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ABSTRACT
We develop a method for constructing tolerance bounds for functional data with ran-
dom warping variability. In particular, we define a generative, probabilistic model
for the amplitude and phase components of such observations, which parsimoniously
characterizes variability in the baseline data. Based on the proposed model, we de-
fine two different types of tolerance bounds that are able to measure both types of
variability, and as a result, identify when the data has gone beyond the bounds of
amplitude and/or phase. The first functional tolerance bounds are computed via a
bootstrap procedure on the geometric space of amplitude and phase functions. The
second functional tolerance bounds utilize functional Principal Component Analysis
to construct a tolerance factor. This work is motivated by two main applications:
process control and disease monitoring. The problem of statistical analysis and mod-
eling of functional data in process control is important in determining when a pro-
duction has moved beyond a baseline. Similarly, in biomedical applications, doctors
use long, approximately periodic signals (such as the electrocardiogram) to diagnose
and monitor diseases. In this context, it is desirable to identify abnormalities in these
signals. We additionally consider a simulated example to assess our approach and
compare it to two existing methods.

KEYWORDS
Compositional noise; functional data analysis; functional tolerance bounds;
functional Principal Component Analysis

1. Introduction

A significant amount of data collected in biomedical applications, process monitoring
and reliability engineering is in the form of functions where each data object is a col-
lection of data points over some index (e.g., time or frequency). In these applications,
the goal is often to provide estimates on the range in which a certain proportion of
the population of functions is expected to fall while accounting for sampling uncer-
tainty. With this goal in mind, this work focuses on developing theoretically sound
methods for constructing tolerance bounds for functional data. Tolerance bounds are
confidence bounds on quantiles and can be used to construct ranges within which
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‘there is (1−α)100% confidence that (1−p)100% of the population of functional data
falls’ [9]. For an equal-tailed tolerance bound, the upper bound is an upper confidence
bound on the 1− p/2-quantile, while the lower bound is a lower confidence bound on
the p/2-quantile. Such a notion of tolerance bounds is important in many different
applications.

In applied settings that involve collection and analysis of functional data, it is com-
mon to ignore the dataset’s functional nature and only extract key scalar features
on which to base inferences. For example, in monitoring of an electrocardiogram of a
patient, it is often desirable to identify periods when a heart beat is outside of normal
rhythm. Key scalar features in this case could be the periodicity of the electrocar-
diogram or the time between heartbeats. The statistical analysis would then proceed
by making inferential statements, such as constructing tolerance bounds, on the key
features only. Common examples of other mathematical features extracted for such
analyses include local maxima and minima, the number of peaks, or a rate of change
at a particular point on the function. As an alternative to extracting and analyzing a
finite set of key features, the functional data can be first discretized, and then treated
as a finite vector. In this approach, many tools from standard multivariate analysis,
including Principal Component Analysis (PCA), become available. However, standard
multivariate data analysis approaches ignore the intrinsic infinite-dimensional nature
of the data, as well as the strong dependence between neighboring points on the
functions. On the other hand, we aim to develop theory/methods that respect these
important properties of functional data, and discretize only at the end of the overall
process as a necessary step for computer implementation. Another important aspect
of the data ignored by standard techniques that discretize at the outset of the anal-
ysis is potential horizontal (warping) variation, explained in the following paragraph.
Ignoring such variation can make the analysis of functional data less meaningful.

Alternatively, there has been considerable effort in statistics to develop methods
that can analyze functional data objects without significant loss of information due
to summarization. Such methodology is known as functional data analysis and has
a rich history in Statistics. An excellent introduction to this field is given in several
books including [24], [6] and [31]. An interesting aspect of most functional data is
that the underlying variability can be ascribed to two sources. These two sources are
termed the amplitude (or y or vertical) variability and the phase (or x or horizontal
or warping) variability. Capturing these two sources of variability is crucial when
modeling and monitoring functional data in a process control architecture, and can
greatly affect the construction of tolerance bounds. In this work, we refer to functional
data that contains both amplitude and phase variability as elastic. This important
concept is illustrated in Figure 1 through a simulated example. The observed functions
are generated according to the equation yi(t) = zie

−(t−ai)2/2, t ∈ [0, 1], i = 1, 2, . . . , 29,
where zi are i.i.d. N (1, (0.05)2) and ai are i.i.d. N (0, (1.25)2). The top left panel shows
the simulated functions; each sample function is unimodal with slight variability in the
height of the peak and large variability in its placement. The relative heights of the
peak can be attributed to the amplitude variability, while the different locations of
the peak constitute the phase variability. The cross-sectional (pointwise) mean of this
data is shown in the top middle panel. This mean ignores the phase variability which
results in averaging out of the main unimodal amplitude feature. If tolerance bounds
were to be constructed using this cross-sectional approach, the intrinsic shape of the
data would be lost, and the bounds would not capture the true underlying variability
in the data. Alternatively, the phase variability can be accounted for by first aligning
the functions. As an example, the top right panel shows time-aligned functions. The
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Figure 1. Demonstration of amplitude and phase variability in functional data. Top left: Original functions.
Top middle: Cross-sectional mean without alignment. Top right: Aligned functions (amplitude). Bottom left:

Warping functions (phase). Bottom middle: Cross-sectional mean after alignment.

alignment involves a transformation of the horizontal axis via warping functions shown
in the bottom left panel. The aligned functions capture the amplitude variability while
the warping functions capture the phase variability. The cross-sectional mean of the
aligned functions (amplitude) is shown in the last panel, where the sharp unimodal
structure of the original data is retained. The tolerance bounds developed in this work
provide bounds that maintain the shape of the data by accounting for both directions
of variability.

1.1. Past Work and Contributions

Recently, Storlie et al. [33] developed a method to test the shape of a population of
curves using a B-Spline basis, and a hierarchical Gaussian process approach to form
confidence intervals. Rathnayake and Choudhary [25] developed tolerance bounds for
functional data using functional Principal Component Analysis (fPCA). Further, Sun
and Genton [34] developed a boxplot display for functional data, which provides a
nice visualization technique for a sample of functions. This approach can also detect
functional outliers. A drawback of all of the aforementioned methods is that they do
not account for potential phase variability in functional data, i.e., they assume that
the data either (1) does not need to be aligned, or (2) has already been aligned in
a pre-processing step (generally using some criterion that is unrelated to subsequent
data analysis). The first assumption is unrealistic in process control and biomedical
applications, while the second approach results in suboptimal solutions due to the dis-
jointedness of the alignment and data analysis procedures. A more systematic approach
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is to develop methods that build the alignment step into the statistical procedure of
interest.

A couple of papers in recent literature have taken into account the phase variability
in the application of monitoring functional data. Lewis et al. [19] expanded upon the
generative model presented in [37], and used a bootstrap approach to generate toler-
ance bounds. However, the phase variability in this approach was discarded, and as a
result, the generated tolerance bounds did not maintain the shape of the original data.
Grasso et al. [8] developed an idea similar to Storlie et al. [33] for process monitoring.
In this work, they built the alignment of the functional data into their procedure,
where they used a parametric model for warping functions in conjunction with fPCA.
However, the L2 metric they used for alignment and construction of the subsequent
bounds has serious theoretical limitations (e.g., the pinching effect) as described in
[22]. Additionally, the use of a parametric model for warping functions may not be
flexible enough to achieve good alignment in general applications.

