.

The main result shows that for the canonical problem of maxi-

mizing a submodular function under a cardinality constraint, no

algorithm can obtain a constant factor approximation guarantee

given access to polynomially-many samples drawn from any dis-

tribution [BRS17]. This result holds even when the functions are

coverage functions which are heavily used in applications and

are PMAC-learnable [FK14, BDF+12]. Similar impossibility results

hold for submodular minimization [BS17a] and convex optimiza-

tion [BS17b], even when the objective functions are PAC-learnable.
Thus, it is generally impossible to obtain reasonable approximation

guarantees for optimization problems that are in P and APX when

https://doi.org/10.1145/3188745.3188752
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the objective is learned with polynomially-many samples, even

when it is PMAC or PAC learnable.

1.1 Adaptivity
The inapproximability for optimization from samples is a conse-

quence of non-adaptivity: any algorithm that only has access to

samples of function values cannot make adaptive queries and this

restriction inhibits reasonable approximation guarantees. Infor-

mally, the adaptivity of an algorithm can be quantified in terms of

the number of sequential rounds of queries it makes, where every

round allows for polynomially-many parallel queries.

Definition. Given an oracle f , an algorithm is r -adaptive if
every query q to the oracle f occurs at a round i ∈ [r ] such that q is

independent of the answers f (q′) to all other queries q′ at round i .

Adaptivity is a fundamental concept that is studied across a wide

spectrum of areas in computer science (see discussion in Appendix

A.1). In the context of submodular optimization, the oracle for a

function f : 2
N → R is a value oracle that receives a set S ⊆ N and

returns its value f (S ). An algorithm is then r -adaptive if every query
S to the oracle occurs at a round i ∈ [r ] such that S is independent

of the values f (S ′) of all other queries S ′ at round i . Somewhat

surprisingly, the concept of adaptivity which quantifies complexity

in a parallel computingmodel has not been explored for submodular

optimization. There is vast literature on submodular optimization in

the Map-Reduce model which addresses the challenges associated

with processing data that exceeds memory capacity (e.g. [CKT10,

KMVV15,MKSK13,MZ15,MKBK15, BENW15, BENW16, EMZ17]),

but these algorithms are inherently sequential and Ω(n)-adaptive
in the worst case (see discussion in Appendix A.2), where n is the

size of the ground set N .

1.2 The Adaptivity Landscape of Submodular
Optimization

The adaptive complexity of an optimization problem is the min-

imum number of rounds r such that there exists an r -adaptive
algorithm which achieves a constant factor approximation with

poly(n) queries made in every round. For unconstrained submodu-

lar maximization the adaptive complexity is trivially 0 as a random

subset is a 1/4 approximation to the optimal solution [FMV11].

For the canonical problem of maximizing a monotone submodu-

lar function under a cardinality constraint k , however, very little

is known. The adaptive complexity must be strictly larger than 1

since the main impossibility result for optimization from samples

implies that no constant factor approximation is achievable with

non-adaptive queries [BRS17]. On the other hand, the celebrated

greedy algorithm which achieves the optimal 1−1/e approximation

guarantee by iteratively adding the element with largest marginal

contribution is trivially k-adaptive. In the worst case, k ∈ Ω(n). All
constant factor approximation algorithms we are aware of for max-

imizing a submodular function under a cardinality constraint are

at best k-adaptive. So all we know is that the adaptive complexity

is between 1 and Ω(n).

What is the adaptive complexity of maximizing a submodular

function?

Adaptivity is not only a fundamental theoretical concept but it

also has important practical consequences. There is a wide vari-

ety of applications of submodular maximization where function

evaluations are easily parallelized but each evaluation requires a

long time to complete. In crowdsourcing for example, function

evaluations depend on responses from human agents and highly

sequential algorithms are impractical. Data summarization, experi-

mental design, influence maximization, marketing, survey design,

and biological simulations are all examples where the adaptive

complexity of optimization largely determines the runtime bottle-

neck of the optimization algorithm (see Appendix B for a detailed

discussion of these applications).

1.3 Main Result
Our main result is that the adaptive complexity of submodular

maximization is Θ̃(logn). This provides a characterization that is

tight up to low-order terms, and an exponential improvement in

the adaptivity over any known constant factor approximation al-

gorithm for maximizing a monotone submodular function. Our

characterization is composed of two major results. The first is an al-

gorithm whose adaptivity is O (logn) and obtains an approximation

arbitrarily close to 1/3.

Theorem. For the problem of monotone submodular maximiza-

tion under a cardinality constraint and any constant ϵ > 0, there

exists an O (logn)-adaptive algorithm which obtains, with probability

1 − o(1), a (1/3 − ϵ )-approximation.

We complement the upper bound by showing that the adaptive

complexity of submodularmaximization is at least quasi-logarithmic

by showing that no Ω̃(logn)-adaptive algorithm can obtain an ap-

proximation strictly better than
1

logn .

Theorem. For the problem of monotone submodular maximiza-

tion under a cardinality constraint, there is no

(
logn

12 log logn

)
-adaptive

algorithm that obtains, with probabilityω
(
1

n

)
, a

1

logn -approximation.

In fact, we show the following more general impossibility result:

for any r ≤ logn, there is no r -adaptive algorithm that obtains,

with probability ω
(
1

n

)
, an n−

1

2r+2 · (r + 3) log2 n approximation.

1.4 Adaptive Sampling: a Coupling of Learning
and Optimization

Our motivation is to understand what are the necessary and suf-

ficient conditions from a learnability model that yield desirable

approximation guarantees for optimization. Since sharp impossi-

bility results arise from learning with non-adaptive samples over

any distribution, we turned to an adaptive sampling model [Tho90].

In adaptive sampling, the learner obtains poly(n) samples drawn

from a distribution of her choice in every round. Our (1/3 − ϵ )-
approximation O (logn)-adaptive algorithm is achieved by adaptive

sampling. Our hardness result holds for queries and hence also for

adaptive sampling. This implies that in the realizable case, where

there is a true underlying function generating the data, Θ̃(logn)
batches of adaptive samples are necessary and sufficient to approxi-

mately “learn to optimize" a monotone submodular function under

a cardinality constraint.
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Table 1: A comparison of results for the number of rounds required to ob-
tain a constant factor approximation.

Best known adaptivity Adaptivity in this paper

upper bound Ω(n) [NWF78] O (logn)
lower bound 1 [BRS17] Ω̃(logn)

1.5 Technical Overview
The algorithm. The main building block of the adaptive sampling

algorithm is the construction, at every round r , of a meaningful dis-

tribution Dr with elements having marginal probabilities of being

drawn p1, . . . ,pn . We begin by presenting two simple primitives:

down-sampling (Section 2.1) and up-sampling (Section 2.2). In every

round, down-sampling identifies elements ai ∈ N whose expected

marginal contribution to a random set drawn according to Dr is

sufficiently low and sets pi = 0 for all future rounds. This approach

achieves logarithmic adaptivity, but its approximation guarantee

is 1/ logn. The second approach, up-sampling, sets pi = 1, for all

future rounds, for all elements in the sample with highest value

at that round. It achieves a constant approximation but at the cost

of a linear adaptivity. Our main algorithm, Adaptive-Sampling

(Section 2.3) achieves logarithmic adaptivity and constant factor

approximation by shaping Dr via up-sampling at rounds where

a random set has high value and down-sampling otherwise. The

analysis then heavily exploits submodularity in non-trivial ways

to bound the marginal contribution of elements to a random set

drawn from Dr , which evolves in every round.

Hardness. To bound the number of rounds necessary to obtain

a certain approximation guarantee, we analyze the information

that an algorithm can learn in one round that may depend on

queries from previous rounds. Reasoning about these dependencies

between rounds is the main challenge. To do so, we reduce the prob-

lem of finding an r -adaptive algorithm to the problem of finding an

r + 1-adaptive algorithm over a family of functions with additional

information. This approach is related to the round elimination tech-

nique used in communication complexity (e.g. [MNSW95]).

1.6 Paper Organization
We begin by presenting the algorithm and its analysis in Section 2.

Section 3 is devoted to the hardness result. Adaptivity in CS is

discussed in Appendix A.1 and comparisons with the Map-Reduce

and PRAM models are in Appendix A.2. Finally, applications of

adaptivity are in Appendix B.

