
A Cultural Computing Curriculum
James Davis

Rensselaer Polytechnic Institute
Troy, New York
DavisJ20@rpi.edu

Michael Lachney
Michigan State University
East Lansing, Michigan
LachneyM@msu.edu

Zoe Zatz
Rensselaer Polytechnic Institute

Troy, New York
zatzz@rpi.edu

William Babbitt
Rensselaer Polytechnic Institute

Troy, New York
babbw2@rpi.edu

Ron Eglash
University of Michigan
Ann Arbor, Michigan
eglash@umich.edu

ABSTRACT
Broadening the participation of underrepresented students in com-
puter science fields requires careful design and implementation of
culturally responsive curricula and technologies. Culturally Situ-
ated Design Tools (CSDTs) address this by engaging students in
historic, cultural, and meaningful design projects based on commu-
nity practices. To date, CSDT research has only been conducted in
short interventions outside of CS classrooms. This paper reports
on the first semester-long introductory CS course based on CS-
DTs, which was piloted with 51 high school students during the
2017-2018 school year. The goal of this study was to examine if a
culturally responsive computing curriculum could teach computer
science principles and improve student engagement. Pre-post tests,
field notes, weekly teacher meetings, formative assessments, and
teacher and student interviews were analyzed to assess successes
and failures during implementation. The results indicate students
learned the conceptual material in 6 months rather than in the 9
months previously required by the teacher. Students were also able
to apply these concepts afterward when programming in Python,
implying knowledge transfer. However, student opinions about
culture and computing didnâĂŹt improve, and student engage-
ment was below initial expectations. Thus we explore some of the
many challenges: keeping a fully integrated cultural curriculum
while satisfying CS standards, maintaining student engagement,
and building student agency and self-regulation. We end with a
brief description for how we intend to address some of these chal-
lenges in the second iteration of this program, scheduled for fall
2018. After which a study is planned to compare this curriculum to
others.

CCS CONCEPTS
•Applied computing→ Education; Interactive learning environ-
ments; Collaborative learning;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5890-3/19/02.
https://doi.org/10.1145/3287324.3287439

KEYWORDS
Pilot, Mixed-method, Culture, Curriculum, High School, Introduc-
tory, Computer Science, Design, Culturally Situated Design Tools

ACM Reference Format:
James Davis, Michael Lachney, Zoe Zatz, William Babbitt, and Ron Eglash.
2019. A Cultural Computing Curriculum. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (SIGCSE ’19), February
27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3287324.3287439

1 INTRODUCTION
In July of 2017, a high school computer science (CS) teacher lamented
that when students in his introductory CS course used Interactive
Python they were neither learning nor engaged, and worse yet did
not experience the personal and creative satisfaction that program-
ming offers. This teacher works in an urban high school in Upstate
New York which included over 50% students underrepresented in
CS. Counter to findings by Margolis et. al. [15] that reveal students
of color are often faced with shallow CS offerings, this teacher
provided students with a rigorous CS curriculum that would lay a
foundation to take more advanced CS courses in high school and
college. Yet, while the LOGO turtle had been reported by Seymour
Papert [16] and colleagues as a motivating factor for young people’s
engagement with programming decades earlier, its implementation
in Interactive Python proved, like the course in general, to be of
little interest to his students. Indeed, in this school CS had become
yet another course with content decontextualized from students’
lives and passions.

To address these challenges, a team of social scientists, technolo-
gists, and this teacher collaborated to develop an equally rigorous
curriculum called Cultural Computing. It used a suite of culturally
responsive educational technologies called Culturally Situated De-
sign Tools (CSDTs) to contextualize CS within African American
and Native American cultural practices. The idea behind CSDTs
is that computational thinking is already present in many cultural
practices; and thus students can benefit by using tools that allow
them to "translate" between indigenous or vernacular knowledge
in cultural context, and equivalent concepts in the classroom. With
CSDTs, students are asked to examine the history and personal
significance of cultural practices like cornrow braiding, quilting,
and science fiction, then to computationally duplicate existing de-
signs before creating artifacts of their own. This contextualization
is a critical component of culturally responsive education, in which

Paper Session: Culture & Language SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1171

https://doi.org/10.1145/3287324.3287439
https://doi.org/10.1145/3287324.3287439


community, national, and political identities are connected in sup-
port of learning [13]. Unlike prior research with CSDTs in small
scale workshops of a week or two, this paper reports on a semester
long curriculum intended to be implemented in a CS course over
several months.