In a recent paper, Xie et al. [39] developed an alternative visualization approach
to the method of [34], that directly takes warping variability into account in the con-
struction of the boxplot displays. Their method is based on the Riemannian geometry
of the amplitude and phase representation spaces and builds upon the general elastic
functional data analysis framework presented in [32], [15], and [37]. Our approach also
builds upon that work by generalizing to arbitrary quantile estimates while accounting
for sampling uncertainty.

In this paper, we present two methods for computing tolerance bounds for functional
data observed under random warping variability. First, using a modification of the joint
fPCA approach developed in [18], we create a generative model for amplitude-phase
functions. One can then sample from this model and use the bootstrap approach to
construct tolerance bounds on the amplitude and phase components separately. The
benefit of this approach is that the tolerance bounds maintain the shape of the original
data while capturing both amplitude and phase variability. This approach is similar to
[25], but their method fails to account for the phase variability, which greatly affects
the structure of the tolerance bounds.

The second approach also uses the previously mentioned joint fPCA method, and
constructs the tolerance bounds in the joint amplitude-phase coefficient space (after
projecting onto the lower dimensional space spanned by the eigenvectors of the covari-
ance). To do this, a multivariate Gaussian model is assumed for joint amplitude-phase
fPCA coefficients and a tolerance factor is computed. A new function, which one would
like to test, can be projected onto the same coefficient space and its tolerance score can
be compared to the tolerance factor. This approach is similar in spirit to the elastic
functional statistical process control (fSPC) presented in [36].

The rest of this paper is organized as follows. In Section 2, we review the relevant
material from elastic functional data analysis and develop a joint amplitude-phase
fPCA model. Section 3 describes the two methods for constructing tolerance bounds
for elastic functional data. In Sections 4 and 5, we report the results of applying
the proposed approach to a simulated dataset and two real datasets from different
application domains. Finally, we close with a brief summary and some ideas for future
work in Section 6.
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2. Combined Phase-Amplitude fPCA

We begin by giving a short review of the combined phase-amplitude fPCA method of
[18], with a slight modification which will be described clearly in later sections. Their
method is based on the functional data analysis approach outlined in [32], [15] and
[37]; see those references for more details.

Let f be a real-valued function with the domain [0, 1]; this domain can be easily
generalized to any other compact subinterval of R. For concreteness, only functions
that are absolutely continuous on [0, 1] will be considered and we let F denote the
set of all such functions. In practice, since the observed data are discrete anyway,
this assumption is not a restriction. Also, let Γ be the set of orientation-preserving
diffeomorphisms of the unit interval [0, 1]: Γ = {γ : [0, 1] → [0, 1]| γ(0) = 0, γ(1) =
1, γ is a diffeomorphism}. Elements of Γ play the role of warping functions. For any
f ∈ F and γ ∈ Γ, the composition f ◦ γ denotes the time warping of f by γ. With the
composition operation, the set Γ is a Lie group with the identity element γid(t) = t.
This is an important observation since the group structure of Γ is seldom utilized in
past papers on functional data analysis.

As described in [37], there are two metrics to measure the amplitude and phase
variability of functions. These metrics are proper distances, one on the quotient space
F/Γ (i.e., amplitude) and the other on the group Γ (i.e., phase). The amplitude or
y-distance for any two functions f1, f2 ∈ F is defined to be

da(f1, f2) = inf
γ∈Γ

‖q1 − (q2 ◦ γ)
√
γ̇‖, (2.1)

where q(t) = sign(ḟ(t))
√

|ḟ(t)| is known as the square-root slope function (SRSF) (ḟ is

the time derivative of f). The optimization problem in Equation 2.1 is most commonly
solved using a Dynamic Programming algorithm; see [26] for a detailed description. If
f is absolutely continuous, then q ∈ L2([0, 1],R) [26], henceforth denoted by L2. For
properties of the SRSF and the reason for its use in this setting, we refer the reader
to [30], [22] and [17]. Moreover, it can be shown that for any γ1, γ2 ∈ Γ, we have
da(f1 ◦ γ1, f2 ◦ γ2) = da(f1, f2), i.e., the amplitude distance is invariant to function
warping.

2.1. Simplifying Geometry of Γ

The space of warping functions, Γ, is an infinite-dimensional nonlinear manifold, and
therefore cannot be treated as a standard Hilbert space. To overcome this problem,
we will use tools from differential geometry to perform statistical analyses and to
model the warping functions. The following framework was previously used in various
settings including (1) modeling re-parameterizations of curves [29], (2) putting prior
distributions on warping functions [13] and [20], (3) studying execution rates of human
activities in videos [38], and many others. It is also very closely related to the square-
root representation of probability density functions introduced by [2], and later used
for various statistical tasks (see e.g., [14], [27] and [28]).

We represent an element γ ∈ Γ by the square-root of its derivative ψ =
√
γ̇. Note

that this is the same as the SRSF defined earlier, and takes this form since γ̇ > 0.
The identity γid maps to a constant function with value ψid(t) = 1. Since γ(0) = 0,
the mapping from γ to ψ is a bijection and one can reconstruct γ from ψ using
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Figure 2. Depiction of the SRSF space of warping functions as a sphere and a tangent space at ψ1.

γ(t) =
∫ t
0 ψ(s)

2ds. An important advantage of this transformation is that since ‖ψ‖2 =∫ 1
0 ψ(t)

2dt =
∫ 1
0 γ̇(t)dt = γ(1)−γ(0) = 1, the set of all such ψs is the positive orthant of

the unit Hilbert sphere in L2: Ψ = S+∞. In other words, the square-root representation
simplifies the complicated geometry of Γ to a (subset of a) unit sphere. The distance
between any two warping functions, i.e., the phase distance, is exactly the arc-length
between their corresponding SRSFs on Ψ:

dp(γ1, γ2) = dψ(ψ1, ψ2) ≡ cos−1

(∫ 1

0
ψ1(t)ψ2(t)dt

)
. (2.2)

Figure 2 depicts the SRSF space of warping functions as a unit sphere [35].

2.2. Mapping to the Tangent Space at Identity Element

While the geometry of Ψ ⊂ S∞ is more tractable, it is still a nonlinear manifold
and computing standard statistics remains difficult. Instead, we use a tangent (vector)
space at a certain fixed point for further analysis. The tangent space at any point ψ ∈ Ψ
is given by: Tψ(Ψ) = {v ∈ L2|

∫ 1
0 v(t)ψ(t)dt = 0}. To map between the representation

space Ψ and tangent spaces, one requires the exponential and inverse-exponential
mappings. The exponential map at a point ψ ∈ Ψ denoted by expψ : Tψ(Ψ) 7→ Ψ, is
defined as

expψ(v) = cos(‖v‖)ψ + sin(‖v‖) v

‖v‖
, (2.3)

where v ∈ Tψ(Ψ). Thus, expψ(v) maps points from the tangent space at ψ to the

representation space Ψ. Similarly, the inverse-exponential map, denoted by exp−1
ψ :

Ψ 7→ Tψ(Ψ), is defined as
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exp−1
ψ (ψ1) =

θ

sin(θ)
(ψ1 − cos(θ)ψ), (2.4)

where θ = dp(γ1, γ). This mapping takes points from the representation space to the
tangent space at ψ.