2 THE ADAPTIVE COMPLEXITY OF
SUBMODULAR MAXIMIZATION IS O (logn)

In this section, we show that the adaptive complexity of maximizing

a monotone submodular function under a cardinality constraint is

O (logn) via the Adaptive-Sampling algorithm, which has loga-

rithmic adaptivity and obtains an approximation arbitrarily close

to 1/3. This algorithm uses two simple, yet powerful, adaptive sam-

pling techniques as primitives. The first is down-sampling which

in each round maintains a uniform distribution over high-valued

elements by iteratively discarding elements with low marginal con-

tribution to a random set. The second primitive is up-sampling

which at every round identifies the elements with highest value

and includes them in all future samples. Neither of these primitives

achieves a constant factor approximation in O (logn) rounds, but
an appropriate combination of them does.

2.1 Down-sampling
The down-sampling algorithm is O (logn)-adaptive but its approx-
imation guarantee is Ω( 1

logn ). We describe the algorithm and an-

alyze its properties which will later be used in the analysis of

Adaptive-Sampling. In every round, as long as the expected value

of a random subset of size k of the surviving elements is not an

α-approximation of the value of the optimal solution OPT, the down-
sampling algorithm discards all elements whose expected marginal

contribution to a random set is below a fixed threshold ∆. A formal

description is included below.

Algorithm 1 Down-Sampling, discards a large number of ele-

ments at every round by sampling.

Input: approximation α and threshold parameter ∆
Initialize S ← N , D as uniform distribution over sets of size k
while |S | > k and ER∼D [f (R)] < αOPT do
S ← S \

{
a : ER∼D

[
fR\{a } (a)

]
< ∆

}

Update D to be uniform over subsets of S of size k
return R ∼ D

Algorithm 1 is an idealized description of the down-sampling

algorithm. In practice, we cannot evaluate the exact expected value

of a random set and we do not know OPT. Instead, we sample

random sets from D at every round to estimate the expectations

and guess OPT. For ease of notation and presentation, we analyze

this idealized version of the algorithm, discuss the extension to the

full algorithm in Section 2.4, and formally describe the full algorithm

in Appendix C. This idealized version also has a nice interpretation

via themulti-linear extension of submodular functions as a search of

a continuous point x ∈ [0,1]n which, at every iteration, is projected

to a lower dimension on the boundary of the polytope of feasible

points (see Appendix D.1 for details).

Analysis of down-sampling. The analysis of down-sampling largely

relies on Lemma 1 and Lemma 2, which respectively bound the num-

ber of elements discarded at every round and the loss in the approx-

imation due to these discarded elements. We discuss these lemmas

in the following subsections. Recall that a function f : 2
N → R+

is submodular if for every S ⊆ T ⊆ N and a < T we have that

fS (a) ≥ fT (a), where fA (b) denotes the marginal contribution

fA (b) = f (A ∪ {b}) − f (A) of b ∈ N to A ⊆ N . Such a function

is monotone if f (S ) ≤ f (T ) for all S ⊆ T . Finally, it is subadditive
if f (A ∪ B) ≤ f (A) + f (B) for all A,B ⊆ N , which is satisfied by

submodular functions.

2.1.1 The Adaptivity of Down-sampling. One crucial property

of the down-sampling algorithm is that it is O (logn)-adaptive. This
is largely due to the fact that in every round a significant fraction

of the remaining elements are discarded. Throughout the paper we

useU (S ,t ) to denote the uniform distribution over subsets of S of

size t .
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Lemma 1. Let f : 2
N → R be a monotone submodular function.

For all S ⊆ N , t ∈ [n], and ∆ > 0, let D = U (S ,t ) and the discarded

elements be S− =
{
a : ER∼D

[
fR\{a } (a)

]
< ∆

}
. Then:

���S \ S
−��� ≤

ER∼D[f (R)]

t · ∆
· |S |.

Proof Sketch (full proof in Appendix D.2.2). We first lower

bound the expected value of a random set ER∼D[f (R)] by the sum

of the expected marginal contribution of the remaining elements∑
a∈S\S− Pr[a ∈ R] ·ER∼D

[
fR\{a } (a)

]
, using submodularity. Then,

we use the fact that the expected marginal contribution of surviving

elements is at least ∆ to obtain the desired bound. □

Notice that when ∆ = c · αOPTk for some c > 1, the lemma

implies that if ER∼D[f (R)] < αOPT, then the number of elements

remaining is reduced by a factor of at least c at every round.

2.1.2 The Approximation Guarantee of Down-Sampling. The

down-sampling algorithm is an Ω( 1

logn ) approximation (Corol-

lary 1). To analyze the value of sets that survive down-sampling,

we show that the value f (O ∩ S−) of discarded optimal elements is

small. Thus, the optimal elements that are not discarded conserve

a large fraction of OPT.

Lemma 2. Let f : 2
N → R be monotone submodular with optimal

solution O and D = U (S ,t ), for any S ⊆ N and t ∈ [n]. The loss

from discarding elements S− :=
{
a ∈ S : ER∼D

[
fR\{a } (a)

]
< ∆

}
is

approximately bounded by the value of R ∼ D:

f (O ∩ S−) ≤ |O ∩ S− |∆ + E
R∼D

[f (R)] .

Proof. The value ofO∩S− is upper bounded using the threshold
∆ for elements to be in S−,

f (O ∩ S−) − E [f (R)] ≤ E
[
fR (O ∩ S

−)
]

≤ E


∑
a∈O∩S−

fR (a)

≤ |O ∩ S− | · ∆

where the first inequality is by monotonicity, the second by sub-

modularity, and the last by submodularity and definition of S− □

At this point, we can prove the following corollary about the

down-sampling algorithm.

Corollary 1. Down-Sampling with ∆ = OPT
4k and α = 1

logn is

O (
logn

log logn )-adaptive and obtains, in expectation, a
(

1

logn

)
-approximation.

Proof Sketch (full proof in Appendix D.2.2). The adaptivity

follows from the fact that the number of remaining elements is re-

duced by a logn factor at every round by Lemma 1. Next, for the

approximation guarantee, we first bound the value of remaining ele-

ments S by OPT− f
(
O ∩

(
∪ri=1S

−
i

))
, where S−i is the set of discarded

elements at round i , by monotonicity and subadditivity. Then, we

bound f (O ∩ S−i ) using Lemma 2 and obtain the approximation

guarantee. □

It is important to note that Ω( 1

logn ) is the best approximation the

down-sampling algorithm can achieve, regardless of the number

of rounds. There is a delicate tradeoff between the approximation

obtained when the algorithm terminates due to E[f (R)] ≥ αOPT

and the one when |S | ≤ k , s.t. more rounds do not improve the

approximation guarantee.We further discuss this in Appendix D.2.1.

2.2 Up-sampling
A second component of the main algorithm is up-sampling. Instead

of discarding elements, the up-sampling algorithm adds elements

which are included in all future samples. At each round, the sample

containing the k/r new elements with highest value is added to the

current solution X .

Algorithm 2 Up-Sampling, adds a large number of elements at

every round by sampling.

Input: Sample complexitym and number of rounds r
Initialize X ← ∅
for r rounds do
Update D to be uniform over subsets of N \ X of size k/r
X ← X ∪ argmaxRi { f (X ∪ Ri ) : Ri ∼ D}

m
i=1

return X

Note that when r = k this method is the celebrated greedy algo-

rithm. In contrast to down-sampling, which obtains a logarithmic

number of rounds and approximation, up-sampling is inherently

sequential and only obtains an O (r/k ) approximation. The proof is

deferred to Appendix ??.

Proposition 2. For any constant c ≤ k/r , Up-Sampling is an r -

adaptive algorithm and obtains, w.p. 1 − o(1), a
(
1 − 1

e

)
c ·r
k+c approx-

imation, with sample complexitym = cn2+c logn at every round.

2.3 Adaptive-sampling: O (logn)-Adaptivity and
Constant Factor Approximation

We build upon down and up-sampling to obtain the main algo-

rithm, Adaptive-Sampling. The algorithm maintains two sets, S
for down-sampling and X for up-sampling. If a random subset has

high expected value, then a sample of high value is added to the

up-sampling setX . Otherwise, low-value elements can be discarded

from the down-sampling solution S . A crucial subtlety is that this

algorithm samples sets of size k/r not only for up-sampling but

also for down-sampling (rather than k). The description below is

an idealized version of the algorithm.

Algorithm 3 Adaptive-Sampling: down-samples or up-samples

depending on context.