2 BACKGROUND
CS undergraduate degree attainment is notoriously low in terms of
gender (17.1% women) and ethnic (1.1% black) diversity [19]. This
cannot be entirely accounted for by access. Black students have
access to 23% fewer classes than white students, and 17% fewer
computers [20], but there is a 1400% underrepresentation in CS de-
gree attainment [19, 20]. Thus there may be other social, economic,
and/or psychological barriers for why students do not enter CS in
high school and college. To make matters worse, students in CS
classes face many of the same challenges as in other classes: unin-
teresting lecture styles, regimented curricula, and poor scaffolding
for future courses. There have been many broad criticisms of CS
education in the U.S. as a result.

Some claim that classes are too didactic and do not support the de-
velopment of formal thinking [16], which may hurt all students, but
especially those resistant to authority. Others suggest that student
disengagement may be from stereotype threat [6], where students
in CS courses may feel, explicit or implicit, as though they cannot
succeed because of false, though widespread, societal stereotypes
about their race or gender [18]. There are additional claims that stu-
dents simply do not engage because CS is not an obviously visible
and representative part of their culture or community [4], or that
teachers can have a genuine interest in their students but there is a
cultural gap that can result in miscommunication and frustration
[8].

Constructionism is one learning theory that has sought to use
coding and design to overcome these issues via low-control ex-
ploration in an open and inviting environment [16]. For exam-
ple, Scratch, a constructionist visual programming environment,
aims to address the didactic nature of education by giving students
more freedom to design their own programs. Another learning the-
ory tackling these issues is culturally responsive teaching, which
grounds teachers’ classroom content in the unique cultural compe-
tencies of their students [10, 13]. Thus reducing or eliminating false
impressions of cultural or racial limitations and supporting better
communication with students of different backgrounds. Culturally
responsive teaching treats community expertise and cultural compe-
tencies as important academic assets and culturally rich sources for
student engagement. One offshoot of culturally responsive teaching
is culturally responsive computing, which highlights the computa-
tional qualities of such community assets and expertise [12, 17].

CSDTs is a suite of culturally responsive computing applications
that leverages constructionist design and implementation strategies.
Like Scratch, CSDTs have students work within a visual program-
ming environment to design and reverse engineer media but, unlike
Scratch, grounds that media in computationally rich cultural arti-
facts (e.g. Native American quilts and African American braiding
techniques). As part of this process, students conduct research on
cultural and community practices in small groups to frame the
historical, social, and/or political significance of the design they

are working with. In the past, CSDTs have been shown to improve
student engagement and knowledge acquisition in short term im-
plementations [1, 7]. There has been no research on semester or
year long curricula using CSDTs, and the research supporting their
design and development has taken place outside of CS courses. As a
result, major challenges remain for creating CSDTs and associated
curriculum for CS classrooms.

3 CURRICULUM DEVELOPMENT
Based on Interactive Python, which this curriculumwas designed to
replace, students needed to explore critical CS concepts including:
Parameters, Loops, Variables, Conditionals, and Functions while
practicing program writing, reading, and debugging. This method
of introducing various concepts is less constructionist than desired,
but needed to maintain instructor support. To ground material and
engage students up front, this material was put first. Then concepts
were introduced in the order above because they were considered
easiest to hardest. Students were then introduced to programming
with tutorials which had previously been shown to be effective<cite
pending paper>. Each new unit was introduced by the instructor,
who provided a guided practice session, in which they demonstrated
the relevant CS concepts while students simultaneously performed
the same actions on their own computers. This too came from
the instructors personal experience. Then students were provided
with cultural artifacts to be created. These artifacts were based on
prior work and experiences with various cultural groups. It was
hypothesized that some of the scripts would be too challenging for
students to create on their own, and so they were provided with
parts that were already completed. Students were then asked to
create their own designs using their new knowledge.

4 METHODS
A CSDT based curriculum called Cultural Computing was adminis-
tered in four high school classes, attended by a total 51 students. To
assess the curriculum a pre-post test was created. Of the 51 students,
we were able to match 33 pre and post tests. Based on the pre-post
test demographics, the class identified as, 48% white, 24% black
or African American, 6% Hispanic, 3% Asian, and 18% multiracial.
Furthermore 24 identified as male, 9 identified as female.