The tangent space representation v is sometimes referred to as a shooting vector, as
depicted in Figure 2. The remaining question is which tangent space should be used to
represent the warping functions. A sensible point on Ψ to define the tangent space is
at the sample Karcher mean µ̂ψ (corresponding to µ̂γ) of the given warping functions.
For details on the definition of the sample Karcher mean and how to compute it, please
refer to [37].

2.3. Model for Combined Functional Principal Components

To model the association between the amplitude of a function and its phase, Lee and
Jung [18] use a concatenated function gC on the extended domain [0, 2] (for some C >
0). The domain is extended to accommodate a combination of the aligned (amplitude)
function and the warping (phase) function. The motivation for the combined function is
to be able to properly handle properly the correlation between the phase and amplitude
components in functional data. Since the domain is [0, 1] for both, Lee and Jung [18]
define the function gC on the extended domain as follows:

gC(t) =

{
f∗(t), t ∈ [0, 1)
Cv(t− 1), t ∈ [1, 2],

(2.5)

where f∗ only contains the function’s amplitude (i.e., after groupwise alignment to the
mean via SRSFs). Furthermore, they assume that gC ∈ L2([0, 2],R). The parameter
C is introduced to adjust for the scaling imbalance between f∗ and v. In the current
work, we make a slight modification to their method. In particular, it seems more
appropriate to construct the function gC using the SRSF q∗ of the aligned function
f∗, since q∗ is guaranteed to be an element of L2. Thus, with a slight abuse in notation,
we proceed with the following joint representation of amplitude and phase:

gC(t) =

{
q∗(t), t ∈ [0, 1)
Cv(t− 1), t ∈ [1, 2],

(2.6)

where C is again used to adjust for the scaling imbalance between q∗ and v.
Henceforth, we assume that q∗ and v are both sampled using T points, making

the dimensionality of gC ∈ R2T . Then, given a sample of amplitude-phase functions
{gC1 , . . . , gCn }, and their sample mean µ̂Cg = [µ̂q∗ µ̂Cv ], we can compute the sample
covariance matrix as

KC
g =

1

n− 1

n∑
i=1

(gCi − µ̂Cg )(g
C
i − µ̂Cg )

T ∈ R(2T )×(2T ) . (2.7)

The Singular Value Decomposition KC
g = UCg ΣCg (U

C
g )T provides the joint principal

directions of variability in the given amplitude-phase functions as the first p ≤ n
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columns of UCg . These can be converted back to the original representation spaces (F
and γ) using the mappings defined earlier. Moreover, one can calculate the observed

principal coefficients as
〈
gCi , U

C
g,j

〉
, for the ith function and the jth principal direction

of variability. The superscript of C is used to denote the dependence of the principal
coefficients on the scaling factor.

This framework can be used to visualize the joint principal geodesic paths. First,
the matrix UCg is partitioned into the pair (UCq∗ , U

C
v ). Then, the amplitude and phase

paths within one standard deviation of the mean are computed as

q∗Cτ,j = µ̂q∗ + τ
√

ΣCg,jjU
C
q∗,j , (2.8)

vCτ,j = τ

√
ΣCg,jj

C
UCv,j , (2.9)

where τ ∈ [−1, 1], Σg,jj and U
C
j are the jth principal component variance and direction

of variability, respectively (note that the mean µ̂Cv is always zero). Then, one can
obtain a joint amplitude-phase principal path by composing f∗Cτ,j (this is the function

corresponding to SRSF q∗Cτ,j ) with γ
C
τ,j (this is the warping function corresponding to

vCτ,j).
The results of the above procedure clearly differ for variations of C. For example,

using small values of C, the first few principal directions of variability will capture
more amplitude variation, while for large values of C, the leading directions reflect
more phase variation. Lee and Jung [18] present a data-driven method for estimating C
for a given sample of functions. We use this approach in the current work to determine
an appropriate value of C. Other approaches to choosing the value of C include (1)
cross-validation metrics such as prediction performance, or (2) manual tuning based
on which variability the user wants to emphasize in the statistical analysis.

2.4. Statistical Model of Functions via fPCA

There are several possibilities to develop statistical models for capturing the phase and
amplitude variability in functional data. Once we have obtained the fPCA coefficients
for the combined phase and amplitude variability we can impose probability models
directly on the coefficients. This in turn induces a distribution on the function space
F . Let c = (c1, . . . , ck) be the k dominant principal coefficients of the combined model
as described in the previous two sections. Recall that the coefficients are constructed

using cj =
〈
gC , UCg,j

〉
. The number k is determined by the user and can be selected

in different ways: (1) by minimizing cross-validated fPCA reconstruction error, (2) by
retaining the smallest number of fPCA coefficients that explain at least X% of the
variability in the given data (X is usually chosen as a large number, e.g., 90 or 95),
or (3) by iteratively comparing tolerance bounds using an increasing number of fPCA
components and stopping when the bounds change negligibly. In our approach, for
simplicity, we use method (2) with X = 90.

The vector c is modeled using a multivariate Gaussian probability distribution with
zero mean and covariance Σ, i.e., c ∼ Nk(0,Σ). By construction of the principal
coefficients, the mean vector is zero and the covariance is a k × k diagonal matrix.
The diagonal elements of the covariance are estimated directly using the eigenvalues
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of the sample covariance matrix, σ̂C1 , . . . , σ̂
C
k . The model on the fPCA scores induces

a probability model on F and provides a means of efficiently sampling functions that
exhibit the amplitude and phase variability of the original data.

3. Functional Tolerance Bounds

In this section, we provide two methods for calculating tolerance bounds for functional
data in the presence of warping variability. In general, we seek bounds which guar-
antee that with (1 − α)100% confidence, (1 − p)100% of the data falls within these
bounds [9]. Our first approach uses the parametric bootstrap to construct tolerance
bounds sampling from the model on the fPCA coefficients. The second method pro-
vides the tolerance bound in the fPCA coefficient space using a tolerance factor based
on the multivariate Gaussian model. We provide a detailed description of both of these
procedures next.

3.1. Method 1: Bootstrapped Geometric Tolerance Bounds

First, we construct statistical bounds using bootstrapping from the fPCA-based model
described in Section 2.4, and provide a means of characterizing the uncertainty in the
original functional data. Bootstrapping refers to repeated sampling from the model,
and this process can be used to construct confidence bounds for essentially any quantity
of interest. For a detailed overview of statistical bootstrap techniques see [4] and [5].