Input: approximation α , threshold ∆, sample complexitym, bound

on up-sampling rounds r
Initialize X ← ∅,S ← N
while |X | < k and |X ∪ S | > k do
Update D to be uniform over subsets of S \ X of size k/r
if ER∼D [fX (R)] ≥ (α/r )OPT then
X ← X ∪ argmaxRi { f (X ∪ Ri ) : Ri ∼ D}

m
i=1

else
S ← S \

{
a : ER∼D

[
fX∪R\{a } (a)

]
< ∆

}

return X if |X | = k , or X ∪ S otherwise
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2.3.1 The Adaptivity of Adaptive-Sampling is O (logn). The
adaptivity of Adaptive-Sampling is the sum of the number of

up-sampling rounds and of the number of down-sampling rounds,

which we denote by ru and rd respectively.

Lemma 3. Adaptive-Sampling is (ru +rd )-adaptive with ru +rd ≤
r + logc n when ∆ = c · αOPTk .

Proof Sketch (full proof in Appendix D.3). The number of

up-sampling rounds ru is bounded by r since there are k/r elements

added to X at every such round. The number of down-sampling

rounds rd is bounded similarly as for the down-sampling algo-

rithm, using Lemma 1 with the function fX (·) and the fact that

ER∼D [fX (R)] has low value at a down-sampling round. □

2.3.2 Adaptive-Sampling is a Constant Factor Approximation.

Wenow analyze the approximation guarantee of Adaptive-Sampling.

Lemma 4. Adaptive-Sampling obtains, with probability 1 − δ , a(
1

3
− ϵ

)
-approximation and has sample complexitym =

(
r
ϵ

)
2

log

(
2r
δ

)
at every round, with parameters α = 1

3
, r = 3

ϵ · log1+ϵ/2 n, ∆ =(
1 + ϵ

2

)
αOPT
k .

Proof. We begin with the case where the algorithm returns

S ∪ X , which is the main component of the proof, and then we

consider the case where it returns X . At a high level, the first part

in analyzing S∪X consists of bounding f (S∪X ) in terms of the loss

from optimal elements f (O \ S ). Then, we use Lemma 2 to bound

the loss from these elements at every round. A main theme of this

proof is that we need to simultaneously deal with the up-sampling

solution X while analyzing the loss from O \ S .
We introduce some notation. LetO = {o1, . . . ,ok } be the optimal

solution indexed by an arbitrary order and Xi and S
−
i be the sets

X and S− = {a : ER∼D
[
fX∪R\{a } (a)

]
< ∆} at the ith round of

down-sampling, i ∈ [rd ]. First, by monotonicity, subadditivity, and

again monotonicity, we get

f (S ∪ X ) ≥ f (O ) − f (O \ (S ∪ X )) ≥ OPT − f (O \ S ).

The remaining of the proof bounds the loss f (O \ S ) from optimal

elements that were discarded from S . Next, we bound f (O \ S ). The
elements in O \ S are elements that have been discarded from S , so

O \ S = ∪
rd
i=1

(
S−i ∩O

)
, and we get

f (O \ S )) = f
(
∪
rd
i=1

(
S−i ∩O

))
≤ fX

(
∪
rd
i=1

(
S−i ∩O

))
+ f (X )

≤

rd∑
i=1

fX
(
O ∩ S−i

)
+ f (S ∪ X ).

where the first inequality is by monotonicity and the second by

subadditivity and monotonicity. Next,

fX
(
O ∩ S−i

)
≤ fXi

(
O ∩ S−i

)
≤ |O ∩ S−i | · ∆ + E

[
fXi (R)

]
.

where the first inequality is by submodularity and the second is by

Lemma 2 and since fXi (·) is a submodular function. Thus,

f (O \ S ) ≤

rd∑
i=1

(
|O ∩ S−i | · ∆ + E

[
fXi (R)

] )
+ f (S ∪ X )

≤ |O ∩ (∪
rd
i=1S

−
i ) | · ∆ +

(
α ·

rd
r

)
OPT + f (S ∪ X )

≤ k · ∆ +
(
α ·

rd
r

)
OPT + f (S ∪ X )

≤

(
1 +

ϵ

2

)
αOPT +

(
α ·

rd
r

)
OPT + f (S ∪ X )

where E
[
fXi (R)

]
≤ (α/r )OPT at a downsampling round i by the

algorithm. By combining the previous inequalities, we get

f (S ∪ X ) ≥ OPT −
(
1 +

ϵ

2

)
αOPT − f (S ∪ X ) −

rd
r
αOPT

≥

(
1

3

− ϵ
)
OPT

where rd ≤ log
1+ϵ/2 n by Lemma 3 with c = 1 + ϵ/2 and since

r = 3

ϵ · log1+ϵ/2 n.
What remains is the case where the algorithm returns X . Let

Xi and R+i be the set X and the sample R added to X at the ith
round of up-sampling, i ∈ [r ]. By standard concentration bound

(Lemma 13), withm = (r/ϵ )2 log (2r/δ ), w.p. 1 − δ/r , fXi

(
R+i

)
≥

ER∼D
[
fXi (R)

]
− ϵOPT/r . By a union bound this holds for all r

rounds of up-sampling with probability 1 − δ . We obtain

f (X ) =
r∑
i=1

fXi

(
R+i

)
≥

r∑
i=1

(
E

R∼D

[
fXi (R)

]
−
ϵOPT

r

)

≥

r∑
i=1

αOPT

r
− ϵOPT

=

(
1

3

− ϵ
)
OPT.

□

2.4 The Full Algorithm
We briefly discuss the two missing pieces, estimating the expec-

tations and the assumption that we know OPT, both needed to

implement the idealized algorithm. To estimate expectations within

arbitrarily fine precision ϵ > 0 in one round, we querym = poly(n)
setsX ∪R1, . . . ,X ∪Rm where R1, . . . ,Rm are sampled according to

U (S \ X ,k/r ) (Lemma 11 in Appendix C.1 via standard concentra-

tion arguments). To guess OPT, we pick log
1+ϵ n different valuesv⋆

as proxies for OPT, one of which must be an ϵ multiplicative approx-

imation to OPT (Lemma 12 using submodularity). We then run the

algorithm for each of these proxies in parallel, and return the solu-

tion with highest value. With these two final pieces, we obtain the

main result for this section. We describe the implementable version

Adaptive-Sampling-Full formally in Appendix C and analyze it

in Appendix ??.

Theorem 3. For any ϵ ,δ > 0, Adaptive-Sampling-Full is a(
log

1+ϵ/3 n ·
3

ϵ + 2
)
-adaptive algorithm that, w.p. 1 − δ , obtains
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a ( 1
3
− ϵ )-approximation, with sample complexity at every round

m = 64

ϵ 2
(
nk2 log

(
2n
δ

)
+ log2

1+ϵ/3 n · log
(
2

δ

)
· 1ϵ

)
, for maximizing a

monotone submodular function under a cardinality constraint, with

parameters r = 3

ϵ · log1+ϵ/3 n, α =
1

3
, and ∆ = (1 + ϵ ) v

⋆

3k .

3 THE ADAPTIVE COMPLEXITY OF
SUBMODULAR MAXIMIZATION IS Ω̃(logn)

In this section, we show that the adaptive complexity of maximizing

a monotone submodular function under a cardinality constraint

is Ω̃(logn) with a hardness result showing that with strictly less

than Ω̃(logn) rounds, the best approximation possible is
1

logn . With

the algorithm from the previous section, we get that the adaptive

complexity of submodular maximization is logn, up to lower-order

terms, to obtain a constant factor approximation. This hardness

result uses an approach related to the round elimination technique

used in communication complexity (e.g. [MNSW95]).

3.1 The Round Elimination Lemma
The following simple lemma gives two conditions that, if satis-

fied by some collections of functions, imply the desired hardness

result. The main condition is that an r -adaptive algorithm for a

family of functions Fr can be modified into an (r − 1)-adaptive
algorithm for a more restricted family Fr−1. The base case of this

inductive argument is that with no queries, there does not exist

any α-approximation algorithm for F0. A similar round elimination

technique is used in communication complexity to characterize the

tradeoff between the number of rounds and the total amount of

communication of a protocol. Here, the tradeoff is different and

is between the number of rounds and the approximation of an

algorithm.

Lemma 5. Assume r ∈ poly(n). If there exist families of functions

F0, . . . ,Fr such that the following two conditions hold:

• Round elimination. For all i ∈ {1, . . . ,r }, if there exists an
i-adaptive algorithm that obtains, with probability n−ω (1)

,

an α-approximation for Fi , then there exists an i − 1 adap-

tive algorithm that obtains, with probability n−ω (1)
, an α-

approximation algorithm for Fi−1;

• Last round. There does not exist a 0-adaptive algorithm that

obtains, with probability n−ω (1)
, an α-approximation for F0;

Then, there is no r -adaptive algorithm that obtains, w.p. o(1), an
α-approximation for Fr .

