

1 **Niche modeling reveals lack of broad-scale habitat partitioning in extinct horses of North**
2 **America**

3 Abigail K. Parker^{a,1,2,*}, Brianna K. McHorse^{a,b,2}, and Stephanie E. Pierce^{a,*}

4 ^aMuseum of Comparative Zoology and Department of Organismic and Evolutionary Biology, 26
5 Oxford Street, Cambridge, MA, USA.

6 ^bConcord Field Station, Department of Organismic and Evolutionary Biology, Harvard
7 University, Bedford, MA, USA

8 ¹Current address: Museum of Zoology and Department of Zoology, University of Cambridge,
9 Downing Street, Cambridge, UK.

10 ²Authors contributed equally

11 *Corresponding authors: Abigail K. Parker akp45@cam.ac.uk and Stephanie E. Pierce
12 spierce@oeb.harvard.edu

13 **Abstract**

14 The classic traits of modern horses (Equidae) – large body size, high-crowned teeth
15 (hypodonty), and a single toe (monodactyly) – are often considered adaptations to grassland
16 environments. However, extinct horses that varied in these three traits overlapped geographically
17 for millions of years during the Miocene and Pliocene. It has been hypothesized that co-
18 occurring horse species partitioned habitats, with large-bodied, hypodont, and monodactyl
19 equids dominating open grasslands, while equids with different combinations of traits lived in
20 more wooded areas. We tested for the presence of broad-scale habitat partitioning by compiling a
21 large database of North American horse fossil occurrences with data on trait state (body size,
22 hypodonty index, and toe number) and paleoenvironment (derived from paleovegetation
23 records). Null modeling of niche overlap in each of the North American Land Mammal Ages of
24 the Miocene and Pliocene revealed that taxonomic and trait-based groups show no differences in
25 habitat occupancy. Cluster dendograms visualizing niche overlap showed that some ecological
26 guilds shared derived traits, but derived traits were not associated exclusively with grassland
27 habitats.

31 habitats. Trait values are not predicted by the proportion of grassland habitats in time bins.
32 Further, the three traits show no co-evolution across the equid tree when corrected for
33 phylogenetic relatedness. Together, these results suggest that the evolution of large body size,
34 hypsodonty, and monodactyly in equids was not due to a shared selective regime in response to
35 expanding grassland habitats; instead, these traits may have evolved separately, likely due to a
36 variety of small-scale selective pressures acting across the variety of habitats present in the
37 Miocene and Pliocene.

38 **Keywords**

- 39 • Equidae
- 40 • Paleoenvironment
- 41 • Monodactyly
- 42 • Hypsodonty
- 43 • Miocene
- 44 • Pliocene

45 **1. Introduction**

46 Extant horses (Equidae) are represented by a single genus of zebras, asses, and caballine
47 horses. This lack of taxonomic diversity belies an evolutionary history that spans nearly 60
48 million years, a few hundred species, and nearly 50 genera (Prothero and Schoch, 1989;
49 MacFadden, 1992). Equid evolution is historically explained by a shift from forests to grasslands
50 over the course of the Miocene (approximately 23 – 5.3 Ma) that drove steady evolution of the
51 hallmark traits of today's horses: large bodies, high-crowned teeth for grazing (hypodonty), and
52 a single digit (monodactyly) on elongated legs (Marsh, 1873; Shotwell, 1961; Eronen et al.,
53 2010; Orcutt and Hopkins, 2013). However, horse species that varied in these three traits

54 overlapped geographically for millions of years (MacFadden, 1992). For example, the Bone
55 Valley fauna of the late Hemphillian (approximately 5 Ma) had six sympatric horse species, four
56 tridactyl (three-toed) and two monodactyl (MacFadden et al., 1999). The coexistence of
57 sympatric horse species could have been supported by habitat partitioning, in which large-
58 bodied, hypsodont, monodactyl equids dominated open grasslands, while equids with other
59 combinations of traits lived in more wooded areas (MacFadden, 1992). Here, we test this
60 hypothesis by quantifying niche overlap between trait groups to see if extinct horse species of
61 North America partitioned habitats based on body size, tooth crown height, and digit state.

62 **1.1 Derived horse traits**

63 Increasing equid body size has been explained as a response to spreading grasslands
64 because larger body sizes arose coincident with the expansion of grassland-savanna habitats
65 (MacFadden, 1986). Grazing animals today often have larger body sizes than animals with other
66 diets, possibly because grassy vegetation eaten by grazers has lower nutritional quality and takes
67 longer to digest than leafy vegetation eaten by browsers (Gordon and Illius, 1994). As grassy
68 vegetation spread in North America, competition with ruminant artiodactyls for higher-quality,
69 more nutritionally-dense browse could have created a selective pressure for equids to increase in
70 body size so that they could survive on grassy vegetation of lower nutritional quality (Janis et al.,
71 2002). However, recent work has shown that selective pressure for larger body size may not have
72 been necessary to produce the body size trends seen in Equidae. Shoemaker and Clauset (2013)
73 found that over 90% of the changes in horse body size could be explained by diffusion-driven
74 mechanisms of trait diversification, rather than by competition.

75 Hypsodonty is widespread and characteristic of horses since the Miocene, and their
76 maximum hypsodonty level increased throughout the Miocene and Pliocene (Webb and Hulbert,

77 1986; Mihlbachler et al. 2011). Increased crown height has previously been seen as a response to
78 the advent of grazing behavior in equids as grasslands began to spread in North America around
79 the beginning of the Miocene (Stirton, 1947; MacFadden and Cerling, 1994). Grasses contain
80 silica phytoliths that may abrade teeth, increasing wear and endangering individuals whose teeth
81 have shorter crowns (McNaughton et al., 1985; Damuth and Janis, 2011). However, hypsodonty
82 is not necessarily an indicator of a grazing diet; for example, analysis of carbon isotopes and
83 tooth microwear of several species of hypsodont horses found evidence of grazing in small,
84 tridactyl species, while monodactyl species of similar tooth morphology instead ate leafy browse
85 (MacFadden et al., 1999). Additionally, it has not been shown that grass phytoliths abrade teeth;
86 modern ungulates do not avoid eating grasses with phytoliths (Damuth and Janis, 2011). The
87 idea that equid hypsodonty is an adaptation to grasslands is further undermined by the fact that
88 the appearance of hypsodonty in North American equids lagged 4-10 million years behind the
89 spread of grasslands inferred from phytolith data (Strömberg, 2006). A possible explanation for
90 this observed lag comes from the “grit not grass” hypothesis, which argues that hypsodonty
91 evolved later as aridity increased, leading to greater tooth wear as more gritty particles, such as
92 dust, were ingested along with food (Jardine et al., 2012; Damuth and Janis, 2011; Strömberg et
93 al., 2013).

94 Side toes in tridactyl horses have been hypothesized to confer stability on slippery or
95 uneven substrates, prevent deep sinking in mud (Sondaar, 1968), or allow for agility in
96 negotiating around obstacles in woodland or wooded savanna environments (Shotwell, 1961).
97 Fossil tracks of *Hipparrison* from the Pliocene of Tanzania show imprints of the side toes,
98 supporting the hypothesis that the side toes acted to stabilize the foot when it was sliding in mud
99 (Renders, 1984). The hoofs of reduced side toes would only touch the ground when the horse’s

100 full weight was on one foot, potentially giving it greater traction to maneuver around obstacles
101 (Shotwell, 1961). In open grasslands, with fewer obstacles to dodge, the main requirement for
102 locomotion has been hypothesized to be either for straight-line speed to escape predators
103 (Shotwell, 1961; Simpson, 1961) or for increased efficiency in locomotion (Janis and Wilhelm,
104 1993). Because lower mass at the distal limb reduces inertial forces and allows for lower energy
105 expenditure, elimination of the weight of the side toes could allow for faster and/or more
106 economical running (Thomason, 1986). Reduced digits and an enlarged center metapodial may
107 also have contributed to better resistance to the forces of locomotion at heavier body weights
108 (Camp and Smith, 1942; McHorse et al., 2017). Shotwell (1961) suggested that the functional
109 difference between tridactyl and monodactyl feet should lead to habitat partitioning in co-
110 occurring horses with different toe numbers and that equids with more reduced toes lived in
111 grassier habitats.

112 **1.2 Study aim**

113 Our primary aim was to characterize the environmental distributions of Miocene and
114 Pliocene horses with different traits to determine if they lived in distinct habitats. If the
115 expansion of grasslands drove the evolution of modern horse traits, including large body size,
116 hypsodonty, and monodactyly, we hypothesized that horses with derived traits would be found in
117 grasslands more frequently than contemporaneous horses with less-derived traits (i.e., evidence
118 of habitat partitioning). To test this hypothesis, we used null modeling of ecological niche
119 overlap between habitat types to test whether horses with more-derived and less-derived traits
120 partitioned habitats. Further, we used visualizations of guild structure and trait evolution to
121 examine the relationship among traits and between traits and the environment. If trait groups
122 were living in different habitat distributions, we expected to see ecological guilds of equid

genera with derived traits restricted to grassland habitats. At the spatial and temporal scale studied, our results question the assumption that equids with large body size, hypsodont teeth, or monodactyl limbs lived in grassier environments than their contemporaries.

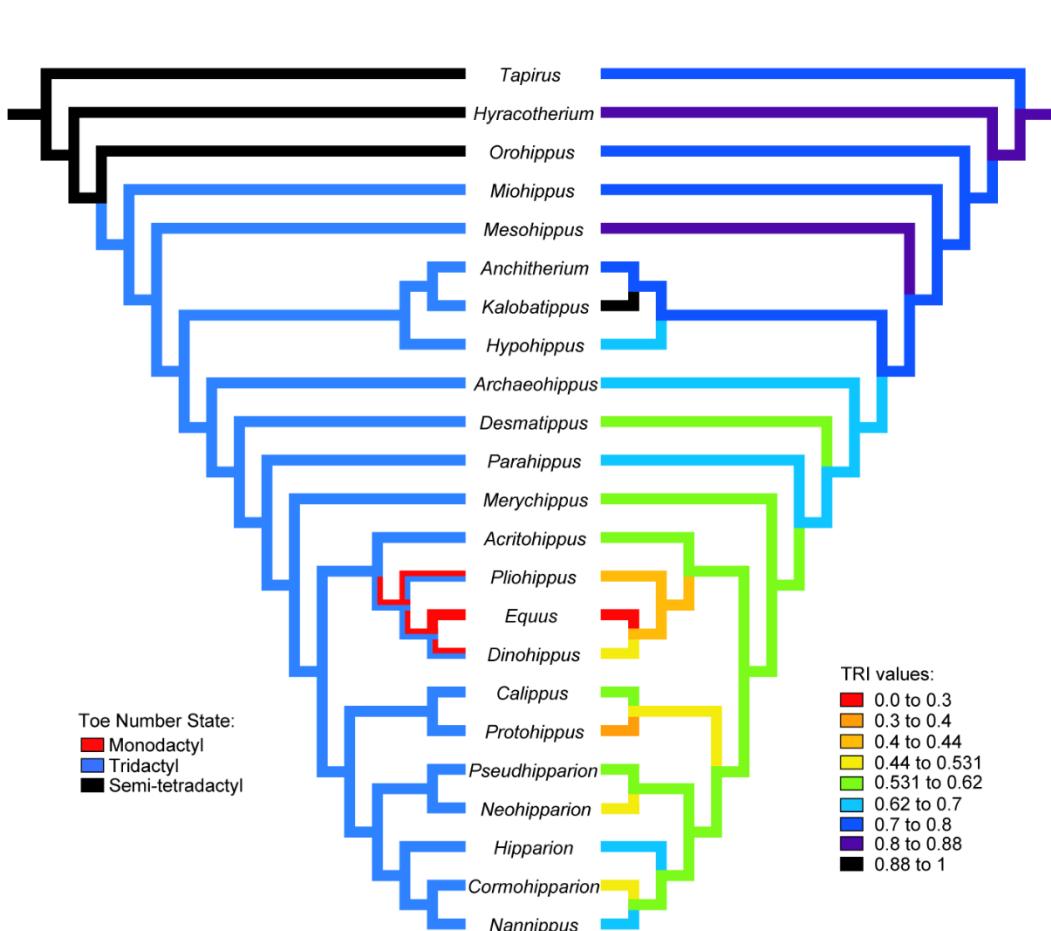
2. Materials and methods

2.1 Equid occurrence data

Our dataset includes 7673 occurrences of horse fossils (Family Equidae) from North America, most identified to the species level, ranging in age from 55.8 Ma to Recent. In total, our dataset includes 39 genera and 210 species that range across the Miocene and Pliocene. Occurrence data were obtained primarily from the Paleobiology Database (n = 3,445) from a search on 3 February, 2016 for Family Equidae in North America and from the Miocene Mammal Mapping Project (“MioMap,” Carrasco et al. 2005) (n=3,820), with the remaining occurrences (n = 408) coming from the following literature sources: Fraser and Theodor (2013), MacFadden et al., (1999), Mihlbachler et al., (2011), and Voorhies (1990). We updated the taxonomical assignment of every fossil occurrence in our database to a currently accepted genus/species. To ensure that occurrences present in both the Paleobiology Database and MioMap database were not counted twice, we deleted occurrences from the MioMap data which overlapped with Paleobiology Database occurrences in county, formation, and genus and also those occurrences from the same genus from locations less than 10 kilometers apart. Each occurrence was identified in time to a North American Land Mammal Age (NALMA). Of the 7673 total occurrences in our dataset, 4879 were assigned to NALMA time bins in the Miocene and Pliocene and were used in subsequent analyses. In the NALMAs considered, 3518 occurrences were assigned to paleoenvironments for EcoSimR analysis (see section 2.4). The

146 dataset we provide here includes all occurrences irrespective of time/environment assignment in
147 hopes of providing a potential database for future studies.

