The Adaptive Complexity of Maximizing a Submodular Function

Eric Balkanski
Harvard University
School of Engineering and Applied Sciences
USA
ericbalkanski@g.harvard.edu

ABSTRACT

In this paper we study the adaptive complexity of submodular opti-
mization. Informally, the adaptive complexity of a problem is the
minimal number of sequential rounds required to achieve a con-
stant factor approximation when polynomially-many queries can
be executed in parallel at each round. Adaptivity is a fundamental
concept that is heavily studied in computer science, largely due
to the need for parallelizing computation. Somewhat surprisingly,
very little is known about adaptivity in submodular optimization.
For the canonical problem of maximizing a monotone submodular
function under a cardinality constraint, to the best of our knowl-
edge, all that is known to date is that the adaptive complexity is
between 1 and Q(n).

Our main result in this paper is a tight characterization showing
that the adaptive complexity of maximizing a monotone submodular
function under a cardinality constraint is ©(log n):

e We describe an algorithm which requires O(log n) sequential
rounds and achieves an approximation that is arbitrarily
close to 1/3;

e We show that no algorithm can achieve an approximation

better than O(@) with fewer than O(lolgol%) rounds.

Thus, when allowing for parallelization, our algorithm achieves a
constant factor approximation exponentially faster than any known
existing algorithm for submodular maximization.

Importantly, the approximation algorithm is achieved via adap-
tive sampling and complements a recent line of work on optimiza-
tion of functions learned from data. In many cases we do not know
the functions we optimize and learn them from labeled samples.
Recent results show that no algorithm can obtain a constant factor
approximation guarantee using polynomially-many labeled sam-
ples as in the PAC and PMAC models, drawn from any distribution.
Since learning with non-adaptive samples over any distribution
results in a sharp impossibility, we consider learning with adaptive
samples where the learner obtains poly(n) samples drawn from a
distribution of her choice in every round. Our result implies that
in the realizable case, where there is a true underlying function

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06....$15.00
https://doi.org/10.1145/3188745.3188752

Yaron Singer
Harvard University
School of Engineering and Applied Sciences
USA
yaron@seas.harvard.edu

generating the data, ©(log n) batches of adaptive samples are neces-
sary and sufficient to approximately “learn to optimize" a monotone
submodular function under a cardinality constraint.

CCS CONCEPTS

« Theory of computation — Approximation algorithms anal-
ysis;

KEYWORDS

Adaptivity, submodular optimization, parallel algorithms, adaptive
sampling

ACM Reference Format:

Eric Balkanski and Yaron Singer. 2018. The Adaptive Complexity of Maxi-
mizing a Submodular Function. In Proceedings of 50th Annual ACM SIGACT
Symposium on the Theory of Computing (STOC’18). ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3188745.3188752

1 INTRODUCTION

In this paper we study the adaptive complexity of maximizing a
submodular function. For the past several decades submodularity
has been heavily studied in theoretical computer science, machine
learning, and operations research. This is largely due to the fact
that submodular functions capture a broad range of applications in
diverse domains and are amendable to optimization.

In many cases we do not know the objective function we optimize
and instead learn it from data. In the standard notions of learnability
for submodular functions such as PAC [Val84] and its generalization
PMAC [BH11], the input is a collection of sampled sets and their func-
tion values, and the goal is to produce a surrogate that mimics the be-
havior of the function on samples drawn from the same distribution
(e.g. [BH11, FK14, BDF* 12, BCIW12, FV13, FV15, Bal15, NPS15]).

In order to investigate the approximation guarantees achiev-
able when a function is learned in the PAC and PMAC models, a
recent line of work has been devoted to optimization from sam-
ples [BRS17]. In this framework the input is a collection of samples
and the goal is to find a solution that approximates the optimum.
The main result shows that for the canonical problem of maxi-
mizing a submodular function under a cardinality constraint, no
algorithm can obtain a constant factor approximation guarantee
given access to polynomially-many samples drawn from any dis-
tribution [BRS17]. This result holds even when the functions are
coverage functions which are heavily used in applications and
are PMAC-learnable [FK14, BDF'12]. Similar impossibility results
hold for submodular minimization [BS17a] and convex optimiza-
tion [BS17b], even when the objective functions are PAC-learnable.
Thus, it is generally impossible to obtain reasonable approximation
guarantees for optimization problems that are in P and APX when

https://doi.org/10.1145/3188745.3188752
https://doi.org/10.1145/3188745.3188752

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

the objective is learned with polynomially-many samples, even
when it is PMAC or PAC learnable.

1.1 Adaptivity

The inapproximability for optimization from samples is a conse-
quence of non-adaptivity: any algorithm that only has access to
samples of function values cannot make adaptive queries and this
restriction inhibits reasonable approximation guarantees. Infor-
mally, the adaptivity of an algorithm can be quantified in terms of
the number of sequential rounds of queries it makes, where every
round allows for polynomially-many parallel queries.

DEFINITION. Given an oracle f, an algorithm is r-adaptive if
every query q to the oracle f occurs at a round i € [r] such that q is
independent of the answers f(q") to all other queries q’ at round i.

Adaptivity is a fundamental concept that is studied across a wide
spectrum of areas in computer science (see discussion in Appendix
A.1). In the context of submodular optimization, the oracle for a
function f : 2N — R is a value oracle that receives a set S C N and
returns its value f(S). An algorithm is then r-adaptive if every query
S to the oracle occurs at a round i € [r] such that S is independent
of the values f(S’) of all other queries S” at round i. Somewhat
surprisingly, the concept of adaptivity which quantifies complexity
in a parallel computing model has not been explored for submodular
optimization. There is vast literature on submodular optimization in
the Map-Reduce model which addresses the challenges associated
with processing data that exceeds memory capacity (e.g. [CKT10,
KMVV15, MKSK13, MZ15, MKBK15, BENW 15, BENW 16, EMZ17]),
but these algorithms are inherently sequential and Q(n)-adaptive
in the worst case (see discussion in Appendix A.2), where n is the
size of the ground set N.

1.2 The Adaptivity Landscape of Submodular
Optimization

The adaptive complexity of an optimization problem is the min-
imum number of rounds r such that there exists an r-adaptive
algorithm which achieves a constant factor approximation with
poly(n) queries made in every round. For unconstrained submodu-
lar maximization the adaptive complexity is trivially 0 as a random
subset is a 1/4 approximation to the optimal solution [FMV11].
For the canonical problem of maximizing a monotone submodu-
lar function under a cardinality constraint k, however, very little
is known. The adaptive complexity must be strictly larger than 1
since the main impossibility result for optimization from samples
implies that no constant factor approximation is achievable with
non-adaptive queries [BRS17]. On the other hand, the celebrated
greedy algorithm which achieves the optimal 1—1/e approximation
guarantee by iteratively adding the element with largest marginal
contribution is trivially k-adaptive. In the worst case, k € Q(n). All
constant factor approximation algorithms we are aware of for max-
imizing a submodular function under a cardinality constraint are
at best k-adaptive. So all we know is that the adaptive complexity
is between 1 and Q(n).

What is the adaptive complexity of maximizing a submodular
function?

Eric Balkanski and Yaron Singer

Adaptivity is not only a fundamental theoretical concept but it
also has important practical consequences. There is a wide vari-
ety of applications of submodular maximization where function
evaluations are easily parallelized but each evaluation requires a
long time to complete. In crowdsourcing for example, function
evaluations depend on responses from human agents and highly
sequential algorithms are impractical. Data summarization, experi-
mental design, influence maximization, marketing, survey design,
and biological simulations are all examples where the adaptive
complexity of optimization largely determines the runtime bottle-
neck of the optimization algorithm (see Appendix B for a detailed
discussion of these applications).

1.3 Main Result

Our main result is that the adaptive complexity of submodular
maximization is ©(log n). This provides a characterization that is
tight up to low-order terms, and an exponential improvement in
the adaptivity over any known constant factor approximation al-
gorithm for maximizing a monotone submodular function. Our
characterization is composed of two major results. The first is an al-
gorithm whose adaptivity is O(log n) and obtains an approximation
arbitrarily close to 1/3.

THEOREM. For the problem of monotone submodular maximiza-
tion under a cardinality constraint and any constant € > 0, there
exists an O (log n)-adaptive algorithm which obtains, with probability
1—-o0(1), a (1/3 — €)-approximation.

We complement the upper bound by showing that the adaptive
complexity of submodular maximization is at least quasi-logarithmic
by showing that no Q(log n)-adaptive algorithm can obtain an ap-

N . 1
proximation strictly better than Togn"

THEOREM. For the problem of monotone submodular maximiza-

logn

Tloglogn)-adaptwe

tion under a cardinality constraint, there is no (
algorithm that obtains, with probability w (%) a @ -approximation.

In fact, we show the following more general impossibility result:
for any r < logn, there is no r-adaptive algorithm that obtains,

with probability o (%), an n~ 7 - (r + 3) log? n approximation.

1.4 Adaptive Sampling: a Coupling of Learning
and Optimization

Our motivation is to understand what are the necessary and suf-
ficient conditions from a learnability model that yield desirable
approximation guarantees for optimization. Since sharp impossi-
bility results arise from learning with non-adaptive samples over
any distribution, we turned to an adaptive sampling model [Tho90].
In adaptive sampling, the learner obtains poly(n) samples drawn
from a distribution of her choice in every round. Our (1/3 — €)-
approximation O (log n)-adaptive algorithm is achieved by adaptive
sampling. Our hardness result holds for queries and hence also for
adaptive sampling. This implies that in the realizable case, where
there is a true underlying function generating the data, ©(log n)
batches of adaptive samples are necessary and sufficient to approxi-
mately “learn to optimize" a monotone submodular function under
a cardinality constraint.

