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Abstract

The classic traits of modern horses (Equidae) — large body size, high-crowned teeth
(hypsodonty), and a single toe (monodactyly) — are often considered adaptations to grassland
environments. However, extinct horses that varied in these three traits overlapped geographically
for millions of years during the Miocene and Pliocene. It has been hypothesized that co-
occurring horse species partitioned habitats, with large-bodied, hypsodont, and monodactyl
equids dominating open grasslands, while equids with different combinations of traits lived in
more wooded areas. We tested for the presence of broad-scale habitat partitioning by compiling a
large database of North American horse fossil occurrences with data on trait state (body size,
hypsodonty index, and toe number) and paleoenvironment (derived from paleovegetation
records). Null modeling of niche overlap in each of the North American Land Mammal Ages of
the Miocene and Pliocene revealed that taxonomic and trait-based groups show no differences in
habitat occupancy. Cluster dendrograms visualizing niche overlap showed that some ecological

guilds shared derived traits, but derived traits were not associated exclusively with grassland



31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

habitats. Trait values are not predicted by the proportion of grassland habitats in time bins.
Further, the three traits show no co-evolution across the equid tree when corrected for
phylogenetic relatedness. Together, these results suggest that the evolution of large body size,
hypsodonty, and monodactyly in equids was not due to a shared selective regime in response to
expanding grassland habitats; instead, these traits may have evolved separately, likely due to a
variety of small-scale selective pressures acting across the variety of habitats present in the
Miocene and Pliocene.
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1. Introduction

Extant horses (Equidae) are represented by a single genus of zebras, asses, and caballine

horses. This lack of taxonomic diversity belies an evolutionary history that spans nearly 60
million years, a few hundred species, and nearly 50 genera (Prothero and Schoch, 1989;
MacFadden, 1992). Equid evolution is historically explained by a shift from forests to grasslands
over the course of the Miocene (approximately 23 — 5.3 Ma) that drove steady evolution of the
hallmark traits of today’s horses: large bodies, high-crowned teeth for grazing (hyposdonty), and
a single digit (monodactyly) on elongated legs (Marsh, 1873; Shotwell, 1961; Eronen et al.,

2010; Orcutt and Hopkins, 2013). However, horse species that varied in these three traits
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overlapped geographically for millions of years (MacFadden, 1992). For example, the Bone
Valley fauna of the late Hemphillian (approximately 5 Ma) had six sympatric horse species, four
tridactyl (three-toed) and two monodactyl (MacFadden et al., 1999). The coexistence of
sympatric horse species could have been supported by habitat partitioning, in which large-
bodied, hypsodont, monodactyl equids dominated open grasslands, while equids with other
combinations of traits lived in more wooded areas (MacFadden, 1992). Here, we test this
hypothesis by quantifying niche overlap between trait groups to see if extinct horse species of
North America partitioned habitats based on body size, tooth crown height, and digit state.
1.1 Derived horse traits

Increasing equid body size has been explained as a response to spreading grasslands
because larger body sizes arose coincident with the expansion of grassland-savanna habitats
(MacFadden, 1986). Grazing animals today often have larger body sizes than animals with other
diets, possibly because grassy vegetation eaten by grazers has lower nutritional quality and takes
longer to digest than leafy vegetation eaten by browsers (Gordon and Illius, 1994). As grassy
vegetation spread in North America, competition with ruminant artiodactyls for higher-quality,
more nutritionally-dense browse could have created a selective pressure for equids to increase in
body size so that they could survive on grassy vegetation of lower nutritional quality (Janis et al.,
2002). However, recent work has shown that selective pressure for larger body size may not have
been necessary to produce the body size trends seen in Equidae. Shoemaker and Clauset (2013)
found that over 90% of the changes in horse body size could be explained by diffusion-driven
mechanisms of trait diversification, rather than by competition.

Hypsodonty is widespread and characteristic of horses since the Miocene, and their

maximum hypsodonty level increased throughout the Miocene and Pliocene (Webb and Hulbert,
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1986; Mihlbachler et al. 2011). Increased crown height has previously been seen as a response to
the advent of grazing behavior in equids as grasslands began to spread in North America around
the beginning of the Miocene (Stirton, 1947; MacFadden and Cerling, 1994). Grasses contain
silica phytoliths that may abrade teeth, increasing wear and endangering individuals whose teeth
have shorter crowns (McNaughton et al., 1985; Damuth and Janis, 2011). However, hypsodonty
is not necessarily an indicator of a grazing diet; for example, analysis of carbon isotopes and
tooth microwear of several species of hypsodont horses found evidence of grazing in small,
tridactyl species, while monodactyl species of similar tooth morphology instead ate leafy browse
(MacFadden et al., 1999). Additionally, it has not been shown that grass phytoliths abrade teeth;
modern ungulates do not avoid eating grasses with phytoliths (Damuth and Janis, 2011). The
idea that equid hypsodonty is an adaptation to grasslands is further undermined by the fact that
the appearance of hypsodonty in North American equids lagged 4-10 million years behind the
spread of grasslands inferred from phytolith data (Stromberg, 2006). A possible explanation for
this observed lag comes from the “grit not grass” hypothesis, which argues that hypsodonty
evolved later as aridity increased, leading to greater tooth wear as more gritty particles, such as
dust, were ingested along with food (Jardine et al., 2012; Damuth and Janis, 2011; Strémberg et
al., 2013).