148 **2.2 Trait data**

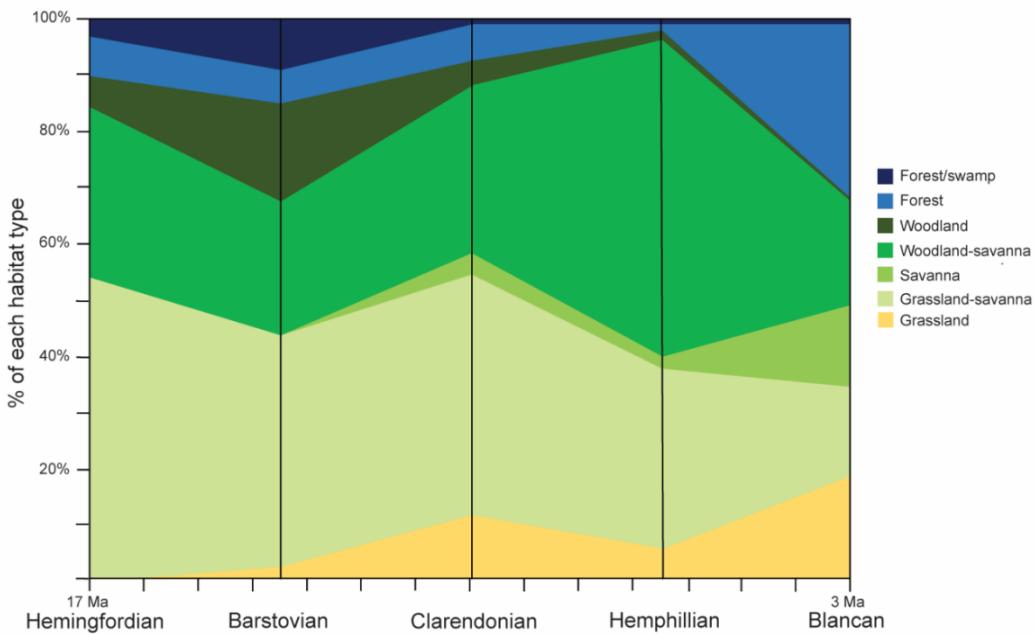

149 **2.2.1 Body Size:** Body size reconstructions came from literature sources (MacFadden 1986,
150 MacFadden and Hulbert 1990, Damuth 1990, Scott 1990, Hulbert 1993, Alberdi et al. 1995,
151 Robinson and Redford 1986, fossilworks.org). For species with no published estimated body
152 size, we reconstructed body masses using the regression equations from tooth measurements in
153 Janis (1990) and Damuth (1990). For most species, we used regressions based on the length,
154 width, and area of the first lower molar (m1) taking the average of 5 regression outputs: m1
155 length and area from Janis (1990) and m1 length, width, and area from Damuth (1990). For
156 species without m1 measurements, we reconstructed body mass using the regressions from
157 Damuth (1990) for length and width of the upper premolar 4 (P4), upper premolar 3 (P3), and
158 upper molar 1 (M1) and for area of P4 and M1, taking the average of regression outputs from
159 teeth with measurements available. Body mass values for each species and average values for
160 each genus can be found in Supplementary Data. Regression equations are available in Appendix
161 1. In figures where body mass is treated as categorical, we defined the categories as small (under
162 100 kg), medium (between 100 and 200 kg, inclusive), and large body (over 200 kg). These
163 assignments were determined based on data distribution, with similar numbers of genera in each
164 bin; such evenly-spaced body mass bins have been used in past studies such as Martin (2016)
165 and Ahrestani et al. (2016). Analyses of habitat partitioning by body size also tested other bin
166 divisions (see section 2.4).

167 **2.2.2 Tooth Morphology:** Hypsodonty index (HI) is a measure of relative tooth crown height
168 calculated by dividing molar crown height by the occlusal width of that tooth. We collected HI

169 values associated with specific specimens and species and calculated an average value for each
170 genus, using data from MacFadden et al. (1999), Mendoza and Palmqvist (2007), Mihlbachler et
171 al. (2011), Cantalapiedra et al. (2017), and Christine Janis (unpublished data). These sources
172 measured HI on the most unworn teeth available to avoid underestimating original crown height
173 due to wear, and on the third molar whenever possible. In figures where HI is treated as
174 categorical, we defined categories as brachydont (HI under 1.1), mesodont (HI between 1.1 and
175 3, inclusive), or hypsodont (HI over 3). In comparison to previous categorizations of hypsodonty
176 based on HI, these divisions give a wide range to the mesodont state, reserving the hypsodonty
177 category for very high-crowned taxa (Janis, 2008; Jardine et al., 2012). However, our analyses of
178 habitat partitioning by crown height also tested other divisions between these categories,
179 including those used by Jardine et al. (2012); these divisions are listed in section 2.4. HI values
180 for each species/genus can be found in Supplementary Data.

181 **2.2.3 Digit State:** We established the number of toes for each genus (and for each species in the
182 genera *Pliohippus* and *Dinohippus*, which comprise both tridactyl and monodactyl species). Each
183 species and genus was assigned to one of the following four categories: semi-tetradactyl (having
184 four toes on the front limbs and three toes on the hind limbs), tridactyl, variable
185 tridactyl/monodactyl (for species in which this trait varies), and monodactyl. While all four
186 categories were used in phylomorphospace and trait correlation analyses (see sections 2.6 and
187 2.7), only three of these categories were used in our habitat partitioning analyses because all of
188 the semi-tetradactyl species went extinct before the time period examined (Miocene-Pliocene). In
189 addition to toe number classification, we calculated Toe Reduction Index (TRI) values for 27
190 genera. TRI quantifies the extent to which the side toes are reduced in tridactyl horses; it is the
191 ratio of the proximal phalanx lengths of the central toe (digit III) to the side toes (digits II and

192 IV), ranging from 0 in monodactyl horses to 1 if the side toes are equal in size to the center toe
 193 (detailed in McHorse et al., 2017). Comparison between digit categorical and continuous TRI
 194 values across the horse phylogeny demonstrates how TRI captures a more nuanced picture of
 195 digit reduction (Fig. 1). Digit categories and TRI values for each species/genus can be found in
 196 Supplementary Data.


199 **Figure 1: Phylogenetic distribution of digit stat vs. Toe Reduction Index (TRI).** Left: a
 200 phylogeny of equids showing distribution of digit state (or number of toes). Right: the same
 201 phylogeny colored by TRI values, showing variation in side toe length. Cool colors indicate
 202 larger side toes, while warm colors indicate greater digit reduction with red denoting
 203 monodyactyly. Phylogenetic topology adapted from Jones (2016) and Fraser et al. (2015). Traits
 204 mapped in Mesquite v.3.31 (Maddison and Maddison, 2017) using Parsimony Ancestral State
 205 reconstruction.

206 *full color, 1.5 columns

207

208 **2.3 Habitat classification**

209 Paleoenvironments for each fossil occurrence were determined from literature data on
210 plant fossils, grass phytoliths, and paleosols. A list of all literature sources consulted to classify
211 habitats can be found in Appendix 2, and the Supplementary Data lists the source paper used to
212 assign the paleoenvironment of each occurrence in our database. Each equid occurrence site was
213 assigned to one of seven paleoenvironment categories: forest/swamp, forest, woodland,
214 woodland-savanna, savanna, grassland-savanna, and grassland. In general, the resolution of
215 habitat classification was at the level of sub-regions of states. We avoided assigning habitat types
216 from evidence based on mammal fossils, such as the inferences of grasslands based on
217 hypsodont teeth, which are common in the literature, as this would be circular logic. In total, we
218 classified the habitat present at deposition of 5,605 of the 7,673 fossil occurrences (73%); only
219 occurrences assigned to paleoenvironments were used in the EcoSimR (section 2.4) and guild
220 clustering analyses (section 2.5). The distribution of habitat classifications for each NALMA
221 considered is shown in Figure 2. A range of habitats were present at the fossil sites from all
222 NALMAs, indicating that no specific habitat characterized a particular time bin.

223

224 **Figure 2: Paleoenvironment classifications of equid fossil sites through time.** Stacked area
 225 graph showing the percentage of sites from our occurrence database classified into each habitat
 226 type for the five NALMAs analyzed.

227 *full color, 1 column

228 **2.4 EcoSimR analysis**

229 Habitat partitioning among extinct horses was assessed using the program EcoSimR
 230 (Gotelli et al. 2015). This program uses null modeling on an occurrence matrix to compare the
 231 average amount of niche overlap between pairs of taxa to the amount of overlap expected by
 232 random chance. The null model forms randomized matrices by shuffling the values in each row
 233 and calculates the niche overlap between rows. Comparing the average niche overlap between
 234 habitat categories of the randomly simulated matrices to the actual, observed overlap reveals
 235 whether the equids' community structure has more or less sharing of resource states than would
 236 be expected if each taxon used all resources randomly (i.e., no habitat partitioning). Here, niche
 237 overlap means the extent to which different groups share their distribution across the seven

238 paleoenvironment types to which occurrences were assigned. It should be noted that we are not
239 considering niche partitioning in the *sensu stricto* division of resources within a community, as
240 equid groups across all of North America throughout entire NALMAs were not in direct
241 competition with one another. Rather, our approach examines broad-scale habitat partitioning
242 across NALMAs to better understand if equids with varying traits lived in similar or different
243 habitat types across evolutionary time.

244 EcoSimR calculates the niche overlap between each pair of taxa or trait groups by using
245 the Czekanowski Index. This index, formulated by Feinsinger et al. (1981), is calculated using
246 the equation:

$$O_{12} = O_{21} = 1 - 0.5 \times \sum(P_{i1} - P_{i2}) \quad (1)$$

248 where O_{12} is the overlap between taxa 1 and 2, O_{21} is the reciprocal overlap between taxa 2 and 1,
249 P_{i1} is the fraction of occurrences of taxon 1 that occur in resource state i , and P_{i2} is the fraction of
250 occurrences of taxon 2 that occur in resource state i . \sum represents a sum of the calculation $(P_{i1} -$
251 $P_{i2})$ for all resource states (Albrecht and Gotelli, 2001). In our analyses, the resource states are
252 habitat categories. For taxa with identical resource utilization, the Czekanowski Index equals 1;
253 for taxa that share no resources, the Czekanowski Index is 0. EcoSimR calculates the
254 Czekanowski Index value for each pair of taxa and takes the average of all pairs to get the
255 observed overlap value for the matrix. We used the randomization algorithm RA3, which retains
256 niche breadth of each taxon.

257 We tested for niche overlap between genera and between species that varied in body size,
258 degree of hypsodonty, and toe number. Trait data at the species level was used to assign
259 occurrences to trait groups (defined below). North American Land Mammal Ages (NALMAs)
260 were used as time slices; NALMAs are subdivisions of the Cenozoic based on mammal faunas of

261 North America (Wood et al., 1941; Barnosky et al., 2014). We created EcoSimR input matrices
262 for the following NALMAs in the Miocene and Pliocene (the periods with the greatest diversity
263 of extinct horses): Hemingfordian (approx. 18.5-16.3 Ma), Barstovian (approx. 16.3-12.5 Ma),
264 Clarendonian (approx. 12.5-9.4 Ma), Hemphillian (approx. 9.4-4.7 Ma), and Blancan (approx.
265 4.7-1.4 Ma).