The Adaptive Complexity of Maximizing a Submodular Function

Table 1: A comparison of results for the number of rounds required to ob-
tain a constant factor approximation.

Best known adaptivity Adaptivity in this paper

upper bound Q(n) [NWF78] O(logn)

lower bound 1 [BRS17] f)(log n)

1.5 Technical Overview

The algorithm. The main building block of the adaptive sampling
algorithm is the construction, at every round r, of a meaningful dis-
tribution D, with elements having marginal probabilities of being
drawn p1,...,pn. We begin by presenting two simple primitives:
down-sampling (Section 2.1) and up-sampling (Section 2.2). In every
round, down-sampling identifies elements a; € N whose expected
marginal contribution to a random set drawn according to D is
sufficiently low and sets p; = 0 for all future rounds. This approach
achieves logarithmic adaptivity, but its approximation guarantee
is 1/ log n. The second approach, up-sampling, sets p; = 1, for all
future rounds, for all elements in the sample with highest value
at that round. It achieves a constant approximation but at the cost
of a linear adaptivity. Our main algorithm, ADAPTIVE-SAMPLING
(Section 2.3) achieves logarithmic adaptivity and constant factor
approximation by shaping D, via up-sampling at rounds where
a random set has high value and down-sampling otherwise. The
analysis then heavily exploits submodularity in non-trivial ways
to bound the marginal contribution of elements to a random set
drawn from D,, which evolves in every round.

Hardness. To bound the number of rounds necessary to obtain
a certain approximation guarantee, we analyze the information
that an algorithm can learn in one round that may depend on
queries from previous rounds. Reasoning about these dependencies
between rounds is the main challenge. To do so, we reduce the prob-
lem of finding an r-adaptive algorithm to the problem of finding an
r + 1-adaptive algorithm over a family of functions with additional
information. This approach is related to the round elimination tech-
nique used in communication complexity (e.g. [MNSW95]).

1.6 Paper Organization

We begin by presenting the algorithm and its analysis in Section 2.
Section 3 is devoted to the hardness result. Adaptivity in CS is
discussed in Appendix A.1 and comparisons with the Map-Reduce
and PRAM models are in Appendix A.2. Finally, applications of
adaptivity are in Appendix B.

2 THE ADAPTIVE COMPLEXITY OF
SUBMODULAR MAXIMIZATION IS O(logn)

In this section, we show that the adaptive complexity of maximizing
a monotone submodular function under a cardinality constraint is
O(log n) via the ADAPTIVE-SAMPLING algorithm, which has loga-
rithmic adaptivity and obtains an approximation arbitrarily close
to 1/3. This algorithm uses two simple, yet powerful, adaptive sam-
pling techniques as primitives. The first is down-sampling which
in each round maintains a uniform distribution over high-valued
elements by iteratively discarding elements with low marginal con-
tribution to a random set. The second primitive is up-sampling

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

which at every round identifies the elements with highest value
and includes them in all future samples. Neither of these primitives
achieves a constant factor approximation in O(log n) rounds, but
an appropriate combination of them does.

2.1 Down-sampling

The down-sampling algorithm is O(log n)-adaptive but its approx-
imation guarantee is Q(@). We describe the algorithm and an-
alyze its properties which will later be used in the analysis of
ADAPTIVE-SAMPLING. In every round, as long as the expected value
of a random subset of size k of the surviving elements is not an
a-approximation of the value of the optimal solution OPT, the down-
sampling algorithm discards all elements whose expected marginal
contribution to a random set is below a fixed threshold A. A formal
description is included below.

Algorithm 1 DowN-SAMPLING, discards a large number of ele-
ments at every round by sampling.

Input: approximation « and threshold parameter A
Initialize S « N, D as uniform distribution over sets of size k
while |S| > k and Eg.p [f(R)] < aOPT do
S« S\ {a : Erep [fR\{a}(a)] < A}
Update D to be uniform over subsets of S of size k
return R~ D

Algorithm 1 is an idealized description of the down-sampling
algorithm. In practice, we cannot evaluate the exact expected value
of a random set and we do not know OPT. Instead, we sample
random sets from D at every round to estimate the expectations
and guess OPT. For ease of notation and presentation, we analyze
this idealized version of the algorithm, discuss the extension to the
full algorithm in Section 2.4, and formally describe the full algorithm
in Appendix C. This idealized version also has a nice interpretation
via the multi-linear extension of submodular functions as a search of
a continuous point x € [0,1]” which, at every iteration, is projected
to a lower dimension on the boundary of the polytope of feasible
points (see Appendix D.1 for details).

Analysis of down-sampling. The analysis of down-sampling largely
relies on Lemma 1 and Lemma 2, which respectively bound the num-
ber of elements discarded at every round and the loss in the approx-
imation due to these discarded elements. We discuss these lemmas
in the following subsections. Recall that a function f : 2NV — R*
is submodular if for every S € T C N and a ¢ T we have that
fs(a) > fr(a), where f4(b) denotes the marginal contribution
fad) = f(AU {b}) — f(A) of b € N to A C N. Such a function
is monotone if f(S) < f(T) for all S C T. Finally, it is subadditive
if f(AUB) < f(A) + f(B) for all A,B C N, which is satisfied by
submodular functions.

2.1.1 The Adaptivity of Down-sampling. One crucial property
of the down-sampling algorithm is that it is O (log n)-adaptive. This
is largely due to the fact that in every round a significant fraction
of the remaining elements are discarded. Throughout the paper we
use U (S,t) to denote the uniform distribution over subsets of S of
size t.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Lemma 1. Let f : 2N — R be a monotone submodular function.
ForallS C N,t € [n],and A > 0, let D = U(S,t) and the discarded
elements be S~ = {a :Egrep [fR\[a}(a)] < A}. Then:
Eg~ R
|S\S‘| < Er plf (R)]
t-A
PROOF SKETCH (FULL PROOF IN APPENDIX D.2.2). We first lower

bound the expected value of a random set Eg. [f(R)] by the sum
of the expected marginal contribution of the remaining elements

-1SI.

Y.aes\s- Prla € R]-Eg.p [fR\{a) (a)] , using submodularity. Then,
we use the fact that the expected marginal contribution of surviving
elements is at least A to obtain the desired bound. O

Notice that when A = ¢ - % for some ¢ > 1, the lemma
implies that if Eg. p[f(R)] < aOPT, then the number of elements
remaining is reduced by a factor of at least ¢ at every round.

2.1.2 The Approximation Guarantee of Down-Sampling. The
down-sampling algorithm is an Q(Ioén) approximation (Corol-
lary 1). To analyze the value of sets that survive down-sampling,
we show that the value f(O N S™) of discarded optimal elements is
small. Thus, the optimal elements that are not discarded conserve

a large fraction of OPT.

Lemma 2. Let f : 2V — R be monotone submodular with optimal
solution O and D = U(S,t), for any S € N and t € [n]. The loss
from discarding elements S~ := {a €S:Er-p [fR\[a}(a)] < A} is
approximately bounded by the value of R ~ D:

fens)<lonsTia+ E [f(R)].

Proor. The value of ONS™ is upper bounded using the threshold
A for elements to be in S~,

FONS) -BIf(R] <E[fr(0ONnS)]

Y., k@

acONS~

<E <loNnST|-A

where the first inequality is by monotonicity, the second by sub-
modularity, and the last by submodularity and definition of S~ O

At this point, we can prove the following corollary about the
down-sampling algorithm.

Corollary 1. Down-SampLiNG with A = %1 and @ =
4k logn

is

1
logn

O(lolgol%)-adaptive and obtains, in expectation, a (

PROOF SKETCH (FULL PROOF IN APPENDIX D.2.2). The adaptivity
follows from the fact that the number of remaining elements is re-
duced by a log n factor at every round by Lemma 1. Next, for the
approximation guarantee, we first bound the value of remaining ele-
ments S by OPT—f (O al (U:ZIS;)), where Si_ is the set of discarded
elements at round i, by monotonicity and subadditivity. Then, we
bound f(O N S;) using Lemma 2 and obtain the approximation
guarantee. O

It is important to note that Q(@) is the best approximation the
down-sampling algorithm can achieve, regardless of the number
of rounds. There is a delicate tradeoff between the approximation
obtained when the algorithm terminates due to E[f(R)] > aOPT

) -approximation.

Eric Balkanski and Yaron Singer

and the one when |S| < k, s.t. more rounds do not improve the
approximation guarantee. We further discuss this in Appendix D.2.1.

2.2 Up-sampling

A second component of the main algorithm is up-sampling. Instead
of discarding elements, the up-sampling algorithm adds elements
which are included in all future samples. At each round, the sample
containing the k/r new elements with highest value is added to the
current solution X.

Algorithm 2 Upr-SAMPLING, adds a large number of elements at
every round by sampling.

Input: Sample complexity m and number of rounds r
Initialize X < 0
for r rounds do
Update D to be uniform over subsets of N \ X of size k/r
X < X Uargmaxg {f(X UR;) : R; ~ D},
return X

Note that when r = k this method is the celebrated greedy algo-
rithm. In contrast to down-sampling, which obtains a logarithmic
number of rounds and approximation, up-sampling is inherently
sequential and only obtains an O(r/k) approximation. The proof is
deferred to Appendix ??.

Proposition 2. For any constant ¢ < k/r, Up-SAMPLING is an r-
adaptive algorithm and obtains, w.p. 1 — o(1), a (1 - %) Too approx-
imation, with sample complexity m = cn®*¢ log n at every round.