For two-sided tolerance bounds, there is both an upper and a lower bound. The
upper tolerance bound is an upper confidence bound on an upper population quan-
tile. The lower tolerance bound is a lower confidence bound on a lower population
quantile. In this sense, tolerance bounds are simply confidence bounds on population
quantiles. Construction of equal-tailed tolerance bounds using the bootstrap approach
is described as the following procedure:

1. Sample n functions from the constructed generative model described in Section
2.4, resulting in a random sample gCi , i = 1, . . . , n.

2. From gCi extract the amplitude functions (SRSFs) q∗i and vectors vi. The random

warping functions can be constructed using γi(t) =
∫ t
0 (expµ̂ψ(vi(s)))

2ds.
3. Estimate the p/2 and (1−p/2) quantiles of the set of random SRSF-based ampli-

tudes and random warping functions, denoted by (q∗p/2, q
∗
1−p/2) and (γp/2, γ1−p/2),

respectively. There are many ways to estimate quantiles for functional data, with
the cross-sectional (pointwise) approach being most popular [19]. We propose to
use the geometric method of Xie et al. [39], which relies on the Riemannian
geometry of the amplitude and phase spaces. In that paper, the authors only
compute quartiles, but their method can be easily extended to calculate general
quantiles.

4. Repeat steps 1-3 S times for a large S (S should be large enough relative to α
to provide stable bounds). This results in a collection (of size S) of (q∗p/2, q

∗
1−p/2)

and (γp/2, γ1−p/2).
5. Calculate the α/2 and (1− α/2) quantiles of the S samples of (q∗p/2, q

∗
1−p/2) and

(γp/2, γ1−p/2). These quantiles form (1−α)100% bootstrap tolerance bounds with
(1− p)100% coverage.

6. The amplitude tolerance bounds are pulled back to the quotient space F/Γ via
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integration. For display of the quantiles we use the surface method of Xie et al.
[39] for both the amplitude and phase components.

3.2. Method 2: Combined fPCA-based Tolerance Region

The second approach to construct tolerance bounds is to directly use the fPCA-based
multivariate Gaussian model that is imposed on the principal coefficients. Then, one
can construct multivariate tolerance regions on the coefficient space using the model
given in [12]. We provide more details of this approach next.

Let x1, . . . ,xn ∈ Rd be a random sample from a k-variate Gaussian distribution
with mean vector µ and covariance matrix Σ. The sample mean vector x̄ and the
sums of squares and cross-product matrix A are defined as:

x̄ =
1

n

n∑
i=1

xi, A =

n∑
i=1

(xi − x̄)(xi − x̄)T.

A tolerance region that contains at least p proportion of the data from a Nk(µ,Σ)
distribution with β confidence is given by

{x : (n− 1)(x− x̄)TA−1(x− x̄) ≤ b} (3.1)

The parameter b is known as the tolerance factor, and is determined by the probability
condition Px̄,A(Px((n−1)(x− x̄)TA−1(x− x̄) ≤ b|x̄, A) ≥ p) = β. The exact method of
computing b is known to be extremely difficult and there are multiple approximations
that have been proposed in the literature (see [11] for multiple methods). In this
work, we use the approach of Krishnamoorthy and Mondal [12] due to its known
accuracy and precision. Note that in the fPCA coefficient space x̄ = 0 by construction,
which simplifies the computation. Once the tolerance factor is computed, a new sample
function can be tested against this factor using Equation 3.1.

4. Simulation Results

In this section, we present results on a simulated dataset and compare the proposed
approaches to the recent methods of Lewis et al. [19] and Rathnayake and Choudhary
[25]. The method of Lewis et al. is most closely related to our work and is thus
important to compare to. In all of the plots in the following sections, we re-scale the
domain of the functional observations and warping functions to [0, 1] for simplicity.

4.1. Method 1: Bootstrapped Geometric Tolerance Bounds

First, we provide a numerical simulation for the bootstrapped geometric tolerance
bounds method. For this purpose, we generate data previously used in [10]. The indi-
vidual functions are given by:

yi(t) = zi,1e
−(t−1.5)2/2 + zi,2e

−(t+1.5)2/2, t ∈ [−3, 3], i = 1, 2, . . . , 21,
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Figure 3. Alignment of the simulated data set. (a) Original functions. (b) Aligned functions (amplitude). (c)
Warping functions (phase).

where zi,1 and zi,2 are i.i.d. N (1, (0.25)2). Each of the simulated functions are then
warped according to:

γi(t) = 6

(
eai(t+3)/6 − 1

eai − 1

)
− 3, if ai 6= 0, otherwise γi = γid,

where γid(t) = t is the identity warping. Here, ai are equally spaced between −1
and 1, and the observed functions are computed by composition using fi = yi ◦ γi.
A set of 30 such functions forms the original data and is shown in Figure 3(a). The
aligned functions (amplitude) and corresponding warping functions (phase) are shown
in Figure 3(b) and (c), respectively.

Given that we have the phase-amplitude separation of the simulated data, we can
calculate the principal directions of variability using the combined fPCA method de-
fined in Section 2. Figure 4 shows the results of this procedure on the simulated dataset
presented in Figure 3. We plot the joint amplitude-phase principal geodesic paths us-
ing Equations (2.8) and (2.9), for τ = −1, 0, 1 and j = 1, 2, 3. The first three singular
values for this data are 4.97, 4.24 and 0.77, with the rest being fairly small. The
first four principal directions of variability accounted for 90% of the overall variability
in the data. The first principal direction of variability displayed in panel (a) mostly
corresponds to phase variation, while the second direction in panel (b) captures the
height (amplitude) variation of the functions. The third principal direction exhibits
very small scaling variability in panel (c).

Next, we calculate tolerance bounds for the simulated data using the bootstrap
approach presented in Section 3.1. Using the combined amplitude and phase fPCA
computed in the previous section, we impose a multivariate Gaussian model using the
first four principal directions. We perform 500 bootstrap re-samples; within each itera-
tion, we sample 30 functions to calculate the tolerance bounds. We use this procedure
to compute the tolerance bound with 99% coverage with a confidence level of 95%.

Figure 5 presents the tolerance bounds for the (a) amplitude and (b) phase. The
upper bound is shown in red and the lower bound is shown in blue (the median is also
plotted in green). Given the structure of the original data, the bounds are intuitive for
the phase component. However, the amplitude bounds overlap, i.e., for the first peak
the lower bound is above the upper bound while for the second peak, the lower bound
is below the upper bound. While this result may seem counterintuitive at first, it stems
from the geometric approach to generate the quantiles. In particular, the amplitude
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Figure 4. Joint principal directions (PD) of variability for the simulated dataset for τ = −1 (blue), 0 (red),
1 (green).
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Figure 5. Bootstrapped geometric tolerance bounds for the simulated dataset.

component captures the “shape” of the functions, and the quantiles are constructed
directly on the amplitude space. Thus, it is more appropriate to think of the bounds as
points on that space rather than pointwise (cross-sectional) bounds as currently done
in the literature. As a result, there is no guarantee that the bounds will not overlap as
they are constructed to capture the global “shape” tolerance region on the amplitude
function space. This will also be seen in the real data applications.