Side toes in tridactyl horses have been hypothesized to confer stability on slippery or
uneven substrates, prevent deep sinking in mud (Sondaar, 1968), or allow for agility in
negotiating around obstacles in woodland or wooded savanna environments (Shotwell, 1961).
Fossil tracks of Hipparion from the Pliocene of Tanzania show imprints of the side toes,
supporting the hypothesis that the side toes acted to stabilize the foot when it was sliding in mud

(Renders, 1984). The hoofs of reduced side toes would only touch the ground when the horse’s
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full weight was on one foot, potentially giving it greater traction to maneuver around obstacles
(Shotwell, 1961). In open grasslands, with fewer obstacles to dodge, the main requirement for
locomotion has been hypothesized to be either for straight-line speed to escape predators
(Shotwell, 1961; Simpson, 1961) or for increased efficiency in locomotion (Janis and Wilhelm,
1993). Because lower mass at the distal limb reduces inertial forces and allows for lower energy
expenditure, elimination of the weight of the side toes could allow for faster and/or more
economical running (Thomason, 1986). Reduced digits and an enlarged center metapodial may
also have contributed to better resistance to the forces of locomotion at heavier body weights
(Camp and Smith, 1942; McHorse et al., 2017). Shotwell (1961) suggested that the functional
difference between tridactyl and monodactyl feet should lead to habitat partitioning in co-
occurring horses with different toe numbers and that equids with more reduced toes lived in
grassier habitats.
1.2 Study aim

Our primary aim was to characterize the environmental distributions of Miocene and
Pliocene horses with different traits to determine if they lived in distinct habitats. If the
expansion of grasslands drove the evolution of modern horse traits, including large body size,
hypsodonty, and monodactyly, we hypothesized that horses with derived traits would be found in
grasslands more frequently than contemporaneous horses with less-derived traits (i.e., evidence
of habitat partitioning). To test this hypothesis, we used null modeling of ecological niche
overlap between habitat types to test whether horses with more-derived and less-derived traits
partitioned habitats. Further, we used visualizations of guild structure and trait evolution to
examine the relationship among traits and between traits and the environment. If trait groups

were living in different habitat distributions, we expected to see ecological guilds of equid
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genera with derived traits restricted to grassland habitats. At the spatial and temporal scale
studied, our results question the assumption that equids with large body size, hypsodont teeth, or

monodactyl limbs lived in grassier environments than their contemporaries.

2. Materials and methods
2.1 Equid occurrence data

Our dataset includes 7673 occurrences of horse fossils (Family Equidae) from North
America, most identified to the species level, ranging in age from 55.8 Ma to Recent. In total,
our dataset includes 39 genera and 210 species that range across the Miocene and Pliocene.
Occurrence data were obtained primarily from the Paleobiology Database (n = 3,445) from a
search on 3 February, 2016 for Family Equidae in North America and from the Miocene
Mammal Mapping Project (“MioMap,” Carrasco et al. 2005) (n=3,820), with the remaining
occurrences (n = 408) coming from the following literature sources: Fraser and Theodor (2013),
MacFadden et al., (1999), Mihlbachler et al., (2011), and Voorhies (1990). We updated the
taxonomical assignment of every fossil occurrence in our database to a currently accepted
genus/species. To ensure that occurrences present in both the Paleobiology Database and
MioMap database were not counted twice, we deleted occurrences from the MioMap data which
overlapped with Paleobiology Database occurrences in county, formation, and genus and also
those occurrences from the same genus from locations less than 10 kilometers apart. Each
occurrence was identified in time to a North American Land Mammal Age (NALMA). Of the
7673 total occurrences in our dataset, 4879 were assigned to NALMA time bins in the Miocene
and Pliocene and were used in subsequent analyses. In the NALMAs considered, 3518

occurrences were assigned to paleoenvironments for EcoSimR analysis (see section 2.4). The
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dataset we provide here includes all occurrences irrespective of time/environment assignment in
hopes of providing a potential database for future studies.

2.2 Trait data

2.2.1 Body Size: Body size reconstructions came from literature sources (MacFadden 1986,
MacFadden and Hulbert 1990, Damuth 1990, Scott 1990, Hulbert 1993, Alberdi et al. 1995,
Robinson and Redford 1986, fossilworks.org). For species with no published estimated body
size, we reconstructed body masses using the regression equations from tooth measurements in
Janis (1990) and Damuth (1990). For most species, we used regressions based on the length,
width, and area of the first lower molar (m1) taking the average of 5 regression outputs: m1
length and area from Janis (1990) and m1 length, width, and area from Damuth (1990). For
species without m1 measurements, we reconstructed body mass using the regressions from
Damuth (1990) for length and width of the upper premolar 4 (P4), upper premolar 3 (P3), and
upper molar 1 (M1) and for area of P4 and M1, taking the average of regression outputs from
teeth with measurements available. Body mass values for each species and average values for
each genus can be found in Supplementary Data. Regression equations are available in Appendix
1. In figures where body mass is treated as categorical, we defined the categories as small (under
100 kg), medium (between 100 and 200 kg, inclusive), and large body (over 200 kg). These
assignments were determined based on data distribution, with similar numbers of genera in each
bin; such evenly-spaced body mass bins have been used in past studies such as Martin (2016)
and Ahrestani et al. (2016). Analyses of habitat partitioning by body size also tested other bin
divisions (see section 2.4).