266 For the continuous variables of body size and HI, we ran analyses with different
267 numbers/sizes of bins to test the effect of how trait categories were divided. For body mass, we
268 tested for niche overlap between 3 bins (under 100 kg, 100 to 200 kg, and over 200 kg), 5 bins
269 (mass below 75 kg, 75 kg to 150 kg, 150 kg to 225 kg, 225 kg to 300 kg, and mass over 300 kg)
270 and 7 bins (mass below 50 kg, 50 kg to 100 kg, 100 kg to 150 kg, 150 kg to 200 kg, 200 kg to
271 250 kg, 250 kg to 300 kg, and over 300 kg). In all cases the lower boundary is inclusive. For HI,
272 we tested with our standard 3 bins ($HI < 1.1$, $1.1 \leq HI \leq 3$, $HI \geq 3$), an alternate 3-bin division adapted
273 from Jardine et al. (2012) ($HI < 1.7$, $1.7 \leq HI \leq 3.5$, $HI \geq 3.5$), a 2-bin division ($HI < 3$ and $HI \geq 3$), and
274 a 5-bin division ($HI < 1$, $1 \leq HI < 2$, $2 \leq HI < 3$, $3 \leq HI < 4$, and $HI \geq 4$).

275 EcoSimR returns P statistics showing where in the range of simulated values the
276 observed average overlap index value falls. It gives tail probabilities for the lower and higher end
277 of the simulated distribution. Tail probabilities $< .05$ indicate that the observed niche overlap is
278 lower or higher than random.

279 **2.5 Visualization of niche overlap**

280 We tested for the presence of ecological guilds – groups of taxa with high niche overlap
281 within the guild group and low niche overlap among groups – by creating cluster dendograms
282 nesting together equid genera based on similarity of their habitat category distributions (i.e.,
283 proportion of occurrences in each of our seven habitat types) using PRIMER 7 software (Clarke

284 and Gorley, 2015). Czekanowski Index of overlap between pairs of genera was calculated for
285 each NALMA and across the Miocene and Pliocene using EcoSim Professional (Entsminger).
286 Genera were clustered by their niche overlap using the single linkage agglomeration method with
287 the pairwise Czekanowski Index values (Clarke and Gorley, 2015, Martínez-Falcón et al. 2011).
288 Trait-based guild structure could then be detected by inspecting the trait states of genera
289 clustered together in the dendograms.

290 **2.6 Correlation of trait values to habitat type**

291 To further explore the relationship between derived equid traits and grassland
292 environments, we ran ordinary least squares regression (OLS) analyses. These analyses used the
293 percentage of habitats from each NALMA that were classified as grassland or grassland-savanna
294 as a predictor variable for the average value of each trait considered across the NALMAs.
295 Regressions were performed in R version 3.3.2 (R Core Team, 2016).

296 **2.7 Phylogenetic structure**

297 To consider the phylogenetic signal present in the evolution of equid body size,
298 hypsodonty, and toe number, we created trait-based phylomorphospaces in R using the package
299 ‘phytools’ (Revell, 2017). Each morphospace is defined by two of the three traits, with genera
300 plotted as points and the third trait indicated by their color. Points on the morphospace are linked
301 by their phylogenetic relationships, allowing identification of clades with unique or constrained
302 traits and indicating how traits have evolved together across the phylogeny. The phylogeny used
303 is a composite, following the topology of the time-scaled trees in Fraser et al. (2015) and Jones
304 (2016).

305 To quantify the extent to which each pair of the three traits varies together, we employed
306 both OLS and phylogenetic generalized least squares (PGLS) models. PGLS modelling takes

307 into account the expectation that more closely-related taxa will have more similar traits and
308 shows whether traits are correlated despite that effect of relatedness. These correlation analyses
309 were also run in R using the package ‘caper’ v.0.5.2; the PGLS used a branch length
310 transformation for Pagel’s Delta, which was found to indicate accelerating rates of trait evolution
311 in the equid tree (Orme et al., 2013).

312 **3. Results**

313 **3.1 Body size**

314 High niche overlap was found among body size bins in all NALMAs (Table 1). In the
315 Barstovian, Clarendonian, and Hemphillian, the observed average overlap index values were
316 significantly above the simulated distributions for all bin divisions. In the Hemingfordian, only
317 the 5 bin trial had a significantly higher overlap values than the simulations. In the Blancan, the 3
318 and 7 bin trials had significantly higher overlap than random. None of the NALMAs show lower-
319 than random niche overlap, so no habitat partitioning by body size is detected.

320 **Table 1: Niche overlap by body size categories.**

NALMA	Tail	3 Bins P statistic	5 Bins P statistic	7 Bins P statistic
Hemingfordian	Upper	.088	.0124*	.0702
Barstovian	Upper	.0002*	.0004*	.0002*
Clarendonian	Upper	.0002*	.0002*	.0002*
Hemphillian	Upper	.0002*	.0002*	.0002*
Blancan	Upper	.0184*	.1224	.0222*

321 Upper tail indicates which tail the overlap index falls towards; in this case, the upper corresponds
322 to higher-than-random overlap. Statistics marked with * are significant below .05.
323

324 **3.2 Hypsodonty index:**

325 High niche overlap was also found among brachydont, mesodont, and hypsodont horses
 326 using a variety of hypsodonty index binning methods (Table 2). In the Barstovian, Clarendonian,
 327 and Hemphillian, observed niche overlap was significantly higher than random for all trait bin
 328 divisions. In the Hemingfordian, the average niche overlap between these groupings, while high,
 329 fell within the range of average values for the null model of random overlap except in our first 3-
 330 bin trial, where overlap was significantly higher than simulated. In the 2- and 3-bin trials, only
 331 equids defined as hypsodont occurred in the Blancan; niche overlap between the 5 bin divisions
 332 was calculated, but the relative scarcity of occurrences in the lower HI categories (10 and 19
 333 occurrences vs. 368 in the HI > 4 category) means that the low side of random niche overlap
 334 value calculated is likely an inaccurate representation of how the habitat distributions of crown
 335 height categories in the Blancan compare.

336 **Table 2: Niche overlap by hypsodonty categories.**

NALMA	Tail	2 Bins P statistic	3 Bins P statistic	Jardine et al. (2012) 3-bin P statistic	5 Bins P statistic
Hemingfordian	Upper	N/A	.0204*	.1002	.0622
Barstovian	Upper	.014*	.0006*	.002*	.0068*
Clarendonian	Upper	.0324*	.0128*	.0034*	.0006*
Hemphillian	Upper	.033*	.0364*	.0078*	.0006*
Blancan	Lower	N/A	N/A	N/A	.3344

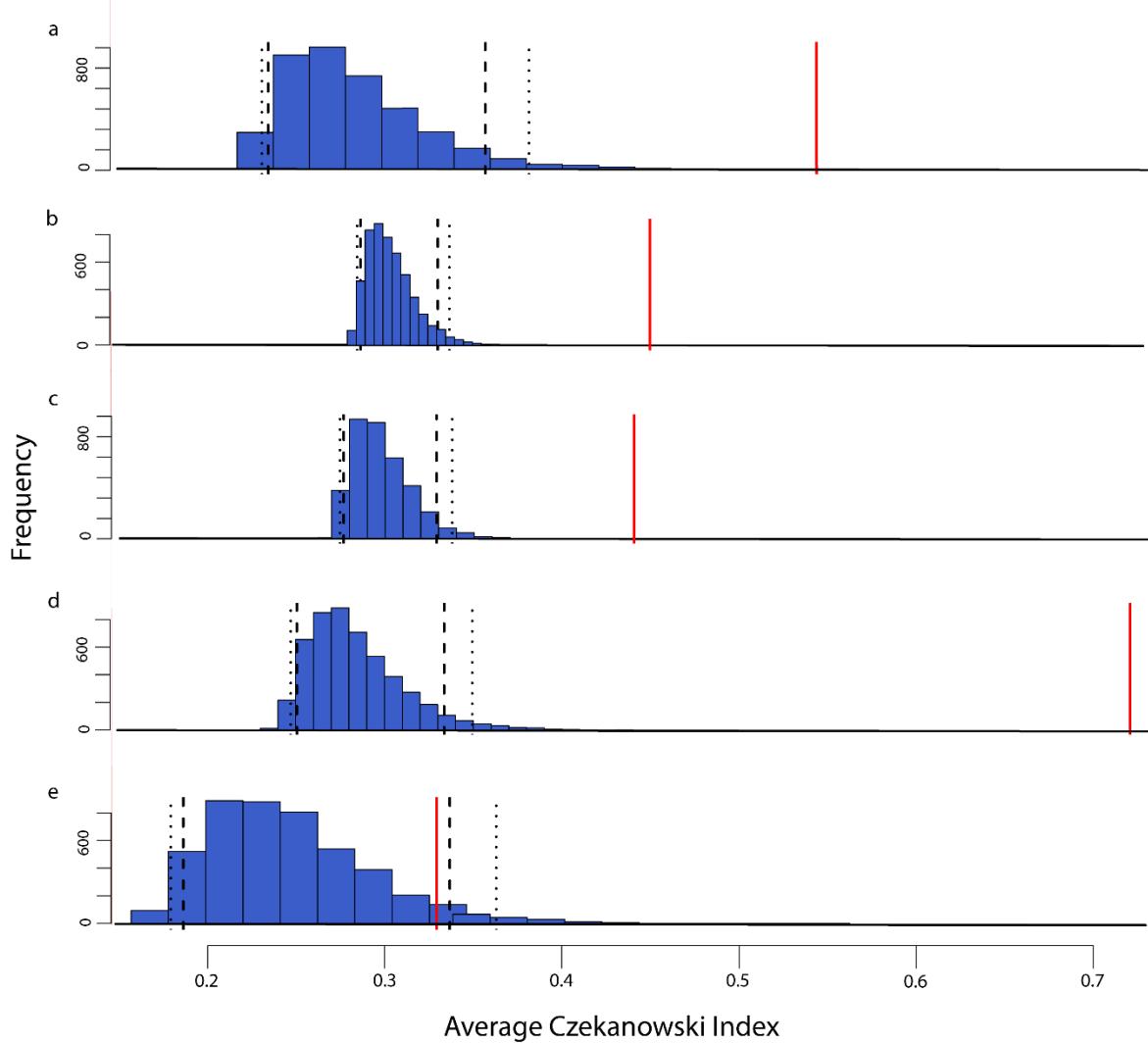
337 Statistics marked with * are significant below .05. N/A indicates NALMAs where there were
 338 insufficient occurrences in more than one hypsodonty category to run analyses.

339 **3.3 Toe number:**

341 The three toe number categories tested for habitat partitioning – tridactyl, variable
 342 monodactyl/tridactyl, and monodactyl – had high niche overlap (Table 3). This result was found

343 in all NALMAs. In the Barstovian and Hemphillian, the average niche overlap was significantly
344 greater than in the random simulations, but the other NALMAs also had average niche overlap
345 values on the high end of the range found in the simulations. Since habitat partitioning requires
346 significantly lower than random niche overlap, none of the NALMAs show habitat partitioning
347 by toe number.