Xie et al. [39] provide a detailed commentary of this in their paper and propose a
surface plot using the proper metrics to display the quantiles. We thus use the same
approach here, and present such surface plots for the amplitude and phase compo-
nents in Figure 6(a) and (b), respectively, with the bounds shown in red. In panel (a),
the amplitude component of the median and bounds is shown along the z-axis. Fur-
thermore, the functions are separated according to the pairwise amplitude distances
between them. Based on this surface plot we now have a natural view of the ampli-
tude variability in the data, with the bounds separated by appropriate distances for
a clear display. Panel (b) provides a similar display for the phase component. In this
case, it is more effective to display the difference between the median/bounds and
the identity element γid. Thus, as expected, the median is very close to the constant
function 0. The red warping bounds reflect natural variability in the original data and
are approximately equidistant from the median.
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Figure 6. Surface plots of the bootstrapped geometric tolerance bounds for the simulated dataset.

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Time

mean

upper

lower

(a) Rathnayake and Choudhary [25]

0.25

0.50

0.75

1.00

1.25

0.00 0.25 0.50 0.75 1.00
Time

mean

upper

lower

(b) Lewis et al. [19]

Figure 7. Tolerance bounds for the simulated dataset constructed using the methods in [25] and [19].

Figure 7(a) presents the tolerance bounds calculated using the approach of Rath-
nayake and Choudhary [25]. Comparing these bounds with those presented in Figure
5, we see some striking structural differences. In particular, in Figure 7(a), it is diffi-
cult to determine the relative contributions of amplitude and phase to the tolerance
bounds. Moreover, the upper and lower bounds are not representative of the actual
shape of the original functions, and both exhibit more than just the two peaks found
in the data. This is due to the fact that the bounds were computed in a cross-sectional
manner without accounting for warping variability. Figure 7(b) presents the tolerance
bounds calculated using the approach of Lewis et al. [19]. Again, comparing these
bounds with those presented in Figure 5, we see some structural differences. Both the
upper and lower bounds do not accurately capture the true underlying shape of the
given data.

Next, we generate an additional set of random functions from our combined fPCA
model to check the coverage of the calculated tolerance bounds. We study the per-

13



99% 95% 90%
Amplitude 100.00 97.60 93.80

Phase 99.80 98.40 90.00
Rathnayake and Choudhary [25] 75.23 70.12 67.43

Lewis et al. [19] 71.01 67.26 64.58
Table 1. Simulated confidence values of 90% coverage tolerance using the bootstrap-based approach (top).
Corresponding estimated confidence values using the methods in [25] and [19].
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Figure 8. Surface plots of the bootstrapped geometric tolerance bounds for the simulated dataset for different

confidence levels (90%=green, 95%=blue, 99%=red). An outlier amplitude and phase function is shown in

purple.

formance of our method based on three sets of tolerance bounds at the 90% coverage
rate with confidence levels of 90%, 95% and 99%. We first generate 100 random func-
tions; for each function, we compute its SRSF (q) and warp it to µ̂q to extract the
corresponding warping function γ and the aligned SRSF (q∗). We then compute the
90% quantile, and compare q∗ and γ to the corresponding tolerance bounds (the entire
function must fall within the tolerance bounds). This process is repeated 500 times
and the corresponding estimated confidence values are listed in Table 1 for each of the
corresponding true confidence values. For both amplitude and phase tolerance bounds,
the calculated confidence values are slightly higher than expected; this suggests that
the bounds we compute are conservative. Nonetheless, the simulated values are very
close to the correct confidence levels. For comparison, we also list the estimated confi-
dence values computed using the methods defined in [25] and [19]. For both methods,
the estimated confidence values are much lower than expected. This is most likely due
to the fact that these approaches do not appropriately account for the amplitude and
phase variabilities in the given data.

Next, we show the effect of the confidence level on the tolerance bounds. Figure
8 presents surface plots of the tolerance bounds for (a) amplitude and (b) phase for
three different settings. The red curves are the 99% confidence tolerance bounds, the
blue curves are the 95% confidence tolerance bounds, and the green curves are the 90%
confidence tolerance bounds. All of these bounds were generated for 90% coverage. For
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Figure 9. Effects of the number of principal directions of variability retained by the combined amplitude and
phase fPCA model on the resulting tolerance bounds for 99% coverage with 95% confidence.

both amplitude and phase, as the confidence level increases the bounds move outward
in distance from the median as one would expect. For the phase, the 95% and 90%
confidence tolerance bounds are extremely close. The purple amplitude function in
panel (a) falls outside the amplitude tolerance bounds for all three confidence levels;
in panel (b), its phase component also falls outside the 90% confidence tolerance
bounds for phase. The surface plots are able to accurately display the bounds by
nicely separating them according to amplitude or phase distance.

To show the effects of the number of principal directions of variability retained by
the combined amplitude and phase fPCA model on the resulting tolerance bounds,
we applied the bootstrap method for 1-4 principal directions. The results are shown
in Figure 9. As the dimensionality of the model increases to 3 or 4, we see the bounds
remain relatively unchanged showing good stability. With enough principal compo-
nents (approximately four in this example), the constructed tolerance bounds are able
to more accurately represent the variability found in the original data, for both phase
and amplitude.

Lastly, we compare the proposed tolerance bounds to those of Rathnayake and
Choudhary [25] and Lewis et al. [19] for different confidence levels at 99% coverage.
These results are presented in Figure 10 for 90% (top), 95% (middle) and 99% (bottom)
confidence levels. The proposed approach (labeled Elastic) is able to accurately capture
the shape of the given data in the tolerance bounds for all confidence levels; we also
note that, overall, the bounds spread outward as the confidence level increases. As seen
previously, both of the competing methods (labeled Rathnayake for [25] and Lewis
for [19]) produce multimodal tolerance bounds, where the various modes increase or
decrease as the confidence level changes. This comparison was performed only on
the amplitude, as the methods in [25] and [19] do not consider phase and amplitude
separately. Figure 11 provides the phase tolerance bounds for the same varying levels
of confidence at 99% coverage for the proposed method.

4.2. Method 2: Combined fPCA-based Tolerance Region

In this section, we calculate tolerance bounds for the simulated dataset using the fPCA
basis approach presented in Section 3.2. Again, we impose a multivariate Gaussian
model using the first four principal directions of variability. We calculate a tolerance
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region with 99% coverage with a confidence level of 95%. In contrast to the bootstrap
approach described in the previous section, this method constructs the tolerance region
directly on the fPCA coefficient space.

First, we must calculate the tolerance factor, which is done using Algorithm 2 in [12]
with 100,000 iterations. The resulting tolerance factor b for this dataset, and the re-
tained dimension of four, is 32.0027. For different dimensions of the multivariate Gaus-
sian model, the tolerance factor can be easily calculated using the above-mentioned
algorithm or via the tables provided by [12]. Each new function that needs to be tested
can be projected onto the fPCA basis. Based on the resulting fPCA coefficients, we
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99% 95% 90%
fPCA 99.20 98.40 97.00

Table 2. Simulated confidence values of 90% coverage tolerance using the combined fPCA-based approach.

compute the function’s tolerance score using Equation 3.1 and compare it to the toler-
ance factor. Figure 12 presents a histogram of the tolerance scores for all 21 functions
in the simulated dataset. All of the scores fall well-below the calculated tolerance fac-
tor; this is expected as the tolerance bound has 99% coverage, and was calculated
using the same data.