The proof follows immediately by induction on the number of

rounds r .

3.2 The Onion Construction
The main technical challenge is to “fit" r + 1 families of functions

F0, . . . ,Fr in the class of submodular functions while also having

every family Fi be significantly richer than Fi−1. In our context,

significantly richer means that an i-adaptive algorithm for Fi can

be transformed into an (i−1)-adaptive algorithm for Fi−1. To do so,

at a high level, we want to show that after one round of querying a

function in Fi , functions in Fi−1 are indistinguishable. If functions

in Fi−1 are indistinguishable to an i-adaptive algorithm after one

L0 L1 … Lr L*

Figure 1: The partition of the elements into layers
L0, . . . ,Lr ,L

⋆ for the hard functions. An algorithm cannot
learn Li before round i + 1 and L⋆ is the optimal solution.

round of querying, then the last i − 1 rounds of this algorithm form

an (i − 1)-adaptive algorithm for Fi−1.

We construct functions that depend on a partition P of the ground

set N into layers L0, . . . ,Lr ,L
⋆
(illustrated in Figure 1). The main

motivation behind this layered construction is to create a hard

instance s.t. an algorithm cannot distinguish layer Li from L⋆ before

round i + 1. The size of the layers decreases as i grows, with L⋆

being the smallest layer. More precisely, we set |Li | = n1−
i
r+1 for

i > 0, |L⋆ | = n
1

2r+2 , and L0 consists of the remaining elements. We

define ℓi (S ) := |Li ∩ S | and abuse notation with ℓi = ℓi (S ) when it

is clear from context. The hard function is defined as

f P (S ) :=
r∑
i=0

min(ℓi , log
2 n) + ℓ⋆

+min

(
|S |

8n
1

r+1
,1

)
· *
,
2n

1

2r+2 − *
,

r∑
i=0

min(ℓi , log
2 n) + ℓ⋆+

-
+
-
.

To gain some intuition about this function, we note the following

two simple facts about f P :

• If a query is large, i.e. |S | ≥ 8n
1

r+1 , then f P (S ) = 2n
1

2r+2 .

Informally, all the layers are hidden since no information

can be learned about the partition from query S ;
• On the other hand, if |S ∩ Li | ≤ log

2 n, i.e. ℓi ≤ log
2 n, then

elements in Li and L
⋆
are indistinguishable to an algorithm

that is given the value f (S ) since min(ℓi , log
2 n) = ℓi .

Thus, the queries need to be of size smaller than 8n
1

r+1 while also

containing at least log
2 n elements in Li for the algorithm to learn

some information to distinguish layers Li and L
⋆
. Since the size of

layers diminishes at a rate faster than
log

2 n

8n
1

r+1
, it is hard for the algo-

rithm to distinguish layers Li+1 and L
⋆
if it has not distinguished Li

and L⋆ in previous rounds. An interpretation of this construction

is that an algorithm can only learn the outmost remaining layer at

any round.

3.3 Round Elimination for the Construction
In order to argue that functions in Fi−1 are indistinguishable after

one round of querying f ∈ Fi , we begin by reducing the problem of

showing indistinguishability from non-adaptive queries to showing

structural properties of a randomized collection of functions FRi
(the proof is in Appendix E).
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Lemma 6. Let FRi be a randomized collection of functions in some

F. Assume that for all S ⊆ N , w.p. 1 − n−ω (1)
over FRi , for all

f1, f2 ∈ FRi , we have that f1 (S ) = f2 (S ). Then, for any (possibly ran-
domized) collection of poly(n) non-adaptive queries Q, there exists a
deterministic collection of functions F ∈ F such that with probability

1 − n−ω (1)
over the randomization of Q, for all queries S ∈ Q and all

f1, f2 ∈ F , f1 (S ) = f2 (S ).

The randomized collection of functions FRi . For round r − i , we
define the randomized collection of functions FRi ∈ Fr−i , for some

Fr−i , needed for Lemma 6. Informally, the layers L0, . . . ,Li−1 are
fixed and the ith layer is a random subset Ri of the remaining

elements N \ ∪i−1j=0Lj . The collection FRi is then all functions with

layers L0, . . . ,Li−1,Ri . Formally, given L0, . . . ,Li−1, the randomized

collection of functions FRi is

FRi (L0, . . . ,Li−1) :=
{
f (L0, ...,Li−1,Ri ,Si+1 ...Sr ,S

⋆ )
:

⊔j ∈{i+1, ...,r ,⋆} Sj = N \
(
∪i−1j=0Lj ∪ Ri

) }
where Ri ∼ U (N \ ∪i−1j=0Lj ,n

1− i
r+1 ) is a uniformly random subset

of size n1−
i
r+1 of the remaining elements N \ ∪i−1j=0Lj and ⊔ denotes

the disjoint union of sets. We define Fr−i to be the collection of all

suchFRi (L0, . . . ,Li−1) over all subsetsRi of the remaining elements

N \∪i−1j=0Lj . Next, we show the desired property for the randomized

collection of functions FRi to apply Lemma 6.

Lemma 7. Assume r ≤ logn. For all S ⊆ N and i ∈ [r ], with

probability 1 − n−ω (1)
over the randomization of FRi ∈ Fr−i , for all

f1, f2 ∈ FRi , f1 (S ) = f2 (S ).

Proof Sketch (full proof in Appendix E). The proof consists

of two cases depending on the size of S . If S ≥ 8n
1

r+1 , then we im-

mediately conclude that f (S ) = 2n
1

2r+2 for all f ∈ FRi . The second

and main case is if S < 8n
1

r+1 . We first give a concentration bound

showing that for a fixed set S and a random set R, if the expected
size of their intersection is constant, then their intersection is of

size at most log
2 n with high probability (Lemma 14). Using this

concentration bound, we get that for a fixed S , with high probability,
for all f ∈ FRi ,

∑r
j=i+1 ℓj < log

2 n. We conclude by showing that

this implies that f1 (S ) = f2 (S ) for all f1, f2 ∈ FRi . □

Combining the two previous lemmas, we are ready to show the

round elimination condition.

Lemma 8. Assume r ≤ logn. For all i ∈ {1, . . . ,r } and all collection
of functions Fi ∈ Fi , if there exists an i-adaptive algorithm that

obtains, with probability n−ω (1)
, an α-approximation for Fi , then

there exists a collection of functions Fi−1 ∈ Fi−1 such that there exists

an (i − 1)-adaptive algorithm that obtains, with probability n−ω (1)
,

an α-approximation for Fi−1.

Proof. Assume that for some Fi ∈ Fi , there exists an i-adaptive

algorithm A that obtains, w.p. n−ω (1)
, an α-approximation . Let

L0, . . . ,Lr−i be the layers of all f P ∈ Fi and consider the ran-

domized collection of functions FRr−i+1 (L0, . . . ,Lr−i ) ∈ Fi−1. By
combining Lemma 6 and Lemma 7, there exists a deterministic

collection of functions Fi−1 ∈ Fi−1 such that, w.p. 1 − n−ω (1)
over

the randomization of the algorithmA for the non-adaptive queries

Q in the first round, for all queries S ∈ Q, f1 (S ) = f2 (S ) for all
f1, f2 ∈ Fi−1. Since Fi−1 ⊆ Fi , algorithmA is also an i-adaptive al-

gorithm that obtains, with probability n−ω (1)
, an α-approximation

for Fi−1.

For optimizing f ∈ Fi−1, the decisions of the algorithm are, w.p.

1−n−ω (1)
, independent of the queries made in the first round, which

is the case when for all queries S , f1 (S ) = f2 (S ) for all f1, f2 ∈ Fi−1
. Consider the algorithm A ′ that consists of the last i − 1 rounds
of algorithm A when for all queries S by A in the first round,

f1 (S ) = f2 (S ) for all f1, f2 ∈ Fi−1. We get that A ′ is an i − 1

adaptive algorithm that obtains, w.p. n−ω (1)
, an α-approximation

for Fi−1. □

It remains to show the last round condition needed for Lemma 5.

Lemma9. For allF ∈ F0, there does not exist a 0-adaptive algorithm
that obtains, with probability n−ω (1)

, an n−
1

2r+2 ·
(
(r + 2) log2 n + 1

)
approximation.