348 **Table 3: Niche overlap by toe number.**


NALMA	Tail	P statistic
Barstovian	Upper	.005*
Clarendonian	Upper	.1442
Hemphillian	Upper	.0004*
Blancan	Upper	.0544

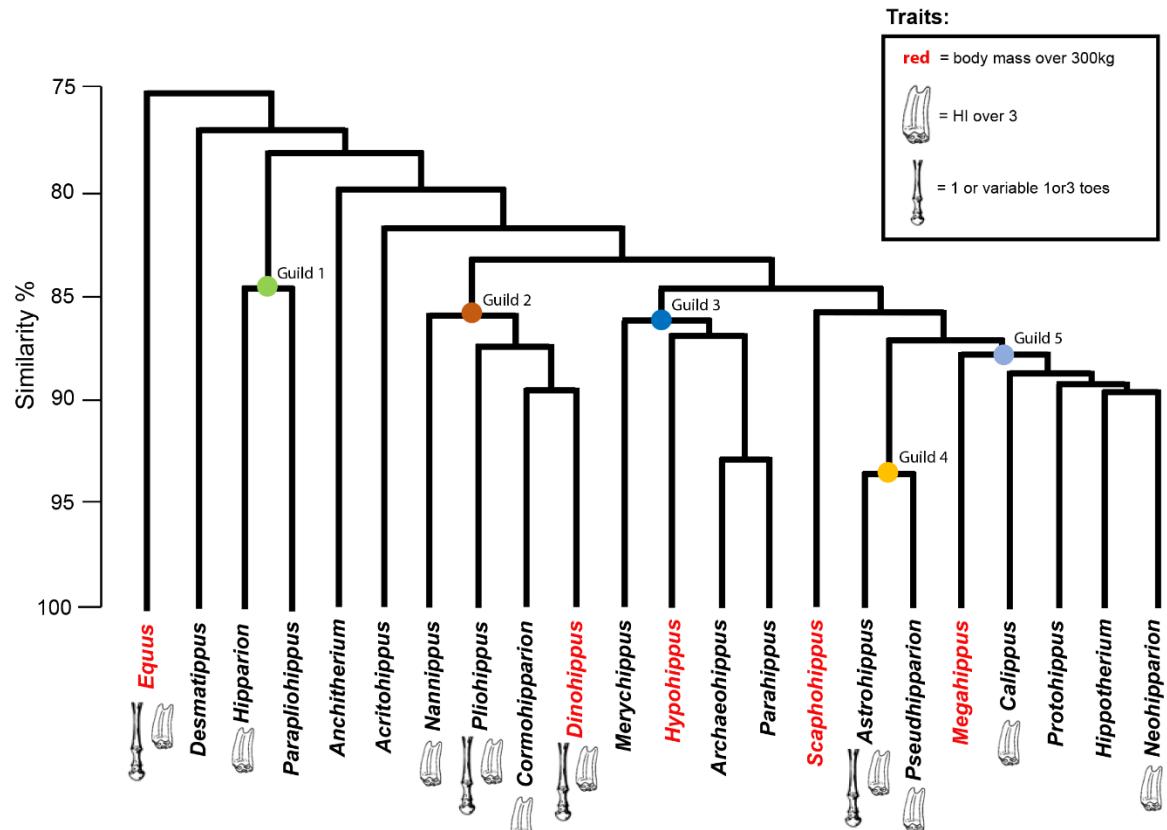
349 Statistics marked with * are significant, below .05.

350

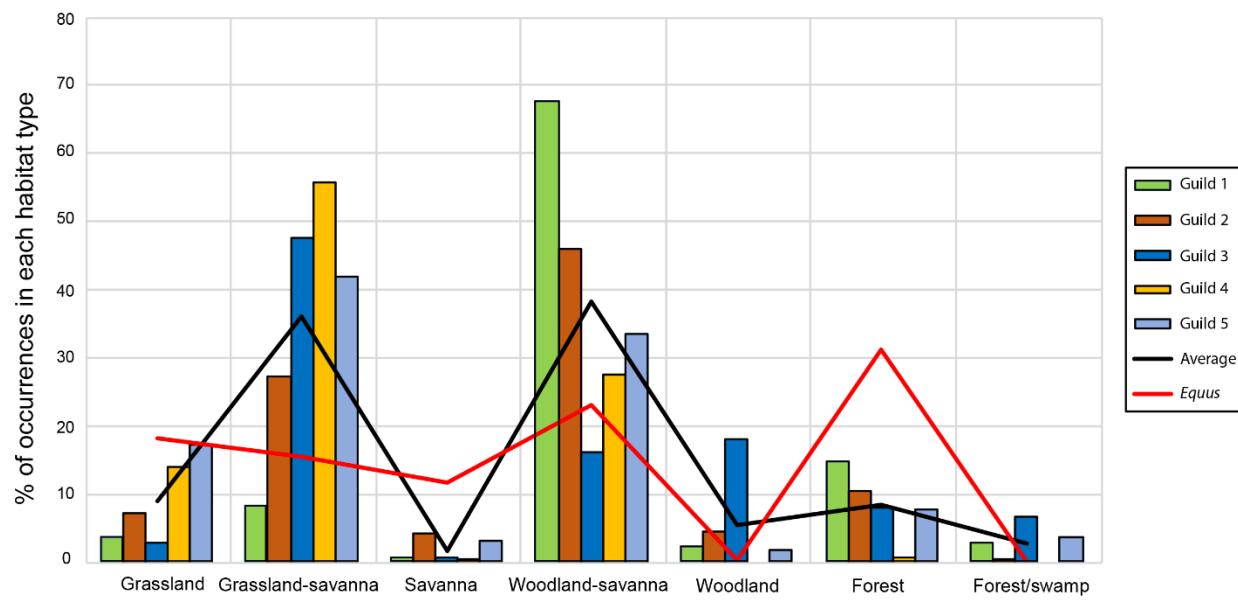
351 **3.4 Taxonomic overlap**

352 High niche overlap was found among genera in each NALMA. For all NALMAs except
353 the Blancan, the average overlap index was significantly higher than the distribution of overlap
354 index values in the null model (Fig. 2). In the Blancan, the observed niche overlap was still on
355 the high end of the distribution (p value for Czekanowski index value \geq simulated = 0.058); no
356 evidence for habitat partitioning between genera was found.

Figure 3: Taxonomic (genera) niche overlap vs. null model distribution. Average overlap index values from EcoSimR randomized simulations (i.e., null model; blue bars) and observed index values (red lines) for a) Hemingfordian, b) Barstovian, c) Clarendonian, d) Hemphillian, and e) Blancan. The thin-dashed and thick-dashed lines show the one-tailed and two-tailed 95% confidence intervals of the simulated index values, respectively.


*full color, 1.5 columns

3.5 Clustering by niche overlap


Cluster analysis shows which genera had the most similar habitat distributions, grouping them into ecological guilds. Figure 4 shows all genera with more than 5 occurrences in the Miocene and Pliocene clustered by their pairwise Czekanowski indices. While genera with large

370 body size are scattered across the tree, the hypsodont and monodactyl genera fall in some
371 apparent clusters sharing habitat distributions. The nodes labelled 2 and 4 on Figure 4 are
372 potential guilds of horses with derived traits. Guild 4 stands out from the others in living in less
373 wooded habitats; less than 1% of these genera's occurrences are in woodlands, forests, or
374 forest/swamp. Guild 2, however, shows quite an average habitat distribution, which is very
375 similar to that of guild 5, except that guild 5 was found in slightly more grassland-savannas,
376 while guild 2 was found in more woodland-savannas. Guild 1 was overwhelmingly found in
377 woodland-savanna habitats (67.6% of occurrences). Guild 3, which is plesiomorphic in
378 containing brachydont and tridactyl genera, was found more in woodlands and less in woodland-
379 savannas than the other guilds, though it still occurred frequently in grassland-savannas. It is
380 important to note the y axis scale of Figure 4; the "similarity" values of 75% and above mean
381 that each genus had a Czekanowski Index value of over 0.75 with another genus or guild of
382 genera. The habitat distributions of all genera are very similar, as confirmed in Figure 3, though
383 this cluster dendrogram allows us to parse out which are the most similar.

a)

b)

384
385 **Figure 4: Clustering by niche overlap. a)** Cluster dendrogram nesting all equid genera from the
386 Miocene and Pliocene based on similarity of their habitat distributions. Genera with the traits of
387 large body size, hypsodonty, and monodactyl are marked, and selected guilds labelled. b) Bar
388 graph showing the percentage habitat occupancy of selected guilds, with the average habitat
389 distribution and that of *Equus* marked as lines.
390

*full color, 2 columns

391

392 **3.6 Correlation of traits and habitat**

393 There was no relationship found between derived traits and the prevalence of grassland
 394 habitats across the NALMAs (Table 4). Although a significant relationship between TRI and
 395 both body size and HI was recovered, after correcting for phylogenetic relatedness, no pairs of
 396 traits showed a significant relationship (Table 5).

397

398 **Table 4: Linear models of the relationships between trait values and percent grasslands.**

Comparison	Equation from GLM	R ²	P value
log(m _b) ~ % grassy	log(m _b) = 500.171 -7.193* (% grassy)	0.3359	0.1805
HI ~ % grassy	HI = 7.72458 -0.10175* (% grassy)	0.3479	0.1748
TRI ~ % grassy	TRI = -0.26685 + 0.01631* (% grassy)	0.2583	0.2196

399 Best-fit equations describing the relationships between the average values of each trait per
 400 NALMA and the proportion of sites with grassland habitats, with their R² values. m_b = body
 401 mass, % grassy = percentage of equid fossil sites whose paleoenvironments are classified as
 402 grassland or grassland-savanna. The p values show the significance of the relationship;
 403 significance is defined as below .05.

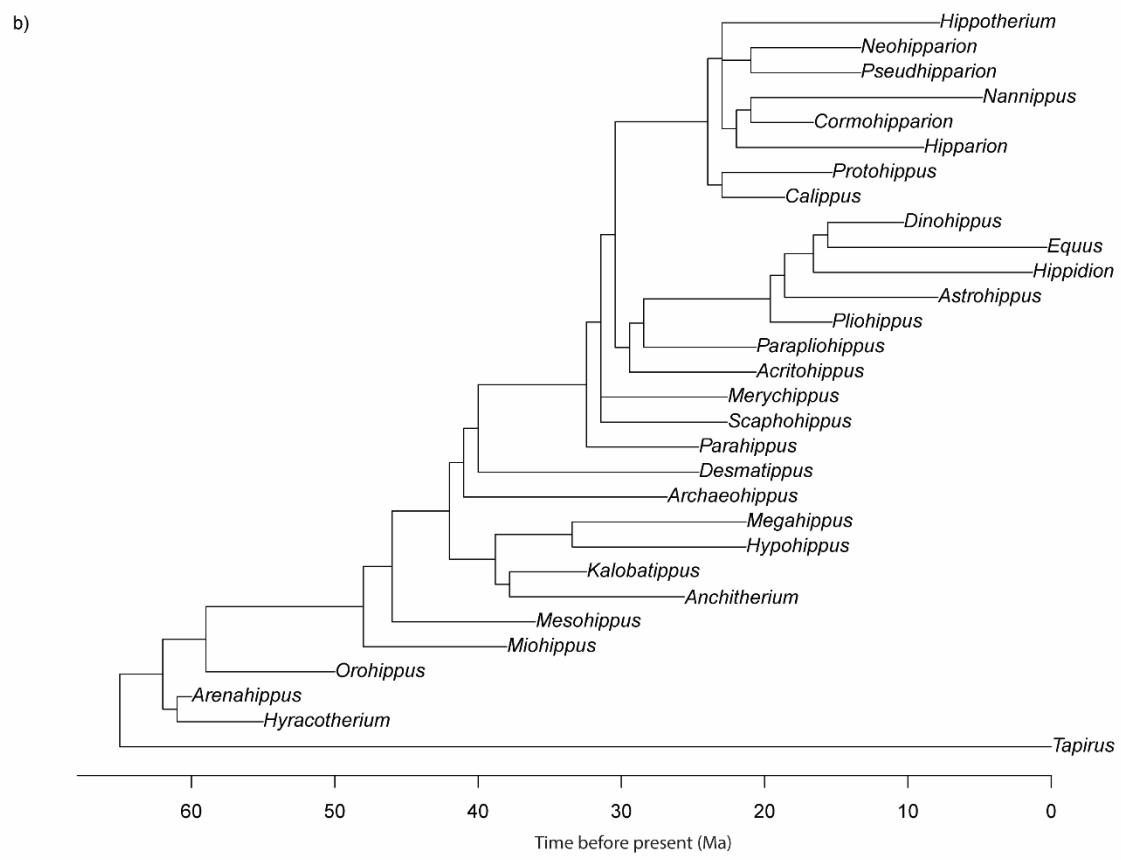
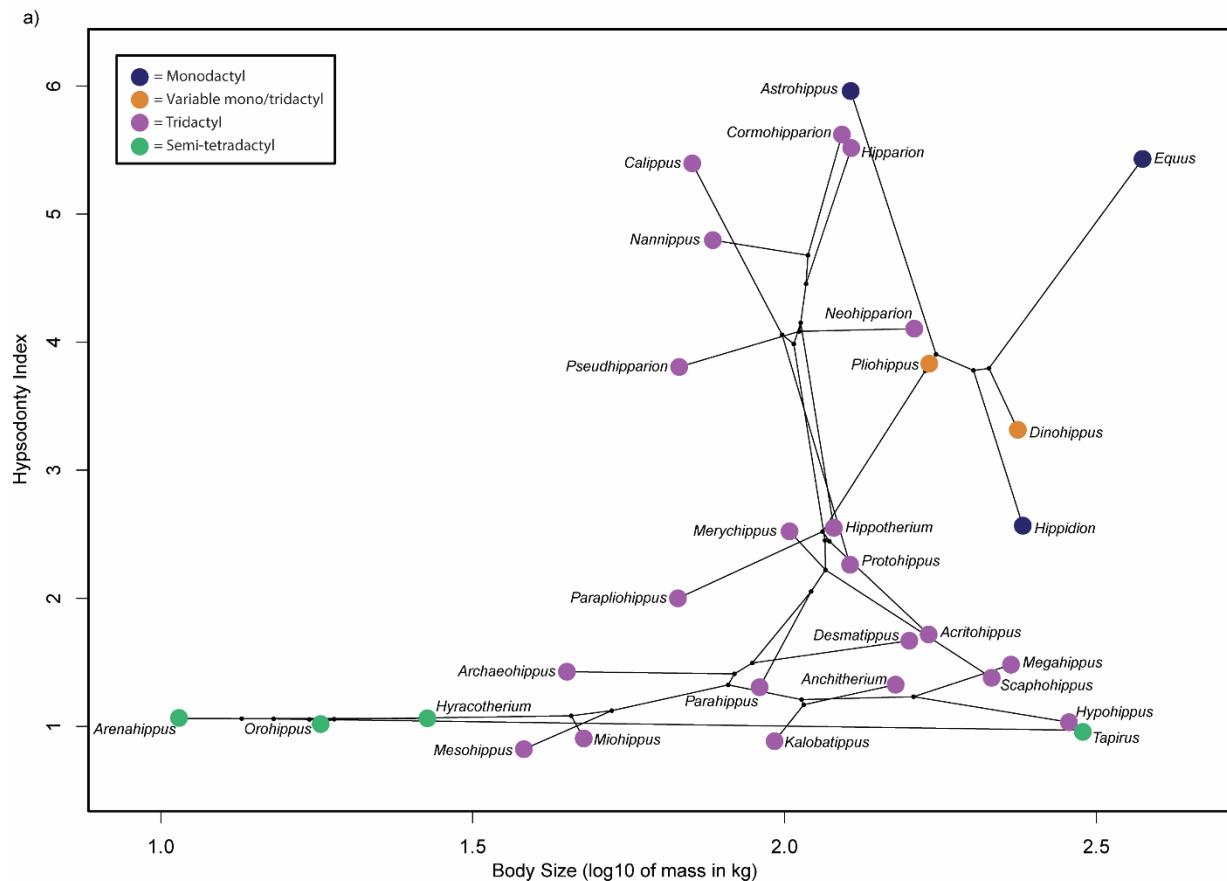
404