2.2.2 Tooth Morphology: Hypsodonty index (HI) is a measure of relative tooth crown height

calculated by dividing molar crown height by the occlusal width of that tooth. We collected HI
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values associated with specific specimens and species and calculated an average value for each
genus, using data from MacFadden et al. (1999), Mendoza and Palmqvist (2007), Mihlbachler et
al. (2011), Cantalapiedra et al. (2017), and Christine Janis (unpublished data). These sources
measured HI on the most unworn teeth available to avoid underestimating original crown height
due to wear, and on the third molar whenever possible. In figures where HI is treated as
categorical, we defined categories as brachydont (HI under 1.1), mesodont (HI between 1.1 and
3, inclusive), or hypsodont (HI over 3). In comparison to previous categorizations of hypsodonty
based on HI, these divisions give a wide range to the mesodont state, reserving the hypsodonty
category for very high-crowned taxa (Janis, 2008; Jardine et al., 2012). However, our analyses of
habitat partitioning by crown height also tested other divisions between these categories,
including those used by Jardine et al. (2012); these divisions are listed in section 2.4. HI values
for each species/genus can be found in Supplementary Data.

2.2.3 Digit State: We established the number of toes for each genus (and for each species in the
genera Pliohippus and Dinohippus, which comprise both tridactyl and monodactyl species). Each
species and genus was assigned to one of the following four categories: semi-tetradactyl (having
four toes on the front limbs and three toes on the hind limbs), tridactyl, variable
tridactyl/monodactyl (for species in which this trait varies), and monodactyl. While all four
categories were used in phylomorphospace and trait correlation analyses (see sections 2.6 and
2.7), only three of these categories were used in our habitat partitioning analyses because all of
the semi-tetradactyl species went extinct before the time period examined (Miocene-Pliocene). In
addition to toe number classification, we calculated Toe Reduction Index (TRI) values for 27
genera. TRI quantifies the extent to which the side toes are reduced in tridactyl horses; it is the

ratio of the proximal phalanx lengths of the central toe (digit III) to the side toes (digits II and
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IV), ranging from 0 in monodactyl horses to 1 if the side toes are equal in size to the center toe
(detailed in McHorse et al., 2017). Comparison between digit categorical and continuous TRI
values across the horse phylogeny demonstrates how TRI captures a more nuanced picture of

digit reduction (Fig. 1). Digit categories and TRI values for each species/genus can be found in

Supplementary Data.
Tapirus
Hyracotherium
Orohippus
Miohippus
Mesohippus
Anchitherium
Kalobatippus
Hypohippus
Archaeohippus
Desmatippus
Parahippus
Merychippus
Acritohippus
Pliohippus
Equus L |
Dinohippus TRI values:
Caiippus B 001003
Toe Number State: Protohippus [ 0.3to 0.4
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Figure 1: Phylogenetic distribution of digit stat vs. Toe Reduction Index (TRI). Left: a
phylogeny of equids showing distribution of digit state (or number of toes). Right: the same
phylogeny colored by TRI values, showing variation in side toe length. Cool colors indicate
larger side toes, while warm colors indicate greater digit reduction with red denoting
monodyactly. Phylogenetic topology adapted from Jones (2016) and Fraser et al. (2015). Traits
mapped in Mesquite v.3.31 (Maddison and Maddison, 2017 using Parsimony Ancestral State
reconstruction.

*full color, 1.5 columns

2.3 Habitat classification
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Paleoenvironments for each fossil occurrence were determined from literature data on
plant fossils, grass phytoliths, and paleosols. A list of all literature sources consulted to classify
habitats can be found in Appendix 2, and the Supplementary Data lists the source paper used to
assign the paleoenvironment of each occurrence in our database. Each equid occurrence site was
assigned to one of seven paloeoenvironment categories: forest/swamp, forest, woodland,
woodland-savanna, savanna, grassland-savanna, and grassland. In general, the resolution of
habitat classification was at the level of sub-regions of states. We avoided assigning habitat types
from evidence based on mammal fossils, such as the inferences of grasslands based on
hypsodont teeth, which are common in the literature, as this would be circular logic. In total, we
classified the habitat present at deposition of 5,605 of the 7,673 fossil occurrences (73%); only
occurrences assigned to paleoenvironments were used in the EcoSimR (section 2.4) and guild
clustering analyses (section 2.5). The distribution of habitat classifications for each NALMA
considered is shown in Figure 2. A range of habitats were present at the fossil sites from all

NALMAs, indicating that no specific habitat characterized a particular time bin.
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Figure 2: Paleoenvironment classifications of equid fossil sites through time. Stacked area
graph showing the percentage of sites from our occurrence database classified into each habitat
type for the five NALMASs analyzed.
*full color, 1 column
2.4 EcoSimR analysis

Habitat partitioning among extinct horses was assessed using the program EcoSimR
(Gotelli et al. 2015). This program uses null modeling on an occurrence matrix to compare the
average amount of niche overlap between pairs of taxa to the amount of overlap expected by
random chance. The null model forms randomized matrices by shuffling the values in each row
and calculates the niche overlap between rows. Comparing the average niche overlap between
habitat categories of the randomly simulated matrices to the actual, observed overlap reveals
whether the equids’ community structure has more or less sharing of resource states than would

be expected if each taxon used all resources randomly (i.e., no habitat partitioning). Here, niche

overlap means the extent to which different groups share their distribution across the seven
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paleoenvironment types to which occurrences were assigned. It should be noted that we are not
considering niche partitioning in the sensu stricto division of resources within a community, as
equid groups across all of North America throughout entire NALMASs were not in direct
competition with one another. Rather, our approach examines broad-scale habitat partitioning
across NALMAs to better understand if equids with varying traits lived in similar or different
habitat types across evolutionary time.