Again, we generate an additional set of random functions from our model to check
the coverage of the calculated tolerance region. As previously, we study the perfor-
mance of our method based on three sets of tolerance regions at the 90% coverage rate
with confidence levels of 90%, 95%, and 99%. We first generate 100 random functions,
and for each function, we compute its SRSF (q). The SRSF is then warped to µ̂q to
extract the corresponding warping function γ and aligned SRSF (q∗). The warping
function is mapped to the tangent space at the warping mean, which can be computed
using the algorithm described in [39]. The function gC is then calculated and pro-
jected into the fPCA coefficient space. We calculate the 90% quantile in the coefficient
space as well as the tolerance scores for each of the functions; the tolerance scores are
then compared to the tolerance factor. We repeat this process 500 times, and report
the estimated confidence values in Table 2 for each tolerance bound. Similarly to the
bootstrap method, the simulated confidence values are conservative.

5. Applications to Real Data

Here, we present results on two real datasets: (1) axial weld data and (2) PQRST
complexes extracted from electrocardiogram (ECG) signals [16]. For each of the ex-
amples, we study the effectiveness of the proposed approach in the calculation of the
tolerance bounds, specifically in capturing the amplitude and phase variabilities.
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Figure 13. Alignment of the WRS axial contour weld data. (a) Original functions. (b) Aligned functions

(amplitude). (c) Warping functions (phase).
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Figure 14. Bootstrapped geometric tolerance bounds for the WRS axial contour weld data.

5.1. Tolerance Bounds for Weld Data

Weld residual stress (WRS) is a main component crack formation in safety critical pipe
welds within nuclear power plants [1]. The stress cannot be measured directly and in-
volves releasing strain from a weld specimen and converting measured displacements
to stress using a mathematical model. Two measurement methods, both destructive
to the specimen, are the deep hole drilling method and the contour method [23], [21].
The measurements can help assess the validity of WRS predictions for new welds [19].
Figure 13(a) shows original contour method measurements along the axial direction
of a weld for five different locations along the circumference of the weld. The values
represent stress as a function of normalized weld depth. Though the phase variability
is small relative to the amplitude variability, it is important to account for both since
WRS predictions affect crack-growth calculations used in plant safety assessments [1].
With a small dataset, it is difficult to assess the validity of tolerance bound coverage
rates. However, our motivation for tolerance bounds is to provide a preliminary esti-
mate of the uncertainty in the WRS measurements which would be assessed by subject
matter experts before applying them to crack-growth calculations. Figure 13(b) and
(c) show the aligned functions (amplitude) and warping functions (phase), respec-
tively. The main source of phase variability in this data comes from the difference in
location of the first peak across measurements.
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Figure 15. Surface plots of the bootstrapped geometric tolerance bounds for the WRS axial contour weld
data.

Tolerance Factor No of PCs Tolerance score mean (sd) Sample Size
Weld 154.96 2 1.60 (0.80) 5
ECG 17.29 4 3.95 (2.68) 80

Table 3. Summary of results obtained using the combined fPCA-based tolerance region approach.

Figure 14 presents the tolerance bounds for (a) amplitude and (b) phase. The tol-
erance bounds were again calculated using 500 bootstrap resamples with a sample
size of 5 functions in each iteration. We chose the two leading principal directions of
variability as they captured over 90% of the overall variability. Both tolerance bounds
have 99% coverage with a 95% confidence level. Figure 15 shows the surface plot of the
tolerance bounds for the phase and amplitude components. This is the same dataset
used in [19], and it is clear that our tolerance bounds are more representative of the
shape in the original data. Furthermore, the separate bounds on phase and amplitude
show the overall contribution of each source of variability. This impact is lost in the
tolerance bounds generated by Lewis et al. [19] as shown in Figure 16(b).

Figure 16(a) presents the tolerance bounds calculated using the approach of Rath-
nayake and Choudhary [25]. The first peak and valley in these bounds are not as
sharp as those computed using the proposed method and show in Figure 14(a). Figure
16(b) presents the tolerance bounds calculated using the approach of Lewis et al. [19].
While the features of these bounds are sharper than those in Figure 16(a), they fail to
capture the phase variability in the given data. It also appears that the main source
of variability in these bounds is simply vertical translation, with very little variability
in the shape.

The first row in Table 3 presents the calculated tolerance factor for this dataset
for a tolerance region with 99% coverage and 95% confidence. As before, we again
used two principal directions of variability in the combined fPCA model to compute
the tolerance factor. In this case, since the dataset contains only five samples, the
tolerance factor is quite large due to sampling uncertainty. The mean of the tolerance
scores computed for each of the functions in this data is smaller than the tolerance

19



-400

-200

0

200

400

0.00 0.25 0.50 0.75 1.00
Normalized Depth (mm)

mean

upper

lower

(a) Rathnayake and Choudhary [25]

-250

0

250

500

0.00 0.25 0.50 0.75 1.00
Normalized Depth (mm)

mean

upper

lower

(b) Lewis et al. [19]

Figure 16. Tolerance bounds for the WRS axial contour weld dataset constructed using the methods in [25]

and [19].

factor. However, with a larger sample size, we would expect the tolerance factor to be
much smaller.

5.2. PQRST Complexes from ECG Biosignals

The electrocardiogram (ECG) data used in this work was obtained from the PTB
Diagnostic ECG Database [3] on PhysioNet [7]. The ECG is a medical diagnostic tool
that is routinely used to monitor the function of the heart, and is standard for di-
agnosing and monitoring various heart diseases and conditions, including myocardial
infarction. The dataset considered in this work consists of 80 PQRST complexes seg-
mented from a long ECG signal using the method presented in Kurtek et al. [16].
Each complex corresponds to a single heartbeat where PQRST refer to the five peak
and valley features (P=slight first peak, Q=sharp first valley, R=sharp second peak,
S=sharp second valley and T=slight third peak). While each PQRST complex cor-
responding to a healthy heartbeat contains these five features, the magnitude of the
peaks and valleys can be significantly different across subjects (i.e., amplitude variabil-
ity); these magnitudes can also vary for different heartbeats within a single subject,
albeit not to the same degree. Furthermore, the timing of these features can also be
quite different (i.e., phase variability). Phase variability in this application corresponds
to different timings and durations of heartbeats across individuals. This motivates the
use of the proposed method to construct separate tolerance bounds for the amplitude
and phase components based on this data. Figure 17(a) displays the 80 segmented
PQRST complex functions. It is clear that there is significant phase variability in this
data as the five features are not well-aligned. The aligned functions (amplitude) and
corresponding warping functions (phase) are shown in panels (b) and (c), respectively.