405 **Table 5: Models of trait correlation.**

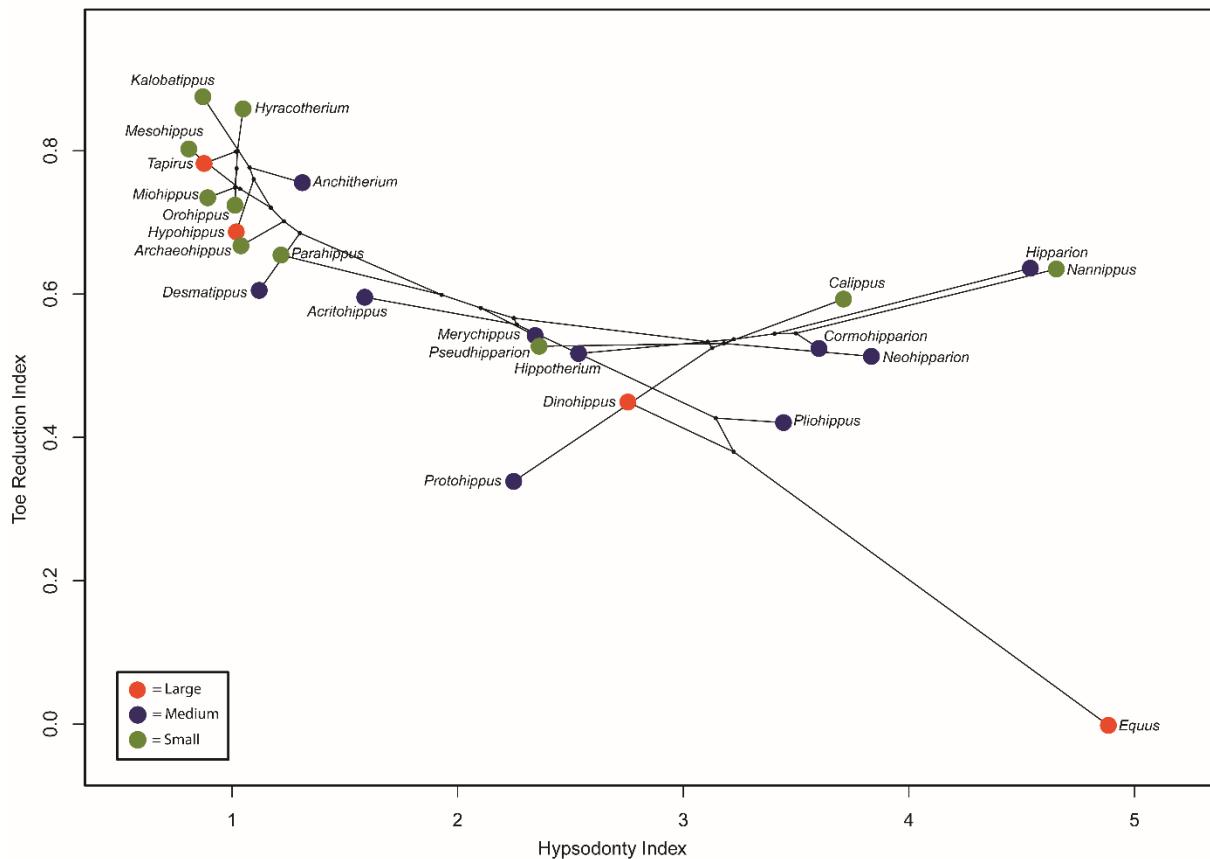
Comparison	Equation from non-phylogenetic GLM	R ²	P value	Equation from PGLS	R ²	P value
TRI ~ log(m _b)	TRI = 1.085 - 0.239(log(m _b))	0.324	0.0019*	TRI = 1.035 - 0.149(log(m _b))	0.092	0.159
TRI ~ HI	TRI = 0.79642 - 0.0826(HI)	0.413	0.0007*	TRI = 0.866 - 0.0459(HI)	0.076	0.205
HI ~ log(m _b)	TRI + 1.5086 - 0.718(log(m _b))	0.124	0.0662	HI = 0.832 + 0.146(log(m _b))	0.002	0.81

406 Best-fit equations describing the relationships between pairs of trait values (m_b = body mass),
 407 with their R² values. The p values show the significance of the relationship; those marked with *
 408 are significant below .05.

409



410 **3.7 Phylomorphospaces**

411


412 Phylomorphospaces reveal how traits are distributed across the horse phylogeny. We
 413 included pre-Miocene semi-tetradactyl horses in these analyses to track the evolution of digit
 414 reduction. In general, phylogenetic structure is low. The modern tapir, used as an outgroup, is
 415 clearly demarcated by its large body size but low-crowned teeth and minimal toe reduction (Figs.

416 5-7); however, its location in trait space is very similar to *Hypohippus*, a pony-sized, tridactyl
417 horse. In Figure 5, the earliest-branching semi-tetradactyl equids are clustered in the small body
418 size and low-crowned teeth area of morphospace, while a clade of monodactyl equids dominate
419 the morphospace of highest body size and hypsodonty. However, the tridactyl genera that make
420 up most of the equids' diversity span a wide range of trait values.

421 Phylomorphospaces based on Toe Reduction Index are more suggestive of linked trait
422 evolution (Figs. 6 and 7). In Figure 6, the most basal brachydont equids are clustered with low
423 body size and high TRI values (indicating minimal toe reduction), while the latest-branching
424 genera are the largest with the most reduced toes. The genera in between (excluding the tapir) are
425 clustered loosely around a line of negative slope, representative of trait correlation. However, the
426 taxa in each crown height category scatter widely across the TRI-body size space. The TRI-HI
427 phylomorphospace in Figure 7 shows a similar linear trend with limited phylogenetic control
428 over where genera fall in the morphospace. Beyond clustering apparent in the earliest equids
429 (with high TRI and low HI), the branches of the phylogeny scatter widely, showing high levels
430 of trait evolution between some closely-related taxa.

447
448
449 **Figure 7: Phylomorphospace showing evolutionary relationships between HI and TRI.**

450 Colors mark the category of reconstructed body size for each genus. Black lines and nodes
451 connecting taxa represent the phylogenetic tree of these genera with reconstructed ancestral
452 nodes.

453 * Full color, 2 columns

454

455

456 **4. Discussion**

457 **4.1 Lack of habitat partitioning among trait groups**

458 Our EcoSimR analyses find no support for habitat partitioning in extinct horses with
459 different traits at the spatial and temporal scale of this study. This result holds across all
460 NALMAs and traits considered, regardless of bin size. While not all results showed significantly
461 higher overlap than random, those that fell within the range of the null model had P statistics
462 indicating niche overlap at the higher end of random. In no case was there statistical support for

463 habitat partitioning. This finding is inconsistent with the hypothesis that derived equid traits –
464 large body size, high-crowned teeth, a single toe – arose as adaptations to grassland habitats
465 (Shotwell, 1961; Eronen et al., 2010; Orcutt and Hopkins, 2013). Equids with these derived traits
466 were not found in grasslands more often than those without the derived traits. In fact, our results
467 show that the diverse, morphologically varying horse taxa of the Miocene and Pliocene had
468 similar distributions across habitat types. This overlap in habitat occupation suggests that the
469 evolution of new equid traits in some taxa was not due to exposure to different broad-scale
470 environmental conditions.

471 Our cluster analyses, which visualize guild structure by showing which genera overlap
472 most in their habitat distributions, show some grouping in the habitat preferences of genera with
473 derived traits. Specifically, the guilds labelled 2 and 4 in Figure 4a contain monodactyl and
474 hypsodont genera. However, only guild 4 shows a habitat distribution skewed away from closed
475 forests relative to the other guilds. The guilds including genera with more mixed and
476 plesiomorphic traits still occur frequently in grassland-savanna sites, with the exception of guild
477 1 which is found almost exclusively in woodland-savannas. While this clustering suggests that
478 some hypsodont and monodactyl equids shared habitat distributions to the exclusion of less-
479 derived taxa, the habitat distributions of all guilds are generally similar, as visualized by their
480 proximity to the average line on Figure 4b. This finding of trait-based guild structure is not
481 accompanied by clear differential grassland occupation by derived genera, as would be expected
482 if selective pressures in open habitats were crucial to the evolution of these traits. Modelling of
483 the influence of grassland habitats at equid sites on trait values confirms that grassy habitats are
484 not linked to derived traits (Table 4). Across the NALMAs considered, changes in the proportion

485 of equid fossil sites classified as grasslands do not correlate to changes in trait values, further
486 challenging the hypothesis that the spread of grasslands lead to trait evolution.

487 An important limitation of this study is the resolution of the paleoenvironment data
488 currently available. The paleobotanical, phytolith, and paleosol sources used in this study
489 (Appendix 2) provide habitat designations for areas generally several counties in size and in time
490 slices the length of North American Land Mammal Ages. This level of resolution (spatial or
491 temporal) may not be fine enough to reveal smaller-scale (e.g. functional and/or behavioral)
492 habitat partitioning, if it did occur. Modern grazing ungulates have been observed sharing home
493 ranges and habitats, but exhibiting different patterns of foraging area use such as moving
494 between vegetated areas at different rates (Owen-Smith et al. 2015), which could allow for
495 division of resources between groups that would certainly be assigned to the same habitat at the
496 spatial scale of our data. Shotwell (1961) proposed that monodactyl and tridactyl horses living
497 together in savanna environments partitioned within the habitat such that monodactyl taxa
498 utilized the more open areas in the savanna, while tridactyl ones lived amongst more dense trees
499 and shrubs. If such small-scale environmental patchiness was the true level at which horses were
500 partitioning habitats, our analyses based on classifications of larger areas may have been unable
501 to detect it. Given the number of equid species living in sympatry in this period, some form of
502 temporal or behavioral partitioning of resources may have occurred at a finer scale. What our
503 broad-scale data does show is that equids grouped by body size, hypsodonty, and toe number
504 categories were not living in significantly different habitat types in any NALMA.

505 To learn more about how the specific niches occupied by species differed, further
506 examination of habitat partitioning using paleoenvironment data at finer spatial and temporal
507 scales is required. Fieldwork in regions with many horse fossils from a series of sites would

508 allow future analyses of plant fossils, phytoliths, and/or paleosols to show fine-scale differences
509 in the habitats occupied by different equids. Assumptions that sites yielding large, hypsodont, or
510 monodactyl horses represent open paleoenvironments are common in the literature (e.g., Fraser
511 and Theodor, 2013), but to establish an unbiased connection between horse traits and habitat
512 type, descriptions of heterogenous plant assemblages from equid-bearing localities must be
513 made.