2.3 Adaptive-sampling: O(log n)-Adaptivity and
Constant Factor Approximation

We build upon down and up-sampling to obtain the main algo-
rithm, ADAPTIVE-SAMPLING. The algorithm maintains two sets, S
for down-sampling and X for up-sampling. If a random subset has
high expected value, then a sample of high value is added to the
up-sampling set X. Otherwise, low-value elements can be discarded
from the down-sampling solution S. A crucial subtlety is that this
algorithm samples sets of size k/r not only for up-sampling but
also for down-sampling (rather than k). The description below is
an idealized version of the algorithm.

Algorithm 3 ADAPTIVE-SAMPLING: down-samples or up-samples
depending on context.

Input: approximation «, threshold A, sample complexity m, bound
on up-sampling rounds r
Initialize X <« 0,5 « N
while |X| < kand | X U S| > k do
Update D to be uniform over subsets of S \ X of size k/r
if Eg~op [fx(R)] = (a/r)OPT then
X « X Uargmaxg {f(X UR;) : R; ~ D},
else
$ S\ {a : Egep [fxur\(a)(@] < A}
return X if | X| = k, or X U S otherwise

The Adaptive Complexity of Maximizing a Submodular Function

2.3.1 The Adaptivity of ADAPTIVE-SAMPLING is O(logn). The
adaptivity of ADAPTIVE-SAMPLING is the sum of the number of
up-sampling rounds and of the number of down-sampling rounds,
which we denote by ry, and r; respectively.

Lemma 3. ADAPTIVE-SAMPLING is (ry +1g)-adaptive withry, +rq <

— . QOPT
r+log.n when A =c- .

PROOF SKETCH (FULL PROOF IN APPENDIX D.3). The number of
up-sampling rounds ry, is bounded by r since there are k/r elements
added to X at every such round. The number of down-sampling
rounds ry is bounded similarly as for the down-sampling algo-
rithm, using Lemma 1 with the function fx(-) and the fact that
Er~o [fx(R)] has low value at a down-sampling round. O

2.3.2 ADAPTIVE-SAMPLING is a Constant Factor Approximation.
We now analyze the approximation guarantee of ADAPTIVE-SAMPLING.

S)

LEMMA 4. ADAPTIVE-SAMPLING obtains, with probability 1 — 8,

(% - e) -approximation and has sample complexitym = (%)2 log (

)

R

at every round, with parameters o = % ro= % logyiespn A
€\ «OPT
(1 + E) -

Proor. We begin with the case where the algorithm returns
S U X, which is the main component of the proof, and then we
consider the case where it returns X. At a high level, the first part
in analyzing SUX consists of bounding f(SUX) in terms of the loss
from optimal elements f(O \ S). Then, we use Lemma 2 to bound
the loss from these elements at every round. A main theme of this
proof is that we need to simultaneously deal with the up-sampling
solution X while analyzing the loss from O \ S.

We introduce some notation. Let O = {o1,. . .,0x} be the optimal
solution indexed by an arbitrary order and X; and S; be the sets
Xand S™ ={a : EBr.p [fXUR\{a}(a)] < A} at the ith round of
down-sampling, i € [rq]. First, by monotonicity, subadditivity, and
again monotonicity, we get

fUX)= f(O)-f(O\(SUX))=0PT - f(O\S).
The remaining of the proof bounds the loss f(O \ S) from optimal
elements that were discarded from S. Next, we bound f (O \ S). The

elements in O \ S are elements that have been discarded from S, so
O\S = U;il (Sl_ n O), and we get

f(O\8)) = f (U, (s n0O))
< fic (U4, (57 n0)) + £

< ifx (0ns;) + f(SUX).
i=1

where the first inequality is by monotonicity and the second by
subadditivity and monotonicity. Next,

fx(0ns) < fx, (0ns) <l00S71-A+E[fx,(R)].

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

where the first inequality is by submodularity and the second is by
Lemma 2 and since fx;, (-) is a submodular function. Thus,

T

FO\S) <Y (100871 A+E[fi,(R)]) + F(SUX)

i=1

<lon U s.-)|-A+(a- er)OPT+f(SUX)

i=1"1

Sk-A+(a-—rd)OPT+f(SUX)

r

< (1+§)aOPT+(a-—rd)OPT+f(SUX)
r

where E [le. (R)] < (a/r)OPT at a downsampling round i by the
algorithm. By combining the previous inequalities, we get
f(SUX) > OPT - (1 + g) aOPT — F(SUX) — "4 qoPT
r
1
P (— - e) OPT

3
where ry < log; ./, n by Lemma 3 with ¢ = 1 + €/2 and since
r= % ~log1+6/2n.

What remains is the case where the algorithm returns X. Let
X; and R} be the set X and the sample R added to X at the ith
round of up-sampling, i € [r]. By standard concentration bound
(Lemma 13), with m = (r/€)?log (2r/5), w.p. 1 - §/r, fx; (R;r) >
Er~p [in (R)] — €OPT/r. By a union bound this holds for all r
rounds of up-sampling with probability 1 — §. We obtain

F) =, fxi (RY)

2.4 The Full Algorithm

We briefly discuss the two missing pieces, estimating the expec-
tations and the assumption that we know OPT, both needed to
implement the idealized algorithm. To estimate expectations within
arbitrarily fine precision € > 0 in one round, we query m = poly(n)
sets XURy,...,XURy, where Ry,...,Ry, are sampled according to
U(S\ X,k/r) (Lemma 11 in Appendix C.1 via standard concentra-
tion arguments). To guess OPT, we pick log, . n different values v*
as proxies for OPT, one of which must be an € multiplicative approx-
imation to OPT (Lemma 12 using submodularity). We then run the
algorithm for each of these proxies in parallel, and return the solu-
tion with highest value. With these two final pieces, we obtain the
main result for this section. We describe the implementable version
ADAPTIVE-SAMPLING-FULL formally in Appendix C and analyze it
in Appendix ??.

THEOREM 3. For any €,0 > 0, ADAPTIVE-SAMPLING-FULL is a
(logH_e/3 n- % + 2) -adaptive algorithm that, wp. 1 — §, obtains

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

a (% — €)-approximation, with sample complexity at every round
m= 5% (”kz lo (2—") +log? n-lo (2) : l) for maximizing a
T e g\s Bite /3 g\s e) 8
monotone submodular function under a cardinality constraint, with

parametersr = % logyezm = % and A = (1+ e)%.

3 THE ADAPTIVE COMPLEXITY OF
SUBMODULAR MAXIMIZATION IS Q(logn)

In this section, we show that the adaptive complexity of maximizing
a monotone submodular function under a cardinality constraint
is Q(log n) with a hardness result showing that with strictly less
than Q(log n) rounds, the best approximation possible is loé —. With
the algorithm from the previous section, we get that the adaptive
complexity of submodular maximization is log n, up to lower-order
terms, to obtain a constant factor approximation. This hardness
result uses an approach related to the round elimination technique
used in communication complexity (e.g. [MNSW95]).

3.1 The Round Elimination Lemma

The following simple lemma gives two conditions that, if satis-
fied by some collections of functions, imply the desired hardness
result. The main condition is that an r-adaptive algorithm for a
family of functions ¥, can be modified into an (r — 1)-adaptive
algorithm for a more restricted family 7,—1. The base case of this
inductive argument is that with no queries, there does not exist
any a-approximation algorithm for 7. A similar round elimination
technique is used in communication complexity to characterize the
tradeoff between the number of rounds and the total amount of
communication of a protocol. Here, the tradeoff is different and
is between the number of rounds and the approximation of an
algorithm.

Lemma 5. Assumer € poly(n). If there exist families of functions
0, - - . » Fr such that the following two conditions hold:

e Round elimination. For alli € {1,...,r}, if there exists an
i-adaptive algorithm that obtains, with probability n~o),
an a-approximation for F;, then there exists an i — 1 adap-
tive algorithm that obtains, with probability ne®),

approximation algorithm for Fi_1;

o Last round. There does not exist a 0-adaptive algorithm that
—a(1)

an o-

obtains, with probability n , an a-approximation for Fo;

Then, there is no r-adaptive algorithm that obtains, w.p. o(1), an
a-approximation for F.

The proof follows immediately by induction on the number of
rounds r.

3.2 The Onion Construction

The main technical challenge is to “fit" r + 1 families of functions
%0, - . ., Fr in the class of submodular functions while also having
every family #; be significantly richer than #;_;. In our context,
significantly richer means that an i-adaptive algorithm for #; can
be transformed into an (i — 1)-adaptive algorithm for %;_;. To do so,
at a high level, we want to show that after one round of querying a
function in 7, functions in ¥;_1 are indistinguishable. If functions
in F;_1 are indistinguishable to an i-adaptive algorithm after one

Eric Balkanski and Yaron Singer

Figure 1: The partition of the elements into layers
Lo,...,Ly,L* for the hard functions. An algorithm cannot
learn L; before round i + 1 and L* is the optimal solution.

round of querying, then the last i — 1 rounds of this algorithm form
an (i — 1)-adaptive algorithm for ;1.

We construct functions that depend on a partition P of the ground
set N into layers Ly, . .. ,Ly,L* (illustrated in Figure 1). The main
motivation behind this layered construction is to create a hard
instance s.t. an algorithm cannot distinguish layer L; from L* before
round i + 1. The size of the layers decreases as i grows, with L*
being the smallest layer. More precisely, we set |L;| = nl~ 7 for
i>0,|L* = nﬁ, and Ly consists of the remaining elements. We
define ¢;(S) := |L; N S| and abuse notation with ¢; = ¢;(S) when it
is clear from context. The hard function is defined as

.
E(s) = Z min(¢;,log? n) + £*
i=0

S r
+min(| |1 ,1) <2n2r1+2 —(Z:min(fi,log2 n)+€*)>.