Proof Sketch (full proof in Appendix E). The proof uses a

probabilistic argument and considers f picked at random from F .

The decisions of a 0-adaptive algorithm are then independent of this

randomization since there are no queries. Next, by using the same

concentration used previously (Lemma 14) we show that with high

probability, the solution returned by the algorithm contains a small

number of elements in L⋆, and thus obtains a low value compared

to the optimal L⋆. □

Lemma 15 in Appendix E shows that f P is monotone and sub-

modular. By combining lemmas 5, 8, 9, and 15, we obtain the main

result for this section.

Theorem 4. For any r ≤ logn, there is no r -adaptive algorithm for

maximizing amonotone submodular function under a cardinality con-

straint that obtains, with probability o(1), an n−
1

2r+2 ·
(
(r + 3) log2 n

)
approximation. In particular, there is no

logn
12 log logn -adaptive algo-

rithm that obtains, with probability ω
(
1

n

)
, a

1

logn -approximation.

APPENDIX
A ADDITIONAL DISCUSSION OF RELATED

WORK
A.1 Adaptivity
Adaptivity has been heavily studied across a wide spectrum of ar-

eas in computer science. These areas include classical problems in

theoretical computer science such as sorting and selection (e.g.

[Val75, Col88, BMW16]), where adaptivity is known under the

term of parallel algorithms, and communication complexity (e.g.

[PS84, DGS84, NW91, MNSW95, DNO14, ANRW15]), where the

number of rounds measures how much interaction is needed for a

communication protocol.

For the multi-armed bandits problem, the relationship of interest

is between adaptivity and query complexity, instead of adaptivity

and approximation guarantee. Recent work showed that Θ(log⋆ n)
adaptive rounds are necessary and sufficient to obtain the opti-

mal worst case query complexity [AAAK17]. In the bandits setting,
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adaptivity is necessary to obtain non-trivial query complexity due

to the noisy outcomes of the queries. In contrast, queries in sub-

modular optimization are deterministic and adaptivity is necessary

to obtain a non trivial approximation since there are at most poly-

nomially many queries per round and the function is of exponential

size.

Adaptivity is also well-studied for the problems of sparse recov-

ery (e.g. [HNC09, IPW11, HBCN09, JXC08, MSW08, AWZ08]) and

property testing (e.g. [CG17, BGSMdW12, CST
+
17, RS06, STW15]).

In these areas, it has been shown that adaptivity allows significant

improvements compared to the non-adaptive setting, which is sim-

ilar to the results shown in this paper for submodular optimization.

However, in contrast to all these areas, adaptivity has not been

previously studied in the context of submodular optimization.

We note that the term adaptive submodular maximization has

been previously used, but in an unrelated setting where the goal

is to compute a policy which iteratively picks elements one by

one, which, when picked, reveal stochastic feedback about the

environment [GK10].

A.2 Related Models
In this section, we discuss two related models, the Map-Reduce

model for distributed computation and the PRAM model. These

models are compared to the notion of adaptivity in the context of

submodular optimization.

A.2.1 Map-Reduce. The problem of distributed submodular op-

timization has been extensively studied in the Map-Reduce model

in the past decade. This framework is primarily motivated by large

scale problems over massive data sets. At a high level, in the Map-

Reduce framework [DG08], an algorithm proceeds in multiple Map-

Reduce rounds, where each round consists of a first step where the

input to the algorithm is partitioned to be independently processed

on different machines and of a second step where the outputs of

this processing are merged. Notice that the notion of rounds in

Map-Reduce is different than for adaptivity, where one round of

Map-Reduce usually consists of multiple adaptive rounds. The for-

mal model of [KSV10] for Map-Reduce requires the number of

machines and their memory to be sublinear.

This framework for distributing the input to multiple machines

with sublinear memory is designed to tackle issues related to mas-

sive data sets. Such data sets are too large to either fit or be processed

by a single machine and the Map-Reduce framework formally mod-

els this need to distribute such inputs to multiple machines.

Instead of addressing distributed challenges, adaptivity addresses

the issue of sequentiality, where each query evaluation requires

a long time to complete and where these evaluations can be par-

allelized (see Section B for applications). In other words, while

Map-Reduce addresses the horizontal challenge of large scale prob-

lems, adaptivity addresses an orthogonal vertical challenge where

long query-evaluation time is causing the main runtime bottleneck.

A long line of work has studied problems related to submodular

maximization in Map-Reduce achieving different improvements

on parameters such as the number of Map-Reduce rounds, the

communication complexity, the approximation ratio, the family of

functions, and the family of constraints (e.g. [KMVV15, MKSK13,

MZ15, MKBK15, BENW15, BENW16, EMZ17]). To the best of our

knowledge, all the existing Map-Reduce algorithms for submodular

optimization have adaptivity that is linear in n in the worst-case,

which is exponentially larger than the adaptivity of our algorithm.

This high adaptivity is caused by the distributed algorithms which

are run on each machine. These algorithms are variants of the

greedy algorithm and thus have adaptivity at least linear in k . We

also note that our algorithm does not (at least trivially) carry over

to the Map-Reduce setting.

A.2.2 PRAM. In the PRAMmodel, the notion of depth is closely

related to the concept of adaptivity studied in this paper. Our pos-

itive result extends to the PRAM model, showing that there is a

˜O (log2 n · df ) depth algorithm with
˜O (nk2) work whose approx-

imation is arbitrarily close to 1/3 for maximizing any monotone

submodular function under a cardinality constraint, where df is

the depth required to evaluate the function on a set.

The PRAM model is a generalization of the RAM model with

parallelization, it is an idealized model of a shared memory machine

with any number of processors which can execute instructions in

parallel. The depth of a PRAM algorithm is the number of parallel

steps of this algorithm on the PRAM, in other words, it is the longest

chain of dependencies of the algorithm, including operations which

are not necessarily queries. The problem of designing low-depth

algorithms has been heavily studied (e.g. [Ble96, BPT11, BRS89,

RV98, BRM98, BST12]).

Thus, in addition to the number of adaptive rounds of querying,

depth also measures the number of adaptive steps of the algorithms

which are not queries. However, for the applications we consider,

the runtime of the algorithmic computations which are not queries

are usually insignificant compared to the time to evaluate a query.

In addition, the PRAM model assumes that the input is loaded in

memory while we consider the value query model where the algo-

rithm is given oracle access to a function of potentially exponential

size. In crowdsourcing applications, for example, where the value

of a set can be queried on a crowdsourcing platform, there does

not necessarily exist a succinct representation of the underlying

function.

Our positive results extend with an additional df ·Õ (logn) factor
in the depth compared to the number of adaptive rounds, where df
is the depth required to evaluate the function on a set in the PRAM

model. The operations that our algorithms performed at every

round, which are maximum, summation, set union, and set differ-

ence over an input of size at most quasilinear, can all be executed by

algorithms with logarithmic depth. A simple divide-and-conquer

approach suffices for maximum and summation, while logarithmic

depth for set union and set difference can be achieved with treaps

[BRM98].

More broadly, there has been a recent interest in machine learn-

ing to scale submodular optimization algorithms for applications

over large datasets [JLB11, JBS13, WIB14, NJJ14, PJG
+
14].

B APPLICATIONS
Beyond being a fundamental concept, adaptivity is important for

applications where sequentiality is the main runtime bottleneck.
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Crowdsourcing and data summarization. One class of such prob-

lems where adaptivity plays an important role are human-in-the-

loop problems. At a high level, these algorithms involve subtasks

performed by the crowd. The intervention of humans in the evalu-

ation of queries causes algorithms with a large number of adaptive

rounds impractical. A crowdsourcing platform consists of posted

tasks and crowdworkers who are remunerated for performing these

posted tasks. For the submodular problem of data summarization,

where the objective is to select a small representative subset of a

dataset, the quality of subsets as representatives can be evaluated

on a crowdsourcing platform [TIWB14, STK16, BMW16]. The al-

gorithm must wait to obtain the feedback from the crowdworkers,

however an algorithm can send out a large number of tasks to be

performed simultaneously by different crowdworkers.

Biological simulations. Adaptivity is also studied in molecular bi-

ology to simulate protein folding. Adaptive sampling techniques are

used to obtain significant improvements in execution of simulations

and discovery of low energy states [BVP11].

Experimental Design. In experimental design, the goal is to pick

a collection of entities (e.g. subjects, chemical elements, data points)

which obtains the best outcome when combined for an experiment.

Experiments can be run in parallel and have a waiting time to

observe the outcome [FJK10].