514 **4.2 Correlation of traits across the phylogeny**

515 The phylomorphospaces illustrate little phylogenetic constraint on body size, tooth
516 morphology, or digit state (Figs. 5-7). This result is in accord with Cantalapiedra et al. (2017),
517 who found considerable overlap among equid clades when their phylogeny was plotted on the
518 axes of body size and hypsodonty index. Use of the Toe Reduction Index (TRI), which captures
519 more subtle differences in digit morphology, allowed us to parse out how increased reduction of
520 the side digits relates to the other traits (Figs. 5-6); standard OLS modeling confirms that TRI is
521 significantly related to both body size and HI (Table 5). However, PGLS analysis reveals that
522 when expected trait similarity between closely-related taxa is taken into account, the potential
523 co-evolutionary relationships between TRI and the other two traits are not significant (Table 5).
524 Such a result is indicative of a situation where the trait similarity between closely-related taxa
525 accounts for the observed relationship between traits; at the scale of the whole tree, the traits
526 appear correlated, but within subclades they do not evolve together (Cantalapiedra et al. 2014).
527 These non-significant PGLS regressions show that large body size, hypsodonty, and toe
528 reduction did not evolve as a linked suite of characters, as would be expected according to the
529 hypothesis that all three were progressive adaptations to grassier environments.

530 **4.3 Selective pressures on equids ranging across habitat types**

531 Given the lack of habitat partitioning between trait groups found here, alternative drivers
532 for the evolution of large body size, hypsodonty, and monodactyly should be considered. Body
533 mass evolution may have been influenced by evolutionary dynamics other than environmental
534 adaptation. For instance, increase in equid body size could have been driven by competition
535 within habitats, either between horse species or with other herbivores. Finer-scale habitat
536 partitioning based on differential spatiotemporal resource use, like that found in modern grazers
537 by Owen-Smith et al. (2015), could have created localized selection on the body size of
538 sympatric equids. Ruminant artiodactyls, which rose in abundance through the Miocene, would
539 have competed with equids for browse; since these other herbivores came to dominate the middle
540 body sizes at the same time as equid body size increased, competitive displacement could
541 explain the pattern (Janis et al. 2002). Though equids across trait groups shared habitats, habitat
542 partitioning between equids and artiodactyls, whose different foregut-fermenting digestive
543 strategy allows for superior processing of higher-quality leaves, could have pressed equids into
544 new environmental conditions (Janis 2008). Alternatively, increase in body size could be due to
545 random increase in trait variation over evolutionary time. Evolutionary diffusion within the equid
546 lineage, which started with species of small size, would lead the maximum and average body
547 size to increase over time (Gould, 1988). Shoemaker and Clauset (2013) found that 92% of the
548 increase in horse body mass could be explained by random diffusion; they propose that short
549 term selective effects on specific populations' body size caused size increases and decreases,
550 fueling this diffusion. In this case, small-scale trait changes in populations could occur across
551 groups sharing overall habitat distributions and sum up over time to create the larger trait
552 changes previously attributed to differential environmental selection.

553 The "grit not grass" hypothesis provides a viable alternative explanation for the evolution
554 of hypsodonty. High-crowned teeth could have evolved not in equids sequestered in grassy
555 habitats but in equids eating a variety of types of vegetation covered in grit or ash from arid
556 surrounding environments (Jardine et al., 2012; Strömberg et al., 2013). Mihlbachler et al. (2011)
557 found a wide range of mesowear scores within most fossil horse species. This result supports a
558 lack of habitat partitioning because it shows that all individuals within each species or genus
559 were not necessarily eating the same foods. Selection for increased crown height due to high
560 levels of tooth wear was not constant; as wear varied between populations, selection for
561 hypsodonty would have been episodic, resulting in evolution of higher crowns in specific
562 environments with high levels of exogenous grit or abrasive vegetation (Mihlbachler et al.,
563 2011). Furthermore, tooth wear analyses show that equids were eating grass long before they
564 evolved high levels of hypsodonty (Semprebon et al., 2016). Without habitat partitioning,
565 hypsodonty may have been selected for in varying degrees as species ranged across
566 environments, perhaps due to wear by grit in areas of decreased precipitation.

567 Evolutionary mechanisms for changes in toe number have not been tested as thoroughly
568 as the other two major traits. The reasoning of Shotwell (1961) and Renders (1984), that
569 tridactyl was advantageous for traction in dodging maneuvers and stability in muddy substrates,
570 has not been tested. The advantage of toe reduction for running speed or locomotor efficiency
571 based on decreased limb inertia has gained some support, and having a single robust digit rather
572 than several smaller ones may be advantageous for resisting bending forces – particularly as
573 body mass increases (Thomason, 1986; McHorse et al., 2017). It is possible that reduction in toe
574 number was adaptive not just in the context of running through open grasslands but that other
575 selective pressures, which would apply across the range of habitats shown to be inhabited by

576 most equids, were involved. Given the increase in aridity that occurred in the Miocene, the
577 advantage of having three toes in wet substrates may have decreased in importance (Polly and
578 Head, 2015). As with hypsodonty and body size, it is possible that changes in digit state could
579 have been selected for in small-scale, specific contexts within the range of habitats occupied by
580 each equid group.

581 **5. Conclusions**

582 Our results challenge the long-standing hypothesis that derived equid traits – large body
583 size, high-crowned teeth (hypodonty), and a single toe (monodactyly) – evolved as a suite of
584 adaptations to the spread of grassland environments in North America. At the spatial and
585 temporal scale analyzed here, we find no evidence for long-term differentiation in habitat use
586 between equids with more- or less-derived traits. Although equid species living in sympatry
587 during the Miocene and Pliocene may have utilized different resources at finer spatial and
588 temporal scales (e.g. specific dietary/ behavioral adaptations), our results indicate that horses
589 with derived traits were not found differentially in grassland habitats. This indicates that the
590 selective pressures leading to the evolution of derived horse traits did not exclusively arise due to
591 changes in broad-scale habitat use. While cluster analyses show some ecological guilds sharing
592 derived traits, the habitat distributions of those guilds are broadly similar to those of guilds
593 containing equids with fewer derived traits. Furthermore, models correcting for phylogenetic
594 relatedness show that the evolution of large body size, hypodonty, and monodactyly is not
595 correlated. The lack of habitat partitioning found here suggests that these equid traits did not
596 evolve within a single strict selective regime in newly-opened grasslands; instead, they were the
597 product of a complex set of heterogeneous selective pressures encountered in the various habitats
598 shared by Miocene-Pliocene equids.

599

600

601 **Acknowledgments** We would like to thank Christine Janis for use of unpublished data and all
602 the contributors of the PBDB for inputting occurrence data. We are also grateful to Lars Schmidt
603 for the phylomorphospace code, which was part of the workshop “Paleobiological and
604 phylogenetics approaches to Macroevolution” at NESCent Academy (supported by the National
605 Evolutionary Synthesis Center, NSF #EF-0423641) and to Juan Cantalapiedra for the code used
606 for PGLS, which was part of the workshop “Introduction to macroevolutionary analyses using
607 phylogenies” (Transmitting Science). AKP submitted a version of this study as an undergraduate
608 thesis in Integrative Biology, Department of Organismic and Evolutionary Biology, Harvard
609 University. Further, we thank three anonymous reviewers for their feedback which greatly
610 enhanced the quality and clarity of the manuscript.

611 **Funding** AKP received funding for this project from the Harvard Herchel Smith Summer
612 Undergraduate Research Fellowship. BKM was supported by a NSF Graduate Research
613 Fellowship (#DGE1144152) while this work was conducted. Data collection was supported by
614 an NSF Doctoral Dissertation Improvement Grant to BKM and SEP (#DEB-1701656).

615 **References**

616 Ahrestani, Farshid S., Ignas M.A. Heitkong, Hisashi Matsubayashi, and Herbert H. T. Prins.
617 “Grazing and Browsing by Large Herbivores in South and Southeast Asia.” In *The Ecology*
618 *of Large Herbivores in South and Southeast Asia*, 99–120. Springer, 2016.

619 Alberdi, María T., José L. Prado, and Edgardo Ortiz-Jaureguizar. “Patterns of Body Size
620 Changes in Fossil and Living Equini (Perissodactyla).” *Biological Journal of the Linnean*
621 *Society* 54, no. 4 (April 1, 1995): 349–70. <https://doi.org/10.1111/j.1095-8312.1995.tb01042.x>.

623 Albrecht, M., and N. J. Gotelli. “Spatial and Temporal Niche Partitioning in Grassland Ants.”
624 *Oecologia* 126, no. 1 (January 1, 2001): 134–41. <https://doi.org/10.1007/s004420000494>.

625 Camp, Charles Lewis, and Natasha Smith. *Phylogeny and Functions of the Digital Ligaments of*
626 *the Horse*. University of California Press, 1942.

627 Cantalapiedra, J. L., J. L. Prado, M. Hernández Fernández, and M. T. Alberdi. “Decoupled
628 Ecomorphological Evolution and Diversification in Neogene-Quaternary Horses.” *Science*
629 355, no. 6325 (February 10, 2017): 627–30. <https://doi.org/10.1126/science.aag1772>.

630 Cantalapiedra, Juan L., Gema M. Alcalde, and Manuel Hernandez Fernandez. “The Contribution
631 of Phylogenetics to the Study of Ruminant Evolutionary Ecology.” *Zitteliana* 32 (2014).
632 https://epub.ub.uni-muenchen.de/22385/1/zitteliana_2014_b32_04.pdf.

633 Carrasco, M.A., B.P. Kraatz, E.B. Davis, and A.D. Barnosky. *Miocene Mammal Mapping*
634 *Project (MIOMAP)*. University of California Museum of Paleontology, 2005.
635 <http://www.ucmp.berkeley.edu/miomap/>.

636 Clarke, K.R., and R.N. Gorley. *PRIMER v7: User Manual/Tutorial*. Plymouth: PRIMER-E,
637 2015.

638 Damuth, John. “Problems in Estimating Body Mass of Archaic Ungulates Using Dental
639 Measurements.” In *Body Size in Mammalian Paleobiology: Estimation and Biological*
640 *Implications*, edited by Bruce J. MacFadden and John Damuth, 229–53. Cambridge
641 University Press, 1990.

642 Damuth, John, and Christine M. Janis. “On the Relationship between Hypsodonty and Feeding
643 Ecology in Ungulate Mammals, and Its Utility in Palaeoecology.” *Biological Reviews* 86, no.
644 3 (August 1, 2011): 733–58. <https://doi.org/10.1111/j.1469-185X.2011.00176.x>.

645 Entsminger, G.L. *EcoSim Professional: Null Modeling Software for Ecologists, Version 1*.
646 Montrose, CO: Acquired Intelligence Inc., Kesey-Bear, & Pinyon Publishing, n.d.
647 <http://www.garyentsminger.com/ecosim/index.htm>.

648 Eronen, Jussi T., Alistair R. Evans, Mikael Fortelius, and Jukka Jernvall. “The Impact of
649 Regional Climate on the Evolution of Mammals: A Case Study Using Fossil Horses.”
650 *Evolution* 64, no. 2 (February 1, 2010): 398–408. <https://doi.org/10.1111/j.1558-5646.2009.00830.x>.

652 Feinsinger, Peter, E. Eugene Spears, and Robert W. Poole. “A Simple Measure of Niche
653 Breadth.” *Ecology* 62, no. 1 (1981): 27–32. <https://doi.org/10.2307/1936664>.

654 “Fossilworks: Gateway to the Paleobiology Database.” Accessed February 17, 2017.
655 <http://fossilworks.org/>.

656 Fraser, Danielle, Root Gorelick, and Natalia Rybczynski. “Macroevolution and Climate Change
657 Influence Phylogenetic Community Assembly of North American Hoofed Mammals.”
658 *Biological Journal of the Linnean Society* 114, no. 3 (March 1, 2015): 485–94.
659 <https://doi.org/10.1111/bij.12457>.

660 Fraser, Danielle, and Jessica M. Theodor. “Ungulate Diets Reveal Patterns of Grassland
661 Evolution in North America.” *Palaeogeography, Palaeoclimatology, Palaeoecology* 369
662 (January 1, 2013): 409–21. <https://doi.org/10.1016/j.palaeo.2012.11.006>.

663 Gordon, Iain J., and Andrew W. Illius. “The Functional Significance of the Browser-Grazer
664 Dichotomy in African Ruminants.” *Oecologia* 98, no. 2 (July 1, 1994): 167–75.
665 <https://doi.org/10.1007/BF00341469>.