EcoSimR calculates the niche overlap between each pair of taxa or trait groups by using
the Czekanowski Index. This index, formulated by Feinsinger et al. (1981), is calculated using
the equation:

O012=021=1-0.5 x Y (Pi1 - Pp) (1)
where O12 is the overlap between taxa 1 and 2, Oy is the reciprocal overlap between taxa 2 and 1,
Pi1 is the fraction of occurrences of taxon 1 that occur in resource state 1, and Pj; is the fraction of
occurrences of taxon 2 that occur in resource state i. ), represents a sum of the calculation (P;; -
Pip) for all resource states (Albrecht and Gotelli, 2001). In our analyses, the resource states are
habitat categories. For taxa with identical resource utilization, the Czekanowski Index equals 1;
for taxa that share no resources, the Czekanowski Index is 0. EcoSimR calculates the
Czekanowski Index value for each pair of taxa and takes the average of all pairs to get the
observed overlap value for the matrix. We used the randomization algorithm RA3, which retains
niche breadth of each taxon.

We tested for niche overlap between genera and between species that varied in body size,
degree of hypsodonty, and toe number. Trait data at the species level was used to assign
occurrences to trait groups (defined below). North American Land Mammal Ages (NALMAs)

were used as time slices; NALMAS s are subdivisions of the Cenozoic based on mammal faunas of
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261 North America (Wood et al., 1941; Barnosky et al., 2014). We created EcoSimR input matrices
262 for the following NALMAs in the Miocene and Pliocene (the periods with the greatest diversity
263 of extinct horses): Hemingfordian (approx. 18.5-16.3 Ma), Barstovian (approx.16.3-12.5 Ma),
264 Clarendonian (approx. 12.5-9.4 Ma), Hemphillian (approx. 9.4-4.7 Ma), and Blancan (approx.
265 4.7-1.4 Ma).

266 For the continuous variables of body size and HI, we ran analyses with different

267 numbers/sizes of bins to test the effect of how trait categories were divided. For body mass, we
268 tested for niche overlap between 3 bins (under 100 kg, 100 to 200 kg, and over 200 kg), 5 bins
269 (mass below 75 kg, 75 kg to 150 kg, 150 kg to 225 kg, 225 kg to 300 kg, and mass over 300 kg)
270 and 7 bins (mass below 50 kg, 50 kg to 100 kg, 100 kg to 150 kg, 150 kg to 200 kg, 200 kg to
271 250 kg, 250 kg to 300 kg, and over 300 kg). In all cases the lower boundary is inclusive. For HI,
272 we tested with our standard 3 bins (HI < 1.1, 1.1 < 3, HI > 3), an alternate 3-bin division adapted
273 from Jardine et al. (2012) (HI<1.7, 1.7 <3.5, HI > 3.5), a 2-bin division (HI < 3 and HI > 3), and

274 a 5-bin division (HI< 1, 1 <HI<2,2 <HI<3,3 <HI<4, and HI > 4).

275 EcoSimR returns P statistics showing where in the range of simulated values the

276 observed average overlap index value falls. It gives tail probabilities for the lower and higher end
277 of the simulated distribution. Tail probabilities < .05 indicate that the observed niche overlap is
278 lower or higher than random.

279 2.5 Visualization of niche overlap

280 We tested for the presence of ecological guilds — groups of taxa with high niche overlap
281 within the guild group and low niche overlap among groups — by creating cluster dendrograms
282 nesting together equid genera based on similarity of their habitat category distributions (i.e.,

283 proportion of occurrences in each of our seven habitat types) using PRIMER 7 software (Clarke
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and Gorley, 2015). Czekanowski Index of overlap between pairs of genera was calculated for
each NALMA and across the Miocene and Pliocene using EcoSim Professional (Entsminger).
Genera were clustered by their niche overlap using the single linkage agglomeration method with
the pairwise Czekanowski Index values (Clarke and Gorley, 2015, Martinez-Falcon et al. 2011).
Trait-based guild structure could then be detected by inspecting the trait states of genera
clustered together in the dendrograms.
2.6 Correlation of trait values to habitat type

To further explore the relationship between derived equid traits and grassland
environments, we ran ordinary least squares regression (OLS) analyses. These analyses used the
percentage of habitats from each NALMA that were classified as grassland or grassland-savanna
as a predictor variable for the average value of each trait considered across the NALMAs.
Regressions were performed in R version 3.3.2 (R Core Team, 2016).
2.7 Phylogenetic structure

To consider the phylogenetic signal present in the evolution of equid body size,
hypsodonty, and toe number, we created trait-based phylomorphospaces in R using the package
‘phytools’ (Revell, 2017). Each morphospace is defined by two of the three traits, with genera
plotted as points and the third trait indicated by their color. Points on the morphospace are linked
by their phylogenetic relationships, allowing identification of clades with unique or constrained
traits and indicating how traits have evolved together across the phylogeny. The phylogeny used
is a composite, following the topology of the time-scaled trees in Fraser et al. (2015) and Jones
(2016).