The pre-post assessment consisted of seven main parts, each
designed by the research team in collaboration with two external
evaluators. Section one of the assessment contained demographic
information (e.g. gender and ethnicity). Section two contained four
items designed to gather students’ perception related to computing.
The third section measured students’ perceptions related to culture
and section four contained students’ perceptions as they related to
the relationships between computing and culture. The above men-
tioned close-ended items used a series of six-point "Likert-type"
[5] scale: 1=Strongly Disagree, 2=Disagree, 3=Slightly Disagree,
4=Slightly Agree, 5=Agree, 6=Strongly Agree. The fifth section of
the assessment used eight vocabulary items with a word bank. The
sixth section contained two items asking students to write pseudo
code and a multiple choice code question. Seventh and finally, there
was a section with three questions on geometric transformations.

Paper Session: Culture & Language SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1172



While this was a CS course, we sought to measure students’ un-
derstanding of transformational geometry because each of the CS-
DTs that students used to create cultural designs drew on cultural
traditions in which the geometric transformations (i.e. rotation,
translation, reflection, and dilation) are embedded. Thus the sev-
enth section on this topic helped examine knowledge, transfer, and
possible fringe mathematical benefits. This test, and the results,
were reviewed and scored by external evaluators.

Additionally, researchers attended most sessions to take field
notes and scheduled weekly meetings with the teacher to discuss
students’ progress and provide constructive criticism that was noted
for future iterations of the curriculum. Field notes and teacher
meetings focused on class activities and student engagement, with
particular attention paid to students’ difficulties interacting with
the software and online platform. Formative assessments in which
students were provided with an end goal, starting costumes, and
a list of steps / outcomes and points for each new topic before
being asked to complete the design without peer or instructor sup-
port. Ethnographic interviews were conducted with three students,
which focused on their feelings and future plans as they related
to CS and culture. Finally, interviews with the teacher both at the
end of the curriculum and after moving to Interactive Python were
conducted to assess his perspective on successes and failures of the
Cultural Computing curriculum in preparing students to move to a
text-based programming environment.

An initial pre-test was administered before students set up ac-
counts and profiles on the CSDT online learning community (csdt
.rpi.edu). On this site they learned about the political, social, and
historical relevance of the cultural designs they were to spend the
semester working with (African American cornrow braiding; Native
American, African American, Appalachian quilting traditions; and
feminist, indigenous, black and speculative science fiction). After
their exploration of these topics they shared what they learned
with the rest of the class in the form of Google presentations. They
then took an introductory programming tutorial. This was followed
by a sequence of units on "parameters," "loops," "variables," "con-
ditionals," and "functions." As part of each unit, a guided practice
session given by the teacher, in which he demonstrated the relevant
CS concepts while students simultaneously performed the same
actions on their own computers. After the guided practice, students
were given a programming challenge in which they were to study
and manipulate code to finish an incomplete design from one of
the cultural areas. After the conditionals unit, but before functions,
students were then asked to work in pairs to create their own de-
signs and then physically fabricate them. After the completion of
the Cultural Computing curriculum students took a post test before
proceeding to an Interactive Python curriculum.

5 RESULTS
No significant differences were found when examining the mean
differences within subscores for student perceptions on computing,
culture or their relationship on the pre-post assessment (see Table
1). This is consistent with observational data. When students were
informally surveyed at the end of the semester, less than one-third
of them intended to continue with CS. It is also consistent with our
interviews in which two of three students were not able to recognize

Table 1: Within groups attitude differences [11]

Subscore (n=33) Pre Post
Perceptions Related to Computing 16.09 16.03
Perceptions Related to Culture 12.91 12.79
Perceptions related to Computing and Culture 12.79 11.09

the relationship between CS and history, politics, community, or
culture originally intended to be integrated. One student didn’t
remember covering the material at all.

When looking at individual items in each of these three con-
structs some notable changes standout beyond interest in pursuing
CS (see Table 2). This includes students confidence in explaining
CS concepts to middle school students. In addition, while results
show a negative change in students’ interest in learning about
their own culture, students’ were more interested in cultural and
artistic practices from other cultures. Consistent with these two
positive changes, there was a slight positive change in students’
confidence that they can use cultural art and designs to teach com-
puter programming to people in their community. Students were
also less likely to say CS supported cultural understanding, or cul-
tural practices supported understanding CS. This further confirms
the aforementioned observational and interview data. This may
have been due to the fact that the teacher front loaded all of the
political, historical, and social aspects of the CSDTs and exclusively
focused on the CS aspects of the tools for the remainder of the
course.