Influence Maximization. The submodular problem of influence

maximization, initiated studied by [DR01, RD02, KKT03] has since

then received considerable attention (e.g. [CWY09, CWW10, GLL11,

SS13, HS15, BPR
+
16]). Influence maximization consists of finding

the most influential nodes in a social network to maximize the

spread of information in this network. Information does not spread

instantly and a waiting time occurs when observing the total num-

ber of nodes influenced by some seed set of nodes.

Advertising. In advertising, the goal is to select the optimal subset

of advertisement slots to objectives such as the click-through-rate

or the number of products purchased by customers, which are objec-

tives exhibiting diminishing returns [AM10, DHK
+
16]. Naturally,

a waiting time is incurred to observe the behavior of customers.

C THE FULL ALGORITHM
C.1 Estimates of Expectations in One Round

via Sampling
We show that the expected value of a random set and the expected

marginal contribution of elements to a random set can be esti-

mated arbitrarily well in one round, which is needed for the Down-

Sampling and Adaptive-Sampling algorithms. Recall thatU (S ,t )
denotes the uniform distribution over subsets of S of size t . The
values we are interested in estimating are ER∼U (S,t ) [fX (R)] and

ER∼U (S,t )
[
fX∪R\{a } (a)

]
. We denote the corresponding estimates

by vX (S ,t ) and vX (S ,t ,a), which are computed in Algorithms 4

and 5. These algorithms first samplem sets fromU (S ,t ), wherem
is the sample complexity, then query the desired sets to obtain a

random realization of fX (R) and fX∪R\{a } (a), and finally averages

them random realizations of these values.

Algorithm 4 Estimate: computes estimate vX (S ,t ) of

ER∼U (S,t ) [fX (R)].

Input: set S ⊆ N , size t ∈ [n], sample complexitym.

Sample R1, . . . ,Rm
i.i.d.

∼ U (S ,t )
Query {X ,X ∪ R1, . . . ,X ∪ Rm }
vX (S ,t ) ← 1

m
∑m
i=1 f (X ∪ Ri ) − f (X )

return vX (S ,t )

Algorithm 5 Estimate2: Computes estimate vX (S ,t ,a) of

ER∼U (S,t )
[
fX∪R\{a } (a)

]
.

Input: set S ⊆ N , size t ∈ [n], sample complexity m, element

a ∈ N .

Sample R1, . . . ,Rm
i.i.d.

∼ U (S ,t )
Query {X ∪R1∪ {a},X ∪R1 \ {a}, . . . ,X ∪Rm ∪ {a},X ∪Rm \ {a}}

vX (S ,t ,a) ← 1

m
∑m
i=1 f (X ∪ Ri ∪ {a}) − f (X ∪ Ri \ {a})

return vX (S ,t ,a)

Using standard concentration bounds, the estimates computed by

these algorithms are arbitrarily good for a sufficiently large sample

complexitym. We state the version of Hoeffding’s inequality which

is used to bound the error of these estimates.

Lemma 10 (Hoeffding’s ineqality). Let X1, . . . ,Xn be inde-

pendent random variables with values in [0,b]. Let X = 1

m
∑m
i=1 Xi .

Then for any ϵ > 0,

Pr [|X − E[X ]| ≥ ϵ] ≤ 2e−2mϵ 2/b2

.

We are now ready to show that these estimates are arbitrarily

good.

Lemma 11. Letm = 1

2

(
OPT
ϵ

)
2

log

(
2

δ

)
, then for all X ,S ⊆ N and

t ∈ [n] such that |X | + t ≤ k , with probability at least 1 − δ over the

samples R1, . . . ,Rm ,

�����
vX (S ,t ) − E

R∼U (S,t )
[fX (R)]

�����
≤ ϵ

Similarly, letm = 1

2

(
OPT
ϵ

)
2

log

(
2

δ

)
, then for all X ,S ⊆ N , t ∈ [n],

and a ∈ N such that |X | + t ≤ k , with probability at least 1 − δ over

the samples R1, . . . ,Rm ,

�����
vX (S ,t ,a) − E

R∼U (S,t )

[
fX∪R\{a } |a∈R (a)

] �����
≤ ϵ .

Thus, withm = n
(
OPT
ϵ

)
2

log

(
2n
δ

)
total samples in one round, with

probability 1 − δ , it holds that vX (S ,t ) and vX (S ,t ,a), for all a ∈ N ,

are ϵ-estimates.

Proof. Note that

E [vX (S ,t )] = E
R∼U (S,t )

[fX (R)]

and

E [vX (S ,t ,a)] = E
R∼U (S,t )

[
fX∪R\{a } (a)

]
.
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Since all queries are of size at most k , their values are all bounded

by OPT. Thus, by Hoeffding’s inequality withm = 1

2

(
OPT
ϵ

)
2

log

(
2

δ

)
,

we get

Pr

[�����
vX (S ,t ) − E

R∼U (S,t )
[fX (R)]

�����
≥ ϵ

]
≤ 2e

− 2mϵ2

OPT2 ≤ δ

for ϵ > 0. Similarly, we get

Pr

[�����
vX (S ,t ,a) − E

R∼U (S,t )

[
fX∪R\{a } (a)

] �����
≥ ϵ

]
≤ δ .

Thus, withm = n
(
OPT
ϵ

)
2

log

(
2n
δ

)
total samples in one round, by a

union bound over each of the estimates holding with probability 1−

δ/n individually, we get that all the estimates hold simultaneously

with probability 1 − δ . □

We can now describe the (almost) full version of the main algo-

rithm which uses these estimates. One additional small difference

with Adaptive-Sampling is that we force the algorithm to stop

after r+ rounds to obtain the adaptive complexity with probability

1. The loss from the event, happening with low probability, that the

algorithm is forced to stop is accounted for in the δ probability of

failure of the approximation guarantee of the algorithm.

Algorithm 6 Adaptive-Sampling-Proxy, simultaneously down-

samples and upsamples.

Input: bounds on up-sampling rounds r and on total rounds r+,
approximation α , threshold parameter ∆, sample complexitym,

and proxy v⋆

Initialize X ← ∅,S ← N ,t ← k
r ,c ← 1

while |X | < k , |S ∪ X | > k , and c < r+ do Adaptive loop

vX (S ,t ) ← Estimate (S ,t ,m)
if vX (S ,t ) ≥ α

r · v
⋆ then

X ← X ∪ argmax{ f (X ∪ Ri ) : Ri ∼ U (S ,t )}mi=1
S ← S \ X

else
for a ∈ S do Non-adaptive loop

vX (S ,t ,a) ← Estimate2 (S \ X ,t ,m,a)
S ← S \ {a : vX (S ,t ,a) ≤ ∆}

c ← c + 1
return X if |X | = k , or S ∪ X otherwise

C.2 Estimating OPT
The main idea to estimate OPT is to have O (logn) values vi such
that one of them is guaranteed to be a (1 − ϵ )-approximation to

OPT. To obtain such values, we use the simple observation that the

singleton a⋆ with largest value is at least a 1/n approximation to

OPT.

Lemma 12. Let a⋆ = argmaxa∈N f ({a}) be the optimal singleton,

and

vi = (1 + ϵ )i · f
(
{a⋆}

)
.

Then, there exists some i ∈
[

logn
log(1+ϵ )

]
such that

OPT ≤ vi ≤ (1 + ϵ ) · OPT.

Proof. By submodularity, we get f ({a⋆}) ≥ 1

k OPT ≥
1

n OPT.

By monotonicity, we have f ({a⋆}) ≤ OPT. Combining these two

inequalities, we get v0 ≤ OPT ≤ v logn
log(1+ϵ )

. By the definition of vi ,

we then conclude that there must exists some i ∈
[

logn
log(1+ϵ )

]
such

that OPT ≤ vi ≤ (1 + ϵ ) · OPT. □

Since the solution obtained for the unknown vi which approx-

imates OPT well is guaranteed to be a good solution, we run the

algorithm in parallel for each of these values and return the solu-

tion with largest value. We obtain the full algorithm Adaptive-

Sampling-Full which we describe next.

Algorithm 7 Adaptive-Sampling-Full, simultaneously down-

samples and upsamples.