To quantify the extent to which each pair of the three traits varies together, we employed

both OLS and phylogenetic generalized least squares (PGLS) models. PGLS modelling takes
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into account the expectation that more closely-related taxa will have more similar traits and
shows whether traits are correlated despite that effect of relatedness. These correlation analyses
were also run in R using the package ‘caper’ v.0.5.2; the PGLS used a branch length
transformation for Pagel’s Delta, which was found to indicate accelerating rates of trait evolution
in the equid tree (Orme et al., 2013).
3. Results
3.1 Body size

High niche overlap was found among body size bins in all NALMAs (Table 1). In the
Barstovian, Clarendonian, and Hemphillian, the observed average overlap index values were
significantly above the simulated distributions for all bin divisions. In the Hemingfordian, only
the 5 bin trial had a significantly higher overlap values than the simulations. In the Blancan, the 3
and 7 bin trials had significantly higher overlap than random. None of the NALMAs show lower-
than random niche overlap, so no habitat partitioning by body size is detected.

Table 1: Niche overlap by body size categories.

NALMA Tail 3 Bins P statistic | S Bins P statistic | 7 Bins P statistic
Hemingfordian Upper | .088 .0124* .0702

Barstovian Upper | .0002* .0004* .0002*
Clarendonian Upper | .0002* .0002* .0002*
Hemphillian Upper | .0002* .0002* .0002*

Blancan Upper | .0184* 1224 .0222%

Upper tail indicates which tail the overlap index falls towards; in this case, the upper corresponds
to higher-than-random overlap. Statistics marked with * are significant below .05.

3.2 Hypsodonty index:
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325 High niche overlap was also found among brachydont, mesodont, and hypsodont horses

326 using a variety of hypsodonty index binning methods (Table 2). In the Barstovian, Clarendonian,
327 and Hemphillian, observed niche overlap was significantly higher than random for all trait bin
328 divisions. In the Hemingfordian, the average niche overlap between these groupings, while high,
329 fell within the range of average values for the null model of random overlap except in our first 3-
330 bin trial, where overlap was significantly higher than simulated. In the 2- and 3-bin trials, only
331 equids defined as hypsodont occurred in the Blancan; niche overlap between the 5 bin divisions
332 was calculated, but the relative scarcity of occurrences in the lower HI categories (10 and 19

333 occurrences vs. 368 in the HI > 4 category) means that the low side of random niche overlap

334 value calculated is likely an inaccurate representation of how the habitat distributions of crown
335 height categories in the Blancan compare.

336 Table 2: Niche overlap by hypsodonty categories.

NALMA Tail 2 Bins P 3 Bins P Jardine et 5 Bins P
statistic statistic al. (2012) 3- | statistic
bin P
statistic
Hemingfordian Upper | N/A .0204* .1002 .0622
Barstovian Upper | .014* .0006* .002* .0068*
Clarendonian Upper | .0324* .0128* .0034* .0006*
Hemphillian Upper | .033* .0364* .0078* .0006*
Blancan Lower | N/A N/A N/A 3344
337 Statistics marked with * are significant below .05. N/A indicates NALMAs where there were
338 insufficient occurrences in more than one hypsodonty category to run analyses.
339
340 3.3 Toe number:
341 The three toe number categories tested for habitat partitioning — tridactyl, variable
342 monodactyl/tridactyl, and monodactyl — had high niche overlap (Table 3). This result was found
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in all NALMAs. In the Barstovian and Hemphillian, the average niche overlap was significantly
greater than in the random simulations, but the other NALMAs also had average niche overlap
values on the high end of the range found in the simulations. Since habitat partitioning requires
significantly lower than random niche overlap, none of the NALMAs show habitat partitioning
by toe number.

Table 3: Niche overlap by toe number.

NALMA Tail P statistic
Barstovian Upper .005*
Clarendonian Upper 1442
Hemphillian Upper .0004*
Blancan Upper .0544

Statistics marked with * are significant, below .05.
3.4 Taxonomic overlap

High niche overlap was found among genera in each NALMA. For all NALMAs except
the Blancan, the average overlap index was significantly higher than the distribution of overlap
index values in the null model (Fig. 2). In the Blancan, the observed niche overlap was still on
the high end of the distribution (p value for Czekanowski index value > simulated = 0.058); no

evidence for habitat partitioning between genera was found.
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359 Figure 3: Taxonomic (genera) niche overlap vs. null model distribution. Average overlap
360 index values from EcoSimR randomized simulations (i.e., null model; blue bars) and observed
361 index values (red lines) for a) Hemingfordian, b) Barstovian, c) Clarendonian, d) Hemphillian,
362 and e) Blancan. The thin-dashed and thick-dashed lines show the one-tailed and two-tailed 95%
363 confidence intervals of the simulated index values, respectively.