666 Gotelli, Nicolas J., Edmund M. Hart, and Aaron M. Ellison. *EcoSimR: Null Model Analysis for*
667 *Ecological Data*. R package version 0.1.0, 2015. <http://github.com/gotellilab/EcoSimR>.

668 Gould, Stephen Jay. “Trends as Changes in Variance: A New Slant on Progress and
669 Directionality in Evolution.” *Journal of Paleontology* 62, no. 3 (1988): 319–29.

670 Hulbert, Richard C. “Late Miocene Nannippus (Mammalia: Perissodactyla) from Florida, with a
671 Description of the Smallest Hipparrisonine Horse.” *Journal of Vertebrate Paleontology* 13, no.
672 3 (1993): 350–66.

673 Janis, Christine M. "Correlation of Cranial and Dental Variables with Body Size in Ungulates
674 and Macropodoids." In *Body Size in Mammalian Paleobiology: Estimation and Biological*
675 *Implications*, edited by Bruce J. MacFadden and John Damuth, 255–99. Cambridge
676 University Press, 1990.

677 Janis, Christine. "An Evolutionary History of Browsing and Grazing Ungulates." In *The Ecology*
678 *of Browsing and Grazing*, edited by Iain J. Gordon and Herbert H. T. Prins, 21–45.
679 Ecological Studies 195. Springer Berlin Heidelberg, 2008.
680 http://link.springer.com/chapter/10.1007/978-3-540-72422-3_2.

681 Janis, Christine M., John Damuth, and Jessica M. Theodor. "The Origins and Evolution of the
682 North American Grassland Biome: The Story from the Hoofed Mammals."
683 *Palaeogeography, Palaeoclimatology, Palaeoecology*, Reconstruction and Modeling of
684 grass-dominated ecosystems, 177, no. 1–2 (January 5, 2002): 183–98.
685 [https://doi.org/10.1016/S0031-0182\(01\)00359-5](https://doi.org/10.1016/S0031-0182(01)00359-5).

686 Janis, Christine M., and Patricia Brady Wilhelm. "Were There Mammalian Pursuit Predators in
687 the Tertiary? Dances with Wolf Avatars." *Journal of Mammalian Evolution* 1, no. 2 (June 1,
688 1993): 103–25. <https://doi.org/10.1007/BF01041590>.

689 Jardine, Phillip E., Christine M. Janis, Sarda Sahney, and Michael J. Benton. "Grit Not Grass:
690 Concordant Patterns of Early Origin of Hypsodonty in Great Plains Ungulates and Glires."
691 *Palaeogeography, Palaeoclimatology, Palaeoecology* 365–366 (December 1, 2012): 1–10.
692 <https://doi.org/10.1016/j.palaeo.2012.09.001>.

693 Jones, Katrina Elizabeth. "New Insights on Equid Locomotor Evolution from the Lumbar Region
694 of Fossil Horses." *Proceedings of the Royal Society B: Biological Sciences* 283, no. 1829
695 (April 27, 2016). <https://doi.org/10.1098/rspb.2015.2947>.

696 MacFadden, Bruce J. "Fossil Horses from 'Eohippus' (Hyracotherium) to Equus: Scaling,
697 Cope's Law, and the Evolution of Body Size." *Paleobiology* 12, no. 4 (1986): 355–69.
698 ———. *Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae*.
699 Cambridge University Press, 1992.

700 MacFadden, Bruce J., and Thure E. Cerling. "Fossil Horses, Carbon Isotopes and Global
701 Change." *Trends in Ecology & Evolution* 9, no. 12 (December 1, 1994): 481–86.
702 [https://doi.org/10.1016/0169-5347\(94\)90313-1](https://doi.org/10.1016/0169-5347(94)90313-1).

703 MacFadden, Bruce J., and Richard C. Hulbert. "Body Size Estimates and Size Distribution of
704 Ungulate Mammals from the Late Miocene Love Bone Bed of Florida." In *Body Size in*
705 *Mammalian Paleobiology: Estimation and Biological Implications*, edited by Bruce J.
706 MacFadden and John Damuth, 337–64. Cambridge University Press, 1990.

707 MacFadden, Bruce J., Nikos Solounias, and Thure E. Cerling. "Ancient Diets, Ecology, and
708 Extinction of 5-Million-Year-Old Horses from Florida." *Science* 283, no. 5403 (1999): 824–
709 27.

710 Maddison, W.P., and D.R. Maddison. *Mesquite: A Modular System for Evolutionary Analysis*.
711 Version 3.11., 2017. <http://www.mesquiteproject.org>.

712 Marsh, O.C. "Polydactyl Horses, Recent and Extinct." *The American Journal of Science*, 3, 17,
713 no. 102 (1879): 499–505.

714 Martin, Robert A. "Body Size in (Mostly) Mammals: Mass, Speciation Rates and the Translation
715 of Gamma to Alpha Diversity on Evolutionary Timescales." *Historical Biology* 29, no. 5
716 (July 4, 2017): 576–93. <https://doi.org/10.1080/08912963.2016.1211646>.

717 McHorse, Brianna K., Andrew A. Biewener, and Stephanie E. Pierce. "Mechanics of
718 Evolutionary Digit Reduction in Fossil Horses (Equidae)." *Proc. R. Soc. B* 284, no. 1861
719 (August 30, 2017): 20171174. <https://doi.org/10.1098/rspb.2017.1174>.

720 McNaughton, S. J., J. L. Tarrants, M. M. McNaughton, and R. D. Davis. "Silica as a Defense
721 against Herbivory and a Growth Promotor in African Grasses." *Ecology* 66, no. 2 (1985):
722 528–35. <https://doi.org/10.2307/1940401>.

723 Mendoza, M., and P. Palmqvist. "Hypsodonty in Ungulates: An Adaptation for Grass
724 Consumption or for Foraging in Open Habitats?" *Journal of Zoology* 274, no. 2 (2007): 1–9.

725 Mihlbachler, Matthew C., Florent Rivals, Nikos Solounias, and Gina M. Semprebon. "Dietary
726 Change and Evolution of Horses in North America." *Science* 331, no. 6021 (March 4, 2011):
727 1178–81. <https://doi.org/10.1126/science.1196166>.

728 Orcutt, John D., and Samantha S. B. Hopkins. "Oligo-Miocene Climate Change and Mammal
729 Body-Size Evolution in the Northwest United States: A Test of Bergmann's Rule."
730 *Paleobiology* 39, no. 4 (June 1, 2013): 648–61. <https://doi.org/10.1666/13006>.

731 Orme, David, Rob Freckleton, Gavin Thomas, Thomas Petzoldt, Susanne Fritz, Nick Isaac, and
732 Will Pearse. "Caper: Comparative Analyses of Phylogenetics and Evolution in R. R Package
733 Version 0.5.2.," 2013. <http://CRAN.R-project.org/package=caper>.

734 Owen-Smith, Norman, Jodie Martin, and K. Yoganand. "Spatially Nested Niche Partitioning
735 between Syntopic Grazers at Foraging Arena Scale within Overlapping Home Ranges."
736 *Ecosphere* 6, no. 9 (2015): art152. <https://doi.org/10.1890/ES14-00487.1>.

737 Polly, P. David, and Jason J. Head. "Measuring Earth-Life Transitions: Ecometric Analysis of
738 Functional Traits from Late Cenozoic Vertebrates." In *Earth-Life Transitions: Paleobiology
739 in the Context of Earth System Evolution*, edited by P. David Polly, Jason J. Head, and David
740 L. Fox, Vol. 21. The Paleontological Society Papers. The Paleontological Society, 2015.

741 Prothero, D. R., and R. M. Schoch, eds. *The Evolution of Perissodactyls*. Oxford: Clarendon
742 Press, 1989.

743 Renders, Elise. "The Gait of Hipparrison Sp. from Fossil Footprints in Laetoli, Tanzania." *Nature*
744 308, no. 5955 (March 8, 1984): 179–81. <https://doi.org/10.1038/308179a0>.

745 Revell, Liam J. *Phytools: Phylogenetic Tools for Comparative Biology (and Other Things)*,
746 2017. <https://github.com/liamrevell/phytools>.

747 Robinson, John G., and Kent H. Redford. "Body Size, Diet, and Population Density of
748 Neotropical Forest Mammals." *The American Naturalist* 128, no. 5 (1986): 665–80.

749 Scott, Kathleen M. "Postcranial Dimensions of Ungulates as Predictors of Body Mass." In *Body
750 Size in Mammalian Paleobiology: Estimation and Biological Implications*, edited by Bruce J.
751 MacFadden and John Damuth, 301–35. Cambridge University Press, 1990.

752 Semprebon, Gina M., Florent Rivals, Nikos Solounias, and Richard C. Hulbert Jr. "Paleodietary
753 Reconstruction of Fossil Horses from the Eocene through Pleistocene of North America."
754 *Palaeogeography, Palaeoclimatology, Palaeoecology* 442 (January 15, 2016): 110–27.
755 <https://doi.org/10.1016/j.palaeo.2015.11.004>.

756 Shoemaker, Lauren, and Aaron Clauset. "Body Mass Evolution and Diversification within
757 Horses (Family Equidae)." *Ecology Letters* 17, no. 2 (February 1, 2014): 211–20.
758 <https://doi.org/10.1111/ele.12221>.

759 Shotwell, J. Arnold. "Late Tertiary Biogeography of Horses in the Northern Great Basin."
760 *Journal of Paleontology* 35, no. 1 (1961): 203–17.

761 Simpson, George Gaylord. *Horses: The Story of the Horse Family in the Modern World and
762 through Sixty Million Years of History*. Anchor Books, 1961.

763 Sondaar, P. Y. *The Osteology of the Manus of Fossil and Recent Equidae, with Special*
 764 *Reference to Phylogeny and Function*. Amsterdam: N.V. Noord-Hollandsche Uitgevers
 765 Maatschappij, 1968.

766 Stirton, R. A. "Observations on Evolutionary Rates in Hypsodonty." *Evolution* 1, no. 1/2 (1947):
 767 32–41. <https://doi.org/10.2307/2405401>.

768 Strömberg, Caroline A. E. "Evolution of Hypsodonty in Equids: Testing a Hypothesis of
 769 Adaptation." *Paleobiology* 32, no. 2 (2006): 236–58.

770 Strömberg, Caroline A. E., Regan E. Dunn, Richard H. Madden, Matthew J. Kohn, and Alfredo
 771 A. Carlini. "Decoupling the Spread of Grasslands from the Evolution of Grazer-Type
 772 Herbivores in South America." *Nature Communications* 4 (February 12, 2013): 1478.
 773 <https://doi.org/10.1038/ncomms2508>.

774 Thomason, J. J. "The Functional Morphology of the Manus in the Tridactyl Equids Merychippus
 775 and Mesohippus: Paleontological Inferences from Neontological Models." *Journal of*
 776 *Vertebrate Paleontology* 6, no. 2 (1986): 143–61.

777 Voorhies, M.R. "Vertebrate Biostratigraphy of the Ogallala Group in Nebraska." In *Geologic*
 778 *Framework and Regional Hydrology: Upper Cenozoic Backwater Draw and Ogallala*
 779 *Formations, Great Plains*, edited by T. C Gustavson, 115–51. Austin: University of Texas,
 780 1990.

781 Webb, S. David, and Richard C. Hulbert. "Systematics and Evolution of Pseudhipparion
 782 (Mammalia, Equidae) from the Late Neogene of the Gulf Coastal Plain and the Great Plains." *Contributions to Geology, University of Wyoming*, no. Special Paper 3 (1986): 237–72.

784
 785 **Appendix 1: Body Mass Regressions.** The following regression equations were used to reconstruct body mass for
 786 equid species based on dental measurements.