8nr+l i=0

To gain some intuition about this function, we note the following
two simple facts about f:

e If a query is large, ie. S| > 8n71, then P = onw.
Informally, all the layers are hidden since no information
can be learned about the partition from query S;

e On the other hand, if |SN L;| < log2 n,ie. {; < log2 n, then
elements in L; and L* are indistinguishable to an algorithm
that is given the value f(S) since min(f,-,log2 n) = {j.

1
Thus, the queries need to be of size smaller than 8nr+1 while also
containing at least log? n elements in L; for the algorithm to learn
some information to distinguish layers L; and L*. Since the size of
2
layers diminishes at a rate faster than log 1" , it is hard for the algo-
8nr+l

rithm to distinguish layers L;11 and L* if it has not distinguished L;
and L* in previous rounds. An interpretation of this construction
is that an algorithm can only learn the outmost remaining layer at
any round.

3.3 Round Elimination for the Construction

In order to argue that functions in #;_1 are indistinguishable after
one round of querying f € F;, we begin by reducing the problem of
showing indistinguishability from non-adaptive queries to showing
structural properties of a randomized collection of functions Fg,
(the proof is in Appendix E).

The Adaptive Complexity of Maximizing a Submodular Function

Lemma 6. Let ¥R, be a randomized collection of functions in some
F. Assume that for all S € N, wp. 1 — n=®1) over TR, for all
fi.f2 € FR,, we have that f1(S) = f2(S). Then, for any (possibly ran-
domized) collection of poly(n) non-adaptive queries Q, there exists a
deterministic collection of functions & € § such that with probability
1—n=®W over the randomization of Q, for all queries S € Q and all

fi.fa € F, f1(S) = f2(S).

The randomized collection of functions ¥g,. For round r — i, we
define the randomized collection of functions Fg, € &,—;, for some
&r—i, needed for Lemma 6. Informally, the layers Ly,...,L;—1 are
fixed and the ith layer is a random subset R; of the remaining
elements N \ Uj;(l)L j. The collection Fg, is then all functions with
layers Ly, . . .,Lj—1,R;. Formally, given Lo, . . ., L;—1, the randomized
collection of functions Fg, is

ﬁi(L(),... :

,Li—1) ::{f(L(b---»Li—lyRi,SiJrl---Sr,-s)
Ujetist,...rx) S = N\ (UIZ0L; UR;) |

where R; ~ U(N \ U;;(I)Lj,nl_r%l) is a uniformly random subset

of size n'~ 71 of the remaining elements N \ Ui.;éL j and U denotes
the disjoint union of sets. We define &,—; to be the collection of all
such #g, (Lo, . . .,Li-1) over all subsets R; of the remaining elements
N\ U]i;(l)L j - Next, we show the desired property for the randomized
collection of functions ¥g, to apply Lemma 6.

Lemma 7. Assumer < logn. ForallS C N andi € [r], with
probability 1 — n=°() over the randomization of Fr, € &r—i, forall
fi.f2 € TR, f1(S) = fa(9).

PROOF SKETCH (FULL PROOF IN APPENDIX E). The proof consists
of two cases depending on the size of S. If § > 8n$, then we im-
mediately conclude that f(S) = 2n77 for all f € Fr,;. The second

and main case is if S < 8n7+1. We first give a concentration bound
showing that for a fixed set S and a random set R, if the expected
size of their intersection is constant, then their intersection is of
size at most log? n with high probability (Lemma 14). Using this
concentration bound, we get that for a fixed S, with high probability,
forall f € 7R, Z;:i atbi < log? n. We conclude by showing that
this implies that f1(S) = f2(S) for all f1, f2 € Fg,. O

Combining the two previous lemmas, we are ready to show the
round elimination condition.

LEmMMA 8. Assumer < logn.Foralli € {1,...,r} and all collection
of functions F; € &, if there exists an i-adaptive algorithm that
obtains, with probability n~®W) gn a-approximation for F;, then
there exists a collection of functions Fi—1 € iy such that there exists
an (i — 1)-adaptive algorithm that obtains, with probability n~@),
an a-approximation for Fi_q.

Proor. Assume that for some F; € &, there exists an i-adaptive
algorithm A that obtains, w.p. n~“(), an a-approximation . Let
Lo,...,Lr—; be the layers of all fP € ¥; and consider the ran-
domized collection of functions g, _,,, (Lo, ..,Lr—i) € Ji—g- By
combining Lemma 6 and Lemma 7, there exists a deterministic
collection of functions ;-1 € i, such that, w.p. 1 — n~®M) oyer
the randomization of the algorithm A for the non-adaptive queries

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Q in the first round, for all queries S € Q, f1(S) = f2(S) for all
fi.f2 € Fi-1.Since Fi—1 C F;, algorithm A is also an i-adaptive al-
gorithm that obtains, with probability n=@® an a-approximation
for Fi_1.

For optimizing f € ¥;_1, the decisions of the algorithm are, w.p.
1— n_“’(l), independent of the queries made in the first round, which
is the case when for all queries S, f1(S) = f2(S) for all fi, f2 € Fi—1
. Consider the algorithm A’ that consists of the last i — 1 rounds
of algorithm A when for all queries S by A in the first round,
fi(S) = f2(S) for all fi,f, € Fi—1. We get that A’ isani— 1
adaptive algorithm that obtains, w.p. n=®() an a-approximation

for Fi_1. m]

It remains to show the last round condition needed for Lemma 5.

Lemma9. Forall 7 € $y, there does not exist a 0-adaptive algorithm
that obtains, with probability n~®W) gn nE ((r +2)log?n + 1)
approximation.

PROOF SKETCH (FULL PROOF IN APPENDIX E). The proof uses a
probabilistic argument and considers f picked at random from ¥ .
The decisions of a 0-adaptive algorithm are then independent of this
randomization since there are no queries. Next, by using the same
concentration used previously (Lemma 14) we show that with high
probability, the solution returned by the algorithm contains a small
number of elements in L*, and thus obtains a low value compared
to the optimal L*. O

Lemma 15 in Appendix E shows that f¥ is monotone and sub-
modular. By combining lemmas 5, 8, 9, and 15, we obtain the main
result for this section.

THEOREM 4. Foranyr < log n, there is nor-adaptive algorithm for
maximizing a monotone submodular function under a cardinality con-

straint that obtains, with probability o(1), an N ((r +3) log? n)

approximation. In particular, there is no -adaptive algo-

logn
12loglog n
-approximation.

rithm that obtains, with probability w (%) @ fogn

APPENDIX

A ADDITIONAL DISCUSSION OF RELATED
WORK

A.1 Adaptivity

Adaptivity has been heavily studied across a wide spectrum of ar-
eas in computer science. These areas include classical problems in
theoretical computer science such as sorting and selection (e.g.
[Val75, Col88, BMW16]), where adaptivity is known under the
term of parallel algorithms, and communication complexity (e.g.
[PS84, DGS84, NW91, MNSW95, DNO14, ANRW15]), where the
number of rounds measures how much interaction is needed for a
communication protocol.

For the multi-armed bandits problem, the relationship of interest
is between adaptivity and query complexity, instead of adaptivity
and approximation guarantee. Recent work showed that ©@(log* n)
adaptive rounds are necessary and sufficient to obtain the opti-
mal worst case query complexity [AAAK17]. In the bandits setting,

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

adaptivity is necessary to obtain non-trivial query complexity due
to the noisy outcomes of the queries. In contrast, queries in sub-
modular optimization are deterministic and adaptivity is necessary
to obtain a non trivial approximation since there are at most poly-
nomially many queries per round and the function is of exponential
size.

Adaptivity is also well-studied for the problems of sparse recov-
ery (e.g. [HNC09, IPW11, HBCNO09, JXC08, MSW08, AWZ08]) and
property testing (e.g. [CG17, BGSMdW 12, CST*17, RS06, STW15]).
In these areas, it has been shown that adaptivity allows significant
improvements compared to the non-adaptive setting, which is sim-
ilar to the results shown in this paper for submodular optimization.
However, in contrast to all these areas, adaptivity has not been
previously studied in the context of submodular optimization.

We note that the term adaptive submodular maximization has
been previously used, but in an unrelated setting where the goal
is to compute a policy which iteratively picks elements one by
one, which, when picked, reveal stochastic feedback about the
environment [GK10].

A.2 Related Models

In this section, we discuss two related models, the Map-Reduce
model for distributed computation and the PRAM model. These
models are compared to the notion of adaptivity in the context of
submodular optimization.

A.2.1 Map-Reduce. The problem of distributed submodular op-
timization has been extensively studied in the Map-Reduce model
in the past decade. This framework is primarily motivated by large
scale problems over massive data sets. At a high level, in the Map-
Reduce framework [DG08], an algorithm proceeds in multiple Map-
Reduce rounds, where each round consists of a first step where the
input to the algorithm is partitioned to be independently processed
on different machines and of a second step where the outputs of
this processing are merged. Notice that the notion of rounds in
Map-Reduce is different than for adaptivity, where one round of
Map-Reduce usually consists of multiple adaptive rounds. The for-
mal model of [KSV10] for Map-Reduce requires the number of
machines and their memory to be sublinear.

This framework for distributing the input to multiple machines
with sublinear memory is designed to tackle issues related to mas-
sive data sets. Such data sets are too large to either fit or be processed
by a single machine and the Map-Reduce framework formally mod-
els this need to distribute such inputs to multiple machines.

Instead of addressing distributed challenges, adaptivity addresses
the issue of sequentiality, where each query evaluation requires
a long time to complete and where these evaluations can be par-
allelized (see Section B for applications). In other words, while
Map-Reduce addresses the horizontal challenge of large scale prob-
lems, adaptivity addresses an orthogonal vertical challenge where
long query-evaluation time is causing the main runtime bottleneck.