364 *full color, 1.5 columns

365

366 3.5 Clustering by niche overlap

367 Cluster analysis shows which genera had the most similar habitat distributions, grouping
368 them into ecological guilds. Figure 4 shows all genera with more than 5 occurrences in the

369 Miocene and Pliocene clustered by their pairwise Czekanowski indices. While genera with large
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383

body size are scattered across the tree, the hypsodont and monodactyl genera fall in some
apparent clusters sharing habitat distributions. The nodes labelled 2 and 4 on Figure 4 are
potential guilds of horses with derived traits. Guild 4 stands out from the others in living in less
wooded habitats; less than 1% of these genera’s occurrences are in woodlands, forests, or
forest/swamp. Guild 2, however, shows quite an average habitat distribution, which is very
similar to that of guild 5, except that guild 5 was found in slightly more grassland-savannas,
while guild 2 was found in more woodland-savannas. Guild 1 was overwhelmingly found in
woodland-savanna habitats (67.6% of occurrences). Guild 3, which is plesiomorphic in
containing brachydont and tridactyl genera, was found more in woodlands and less in woodland-
savannas than the other guilds, though it still occurred frequently in grassland-savannas. It is
important to note the y axis scale of Figure 4; the “similarity” values of 75% and above mean
that each genus had a Czekanowski Index value of over 0.75 with another genus or guild of
genera. The habitat distributions of all genera are very similar, as confirmed in Figure 3, though

this cluster dendrogram allows us to parse out which are the most similar.
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391
392 3.6 Correlation of traits and habitat

393 There was no relationship found between derived traits and the prevalence of grassland

394 habitats across the NALMAs (Table 4). Although a significant relationship between TRI and

395 both body size and HI was recovered, after correcting for phylogenetic relatedness, no pairs of
396 traits showed a significant relationship (Table 5).
397
398 Table 4: Linear models of the relationships between trait values and percent grasslands.
Comparison Equation from GLM R2 P value

log(mb) ~ % grassy log(mb) =500.171 -7.193*(% grassy) 0.3359 0.1805

HI~ % grassy HI =7.72458 -0.10175*(% grassy) 0.3479 0.1748

TRI~ % grassy TRI'=-0.26685 + 0.01631*(% grassy) 0.2583 0.2196
399 Best-fit equations describing the relationships between the average values of each trait per
400 NALMA and the proportion of sites with grassland habitats, with their R? values. my = body
401 mass, % grassy = percentage of equid fossil sites whose paleoenvironments are classified as
402 grassland or grassland-savanna. The p values show the significance of the relationship;
403 significance is defined as below .05.
404
405 Table 5: Models of trait correlation.

Equation from non-

phylogenetic GLM R* | Pvalue Equation from PGLS R? |Pvalue

Comparison

TRI~ log(ms) | TRI=1.085 - 0.239(log(ms)) | 0.324 | 0.0019* TRI = 1.035 - 0.149(log(ms))| 0.092 | 0.159
TRI~ HI TRI=0.79642 - 0.0826(HI) | 0.413 | 0.0007* [TRI = 0.866 - 0.0459(HI) | 0.076 | 0.205

HI~ log(ms) | TRI+ 1.5086 - 0.718(log(ms)) | 0.124 | 0.0662 |HI=0.832 +0.146(log(ms)) | 0.002 | 0.81

406 Best-fit equations describing the relationships between pairs of trait values (my = body mass),
407 with their R? values. The p values show the significance of the relationship; those marked with *
408 are significant below .05.

409

410 3.7 Phylomorphospaces

411

412 Phylomorphospaces reveal how traits are distributed across the horse phylogeny. We

413 included pre-Miocene semi-tetradactyl horses in these analyses to track the evolution of digit

414 reduction. In general, phylogenetic structure is low. The modern tapir, used as an outgroup, is
415 clearly demarcated by its large body size but low-crowned teeth and minimal toe reduction (Figs.
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5-7); however, its location in trait space is very similar to Hypohippus, a pony-sized, tridactyl
horse. In Figure 5, the earliest-branching semi-tetradactyl equids are clustered in the small body
size and low-crowned teeth area of morphospace, while a clade of monodactyl equids dominate
the morphospace of highest body size and hypsodonty. However, the tridactyl genera that make
up most of the equids’ diversity span a wide range of trait values.

Phylomorphospaces based on Toe Reduction Index are more suggestive of linked trait
evolution (Figs. 6 and 7). In Figure 6, the most basal brachydont equids are clustered with low
body size and high TRI values (indicating minimal toe reduction), while the latest-branching
genera are the largest with the most reduced toes. The genera in between (excluding the tapir) are
clustered loosely around a line of negative slope, representative of trait correlation. However, the
taxa in each crown height category scatter widely across the TRI-body size space. The TRI-HI
phylomorphospace in Figure 7 shows a similar linear trend with limited phylogenetic control
over where genera fall in the morphospace. Beyond clustering apparent in the earliest equids
(with high TRI and low HI), the branches of the phylogeny scatter widely, showing high levels

of trait evolution between some closely-related taxa.
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Figure 5: Phylomorphospace showing evolutionary relationships between body size, HI,
and toe number. a) Phylomorphospace with axes of reconstructed body size and hypsodonty
index plotting 29 genera of equids and the outgroup Tapirus. Colors mark the toe number of each
genus. Black lines and nodes connecting taxa represent the phylogenetic tree of these genera. b)
Time-calibrated phylogeny used to construct the phylomorphospace (Fraser et al., 2015 and
Jones, 2016). A subset of this phylogeny is used in Figures 6 and 7.