Input: bounds on up-sampling rounds r and on total rounds r+,
approximation α , threshold parameter ∆, sample complexitym,

and precision ϵ
Initialize L ← ∅
Query {{a1}, . . . , {an }}
a⋆ ← argmaxai f ({ai })

for i ∈
{
0, . . . , log

1+ϵ/3 n
}
do Non-adaptive loop

v⋆ ← (1 + ϵ )i · f
(
{a⋆}

)
Add solution from Adaptive-Sampling-Proxy(v⋆) to L

return argmaxS ∈L f (S )

D MISSING DISCUSSION AND ANALYSIS
FROM SECTION 2

D.1 Continuous Interpretation of Algorithm
via the Multilinear Extension

The Down-Sampling algorithm also has a simple description using

the multilinear extension F of f .

Algorithm 8 DownSamplingContinuous, a continuous descrip-

tion of Down-Sampling.

Input: approximation α and precision ϵ

x← ( kn , . . . ,
k
n ),

while F (x) < αOPT do
M ←

{
v : ∥v∥0 ≤ (1 − ϵ )∥x∥0, ∥v∥1 = k,v ≤ 1

1−ϵ x
}

x← argmaxv∈M⟨v,∇F (x)⟩
return x

The multilinear extension F : [0,1]n → R of a submodular

function f is a popular tool for continuous approaches to submod-

ular optimization, where F (x) is the expected value E[f (R)] of
a random set R containing each element ai independently with

probability xi . An interpretation of this algorithm is a continuous

point x which, at every iteration, is projected to a lower dimension

(∥v∥0 ≤ (1− ϵ )∥x∥0) among the remaining dimensions (v ≤ 1

1−ϵ x)
on the boundary of the polytope of feasible points (∥v∥1 = k).



The Adaptive Complexity of Maximizing a Submodular Function STOC’18, June 25–29, 2018, Los Angeles, CA, USA

D.2 Missing Analysis from Section 2.1
D.2.1 Tradeoff with Down-sampling. We first discuss the trade-

off between the approximation obtained when the algorithm ter-

minates due to E[f (R)] ≥ αOPT and the one when |S | ≤ k . We

argue that this tradeoff implies that more rounds do not improve

the approximation guarantee for down-sampling.

Notice that when the threshold αOPT to return R increases, then

the threshold ∆ = c∆ ·
αOPT
k needed to remove elements also in-

creases. If this threshold to remove elements increase, then the

algorithm potentially discards optimal elements with higher value.

Thus, the apporoximation guarantee obtained by the solution S
worsens. This tradeoff is independent of the number of rounds

and adding more rounds thus does not improve the approximation

guarantee.

D.2.2 Analysis of Down-sampling. We bound the number of

elements removed from S in each round.

Lemma 1. Let f : 2
N → R be a monotone submodular function.

For all S ⊆ N , t ∈ [n], and ∆ > 0, let D = U (S ,t ) and the discarded

elements be S− =
{
a : ER∼D

[
fR\{a } (a)

]
< ∆

}
. Then:

���S \ S
−��� ≤

ER∼D[f (R)]

t · ∆
· |S |.

Proof. At a high level, we first lower bound the value of a

random set R ∼ D by the marginal contributions of the remaining

elements S \S−. Then, we lower bound these marginal contributions

with the threshold ∆ since these elements must have large enough

marginal contributions to not be removed. The first lower bound is

the following:

E [f (R)] ≥ E
[
f (R ∩ (S \ S−))

]
monotonicity

≥ E



∑
a∈R∩(S\S− )

fR∩(S\S− )\{a } (a)


Submodularity

≥ E



∑
a∈S\S−

1a∈R · fR\{a } (a)


Submodularity

=
∑

a∈S\S−
E
[
1a∈R · fR\{a } (a)

]
.

By bounding the marginal contribution of remaining elements with

the threshold ∆, we obtain∑
a∈S\S−

E
[
1a∈R · fR\{a } (a)

]

=
∑

a∈S\S−
Pr [a ∈ R] · E

[
fR\{a } (a) |a ∈ R

]

≥
∑

a∈S\S−
Pr [a ∈ R] · E

[
fR\{a } (a)

]
Submodularity

≥
∑

a∈S\S−
Pr [a ∈ R] · ∆ definition of ∆

=|S \ S− | ·
t

|S |
· ∆ definition of R

□

D.3 Missing Analysis from Section 2.3
Lemma 13. For any X ,S ⊆ N such that |X ∪ R | ≤ k , let D =

U
(
S , kr

)
and R+ = argmaxi ∈[m]

f (X ∪ Ri ). Then, with probability

1 − δ over the samples drawn from D,

fX (R+) ≥ E
R∼D

[fX (R)] − ϵ

with sample complexitym = 1

2

(
OPT
ϵ

)
2

log

(
2

δ

)
.

Proof. By Lemma 11, withm = 1

2

(
OPT
ϵ

)
2

log

(
2

δ

)
,with proba-

bility 1 − δ ,
�����
vX (S ,t ) − E

R∼D
[fX (R)]

�����
≤ ϵ .

SincevX (S ,t ) = 1

m
∑m
i=1 fX (Ri ), it must be the case that for at least

one sample R used to compute vX (S ,t ),

fX (R) ≥ E
R∼D

[fX (R)] − ϵ .

We conclude by observing that the sample with largest marginal

contribution fX (R) = f (X ∪ R) − f (X ) is returned. □

Lemma 3. Adaptive-Sampling is (ru +rd )-adaptive with ru +rd ≤
r + logc n when ∆ = c · αOPTk .

Proof. We first bound the number of rounds rd whereAdaptive-

Sampling downsamples. If |S | ≤ k
r , then |S ∪ X | ≤ k and the

algorithm terminates since |X | ≤ k − k
r if the algorithm has not

(yet) returned X . Notice that if Adaptive-Sampling removes ele-

ments from S at some round, then ER∼D [fX (R)] < α
r OPT. Thus,

the number of elements remaining in S after one round of removing

elements from S is

|S \ S− | ≤
ER∼D [fX (R)]

t · ∆
· |S | Lemma 1 with

submodular function fX (·)

≤
αOPT/r

t · ∆
· |S | Algorithm

≤
1

c∆
· |S | ∆ = c∆

αOPT

k
and t =

k

r

Thus, after rd rounds of removing elements, there are |S | ≤
(1/c∆ )

rd · n elements remaining. With

rd =
log

(
n
k/r

)
log c∆

≤
logn

log c∆
,

|S | ≤ k/r and the algorithm terminates.

For the second part of the lemma, after r rounds of upsampling,

r disjoint samples of size
k
r have been added to X . Thus |X | = k

and the algorithm terminates with ru = r . □

E MISSING ANALYSIS FROM SECTION 3
We begin with the round elimination lemma.

Lemma 5. Assume r ∈ poly(n). If there exist families of functions

F0, . . . ,Fr such that the following two conditions hold:

• Round elimination. For all i ∈ {1, . . . ,r }, if there exists an
i-adaptive algorithm that obtains, with probability n−ω (1)

,

an α-approximation for Fi , then there exists an i − 1 adap-

tive algorithm that obtains, with probability n−ω (1)
, an α-

approximation algorithm for Fi−1;
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• Last round. There does not exist a 0-adaptive algorithm that

obtains, with probability n−ω (1)
, an α-approximation for F0;

Then, there is no r -adaptive algorithm that obtains, w.p. o(1), an
α-approximation for Fr .

Proof. The proof is by induction on the number of rounds r .
If r = 0, then by the last round condition, F0 is not α optimiz-

able in 0 adaptive rounds. If r > 0, then assume by contradiction

that there exists an α-approximation r -adaptive algorithm for FR .

By the round elimination condition, this implies that there exists

an α-approximation r − 1 adaptive algorithm for Fr−1. This is a

contradiction with the induction hypothesis for r − 1. □

Next, we focus on the lemmas needed for the round elimination

condition (Lemma 8). These lemmas are Lemma 6 and Lemma 7.

Lemma 6. Let FRi be a randomized collection of functions in some

F. Assume that for all S ⊆ N , w.p. 1 − n−ω (1)
over FRi , for all

f1, f2 ∈ FRi , we have that f1 (S ) = f2 (S ). Then, for any (possibly ran-
domized) collection of poly(n) non-adaptive queries Q, there exists a
deterministic collection of functions F ∈ F such that with probability

1 − n−ω (1)
over the randomization of Q, for all queries S ∈ Q and all

f1, f2 ∈ F , f1 (S ) = f2 (S ).