A long line of work has studied problems related to submodular
maximization in Map-Reduce achieving different improvements
on parameters such as the number of Map-Reduce rounds, the
communication complexity, the approximation ratio, the family of
functions, and the family of constraints (e.g. [KMVV15, MKSK13,
MZ15, MKBK15, BENW 15, BENW 16, EMZ17]). To the best of our

Eric Balkanski and Yaron Singer

knowledge, all the existing Map-Reduce algorithms for submodular
optimization have adaptivity that is linear in n in the worst-case,
which is exponentially larger than the adaptivity of our algorithm.
This high adaptivity is caused by the distributed algorithms which
are run on each machine. These algorithms are variants of the
greedy algorithm and thus have adaptivity at least linear in k. We
also note that our algorithm does not (at least trivially) carry over
to the Map-Reduce setting.

A.2.2 PRAM. In the PRAM model, the notion of depth is closely
related to the concept of adaptivity studied in this paper. Our pos-
itive result extends to the PRAM model, showing that there is a
(j(log2 n - dg) depth algorithm with O(nk?) work whose approx-
imation is arbitrarily close to 1/3 for maximizing any monotone
submodular function under a cardinality constraint, where df is
the depth required to evaluate the function on a set.

The PRAM model is a generalization of the RAM model with
parallelization, it is an idealized model of a shared memory machine
with any number of processors which can execute instructions in
parallel. The depth of a PRAM algorithm is the number of parallel
steps of this algorithm on the PRAM, in other words, it is the longest
chain of dependencies of the algorithm, including operations which
are not necessarily queries. The problem of designing low-depth
algorithms has been heavily studied (e.g. [Ble96, BPT11, BRS89,
RV98, BRM98, BST12]).

Thus, in addition to the number of adaptive rounds of querying,
depth also measures the number of adaptive steps of the algorithms
which are not queries. However, for the applications we consider,
the runtime of the algorithmic computations which are not queries
are usually insignificant compared to the time to evaluate a query.
In addition, the PRAM model assumes that the input is loaded in
memory while we consider the value query model where the algo-
rithm is given oracle access to a function of potentially exponential
size. In crowdsourcing applications, for example, where the value
of a set can be queried on a crowdsourcing platform, there does
not necessarily exist a succinct representation of the underlying
function.

Our positive results extend with an additional d - O(log n) factor
in the depth compared to the number of adaptive rounds, where df
is the depth required to evaluate the function on a set in the PRAM
model. The operations that our algorithms performed at every
round, which are maximum, summation, set union, and set differ-
ence over an input of size at most quasilinear, can all be executed by
algorithms with logarithmic depth. A simple divide-and-conquer
approach suffices for maximum and summation, while logarithmic
depth for set union and set difference can be achieved with treaps
[BRM9S].

More broadly, there has been a recent interest in machine learn-
ing to scale submodular optimization algorithms for applications
over large datasets [JLB11, JBS13, WIB14, NJJ14, PJG* 14].

B APPLICATIONS

Beyond being a fundamental concept, adaptivity is important for
applications where sequentiality is the main runtime bottleneck.

The Adaptive Complexity of Maximizing a Submodular Function

Crowdsourcing and data summarization. One class of such prob-
lems where adaptivity plays an important role are human-in-the-
loop problems. At a high level, these algorithms involve subtasks
performed by the crowd. The intervention of humans in the evalu-
ation of queries causes algorithms with a large number of adaptive
rounds impractical. A crowdsourcing platform consists of posted
tasks and crowdworkers who are remunerated for performing these
posted tasks. For the submodular problem of data summarization,
where the objective is to select a small representative subset of a
dataset, the quality of subsets as representatives can be evaluated
on a crowdsourcing platform [TIWB14, STK16, BMW16]. The al-
gorithm must wait to obtain the feedback from the crowdworkers,
however an algorithm can send out a large number of tasks to be
performed simultaneously by different crowdworkers.

Biological simulations. Adaptivity is also studied in molecular bi-
ology to simulate protein folding. Adaptive sampling techniques are
used to obtain significant improvements in execution of simulations
and discovery of low energy states [BVP11].

Experimental Design. In experimental design, the goal is to pick
a collection of entities (e.g. subjects, chemical elements, data points)
which obtains the best outcome when combined for an experiment.
Experiments can be run in parallel and have a waiting time to
observe the outcome [FJK10].

Influence Maximization. The submodular problem of influence
maximization, initiated studied by [DR01, RD02, KKT03] has since
then received considerable attention (e.g. [CWY09, CWW10, GLL11,
SS13, HS15, BPR* 16]). Influence maximization consists of finding
the most influential nodes in a social network to maximize the
spread of information in this network. Information does not spread
instantly and a waiting time occurs when observing the total num-
ber of nodes influenced by some seed set of nodes.

Advertising. In advertising, the goal is to select the optimal subset
of advertisement slots to objectives such as the click-through-rate
or the number of products purchased by customers, which are objec-
tives exhibiting diminishing returns [AM10, DHK" 16]. Naturally,
a waiting time is incurred to observe the behavior of customers.

C THE FULL ALGORITHM

C.1 Estimates of Expectations in One Round
via Sampling

We show that the expected value of a random set and the expected
marginal contribution of elements to a random set can be esti-
mated arbitrarily well in one round, which is needed for the Down-
SAMPLING and ADAPTIVE-SAMPLING algorithms. Recall that U (S, t)
denotes the uniform distribution over subsets of S of size t. The
values we are interested in estimating are Eg.q/(s, 1) [fx (R)] and
Er~w(s,1) [fqu\{a}(a)]. We denote the corresponding estimates
by vx(S,t) and vx(S,t,a), which are computed in Algorithms 4
and 5. These algorithms first sample m sets from U (S,t), where m
is the sample complexity, then query the desired sets to obtain a
random realization of fx (R) and fxyRr\{q}(a), and finally averages
the m random realizations of these values.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Algorithm 4 ESTIMATE: computes estimate vx(S,t) of
Erea(s,r) [fx(R)].
Input: set S C N, size t € [n], sample complexity m.

Sample Ry,...,Rm £ U(S,t)

Query {X,X URy,...,.X URy}

ox(S,1) « % X f(XUR:) = f(X)

return vy (S,t)

Algorithm 5 EsTiMATE2: Computes estimate vx(S,t,a) of
Er~a(s,1) [fXUR\{a}(a)]~

Input: set S C N, size t € [n], sample complexity m, element
a€N.
Sample Ry,...,Rpy £ U(S,t)
Query {XUR; U{a},XUR; \{a},...,XUR, U{a},XUR,, \ {a}}

ox(S,t,a) « L 3™ F(XUR; Ufa)) = F(X UR; \ {a))
return vx(S,t,a)

Using standard concentration bounds, the estimates computed by
these algorithms are arbitrarily good for a sufficiently large sample
complexity m. We state the version of Hoeffding’s inequality which
is used to bound the error of these estimates.

LEMMA 10 (HOEFFDING’S INEQUALITY). Let X1,...,X, be inde-
pendent random variables with values in [0,b]. Let X = % xn X
Then for any € > 0,

Pr[|X - E[X]| > €] < 2¢72me’/b"

We are now ready to show that these estimates are arbitrarily
good.

LEMMA 11. Letm = % (%)2 log (%) then for all X,S C N and
t € [n] such that |X| +t < k, with probability at least 1 — § over the
samples Ry,...,Rm,

<e€

E [fx(R)]

ox(5,8) - R~U(S,t)

Similarly, let m = % (%)zlog (%), then for all X,S € N, t € [n],
and a € N such that |X| + t < k, with probability at least 1 — & over
the samples Ry,. . .,Rm,

UX(S,t,a)—RN,LI{E?(S 9

[fXUR\{allaeR(a)] <e.

Thus, withm = n (%)2 log (%") total samples in one round, with

probability 1 — 6, it holds that vx (S,t) and vx (S,t,a), foralla € N,
are e-estimates.

Proor. Note that
E (%'¢ S,t)] = E X R
[()] R~TU(S,1) [f ()]

and

E[vx(S,t,a)] = E

R~U(S,1) [fXUR\{a}(a)] .

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Since all queries are of size at most k, their values are all bounded
by OPT. Thus, by Hoeffding’s inequality with m = % (Oeﬂ)z log (%),
we get

o

for € > 0. Similarly, we get

o

Thus, withm =n

2me?

> e] <2 oz <§

[fx(R)]

vx (S,t) -

E
R~U(S,t)

vx(S,t,a) — R~(L](Ek5 5

[fxuri(a)(@)]

Ze]s&

g)z log (%") total samples in one round, by a

union bound over each of the estimates holding with probability 1—
d/n individually, we get that all the estimates hold simultaneously
with probability 1 — &. O

We can now describe the (almost) full version of the main algo-
rithm which uses these estimates. One additional small difference
with ADAPTIVE-SAMPLING is that we force the algorithm to stop
after r* rounds to obtain the adaptive complexity with probability
1. The loss from the event, happening with low probability, that the
algorithm is forced to stop is accounted for in the § probability of
failure of the approximation guarantee of the algorithm.

Algorithm 6 ADAPTIVE-SAMPLING-PROXY, simultaneously down-
samples and upsamples.

Input: bounds on up-sampling rounds r and on total rounds r™,
approximation «, threshold parameter A, sample complexity m,
and proxy v*

Initialize X « 0,S < N,t « é,c —1
while |X| < k, [SUX| > k,and ¢ < r* do Adaptive loop
vx (S,t) « ESTIMATE (S, t,m)
if vy (S,t) = % -v* then
X « X Uargmax{f(XUR;) : R; ~ U(S,)},
S« S\X
else
for a € S do Non-adaptive loop
vx (S,t,a) « EsTIMATE2 (S \ X,t,m,a)
S« S\{a: vx(St,a) <A}
ce—c+1
return X if |X| = k, or S U X otherwise

C.2 Estimating OPT

The main idea to estimate OPT is to have O(log n) values v; such
that one of them is guaranteed to be a (1 — ¢)-approximation to
OPT. To obtain such values, we use the simple observation that the
singleton a* with largest value is at least a 1/n approximation to
OPT.