* Full color, 2 columns
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4. Discussion
4.1 Lack of habitat partitioning among trait groups

Our EcoSimR analyses find no support for habitat partitioning in extinct horses with
different traits at the spatial and temporal scale of this study. This result holds across all
NALMASs and traits considered, regardless of bin size. While not all results showed significantly
higher overlap than random, those that fell within the range of the null model had P statistics

indicating niche overlap at the higher end of random. In no case was there statistical support for
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habitat partitioning. This finding is inconsistent with the hypothesis that derived equid traits —
large body size, high-crowned teeth, a single toe — arose as adaptations to grassland habitats
(Shotwell, 1961; Eronen et al., 2010; Orcutt and Hopkins, 2013). Equids with these derived traits
were not found in grasslands more often than those without the derived traits. In fact, our results
show that the diverse, morphologically varying horse taxa of the Miocene and Pliocene had
similar distributions across habitat types. This overlap in habitat occupation suggests that the
evolution of new equid traits in some taxa was not due to exposure to different broad-scale
environmental conditions.

Our cluster analyses, which visualize guild structure by showing which genera overlap
most in their habitat distributions, show some grouping in the habitat preferences of genera with
derived traits. Specifically, the guilds labelled 2 and 4 in Figure 4a contain monodactyl and
hypsodont genera. However, only guild 4 shows a habitat distribution skewed away from closed
forests relative to the other guilds. The guilds including genera with more mixed and
plesiomorphic traits still occur frequently in grassland-savanna sites, with the exception of guild
1 which is found almost exclusively in woodland-savannas. While this clustering suggests that
some hypsodont and monodactyl equids shared habitat distributions to the exclusion of less-
derived taxa, the habitat distributions of all guilds are generally similar, as visualized by their
proximity to the average line on Figure 4b. This finding of trait-based guild structure is not
accompanied by clear differential grassland occupation by derived genera, as would be expected
if selective pressures in open habitats were crucial to the evolution of these traits. Modelling of
the influence of grassland habitats at equid sites on trait values confirms that grassy habitats are

not linked to derived traits (Table 4). Across the NALMAs considered, changes in the proportion
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of equid fossil sites classified as grasslands do not correlate to changes in trait values, further
challenging the hypothesis that the spread of grasslands lead to trait evolution.

An important limitation of this study is the resolution of the paleoenvironment data
currently available. The paleobotanical, phytolith, and paleosol sources used in this study
(Appendix 2) provide habitat designations for areas generally several counties in size and in time
slices the length of North American Land Mammal Ages. This level of resolution (spatial or
temporal) may not be fine enough to reveal smaller-scale (e.g. functional and/or behavioral)
habitat partitioning, if it did occur. Modern grazing ungulates have been observed sharing home
ranges and habitats, but exhibiting different patterns of foraging area use such as moving
between vegetated areas at different rates (Owen-Smith et al. 2015), which could allow for
division of resources between groups that would certainly be assigned to the same habitat at the
spatial scale of our data. Shotwell (1961) proposed that monodactyl and tridactyl horses living
together in savanna environments partitioned within the habitat such that monodactyl taxa
utilized the more open areas in the savanna, while tridactyl ones lived amongst more dense trees
and shrubs. If such small-scale environmental patchiness was the true level at which horses were
partitioning habitats, our analyses based on classifications of larger areas may have been unable
to detect it. Given the number of equid species living in sympatry in this period, some form of
temporal or behavioral partitioning of resources may have occurred at a finer scale. What our
broad-scale data does show is that equids grouped by body size, hypsodonty, and toe number
categories were not living in significantly different habitat types in any NALMA.

To learn more about how the specific niches occupied by species differed, further
examination of habitat partitioning using paleoenvironment data at finer spatial and temporal

scales is required. Fieldwork in regions with many horse fossils from a series of sites would
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allow future analyses of plant fossils, phytoliths, and/or paleosols to show fine-scale differences
in the habitats occupied by different equids. Assumptions that sites yielding large, hypsodont, or
monodactyl horses represent open paleoenvironments are common in the literature (e.g., Fraser
and Theodor, 2013), but to establish an unbiased connection between horse traits and habitat
type, descriptions of heterogenous plant assemblages from equid-bearing localities must be
made.
4.2 Correlation of traits across the phylogeny

The phylomorphospaces illustrate little phylogenetic constraint on body size, tooth
morphology, or digit state (Figs. 5-7). This result is in accord with Cantalapiedra et al. (2017),
who found considerable overlap among equid clades when their phylogeny was plotted on the
axes of body size and hypsodonty index. Use of the Toe Reduction Index (TRI), which captures
more subtle differences in digit morphology, allowed us to parse out how increased reduction of
the side digits relates to the other traits (Figs. 5-6); standard OLS modeling confirms that TRI is
significantly related to both body size and HI (Table 5). However, PGLS analysis reveals that
when expected trait similarity between closely-related taxa is taken into account, the potential
co-evolutionary relationships between TRI and the other two traits are not significant (Table 5).
Such a result is indicative of a situation where the trait similarity between closely-related taxa
accounts for the observed relationship between traits; at the scale of the whole tree, the traits
appear correlated, but within subclades they do not evolve together (Cantalapiedra et al. 2014).
These non-significant PGLS regressions show that large body size, hypsodonty, and toe
reduction did not evolve as a linked suite of characters, as would be expected according to the
hypothesis that all three were progressive adaptations to grassier environments.