A paired-samples t test was calculated to compare the mean
pretest score to the mean post test score for vocabulary: Condi-
tionals, Recursion, Loops, Functions, Variable, Heritage Algorithm,
Script and List. The mean on the pretest was 2.67 (sd=1.493) and
the mean on the posttest was 4.03 (sd=1.649). A significant increase
from pretest to posttest was found (t(32)=-3.697, p<.05 (see Table
3). These results are well couched in fact that the units of the Cul-
tural Computing curriculum were largely designed around many
of these terms (e.g. students spent a whole unit on loops, another
on conditionals, and so on). What is more, the teacher taught and
reinforced these CS concepts in the course through both lectures
and guided practices.

Finally, a paired samples t test was calculated to compared the
mean pretest score to the mean post test score for open ended ques-
tions around math and programming . The mean on the pretest was
3.70 (sd=2.568), and the mean on the post test was 7.55 (sd=3.193). A
significant increase from pretest to post test was found (t(32)=7.608,
p<.001 (Table 4).

This too was consistent with our formative assessments and
observations. Some students during the first unit, parameters, chal-
lenges required instructor intervention to move images on the
screen. In the final unit nearly all students were able to make their
own designs that included the concepts from every unit. While
the first three formative assessment showed several students com-
pletely copying from old projects, and many struggling, the final
formative assessment showed most students were able to nearly
complete a challenging design independently.

Paper Session: Culture & Language SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1173



Table 2: Treatment Group Responses to Survey Items [11]

Statement Pre %
agree

Post %
agree Change

I look forward to learning
more about how computer
programs work.

64 58 -6

I feel confident explaining
what computer programming
is to someone in middle
school.

24 42 +18

I am interested in learning
about computer programming
in college or in my
future work.

52 49 -3

I am interested in learning
computer programming on
my own time, outside
of school.

27 33 +6

I am interested in learning
about different cultures
and their artistic
practices.

39 46 +16

I am interested in learning
more about my own cultural
heritage.

49 35 -14

Including knowledge of
different cultures in
school improves learning

46 48 +2

I think that knowing
about cultural designs
and art will make
someone a better computer
programmer

42 30 -12

I think that understanding
computer programming will
better help me understand
cultural designs and art
such as quilting, braiding
and science fiction.

49 30 -19

I can use cultural design
and art to teach computer
programming to people
in my community.

18 30 +12

Table 3: Mean Scores from Pre and Post on Vocabulary Ques-
tions [11]

Treatment Group N Mean SD Change pre to post
Pre 33 2.67 1.493
Post 33 4.03 1.649 +1.46

Table 4: Paired samples statistics on open-ended math and
computing questions [11]

Treatment Group N Mean SD Change pre to post
Pre 33 3.70 2.568
Post 33 7.55 3.193 +3.60

However, the rate of this learning was extremely varied. The
variables unit, intended for only 2 weeks, lasted 6, with the in-
structor repeating material and challenges constantly until satisfied
students understood it. However, of conditionals and if-else loops
the teacher said "I think they [students] immediately grasped it."
The teacher frequently stressed that the curricula performed much
better than Interactive Python, with students learning all the same
material in 6 rather than 9 months. Furthermore, when students
moved to text based programming, the teacher stated that they
were able to transfer the relevant concepts.

6 DISCUSSION
It is important to note that this study had major limitations. Neither
the attitude constructs nor the individual items of the survey were
tested for validity or reliability. However, the survey, observations,
and interviews indicate together may suggest that student attitude
toward CS, culture, and their relationship did not improve. And
perhaps equally importantly, students didn’t seem to enjoy the
class. The questions on the ability of students to program were
similarly not validated, but again, agree with formative assessments,
observation, and teacher perception that students did learn the
material. This failure to engage students is particularly troubling as
it’s a core goal of both constructionism and culturally responsive
teaching. This may be related to separate failures to both maintain
a cultural connection and student agency.

Considering the emphasis on culturally responsive computing,
the most dramatic issue for this implementation of the Cultural
Computing curriculum was the inability to maintain the connec-
tions between culture and CS. After initially reading about the
historical, political, and economic background sections associated
with the CSDTs, the teacher did not address any of these social l
dimensions of the cultural designs again. Moreover, the cultural
context was constantly switched for different directed lessons, pre-
venting any deeper exploration of the social aspects of the cultural
designs by students. Consequently, while some students contin-
ued to see the embedded cultural connection, by the time students
were working on physical renderings, some had also completely
forgotten there was any cultural relevance.