LEMMA 12. Let a* = argmax,cp f({a}) be the optimal singleton,
and

vi=(1+e) - f(la*}).
Then, there exists some i € [lolg(z%] such that

OPT < v; < (1+¢€)-OPT.

Eric Balkanski and Yaron Singer

Proor. By submodularity, we get f({a*}) > %OPT > %OPT.
By monotonicity, we have f({a*}) < OPT. Combining these two

inequalities, we get vg < OPT < v 1ogn . By the definition of v;,
log(1+e€)

we then conclude that there must exists some i € logn such
log(1+€)

that OPT < v; < (1 +¢€) - OPT. O

Since the solution obtained for the unknown v; which approx-
imates OPT well is guaranteed to be a good solution, we run the
algorithm in parallel for each of these values and return the solu-

tion with largest value. We obtain the full algorithm ADAPTIVE-
SAMPLING-FULL which we describe next.

Algorithm 7 ApAPTIVE-SAMPLING-FULL, simultaneously down-
samples and upsamples.

Input: bounds on up-sampling rounds r and on total rounds ™,
approximation «, threshold parameter A, sample complexity m,
and precision €
Initialize L « 0
Query {{a1},....{an}}

a* « argmax,, f{ai})
fori e {0, o 710gl+e/3 n} do Non-adaptive loop

v* — (1+e) - f ({a*})

Add solution from ADAPTIVE-SAMPLING-PROXY(v*) to L
return argmaxgc; f(S)

D MISSING DISCUSSION AND ANALYSIS
FROM SECTION 2

D.1 Continuous Interpretation of Algorithm
via the Multilinear Extension

The DowN-SAMPLING algorithm also has a simple description using
the multilinear extension F of f.

Algorithm 8 DowNSAMPLINGCONTINUOUS, a continuous descrip-
tion of DOWN-SAMPLING.

Input: approximation « and precision €
X (%,...,%),
while F(x) < aOPT do
M {v:ivio < (1= &)lixllo. IVl = kv < x|
X « argmaxy (v, VF(x))

return x

The multilinear extension F : [0,1]" — R of a submodular
function f is a popular tool for continuous approaches to submod-
ular optimization, where F(x) is the expected value E[f(R)] of
a random set R containing each element a; independently with
probability x;. An interpretation of this algorithm is a continuous
point x which, at every iteration, is projected to a lower dimension
(IIvllo < (1 —¢€)lIxllo) among the remaining dimensions (v < ﬁx)
on the boundary of the polytope of feasible points (||v|l; = k).

The Adaptive Complexity of Maximizing a Submodular Function

D.2 Missing Analysis from Section 2.1

D.2.1 Tradeoff with Down-sampling. We first discuss the trade-
off between the approximation obtained when the algorithm ter-
minates due to E[f(R)] > aOPT and the one when [S| < k. We
argue that this tradeoff implies that more rounds do not improve
the approximation guarantee for down-sampling.

Notice that when the threshold «OPT to return R increases, then
the threshold A = ¢p - @ needed to remove elements also in-
creases. If this threshold to remove elements increase, then the
algorithm potentially discards optimal elements with higher value.
Thus, the apporoximation guarantee obtained by the solution S
worsens. This tradeoff is independent of the number of rounds
and adding more rounds thus does not improve the approximation
guarantee.

D.2.2 Analysis of Down-sampling. We bound the number of
elements removed from S in each round.

Lemma 1. Let f : 2N — R be a monotone submodular function.
ForallS C N,t € [n], and A > 0, let D = U(S,t) and the discarded
elements be S~ = {a :Erep [fR\{a}(a)] < A}. Then:

Er-plf(R)]

ISI.
t-A

Is\s7| <

PROOF. At a high level, we first lower bound the value of a

random set R ~ O by the marginal contributions of the remaining

elements S\ S™. Then, we lower bound these marginal contributions

with the threshold A since these elements must have large enough

marginal contributions to not be removed. The first lower bound is
the following:

E[f(R)] = E[f(RN(S\S))]

monotonicity

>E Z me(s\s—)\{a}(a)l Submodularity
a€RN(S\S-)

>E Z Tacr * fr\(a)(@) Submodularity
a€S\S~

= Z E[ﬂaeR'fR\{a}(a)]~

aeS\S-

By bounding the marginal contribution of remaining elements with
the threshold A, we obtain

Z E[Tacr - fr\(a)(@)]

acS\S~
= Z Pr[a € R]-E [fr\(a)(@)la € R]
aeS\S~
> Z PrlacR]-E [fR\{a}(a)] Submodularity
acS\S~
> PrlaeR]-A definition of A
aeS\S~
t
=|S\S7|- |5_| -A definition of R
O

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

D.3 Missing Analysis from Section 2.3

LEMMA 13. For any X,S C N such that | X UR| < k, let D =
U (S, é) andR* = argmax; crp, f (X U Ri). Then, with probability
1 — & over the samples drawn from D,

fx(RT) 2 oo Ux (R —e€

with sample complexity m = % (%)Z log (%)

Proor. By Lemma 11, with m = % (O—ET)Z log (%) , with proba-
bility 1 -6,

<e.

ux(S,t) = REED [fx(R)]

Since vx (S,t) = % ™, fx(Ri), it must be the case that for at least

one sample R used to compute vx (S,1),
R) > E R)] —e.
fx®) 2 B fx(R)]—e€

We conclude by observing that the sample with largest marginal
contribution fx (R) = f(X UR) — f(X) is returned. O

Lemma 3. ADAPTIVE-SAMPLING is (1 +1g)-adaptive withr, +rg <

— .. QOPT
r+log. n when A =c- .

Proor. We first bound the number of rounds r; where ADAPTIVE-
SaMmpPLING downsamples. If [S| < é, then |S U X| < k and the
algorithm terminates since |X| < k — % if the algorithm has not
(yet) returned X. Notice that if ADAPTIVE-SAMPLING removes ele-
ments from S at some round, then Eg.p [fx(R)] < £0PT. Thus,
the number of elements remaining in S after one round of removing
elements from S is

Er~p [fx(R)]

[S\S7| < A - |S] Lemma 1 with
submodular function fx (-)
OPT
< “t. A/ L] Algorithm
1 OPT k
<—-18 A:cAa andt = —
cA r

Thus, after ry rounds of removing elements, there are [S| <
(1/cp)"@ - n elements remaining. With

s (afe) _ togn
" logep T~ logep’
|S| < k/r and the algorithm terminates.
For the second part of the lemma, after r rounds of upsampling,
r disjoint samples of size é have been added to X. Thus |X| = k
and the algorithm terminates with ry, = r. O

E MISSING ANALYSIS FROM SECTION 3
We begin with the round elimination lemma.

Lemma 5. Assumer € poly(n). If there exist families of functions
%0, - - ., Fr such that the following two conditions hold:

e Round elimination. For alli € {1,...,r}, if there exists an
i-adaptive algorithm that obtains, with probability n~@),
an a-approximation for F;, then there exists an i — 1 adap-
tive algorithm that obtains, with probability n~@)
approximation algorithm for F;_1;

,an a-

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

o Last round. There does not exist a 0-adaptive algorithm that

obtains, with probability n~®M an a-approximation for Fo;

Then, there is no r-adaptive algorithm that obtains, w.p. o(1), an
a-approximation for Fr.

Proor. The proof is by induction on the number of rounds r.
If r = 0, then by the last round condition, ¥y is not a optimiz-
able in 0 adaptive rounds. If » > 0, then assume by contradiction
that there exists an a-approximation r-adaptive algorithm for ¥.
By the round elimination condition, this implies that there exists
an a-approximation r — 1 adaptive algorithm for #,_;. This is a
contradiction with the induction hypothesis for r — 1. O

Next, we focus on the lemmas needed for the round elimination
condition (Lemma 8). These lemmas are Lemma 6 and Lemma 7.

Lemma 6. Let g, be a randomized collection of functions in some
&. Assume that for all S € N, wp. 1 — n=?W over FR;» for all
fi,f2 € Fr,, we have that fi(S) = f2(S). Then, for any (possibly ran-
domized) collection of poly(n) non-adaptive queries Q, there exists a
deterministic collection of functions & € § such that with probability
1-n~°" over the randomization of Q, for all queries S € Q and all

fi.fa €, f1(S) = fa(S).

Proor. We denote by I(7,S) the event that fi(S) = f2(S) for
all functions fi, f2 in a collection of functions ¥ and all sets S in
a collection of sets S. Let Q be a randomized collection of poly(n)
non-adaptive queries and let F be a collection of functions s.t. for
allS € N,wp. 1- n=®() over the randomization of Fr, for all
fi, f2 € F, we have that fi(S) = f2(S).

Let S be any realization of the randomized collection of queries
Q. By a union bound over the poly(n) queries S € S, Prg, [I(FRr,S)]
1-n~*M Since Fr € &, we obtain

max Pr [[(F7,Q)] > Pr Pr[(Fr.Q)] = 1-n"°"

Feg Q
and there exists some 7 € & such that w.p. 1 — n=°() over the
randomization of Q, for all queries S € Q, f1(S) = f2(S) for all
fi.faeF. O

To show the indistinguishability property (Lemma 7) for Lemma 6,
we need the following concentration bound, which shows that, a
small set S has small intersection with small random sets with high
probability.