4.3 Selective pressures on equids ranging across habitat types
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Given the lack of habitat partitioning between trait groups found here, alternative drivers
for the evolution of large body size, hypsodonty, and monodactyly should be considered. Body
mass evolution may have been influenced by evolutionary dynamics other than environmental
adaptation. For instance, increase in equid body size could have been driven by competition
within habitats, either between horse species or with other herbivores. Finer-scale habitat
partitioning based on differential spatiotemporal resource use, like that found in modern grazers
by Owen-Smith et al. (2015), could have created localized selection on the body size of
sympatric equids. Ruminant artiodactyls, which rose in abundance through the Miocene, would
have competed with equids for browse; since these other herbivores came to dominate the middle
body sizes at the same time as equid body size increased, competitive displacement could
explain the pattern (Janis et al. 2002). Though equids across trait groups shared habitats, habitat
partitioning between equids and artiodactyls, whose different foregut-fermenting digestive
strategy allows for superior processing of higher-quality leaves, could have pressed equids into
new environmental conditions (Janis 2008). Alternatively, increase in body size could be due to
random increase in trait variation over evolutionary time. Evolutionary diffusion within the equid
lineage, which started with species of small size, would lead the maximum and average body
size to increase over time (Gould, 1988). Shoemaker and Clauset (2013) found that 92% of the
increase in horse body mass could be explained by random diffusion; they propose that short
term selective effects on specific populations’ body size caused size increases and decreases,
fueling this diffusion. In this case, small-scale trait changes in populations could occur across
groups sharing overall habitat distributions and sum up over time to create the larger trait

changes previously attributed to differential environmental selection.
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The "grit not grass" hypothesis provides a viable alternative explanation for the evolution
of hypsodonty. High-crowned teeth could have evolved not in equids sequestered in grassy
habitats but in equids eating a variety of types of vegetation covered in grit or ash from arid
surrounding environments (Jardine et al., 2012; Stromberg et al., 2013). Mihlbachler et al. (2011)
found a wide range of mesowear scores within most fossil horse species. This result supports a
lack of habitat partitioning because it shows that all individuals within each species or genus
were not necessarily eating the same foods. Selection for increased crown height due to high
levels of tooth wear was not constant; as wear varied between populations, selection for
hypsodonty would have been episodic, resulting in evolution of higher crowns in specific
environments with high levels of exogenous grit or abrasive vegetation (Mihlbachler et al.,
2011). Furthermore, tooth wear analyses show that equids were eating grass long before they
evolved high levels of hypsodonty (Semprebon et al., 2016). Without habitat partitioning,
hypsodonty may have been selected for in varying degrees as species ranged across
environments, perhaps due to wear by grit in areas of decreased precipitation.

Evolutionary mechanisms for changes in toe number have not been tested as thoroughly
as the other two major traits. The reasoning of Shotwell (1961) and Renders (1984), that
tridactyly was advantageous for traction in dodging maneuvers and stability in muddy substrates,
has not been tested. The advantage of toe reduction for running speed or locomotor efficiency
based on decreased limb inertia has gained some support, and having a single robust digit rather
than several smaller ones may be advantageous for resisting bending forces — particularly as
body mass increases (Thomason, 1986; McHorse et al., 2017). It is possible that reduction in toe
number was adaptive not just in the context of running through open grasslands but that other

selective pressures, which would apply across the range of habitats shown to be inhabited by
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most equids, were involved. Given the increase in aridity that occurred in the Miocene, the
advantage of having three toes in wet substrates may have decreased in importance (Polly and
Head, 2015). As with hypsodonty and body size, it is possible that changes in digit state could
have been selected for in small-scale, specific contexts within the range of habitats occupied by
each equid group.
5. Conclusions

Our results challenge the long-standing hypothesis that derived equid traits — large body
size, high-crowned teeth (hyposonty), and a single toe (monodactyly) — evolved as a suite of
adaptations to the spread of grassland environments in North America. At the spatial and
temporal scale analyzed here, we find no evidence for long-term differentiation in habitat use
between equids with more- or less-derived traits. Although equid species living in sympatry
during the Miocene and Pliocene may have utilized different resources at finer spatial and
temporal scales (e.g. specific dietary/ behavioral adaptations), our results indicate that horses
with derived traits were not found differentially in grassland habitats. This indicates that the
selective pressures leading to the evolution of derived horse traits did not exclusively arise due to
changes in broad-scale habitat use. While cluster analyses show some ecological guilds sharing
derived traits, the habitat distributions of those guilds are broadly similar to those of guilds
containing equids with fewer derived traits. Furthermore, models correcting for phylogenetic
relatedness show that the evolution of large body size, hypsodonty, and monodactyly is not
correlated. The lack of habitat partitioning found here suggests that these equid traits did not
evolve within a single strict selective regime in newly-opened grasslands; instead, they were the
product of a complex set of heterogeneous selective pressures encountered in the various habitats

shared by Miocene-Pliocene equids.
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