The teacher did not explain why they were reluctant to revisit
the social dimensions of the cultural material. Perhaps the fact that

Paper Session: Culture & Language SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1174



it was a CS course and this was what the teacher is trained in, not
social studies or history, reflects a lack of cultural competencies
and an uncomfortableness in talking about cultural traditions with
students in their courses. Like many other technical disciplines, CS
often reproduces a social/technical dichotomy. Commonly under-
stood, this dichotomy privileges what is seen as "technical"–the
application of math or science–over what is deemed "social" or
person-centered activities [9]. The field of science and technology
studies has critiqued this dichotomy, arguing what is technical is
also social and cultural and, conversely, what is social and cultural
is also technical [3]. This multi-directional understanding is exactly
what the CSDTs seek to make clear. To overcome this dichotomy,
one strategy is to help teachers make strong connections between
CS and culture by including and collaborating with those cultural
expertise (e.g. an expert in African American braiding techniques)
during a programming lesson [2, 12, 14]. While this requires extra
effort on the part of the teacher, it has the added benefit of fostering
classroom environments that are representative of and inviting
for community experts, including people some students may be
familiar with and even know personally.

The curriculum failed to instill student agency or allow self-
regulation. Students were never allowed to pick their cultural con-
text, as originally planned. Projects were limited or stripped down
to make more time for guided lessons. Students were not allowed
to set their own goals, overcome their own challenges, or asked
to plan out work. Instead guided instruction, in which students
performed tasks with the teacher, was so specific that even minor
errors in entered values needed instructor intervention. Students
were dropped into pre-existing programs, and many of them took
longer to struggle to understand how a program worked than to
complete a project (making their own script). This lack of control,
choice, and relevancy may have influenced students’ inattention or
disinterest in the classroom.

Despite this, the success of students to learn material is some
consolation. Furthermore, this has been extremely effective in col-
lecting data for future improvements. Areas that have changed this
coming year include improvements from small technical details,
tasks, curricular details, and methodological details. The small tech-
nical details include defaulting to saving to the cloud and log in
methods; tasks include giving a gradient in challenge difficulty, em-
bedding cultural descriptions in the code, and starting from nothing
rather than existing code; curricular details include eliminating lec-
tures, including self-regulatory assignments, and asking students to
reach out to their community; and methodological details include
collecting more student interviews, structuring observations, and
using validated tests where possible.

7 CONCLUSION
Cultural computing successfully improved student learning and
performance over the school year. This is a strong indicator that CS-
DTs can be successfully used to form a year long curricula. However,
the end goal of making this introductory high school programming
course extremely engaging and facilitating rapid mastery of critical
concepts like loops, variables, conditionals, and functions will re-
quire further iteration. As such the curriculum will be redesigned
and deployed. It is hoped that a controlled study can be arranged.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation
through NSF grant #1640014. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] William Babbitt, Michael Lachney, Enoch Bulley, and Ron Eglash. 2015. Adinkra

Mathematics: A study of Ethnocomputing in Ghana. Multidisciplinary Journal of
Educational Research 5, 2 (June 2015), 110–135. https://doi.org/10.17583/remie.
2015.1399

[2] Audrey Bennett, Ron Eglash, Michael Lachney, andWilliam Babbitt. 2016. Design
Agency: Diversifying Computer Science at the Intersections of Creativity and
Culture. Revolutionizing Education through Web-Based Instruction (2016), 35–56.
https://doi.org/10.4018/978-1-4666-9932-8.ch003

[3] Wiebe E. Bijker, Thomas Parke Hughes, and Trevor J. Pinch. 1989. The Social
Construction of Technological Systems: New Directions in the Sociology and History
of Technology. MIT Press. Google-Books-ID: SUCtOwns7TEC.

[4] Sapna Cheryan, Allison Master, and Andrew N. Meltzoff. 2015. Cultural stereo-
types as gatekeepers: increasing girls’ interest in computer science and engi-
neering by diversifying stereotypes. Frontiers in Psychology 6 (2015). https:
//doi.org/10.3389/fpsyg.2015.00049

[5] Dennis L Clason and Thomas J Dormody. 1994. Analyzing data measured by
individual Likert-type items. Journal of agricultural education 35 (1994), 4.

[6] Ron Eglash, Juan E. Gilbert, and Ellen Foster. 2013. Toward Culturally Responsive
Computing Education. Commun. ACM 56, 7 (July 2013), 33–36. https://doi.org/
10.1145/2483852.2483864

[7] Ron Eglash, Mukkai Krishnamoorthy, Jason Sanchez, and Andrew Woodbridge.
2011. Fractal Simulations of African Design in Pre-College Computing Educa-
tion. Trans. Comput. Educ. 11, 3 (Oct. 2011), 17:1–17:14. https://doi.org/10.1145/
2037276.2037281

[8] Christopher Emdin. 2017. For White Folks Who Teach in the Hood... and the Rest
of Y’all Too: Reality Pedagogy and Urban Education (reprint edition ed.). Beacon
Press.