LEMMA 14. Let R be a uniformly random subset of a set T. Consider
a subset S C T that is independent of the randomization of R and
such that |S| - |R|/|T| < e”L, then

Pr [lS NR| > log2 n] <ne®,

PROOF. We start by considering a subset L of S of size log? n. We
first bound the probability that L is a subset of R,

2
1—[IR| (|R|)1°g n
i~ \ITl '

We then bound the probability that |S N R| > log? n with a union
bound over the events that a set L is a subset of R, for all subsets L

r[L CR] HPr [a €R]

acLl

Eric Balkanski and Yaron Singer

of § of size log? n:

Pr[ISNR| > log?n| <

Z Pr[L C R]

LCS:|L|=log’ n
(IS|) (|R|)1°g "
log?n) \IT|

(|5| IR|)“g "
IT|
(

IA

IA

IA

.)log2 n

—logn

where the last inequality follows from the assumption that |S] -
IRI/IT| < e o

COROLLARY 1. Assumer < logn. Foralli € [r], letLy,...,Li—1
be fixed layers and S be a set of size |S| < %nﬁ that is independent
of the randomization of R;, then

Pr[|s 0 (Vjzisaly)] < log?n] = 1-n70 .

Proor. Since r < logn, we get |Lj1| < %lel for all j, which

implies that Z;zi IL;| < 2[L;].
Without loss, assume S C R; U (U’._. L-). The claim then
j=i+17J
immediately follows from Lemma 14 with T = N\ (U’ ISJ) =

R; U (U]r‘:i+1) andR=N\ (U’ lr; URl) =U" L;, since

Jj=i+1 J>
1 i+1
R S 2 B Y B
j=it1J gn 1
< . < g <e .
[Ri U (V7)| 2n T

[m]

Lemma 7. Assumer < logn. ForallS C N andi € [r], with
probability 1 — n~®W) over the randomization of Fr, € &r—i, forall

f1. f2 € FRr;» f1(S) = f2(S).
Proor. If |S| > 8n$, then
£P(5) = 2n7e
for all f¥ € Fx with probability 1.
If|S| < 8n$, then by Corollary 1,

Pr (150 (Vjisaly) | < log?n] > 1-n0.

Thus, with probability 1 — n~®() over the randomization of Fr, for

all f¥ e 7, fP(S) =

Zl:min(t’i,logz n) + |S N (Ujr-zi+le)| +¢* + min (LL,I)
st 8nr+1

. (2n2r1+2 - (Zl: min(¢;,log? n) +[$ 0 (U]_y,1Ly)| + 5*))

Jj=1
The size of SN (imit1

for all f € FR. Thus, we conclude that with probability 1 — n
over the randomization of #g, for all fi, fo € Fg, fi1(S) = f2(S). O

) =50 (N\ (uj.;}Lj UR;)) is the same
-w(1)

The Adaptive Complexity of Maximizing a Submodular Function

Lemma9. Forall 7 € o, there does not exist a 0-adaptive algorithm
that obtains, with probability n~®W gn nE ((r +2)log?n + l)
approximation.

Proor. Let ¥ € & and Ly, ...L,—; be the fixed layers for all
functions in ¥ . Let S be the solution returned by the algorithm.
Consider fg~ ~ . Note that since the algorithm is 0-adaptive, S
is independent of the randomization of R* as a uniformly random
subset of L, U L*. Since

| [S
|S] - |L*| N2+ n2rel

Lol = o S
r n r+1

we get that
ISNL*| < log?n
with probability 1 — n~©(!) by Lemma 14 and we assume this is

the case for the remaining of the proof. Since |S| < log? n, we then
obtain that

1. L

§n 2r+2 1 5
——2n7¥ < (r+2)log”n+1.
8nr+i

Then, for all S C N such that |S| < %nﬁ,

[fR* (R*)] < nw
frx~UF) | fr*(S)

frx(S) < (r+1) log2 n+log2 n+

B (r+2)10g2n+1.

Thus there exists at least one function f € ¥ such that the al-
gorithm does not obtain, with probability 1 — n~@) 4 N -
((r +2)log?n + 1)—approximation. O

Lemma 15. For all partitions P, the function f* is monotone sub-
modular.

ProOF. Let f be defined by a partition P = (Lo, .. .,Ly,L*). The
marginal contribution fs(a;) = f(S U {a;}) — f(S) of an element
aj € Lj,toasetSis

1 1
1- Tt 1
8nr+i 8nr+l
. r+1 |S|
2nrez — Z min(é’l-,log2 n)—¢* |- . case A
i=1 8nr+l
fs@@) =9 1 &
2nrez — Z min(¢;,log? n) — £* case B
8nr+i i=1
S
l—min(l |1 ,1) case C
8nr+l
0 case D
where the cases are:
1
e case Aif [S| < 8n7+1 ,j#r+2,and {; < Iog2 n,
1
e case Bif [S| < 8n7+1,j#r+2,and {; > log2 n,
e case Cif |S| > 8n$,j#r+2and¢; <log2n,
1
e and case D if |S| > 8n7+,j# r+2,and {; > log2 n.
Monotone. In case A, we have—;l—Ll > —1land fs(aj) >

8nr+l 8nr+l

0. It is easy to see that for all other cases, fs(aj) > 0 as well. Thus,
f is monotone.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Submodular. Within each case, the marginal contributions are
decreasing, as ¢; increases, for all i, and as |S| increases. It remains
to show that the marginal contributions are decreasing from one
case to another when ¢; and |S| increase.

1 _ S|

T 1
8nr+1 8nr+1
are decreasing from A to B.

e Since —

> —1in A, marginal contributions

o Since 2n%7 — erill min(¢;,log? n) — £* > 1in A, they are
decreasing from A to C.

e Since the marginal contributions are non-negative, they are
decreasing from B and C to D.

O

ACKNOWLEDGEMENTS

We thank Sergei Vassilvitskii, Avrim Blum, Sepehr Assadi, Vitaly
Feldman, and Amin Karbasi for helpful discussions.

This research was supported by a Google PhD Fellowship, NSF
grant CAREER CCF-1452961, BSF grant 2014389, NSF USICCS pro-
posal 1540428, Google research award, and a Facebook research
award.

REFERENCES

[AAAK17] Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna.
Learning with limited rounds of adaptivity: Coin tossing, multi-armed
bandits, and ranking from pairwise comparisons. In COLT, 2017.

[AM10] Saeed Alaei and Azarakhsh Malekian. = Maximizing sequence-

submodular functions and its application to online advertising. arXiv
preprint arXiv:1009.4153, 2010.

[ANRW15] Noga Alon, Noam Nisan, Ran Raz, and Omri Weinstein. Welfare max-
imization with limited interaction. In FOCS, pages 1499-1512. IEEE,
2015.

[AWZ08] Akram Aldroubi, Haichao Wang, and Kourosh Zarringhalam. Sequen-
tial adaptive compressed sampling via huffman codes. arXiv preprint
arXiv:0810.4916, 2008.

[Bal15] Maria-Florina Balcan. Learning submodular functions with applica-
tions to multi-agent systems. In AAMAS, 2015.
[BCIW12] Maria-Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang.
Learning valuation functions. In COLT, 2012.

[BDF*12] Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Klein-
berg, Noam Nisan, and Tim Roughgarden. Sketching valuation func-
tions. In SODA, pages 1025-1035, 2012.

[BENW15] Rafael Barbosa, Alina Ene, Huy Nguyen, and Justin Ward. The power
of randomization: Distributed submodular maximization on massive
datasets. In ICML, pages 12361244, 2015.
[BENW16] Rafael da Ponte Barbosa, Alina Ene, Huy L Nguyen, and Justin Ward.
A new framework for distributed submodular maximization. In FOCS,
pages 645-654. leee, 2016.
[BGSMdW12] Harry Buhrman, David Garcia-Soriano, Arie Matsliah, and Ronald
de Wolf. The non-adaptive query complexity of testing k-parities.
arXiv preprint arXiv:1209.3849, 2012.
[BH11] Maria-Florina Balcan and Nicholas JA Harvey. Learning submodular
functions. In STOC, pages 793-802. ACM, 2011.
[Ble96] Guy E Blelloch. Programming parallel algorithms. Communications of
the ACM, 39(3):85-97, 1996.

[BMW16] Mark Braverman, Jieming Mao, and S Matthew Weinberg. Parallel
algorithms for select and partition with noisy comparisons. In STOC,
pages 851-862. ACM, 2016.

[BPR*16] Ashwinkumar Badanidiyuru, Christos Papadimitriou, Aviad Rubin-
stein, Lior Seeman, and Yaron Singer. Locally adaptive optimization:
Adaptive seeding for monotone submodular functions. In SODA, pages
414-429. Society for Industrial and Applied Mathematics, 2016.

[BPT11] Guy E Blelloch, Richard Peng, and Kanat Tangwongsan. Linear-work
greedy parallel approximate set cover and variants. In SPAA, pages
23-32. ACM, 2011.

Guy E Blelloch and Margaret Reid-Miller. Fast set operations using

treaps. In SPAA, pages 16-26. ACM, 1998.

[BRS89] Bonnie Berger, John Rompel, and Peter W Shor. Efficient nc algorithms
for set cover with applications to learning and geometry. In FOCS,
pages 54-59. IEEE, 1989.

[BRM98

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

[BRS17]
[BS17a]
(BS17b]

[BST12]

[BVP11]

[CG17]
[CKT10]
[Colss]

[CST*17]

[CWW10]

[CWY09]

[DGo8]

[DGS84]

[DHK*16]

[DNO14]
[DRO1]

[EMZ17]

[FJK10]

[FK14]

[FMV11]

[FV13

[FV15]

[GK10

[GLL11]

[HBCN09]

[HNC09]

[HS15]
[IPW11]

[JBS13]

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. The limitations of
optimization from samples. STOC, 2017.