Figure 18 presents the bootstrapped tolerance bounds for (a) amplitude and (b)
phase. We again use 500 bootstrap resamples with a sample size of 50. The number
of principal directions of variability chosen from the combined fPCA model was four;
these directions captured over 90% of the overall variability in the data. Both tol-
erance bounds have 99% coverage with a 95% confidence level. Figure 19 shows the
corresponding surface plots. The amplitude tolerance bounds capture the relative sizes
of the three peaks and two valleys. This is well-demonstrated in the surface plot in
Figure 19(a). The phase tolerance bounds exhibit the variability in the location of the
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Figure 17. Alignment of the PQRST ECG data. (a) Original functions. (b) Aligned functions (amplitude).

(c) Warping functions (phase).
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Figure 18. Bootstrapped geometric tolerance bounds for the PQRST ECG dataset.

three peaks.
Figure 20(a) presents the tolerance bounds calculated using the approach of Rath-

nayake and Choudhary [25]. The bounds computed using this approach completely
lose the structure present in the original data. This is precisely due to the fact that
there is considerable phase variability in the given PQRST ECG signals. As before,
it is difficult to determine the relative contributions of amplitude and phase to the
computed tolerance bounds, and what the lower bound actually means in terms of the
semantic features of the PQRST complex. Figure 20(b) presents the tolerance bounds
calculated using the approach of Lewis et al. [19]. Qualitatively, these bounds appear
better than those in panel (a). However, comparing these bounds with those presented
in Figure 18, we still see major distortions of the PQRST features.

The last row in Table 3 reports the calculated tolerance factor for the PQRST ECG
dataset for 99% coverage with 95% confidence. We used four principal directions of
variability in the combined amplitude-phase fPCA model to compute the tolerance
factor. Again, the mean tolerance score of the functions in this dataset is smaller than
the computed tolerance factor.
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Figure 19. Surface plots of the bootstrapped geometric tolerance bounds for the PQRST ECG data.
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Figure 20. Tolerance bounds for the PQRST ECG dataset constructed using the methods in [25] and [19].

6. Discussion and Future Work

We presented two methods for computing tolerance bounds for elastic functional data,
i.e., functional data with random warping variability. For both methods, we used a
combined amplitude and phase functional Principal Component Analysis model. The
fPCA was used to define a convenient generative model, which is easy to sample
from. This enabled the implementation of an efficient bootstrapping procedure to
generate geometrically-motivated tolerance bounds. The second approach used the
multivariate Gaussian fPCA model directly to define tolerance regions, and to compute
a corresponding cutoff value called the tolerance factor. Therefore, one can easily test
whether a function falls inside or outside this tolerance region by computing a simple
tolerance score on the fPCA coefficient space. We demonstrated the applicability of
these two approaches on a simple simulated example as well as two real data examples
wherein the observed functional data has clear amplitude and phase variation.
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In this work, we have focused on accounting for phase and amplitude variability
when constructing tolerance bounds for elastic functional data. However, pointwise
noise is always troublesome for the separation of phase and amplitude in functional
data. The preprocessing required to create functions from raw data can also have
an impact on the constructed tolerance bounds. The proposed method relies on the
assumption that the input functions are at least absolutely continuous. However, the
numerical procedures used in this work have better behavior for smoother functional
data. The theory itself is stated for infinite-dimensional data objects and therefore the
eventual results dependent on the density of sampling of the functions under study. In
the sparse functional data setting, one first has to perform a smoothing or fitting step,
which can affect the final results. In future work, we plan to quantify the robustness
of the proposed procedures to these various preprocessing steps.

Since the proposed methods rely on fPCA to construct tolerance bounds, certain
irregularities that fall outside of the space spanned by the leading fPCA basis functions
are ignored. In practice, one should select a sufficient number of fPCA basis functions to
capture all relevant directions of variability; if one believes that small scale variability
is important, then even basis functions with small eigenvalues should be included
in the analysis. On the other hand, if the small scale irregularities are precisely the
ones that should be flagged, then leaving them out during the construction of the
tolerance bounds is beneficial. While we have outlined some approaches to selecting
an appropriate number of fPCA basis functions to define the tolerance bounds, our
future work will focus on the effects of this choice in real applied settings.

We have additionally identified several other directions for future work. First, we
will explore the influence of the weight C in the combined amplitude and phase fPCA
model on the resulting tolerance bounds and tolerance factor. In particular, we want
to assess the effects on simulated confidence values. Second, our method relies on
tangent space approximations for the phase component, and recently Yu et al. [40]
showed that in some cases the method of Principal Nested Spheres for dimension
reduction provides more intuitive results. Third, in many applications, the functional
data of interest may be more complex than the simple univariate functions considered
in this work; some examples include shapes of curves, surfaces, and images. These
more complicated data objects often exhibit additional sources of variability beyond
amplitude and phase, which must be taken into account when computing tolerance
bounds.

Acknowledgments

This paper describes objective technical results and analysis. Any subjective views or
opinions that might be expressed in the paper do not necessarily represent the views
of the U.S. Department of Energy or the United States Government. This research
was in part supported by the National Technical Nuclear Forensics Center (NTNFC)
of the U.S. Department of Homeland Security (DHS). Sebastian Kurtek’s work was
partially supported by NSF grants DMS-1613054, CCF-1740761 and CCF-1839252,
and by NIH grant R37 CA214955. The authors would like to thank Dr. Marc Welliver
at Sandia National Laboratories for his technical support during this work. They would
also like to acknowledge the Associate Editor and Reviewer for providing constructive
comments that have significantly improved the content of this manuscript.

23



References

[1] M.L. Benson, M.N. Tran, and M.R. Hill, Phase 2b weld residual stress round
robin: Mockup design and comparisons of measurement and simulation results, in
Proceedings of the ASME Pressure Vessels and Piping Conference. 2015.

[2] A. Bhattacharya, On a measure of divergence between two statistical populations
defined by their probability distributions, Bulletin of Calcutta Mathematical Soci-
ety 35 (1943), pp. 99–109.

[3] R. Bousseljot, D. Kreiseler, and A. Schnabel, Nutzung der EKG-signaldatenbank
CAR-DIODAT der PTB uber das internet, Biomedizinische Technik 40 (1995),
pp. S317–S318.

[4] A.C. Davison and D.V. Hinkley, Bootsrap Methods and their Application, Cam-
bridge University Press, 1997.

[5] A.C. Davison, D.V. Hinkley, and G.A. Young, Recent developments in bootstrap
methodology, Statistical Science 18 (2003), pp. 141–157.

[6] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and
Practice, Springer-Verlag New York, Inc., 2006.

[7] A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G.
Mark, J.E. Mietus, G.B. Moody, C. Peng, and H.E. Stanley, Physiobank, phys-
iotoolkit, and physionet: Components of a new research resource for complex
physiologic signals., Circulation 101 (2000), pp. e215–e220. Available at http:
//www.physionet.org.

[8] M. Grasso, A. Menafoglio, B.M. Colosimo, and P. Secchi, Using curve-registration
information for profile monitoring, Journal of Quality Technology 48 (2016), pp.
99–127.

[9] G.J. Hahn and W.Q. Meeker, Statistical Intervals: A Guide for Practitioners,
John Wiley & Sons, Inc., 2011.