[9] Wendy Faulkner. 2000. Dualisms, Hierarchies and Gender in Engineering.
Social Studies of Science 30, 5 (Oct. 2000), 759–792. https://doi.org/10.1177/
030631200030005005

[10] Geneva Gay and James A. Banks. 2010. Culturally Responsive Teaching: Theory,
Research, and Practice (2 edition ed.). Teachers College Press, New York.

[11] Z Score Inc. 2018. Evaluation Memo: RPI STEM+C Partnership, Summer 2018.
(2018).

[12] Michael Lachney. 2017. Culturally responsive computing as brokerage: toward
asset building with education-based social movements. Learning, Media and
Technology 42, 4 (Oct. 2017), 420–439. https://doi.org/10.1080/17439884.2016.
1211679

[13] Gloria Ladson-Billings. 2013. The Dreamkeepers: Successful Teachers of African
American Children. John Wiley & Sons. Google-Books-ID: _GQMZsAX0igC.

[14] Dan Lyles, Michael Lachney, Ellen Foster, and Zoe Zatz. 2016. Generative Con-
texts: Generating value between community and educational settings. Teknokul-
tura 13, 2 (2016), 613–637. https://dialnet.unirioja.es/servlet/articulo?codigo=
5764112

[15] Jane Margolis, Rachel Estrella, Joanna Goode, Jennifer Jellison Holme, and Kim
Nao. 2010. Stuck in the Shallow End: Education, Race, and Computing. The MIT
Press, Cambridge, MA.

[16] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., New York, NY, USA.

[17] Kimberly A. Scott and Patricia Garcia. 2016. Techno-Social Change Agents:
Fostering Activist Dispositions Among Girls of Color. Meridians 15, 1 (2016),
65–85. https://doi.org/10.2979/meridians.15.1.05

[18] Claude M. Steele. 2011. Whistling Vivaldi: How Stereotypes Affect Us and What
We Can Do (reprint edition ed.). W. W. Norton & Company, New York.

[19] Stuart Zweben and Betsy Bizot. 2017. Generation CS Continues to Produce
Record Undergrad Enrollment; Graduate Degree Production Rises at both Mas-
ter’s and Doctoral Levels. Technical Report. Computing Research Associ-
ation. 3–51 pages. https://cra.org/crn/wp-content/uploads/sites/7/2017/05/
2016-Taulbee-Survey.pdf

[20] US Census. 2017. Race and Ethnicity. Technical Report. U.S. De-
partment of Commerce. https://www.census.gov/mso/www/training/pdf/
race-ethnicity-onepager.pdf

Paper Session: Culture & Language SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

1175

https://doi.org/10.17583/remie.2015.1399
https://doi.org/10.17583/remie.2015.1399
https://doi.org/10.4018/978-1-4666-9932-8.ch003
https://doi.org/10.3389/fpsyg.2015.00049
https://doi.org/10.3389/fpsyg.2015.00049
https://doi.org/10.1145/2483852.2483864
https://doi.org/10.1145/2483852.2483864
https://doi.org/10.1145/2037276.2037281
https://doi.org/10.1145/2037276.2037281
https://doi.org/10.1177/030631200030005005
https://doi.org/10.1177/030631200030005005
https://doi.org/10.1080/17439884.2016.1211679
https://doi.org/10.1080/17439884.2016.1211679
https://dialnet.unirioja.es/servlet/articulo?codigo=5764112
https://dialnet.unirioja.es/servlet/articulo?codigo=5764112
https://doi.org/10.2979/meridians.15.1.05
https://cra.org/crn/wp-content/uploads/sites/7/2017/05/2016-Taulbee-Survey.pdf
https://cra.org/crn/wp-content/uploads/sites/7/2017/05/2016-Taulbee-Survey.pdf
https://www.census.gov/mso/www/training/pdf/race-ethnicity-onepager.pdf
https://www.census.gov/mso/www/training/pdf/race-ethnicity-onepager.pdf

	Abstract
	1 Introduction
	2 Background
	3 Curriculum Development
	4 Methods
	5 Results
	6 Discussion
	7 Conclusion
	Acknowledgments
	References