Proof. We denote by I (F ,S) the event that f1 (S ) = f2 (S ) for
all functions f1, f2 in a collection of functions F and all sets S in

a collection of sets S. Let Q be a randomized collection of poly(n)
non-adaptive queries and let FR be a collection of functions s.t. for

all S ⊆ N , w.p. 1 − n−ω (1)
over the randomization of FR , for all

f1, f2 ∈ F , we have that f1 (S ) = f2 (S ).
Let S be any realization of the randomized collection of queries

Q. By a union bound over thepoly (n) queries S ∈ S, PrFR [I (FR ,S)] ≥

1 − n−ω (1) . Since FR ∈ F, we obtain

max

F ∈F
Pr

Q
[I (Fi ,Q)] ≥ Pr

FR
Pr

Q
[I (FR ,Q)] ≥ 1 − n−ω (1)

and there exists some F ∈ F such that w.p. 1 − n−ω (1)
over the

randomization of Q, for all queries S ∈ Q, f1 (S ) = f2 (S ) for all
f1, f2 ∈ F . □

To show the indistinguishability property (Lemma 7) for Lemma 6,

we need the following concentration bound, which shows that, a

small set S has small intersection with small random sets with high

probability.

Lemma 14. Let R be a uniformly random subset of a setT . Consider
a subset S ⊆ T that is independent of the randomization of R and

such that |S | · |R |/|T | ≤ e−1, then

Pr

[
|S ∩ R | ≥ log

2 n
]
≤ n−ω (1) .

Proof. We start by considering a subset L of S of size log
2 n. We

first bound the probability that L is a subset of R,

Pr [L ⊆ R] ≤
∏
a∈L

Pr [a ∈ R] ≤
∏
a∈L

|R |

|T |
=

(
|R |

|T |

)
log

2 n
.

We then bound the probability that |S ∩ R | ≥ log
2 n with a union

bound over the events that a set L is a subset of R, for all subsets L

of S of size log
2 n:

Pr

[
|S ∩ R | ≥ log

2 n
]
≤

∑
L⊆S : |L |=log2 n

Pr [L ⊆ R]

≤

(
|S |

log
2 n

)
·

(
|R |

|T |

)
log

2 n

≤

(
|S | · |R |

|T |

)
log

2 n

≤
(
e−1

)
log

2 n

= n− logn

where the last inequality follows from the assumption that |S | ·
|R |/|T | ≤ e−1. □

Corollary 1. Assume r ≤ logn. For all i ∈ [r ], let L1, . . . ,Li−1

be fixed layers and S be a set of size |S | ≤ 1

8
n

1

r+1 that is independent

of the randomization of Ri , then

Pr

Si

[���S ∩
(
∪rj=i+1Lj

) ��� ≤ log
2 n

]
≥ 1 − n−ω (1) .

Proof. Since r ≤ logn, we get |Lj+1 | ≤
1

2
|Lj | for all j, which

implies that

∑r
j=i |Lj | < 2|Li |.

Without loss, assume S ⊆ Ri ∪
(
∪rj=i+1Lj

)
. The claim then

immediately follows from Lemma 14 with T = N \
(
∪i−1j=1Sj

)
=

Ri ∪
(
∪rj=i+1Lj

)
and R = N \

(
∪i−1j=1Li ∪ Ri

)
= ∪rj=i+1Lj , since

|S | · ���∪
r
j=i+1Lj

���
���Ri ∪

(
∪rj=i+1Lj

) ��� ≤
1

8
n

1

r+1 · 2n1−
i+1
r+1

2n1−
i
r+1

≤
1

8

≤ e−1.

□

Lemma 7. Assume r ≤ logn. For all S ⊆ N and i ∈ [r ], with

probability 1 − n−ω (1)
over the randomization of FRi ∈ Fr−i , for all

f1, f2 ∈ FRi , f1 (S ) = f2 (S ).

Proof. If |S | ≥ 8n
1

r+1 , then

f P (S ) = 2n
1

2r+2

for all f P ∈ FR with probability 1.

If |S | < 8n
1

r+1 , then by Corollary 1,

Pr

Ri

[
|S ∩

(
∪rj=i+1Lj

)
| ≤ log

2 n
]
≥ 1 − n−ω (1) .

Thus, with probability 1−n−ω (1)
over the randomization of FR , for

all f P ∈ FR , f
P (S ) =

i∑
j=1

min(ℓi , log
2 n) + ���S ∩

(
∪rj=i+1Lj

) ��� + ℓ⋆ +min

(
|S |

8n
1

r+1
,1

)

·
*.
,
2n

1

2r+2 −
*.
,

i∑
j=1

min(ℓi , log
2 n) + ���S ∩

(
∪rj=i+1Lj

) ��� + ℓ⋆+/
-

+/
-

The size of S ∩
(
∪rj=i+1Lj

)
= S ∩

(
N \

(
∪i−1j=1Lj ∪ Ri

))
is the same

for all f ∈ FR . Thus, we conclude that with probability 1 − n−ω (1)

over the randomization of FR , for all f1, f2 ∈ FR , f1 (S ) = f2 (S ). □
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Lemma9. For allF ∈ F0, there does not exist a 0-adaptive algorithm
that obtains, with probability n−ω (1)

, an n−
1

2r+2 ·
(
(r + 2) log2 n + 1

)
approximation.

Proof. Let F ∈ F0 and L0, . . . Lr−1 be the fixed layers for all

functions in F . Let S be the solution returned by the algorithm.

Consider fR⋆ ∼ F . Note that since the algorithm is 0-adaptive, S
is independent of the randomization of R⋆ as a uniformly random

subset of Lr ∪ L
⋆
. Since

|S | · |L⋆ |

|Lr ∪ L⋆ |
≤

1

3
n

1

2r+2n
1

2r+2

n1−
r
r+1

≤ e−1,

we get that

|S ∩ L⋆ | ≤ log
2 n

with probability 1 − n−ω (1)
by Lemma 14 and we assume this is

the case for the remaining of the proof. Since |S | ≤ log
4 n, we then

obtain that

fR⋆ (S ) ≤ (r+1) log2 n+log2 n+
1

3
n

1

2r+2

8n
1

r+1
·2n

1

2r+2 ≤ (r+2) log2 n+1.

Then, for all S ⊆ N such that |S | ≤ 1

3
n

1

2r+2 ,

E
fR⋆∼U (F )

[
fR⋆ (R⋆)

fR⋆ (S )

]
≤

n
1

2r+2

(r + 2) log2 n + 1
.

Thus there exists at least one function f ∈ F such that the al-

gorithm does not obtain, with probability 1 − n−ω (1)
, a n−

1

2r+2 ·(
(r + 2) log2 n + 1

)
-approximation. □

Lemma 15. For all partitions P , the function f P is monotone sub-

modular.

Proof. Let f be defined by a partition P = (L0, . . . ,Lr ,L
⋆). The

marginal contribution fS (aj ) = f (S ∪ {aj }) − f (S ) of an element

aj ∈ Lj , to a set S is

fS (aj ) =




1 −
1

8n
1

r+1
+

1

8n
1

r+1

· *
,
2n

1

2r+2 −

r+1∑
i=1

min(ℓi , log
2 n) − ℓ⋆+

-
−
|S |

8n
1

r+1
case A

1

8n
1

r+1

*
,
2n

1

2r+2 −

r+1∑
i=1

min(ℓi , log
2 n) − ℓ⋆+

-
case B

1 −min

(
|S |

8n
1

r+1
,1

)
case C

0 case D

where the cases are:

• case A if |S | < 8n
1

r+1 , j , r + 2, and ℓj < log
2 n,

• case B if |S | < 8n
1

r+1 , j , r + 2, and ℓj ≥ log
2 n,

• case C if |S | ≥ 8n
1

r+1 , j , r + 2, and ℓj < log
2 n,

• and case D if |S | ≥ 8n
1

r+1 , j , r + 2, and ℓj ≥ log
2 n.

Monotone. In caseA, we have− 1

8n
1

r+1
−
|S |

8n
1

r+1
≥ −1 and fS (aj ) ≥

0. It is easy to see that for all other cases, fS (aj ) ≥ 0 as well. Thus,

f is monotone.

Submodular. Within each case, the marginal contributions are

decreasing, as ℓi increases, for all i , and as |S | increases. It remains

to show that the marginal contributions are decreasing from one

case to another when ℓi and |S | increase.

• Since − 1

8n
1

r+1
−

|S |

8n
1

r+1
≥ −1 in A, marginal contributions

are decreasing from A to B.

• Since 2n
1

2r+2 −
∑r+1
i=1 min(ℓi , log

2 n) − ℓ⋆ ≥ 1 in A, they are

decreasing from A to C .
• Since the marginal contributions are non-negative, they are

decreasing from B and C to D.

□
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