[10] A. Kneip and J.O. Ramsay, Combining registration and fitting for functional mod-
els, Journal of the American Statistical Association 103 (2008).

[11] K. Krishnamoorthy and T. Matthew, Statistical Tolerance Regions: Theory, Ap-
plications, and Computation, Wiley: New York, 2009.

[12] K. Krishnamoorthy and S. Mondal, Improved tolerance factors for multivariate
normal distributions, Communications in Statistics - Simulation and Computation
35 (2006), pp. 461–478.

[13] S. Kurtek, A geometric approach to pairwise Bayesian alignment of functional
data using importance sampling, Electronic Journal of Statistics 11 (2017), pp.
502–531.

[14] S. Kurtek and K. Bharath, Bayesian sensitivity analysis with Fisher–Rao metric,
Biometrika 102 (2015), pp. 601–616.

[15] S. Kurtek, A. Srivastava, and W. Wu, Signal Estimation Under Random Time-
Warpings and Nonlinear Signal Alignment, in Proceedings of Neural Information
Processing Systems (NIPS). 2011.

[16] S. Kurtek, W. Wu, G.E. Christensen, and A. Srivastava, Segmentation, alignment
and statistical analysis of biosignals with application to disease classification, Jour-
nal of Applied Statistics 40 (2013), pp. 1270–1288.

[17] S. Lahiri, D. Robinson, and E. Klassen, Precise matching of PL curves in Rn in
the Square Root Velocity framework, Geometry, Imaging and Computing 2 (2015),
pp. 133–186.

[18] S. Lee and S. Jung, Combined analysis of amplitude and phase variations in
functional data, arXiv:1603.01775 [stat.ME] (2017), pp. 1–21. Available at https:

24

http://www.physionet.org
http://www.physionet.org
https://arxiv.org/abs/1603.01775
https://arxiv.org/abs/1603.01775


//arxiv.org/abs/1603.01775.
[19] J.R. Lewis, D. Brooks, and M.L. Benson, Methods for Uncertainity Quantifica-

tion and Comparison of Weld Residual Stress Measurements and Predicitions, in
Proceedings of the ASME Pressure Vessels and Piping Conference. 2017.

[20] Y. Lu, R. Herbei, and S. Kurtek, Bayesian registration of functions with a Gaus-
sian process prior, Journal of Computational and Graphical Statistics 26 (2017),
pp. 894–904.

[21] A.H. Mahmoudi, S. Hossain, C.E. Truman, D.J. Smith, and M.J. Pavier, A new
procedure to measure near yield residual stresses using the deep hole drilling tech-
nique, Experimental Mechanics 49 (2008), pp. 595–604.

[22] J. Marron, J. Ramsay, L. Sangalli, and A. Srivastava, Functional data analysis of
amplitude and phase variation, Statistical Science 30 (2015), pp. 468–484.

[23] M.B. Prime, R.J. Sebring, J.M. Edwards, D.J. Hughes, and P.J. Webster, Laser
surface-contouring and spline data-smoothing for residual-stress measuremen, Ex-
perimental Mechanics 44 (2004), pp. 176–184.

[24] J.O. Ramsay and B.W. Silverman, Functional Data Analysis, Springer, 2005.
[25] L.N. Rathnayake and P.K. Choudhary, Tolerance bands for functional data, Bio-

metrics 72 (2016), pp. 503–512.
[26] D. Robinson, Functional analysis and partial matching in the square root velocity

framework, Ph.D. diss., Florida State University, 2012.
[27] A. Saha, K. Bharath, and S. Kurtek, Geometric variational approach to Bayesian

inference, Journal of the American Association , To Appear (2019).
[28] A. Saha and S. Kurtek, Sensitivity measures for Bayesian nonparametric density

estimation models, Sankhya A , To Appear (2019).
[29] A. Srivastava and I.H. Jermyn, Looking for shapes in two-dimensional, cluttered

point clouds, IEEE Trans. Pattern Analysis and Machine Intelligence 31 (2009),
pp. 1616–1629.

[30] A. Srivastava, E. Klassen, S. Joshi, and I. Jermyn, Shape analysis of elastic curves
in Euclidean spaces, IEEE Trans. Pattern Analysis and Machine Intelligence 33
(2011), pp. 1415–1428.

[31] A. Srivastava and E.P. Klassen, Functional and Shape Data Analysis, Springer-
Verlag, 2016.

[32] A. Srivastava, W. Wu, S. Kurtek, E. Klassen, and J.S. Marron, Registration of
functional data using Fisher-Rao metric, arXiv:1103.3817v2 [math.ST] (2011).
Available at http://arxiv.org/abs/1103.3817v2.

[33] C.B. Storlie, M.L. Fugate, D.M. Higdon, A.V. Huzurbazar, E.G. Francois, and
D.C. McHugh, Methods for characterizing and comparing populations of shock
wave curves, Technometrics 55 (2013), pp. 436–449.

[34] Y. Sun and M.G. Genton, Functional boxplots, Journal of Computational and
Graphical Statistics 20 (2011), pp. 316–334.

[35] J.D. Tucker, Functional component analysis and regression using elastic methods,
Ph.D. diss., Florida State University, 2014.

[36] J.D. Tucker, Functional Statistical Process Control using Elastic Methods, in Pro-
ceedings of Joint Statistical Meetings. 2016.

[37] J.D. Tucker, W. Wu, and A. Srivastava, Generative models for functional data us-
ing phase and amplitude separation, Computational Statistics and Data Analysis
61 (2013), pp. 50–66.

[38] A. Veeraraghavan, A. Srivastava, A.K. Roy-Chowdhury, and R. Chellappa, Rate-
invariant recognition of humans and their activities, IEEE Trans. on Image Pro-
cessing 8 (2009), pp. 1326–1339.

25

https://arxiv.org/abs/1603.01775
https://arxiv.org/abs/1603.01775
http://arxiv.org/abs/1103.3817v2


[39] W. Xie, S. Kurtek, K. Bharath, and Y. Sun, A geometric approach to visualization
of variability in functional data, Journal of American Statistical Association 112
(2017), pp. 979–993.

[40] Q. Yu, X. Lu, and J.S. Marron, Principal nested spheres for time-warped func-
tional data analysis, Journal of Computational and Graphical Statistics 26 (2017),
pp. 144–151.

26


	Introduction
	Past Work and Contributions

	Combined Phase-Amplitude fPCA
	Simplifying Geometry of \Gamma
	Mapping to the Tangent Space at Identity Element
	Model for Combined Functional Principal Components
	Statistical Model of Functions via fPCA

	Functional Tolerance Bounds
	Method 1: Bootstrapped Geometric Tolerance Bounds
	Method 2: Combined fPCA-based Tolerance Region

	Simulation Results
	Method 1: Bootstrapped Geometric Tolerance Bounds
	Method 2: Combined fPCA-based Tolerance Region

	Applications to Real Data
	Tolerance Bounds for Weld Data
	PQRST Complexes from ECG Biosignals

	Discussion and Future Work
	Acknowledgment