Eric Balkanski and Yaron Singer. Minimizing a submodular function
from samples. 2017.

Eric Balkanski and Yaron Singer. The sample complexity of optimizing
a convex function. In COLT, pages 275-301, 2017.

Guy E Blelloch, Harsha Vardhan Simhadri, and Kanat Tangwongsan.
Parallel and i/o efficient set covering algorithms. In SPAA, pages 82-90.
ACM, 2012.

Gregory R Bowman, Vincent A Voelz, and Vijay S Pande. Taming the
complexity of protein folding. Current opinion in structural biology,
21(1):4-11, 2011.

Clement Canonne and Tom Gur. An adaptivity hierarchy theorem for
property testing. arXiv preprint arXiv:1702.05678, 2017.

Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Max-cover in
map-reduce. In WWW, pages 231-240. ACM, 2010.

Richard Cole. Parallel merge sort. SIAM Journal on Computing,
17(4):770-785, 1988.

Xi Chen, Rocco A Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu
Xie. Settling the query complexity of non-adaptive junta testing. arXiv
preprint arXiv:1704.06314, 2017.

Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization
for prevalent viral marketing in large-scale social networks. In KDD,
pages 1029-1038. ACM, 2010.

Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization
in social networks. In KDD, pages 199-208. ACM, 2009.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107-113,
2008.

Pavol Duris, Zvi Galil, and Georg Schnitger. Lower bounds on commu-
nication complexity. In STOC, pages 81-91. ACM, 1984.

Nikhil R Devanur, Zhiyi Huang, Nitish Korula, Vahab S Mirrokni, and
Qiqi Yan. Whole-page optimization and submodular welfare maximiza-
tion with online bidders. EC, 4(3):14, 2016.

Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency
requires interaction. In STOC, pages 233-242. ACM, 2014.

Pedro Domingos and Matt Richardson. Mining the network value of
customers. In KDD, pages 57-66. ACM, 2001.

Alessandro Epasto, Vahab S. Mirrokni, and Morteza Zadimoghaddam.
Bicriteria distributed submodular maximization in a few rounds. In
SPAA, pages 25-33, 2017.

Joseph D Frazier, Peter K Jimack, and Robert M Kirby. On the use of
adjoint-based sensitivity estimates to control local mesh refinement.
Commun Comput Phys, 7:631-8, 2010.

Vitaly Feldman and Pravesh Kothari. Learning coverage functions and
private release of marginals. In COLT, pages 679-702, 2014.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximizing non-
monotone submodular functions. SIAM Journal on Computing,
40(4):1133-1153, 2011.

Vitaly Feldman and Jan Vondrak. Optimal bounds on approximation
of submodular and XOS functions by juntas. In FOCS, 2013.

Vitaly Feldman and Jan Vondrak. Tight bounds on low-degree spectral
concentration of submodular and xos functions. In FOCS, pages 923—
942. IEEE, 2015.

Daniel Golovin and Andreas Krause. Adaptive submodularity: A new
approach to active learning and stochastic optimization. In COLT,
pages 333-345, 2010.

Amit Goyal, Wei Lu, and Laks VS Lakshmanan. Celf++: optimizing the
greedy algorithm for influence maximization in social networks. In
WWW, pages 47-48. ACM, 2011.

Jarvis D Haupt, Richard G Baraniuk, Rui M Castro, and Robert D Nowak.
Compressive distilled sensing: Sparse recovery using adaptivity in
compressive measurements. In SSC, pages 1551-1555. IEEE, 2009.
Jarvis Haupt, Robert Nowak, and Rui Castro. Adaptive sensing for
sparse signal recovery. In Digital Signal Processing Workshop and 5th
IEEE Signal Processing Education Workshop, 2009.

Thibaut Horel and Yaron Singer. Scalable methods for adaptively
seeding a social network. In WWW, pages 441-451, 2015.

Piotr Indyk, Eric Price, and David P Woodruff. On the power of adap-
tivity in sparse recovery. In FOCS, 2011.

Stefanie Jegelka, Francis Bach, and Suvrit Sra. Reflection methods
for user-friendly submodular optimization. In NIPS, pages 1313-1321,

[JLB11]
[JXCo8]

[KKT03]

[KMVV15]

[KSV10]

[MKBK15]

[MKSK13]

[MNSW95]

[MSWo8]

[MZ15]

(NJJ14]

[NPS15]
[NW91]

[NWEF78]

[PIG*14]

[PS84]
[RD02]
[RS06]

[RV98

[sS13]

[STK16]

[STW15]
[Tho90]

[TIWB14]

[Val75]
[Valg4]

[WIB14]

Eric Balkanski and Yaron Singer

2013.

Stefanie Jegelka, Hui Lin, and Jeff A Bilmes. On fast approximate
submodular minimization. In NIPS, pages 460-468, 2011.

Shihao Ji, Ya Xue, and Lawrence Carin. Bayesian compressive sensing.
IEEE Transactions on Signal Processing, 56(6):2346-2356, 2008.

David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the spread
of influence through a social network. In KDD, pages 137-146. ACM,
2003.

Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani.
Fast greedy algorithms in mapreduce and streaming. ACM Transactions
on Parallel Computing, 2(3):14, 2015.

Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of
computation for mapreduce. In SODA, pages 938-948. Society for
Industrial and Applied Mathematics, 2010.

Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru,
and Andreas Krause. Distributed submodular cover: Succinctly sum-
marizing massive data. In NIPS, pages 2881-2889, 2015.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause.
Distributed submodular maximization: Identifying representative ele-
ments in massive data. In NIPS, pages 2049-2057, 2013.

Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson.
On data structures and asymmetric communication complexity. In
STOC, pages 103-111. ACM, 1995.

Dmitry M Malioutov, Sujay Sanghavi, and Alan S Willsky. Compressed
sensing with sequential observations. In ICASSP, pages 3357-3360.
IEEE, 2008.

Vahab Mirrokni and Morteza Zadimoghaddam. Randomized compos-
able core-sets for distributed submodular maximization. In STOC, pages
153-162. ACM, 2015.

Robert Nishihara, Stefanie Jegelka, and Michael I Jordan. On the
convergence rate of decomposable submodular function minimization.
In NIPS, pages 640-648, 2014.

Harikrishna Narasimhan, David C. Parkes, and Yaron Singer. Learn-
ability of influence in networks. In NIPS, pages 31863194, 2015.
Noam Nisan and Avi Widgerson. Rounds in communication complexity
revisited. In STOC, pages 419-429. ACM, 1991.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An
analysis of approximations for maximizing submodular set function-
saATi. Mathematical Programming, 14(1):265-294, 1978.

Xinghao Pan, Stefanie Jegelka, Joseph E Gonzalez, Joseph K Bradley,
and Michael I Jordan. Parallel double greedy submodular maximization.
In NIPS, pages 118-126, 2014.

Christos H Papadimitriou and Michael Sipser. Communication com-
plexity. Journal of Computer and System Sciences, 28(2):260-269, 1984.
Matthew Richardson and Pedro Domingos. Mining knowledge-sharing
sites for viral marketing. In KDD, pages 61-70. ACM, 2002.

Sofya Raskhodnikova and Adam Smith. A note on adaptivity in testing
properties of bounded degree graphs. ECCC, 2006.

Sridhar Rajagopalan and Vijay V Vazirani. Primal-dual rnc approxi-
mation algorithms for set cover and covering integer programs. SIAM
Journal on Computing, 28(2):525-540, 1998.

Lior Seeman and Yaron Singer. Adaptive seeding in social networks.
In FOCS, pages 459-468. IEEE, 2013.

Adish Singla, Sebastian Tschiatschek, and Andreas Krause. Noisy
submodular maximization via adaptive sampling with applications
to crowdsourced image collection summarization. In AAAI pages
2037-2043, 2016.

Rocco A Servedio, Li-Yang Tan, and John Wright. Adaptivity helps for
testing juntas. In CCC, pages 264-279, 2015.

Steven K Thompson. Adaptive cluster sampling. Journal of the Ameri-
can Statistical Association, 85(412):1050—-1059, 1990.

Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes.
Learning mixtures of submodular functions for image collection sum-
marization. In NIPS, pages 1413-1421, 2014.

Leslie G Valiant. Parallelism in comparison problems. SIAM Journal
on Computing, 4(3):348-355, 1975.

L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-
1142, 1984.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Fast multi-stage submodular
maximization. In ICML, pages 1494-1502, 2014.

	Abstract
	1 Introduction
	1.1 Adaptivity
	1.2 The Adaptivity Landscape of Submodular Optimization
	1.3 Main Result
	1.4 Adaptive Sampling: a Coupling of Learning and Optimization
	1.5 Technical Overview
	1.6 Paper Organization

	2 The Adaptive Complexity of Submodular Maximization is O(logn)
	2.1 Down-sampling
	2.2 Up-sampling
	2.3 Adaptive-sampling: O(logn)-Adaptivity and Constant Factor Approximation
	2.4 The Full Algorithm

	3 The Adaptive Complexity of Submodular Maximization is (logn)
	3.1 The Round Elimination Lemma
	3.2 The Onion Construction
	3.3 Round Elimination for the Construction

	A Additional Discussion of Related Work
	A.1 Adaptivity
	A.2 Related Models

	B Applications
	C The Full Algorithm
	C.1 Estimates of Expectations in One Round via Sampling
	C.2 Estimating OPT

	D Missing Discussion and Analysis from Section 2
	D.1 Continuous Interpretation of Algorithm via the Multilinear Extension
	D.2 Missing Analysis from Section 2.1
	D.3 Missing Analysis from Section 2.3

	E Missing Analysis from Section 3
	References