Measurement for x	Regression Equation	Source of Equation
m1length	$\log(\text{body mass}) = 3.268 * \log(x) + 1.337$	Janis, 1990
m1 area	$\log(\text{body mass}) = 1.663 * \log(x) + 1.701$	Janis, 1990
m1length	$\log(\text{body mass}) = 3.17 * \log(x) + 1.04$	Damuth, 1990
m1width	$\log(\text{body mass}) = 2.79 * \log(x) + 1.88$	Damuth, 1990
m1area	$\log(\text{body mass}) = 1.51 * \log(x) + 1.44$	Damuth, 1990
P3 length	$\log(\text{body mass}) = 2.93 * \log(x) + 1.43$	Damuth, 1990
P3 width	$\log(\text{body mass}) = 2.72 * \log(x) + 1.66$	Damuth, 1990
P4 lenght	$\log(\text{body mass}) = 3.13 * \log(x) + 1.16$	Damuth, 1990
P4 width	$\log(\text{body mass}) = 2.81 * \log(x) + 1.41$	Damuth, 1990
P4 area	$\log(\text{body mass}) = 1.46 * \log(x) + 1.33$	Damuth, 1990
M1 length	$\log(\text{body mass}) = 3.11 * \log(x) + 1.11$	Damuth, 1990
M1 width	$\log(\text{body mass}) = 2.86 * \log(x) + 1.3$	Damuth, 1990
M1 area	$\log(\text{body mass}) = 1.48 * \log(x) + 1.22$	Damuth, 1990

788
 789
 790 **Appendix 2: Sources for Paleoenvironment Classifications**

791
 792 Adam, David P. et al. "Tulelake, California: The Last 3 Million Years." *Palaeogeography, Palaeoclimatology,*
 793 *Palaeoecology* 72 (1989): 89–103.

794 Albright, L. Barry. "Lower Vertebrates from an Arikareean (Earliest Miocene) Fauna near the Toledo Bend Dam,
 795 Newton County, Texas." *Journal of Paleontology* 68.5 (1994): 1131–1145.

796 Axelrod, Daniel I. *Contributions to the Neogene Paleobotany of Central California*. University of California Press,
 797 1980. Geological Sciences.

798 ---. "Geologic History of the Californian Insular Flora." *Proceedings of the Symposium on the Biology of the*
 799 *California Islands*. Santa Barbara Botanical Garden, 1965.

800 ---. "Rise of the Grassland Biome, Central North America." *Botanical Review* 51.2 (1985): 163–201.
801 Bailey, Robert G. "Delineation of Ecosystem Regions." *Environmental Management* 7.4 (1983): 365–373.
802 Ball, O.M. *A Contribution to the Paleobotany of the Eocene of Texas*. Vol. 2. College Station, Texas: The
803 Agricultural and Mechanical College of Texas, 1931.
804 Berry, Edward Wilber. *The Middle and Upper Eocene Floras of Southeastern North America*. U.S. Government
805 Printing Office, 1924. United States Geological Survey Professional Paper 92.
806 Bourque, Jason R. "New Mud Turtles (Kinosternidae, Kinosternon) from the Middle–late Miocene of the United
807 States." *Journal of Paleontology* 89.5 (2015): 821–844.
808 Cassiliano, Michael Louis. "Paleoecology and Taphonomy of Vertebrate Faunas from the Anza-Borrego Desert of
809 California." Ph.D. The University of Arizona, 1994.
810 Churcher, C. S. et al. "Caribou from the Late Pleistocene of Northwestern Alabama." *Canadian Journal of Zoology*
811 67.5 (1989): 1210–1216. *NRC Research Press*.
812 Cole, Kenneth. "Late Pleistocene Vegetation of Kings Canyon, Sierra Nevada, California." *Quaternary Research*
813 19.1 (1983): 117–129.
814 Croxen, F.W., C.A. Shaw, and D.R. Sussman. "Pleistocene Geology and Paleontology of the Colorado River Delta
815 at Golfo de Santa Clara, Sonora, Mexico." *The 2007 Desert Symposium Field Guide and Abstracts from
816 Proceedings*. Ed. R.E. Reynolds. 2007.
817 Czaplewski, Nicholas J. "Miocene Bats from the Lower Valentine Formation of Northeastern Nebraska." *Journal of
818 Mammalogy* 72.4 (1991): 715–722.
819 ---. "Sigmodont Rodents (Mammalia; Muroidea; Sigmodontinae) from the Pliocene (Early Blancan) Verde
820 Formation, Arizona." *Journal of Vertebrate Paleontology* 7.2 (1987): 183–199.
821 Czaplewski, Nicholas J., and Gary S. Morgan. "A Late-Surviving Apatemyid (Mammalia: Apatotheria) from the
822 Latest Oligocene of Florida, USA." *PeerJ* 3 (2015): e1509.
823 Delcourt, Paul A. "The Tunica Hills, Louisiana-Mississippi: Late Glacial Locality for Spruce and Deciduous Forest
824 Species." *Quaternary Research* 7.2 (1977): 218–237.
825 Diefendorf, Aaron F., Katherine H. Freeman, and Scott L. Wing. "A Comparison of Terpenoid and Leaf Fossil
826 Vegetation Proxies in Paleocene and Eocene Bighorn Basin Sediments." *Organic Geochemistry* 71 (2014): 30–
827 42.
828 Dowsett, Harry et al. "Joint Investigations of the Middle Pliocene Climate I: PRISM Paleoenvironmental
829 Reconstructions." *Global and Planetary Change* 9.3–4 (1994): 169–195.
830 Driese, Steven G., Zheng-Hua Li, and Sally P. Horn. "Late Pleistocene and Holocene Climate and Geomorphic
831 Histories as Interpreted from a 23,000 14C Yr B.P. Paleosol and Floodplain Soils, Southeastern West Virginia,
832 USA." *Quaternary Research* 63.2 (2005): 136–149.
833 Dundas, Robert G., and James C. Chatters. "The Mid-Irvingtonian Fairmead Landfill Fossil Site, Madera County
834 Paleontology Collection, and Fossil Discovery Center of Madera County, California." *GSA Field Guides* 32
835 (2013): 63–78.
836 Feranec, Robert S., and Bruce J. MacFadden. "Isotopic Discrimination of Resource Partitioning among Ungulates in
837 C3-Dominated Communities from the Miocene of Florida and California." *Paleobiology* 32.2 (2006): 191–205.
838 Fisk, Lanny H. et al. "Late Oligocene and Early to Middle(?) Miocene Land Plants, Upper Piuma Member, Sespe
839 Formation, and Fernwood Member, Topanga Canyon Formation, Central Santa Monica Mountains, Los
840 Angeles County, California." 2001. https://gsa.confex.com/gsa/2001CD/finalprogram/abstract_2043.htm.
841 Frederiksen, Norman O. "Late Cretaceous and Tertiary Floras, Vegetation, and Paleoclimates of New England."
842 *Rhodora* 91.865 (1989): 25–48.
843 Gabel, Mark L., Douglas C. Backlund, and Jacob Haffner. "The Miocene Macroflora of the Northern Ogallala
844 Group, Northern Nebraska and Southern South Dakota." *Journal of Paleontology* 72.2 (1998): 388–397.
845 Graham, A. "History of the Vegetation: Cretaceous(Maastrichtian)-Tertiary." *Flora of North American North of
846 Mexico*. Vol. 1. New York: Oxford University Press, 1993. 57–70.
847 Gustavson, T. C., and V. T. Holliday. "Eolian Sedimentation and Soil Development on a Semiarid to Subhumid
848 Grassland, Tertiary Ogallala and Quaternary Blackwater Draw Formations, Texas and New Mexico High
849 Plains." *Journal of Sedimentary Research* 69.3 (1999): 622–634.
850 Hall, Clarence A. *Introduction to the Geology of Southern California and Its Native Plants*. University of California
851 Press, 2007.
852 Hansen, Barbara C. S., Eric C. Grimm, and William A. Watts. "Palynology of the Peace Creek Site, Polk County,
853 Florida." *GSA Bulletin* 113.6 (2001): 682–692.

854 Hembree, Daniel I., and Stephen T. Hasiotis. "Paleosols and Ichnofossils of the White River Formation of Colorado:
855 Insight into Soil Ecosystems of the North American Midcontinent during the Eocene-Oligocene Transition." *PALAIOS* 22.2 (2007): 123–142.

856

857 Holman, J. Alan. "Herpetofauna of the Wood Mountain Formation (Upper Miocene) of Saskatchewan." *Canadian*
858 *Journal of Earth Sciences* 7.5 (1970): 1317–1325. NRC Research Press.

859 Hulbert, Richard C. "Latest Pleistocene and Holocene Leporid Faunas from Texas: Their Composition, Distribution
860 and Climatic Implications." *The Southwestern Naturalist* 29.2 (1984): 197–210.

861 Hulbert, Richard C., and Ann E. Pratt. "New Pleistocene (Rancholabrean) Vertebrate Faunas from Coastal Georgia." *Journal of Vertebrate Paleontology* 18.2 (1998): 412–429.

862

863 Ispahring, Wayne C. "Late Tertiary Paleoclimate of Eastern United States." *AAPG Bulletin* 54.2 (1970): 334–343.

864 Ispahring, Wayne C., and George M. Lamb. "Age and Origin of the Citronelle Formation in Alabama." *Geological*
865 *Society of America Bulletin* 82 (1971): 775–780.

866 Jarzen, David M., Sarah L. Corbett, and Steven R. Manchester. "Palynology and Paleoecology of the Middle
867 Miocene Alum Bluff Flora, Liberty County, Florida, USA." *Palynology* 34.2 (2010): 261–286.

868 Jefferson, George T. "Stratigraphy and Paleontology of the Middle to Late Pleistocene Manix Formation, and
869 Paleoenvironments of the Central Mojave River, Southern California." *Geological Society of America Special*
870 *Papers* 368 (2003): 43–60.

871 Jones, Megan H., Judith A. Schiebout, and Julitta T. Kirkova. "Cores from the Miocene Castor Creek Member of the
872 Fleming Formation, Fort Polk Louisiana: Relationship to the Outcropping Miocene Terrestrial Vertebrate
873 Fossil-Bearing Beds." *Gulf Coast Association of Geological Societies Transactions* 45 (1995).

874 MacFadden, Bruce J., Nikos Solounias, and Thure E. Cerling. "Ancient Diets, Ecology, and Extinction of 5-Million-
875 Year-Old Horses from Florida." *Science* 283.5403 (1999): 824–827.

876 Maguire, Kaitlin Clare. "Understanding the Paleoecology and Niche Dynamics of Mammals in the Mascall Fauna
877 (Middle Miocene), Oregon." Ph.D. University of California, Berkeley, 2013.

878 McCartan, Lucy et al. "Late Tertiary Floral Assemblage from Upland Gravel Deposits of the Southern Maryland
879 Coastal Plain." *Geology* 18 (1990).

880 Meyers, Vicki Lynn. "Vertebrate Taxonomic Composition, Species Diversity, and Paleoecology of Two Pliocene
881 Mid-Latitude, Inland-Basin Fossil Assemblages: Panaca Local Fauna (Lincoln County, Nevada) and Hagerman
882 Local Fauna (Twin Falls County, Idaho)." M.S. University of Nevada, Las Vegas, 2011.

883 Miller, Wade E., and Oscar Carranza-Castañeda. "Late Cenozoic Mammals from Central Mexico." *Journal of*
884 *Vertebrate Paleontology* 4.2 (1984): 216–236.

885 Minnich, Richard A. "Climate, Paleoclimate, and Paleovegetation." *Terrestrial Vegetation of California*. 3rd ed.
886 University of California Press, 2007.

887 Mount, Jack D. "Late Miocene Flora from the Solemint Area, Los Angeles County, California." *Bulletin of the*
888 *Southern California Paleontological Society* 3.3 (1971).

889 Pagnac, Darrin C. "A Systematic Review of the Mammalian Megafauna of the Middle Miocene Barstow Formation,
890 Mojave Desert, California." Ph.D. University of California, Riverside, 2005.

891 Pocknall, David T. "Paleoenvironments and Age of the Wasatch Formation (Eocene), Powder River Basin,
892 Wyoming." *PALAIOS* 2.4 (1987): 368–376.

893 Pratt, Ann E. "Taphonomy of the Large Vertebrate Fauna from the Thomas Farm Locality (Miocene,
894 Hemingfordian), Gilchrist County, Florida." *Bulletin of the Florida Museum of Natural History: Biological*
895 *Sciences* 35.2 (1990): 35–130.

896 Proctor, David D. "Paleontology and Paleoenvironment of the Janes Gravel Quarry, Crosby County, Texas." Thesis.
897 Texas Tech University, 1980.

898 Retallack, Greg J. "A Paleopedological Approach to the Interpretation of Terrestrial Sedimentary Rocks: The Mid-
899 Tertiary Fossil Soils of Badlands National Park, South Dakota." *GSA Bulletin* 94.7 (1983): 823–840.

900 Retallack, Gregory J. "Cenozoic Paleoclimate on Land in North America." *The Journal of Geology* 115.3 (2007):
901 271–294.

902 Rymer, Michael J. "Stratigraphic Revision of the Cache Formation (Pliocene and Pleistocene), Lake County,
903 California." *Geological Society Bulletin Contributions to Stratigraphy* 1502–C (1981).

904 Schultz, G.E. "The Clarendonian Faunas of the Texas and Oklahoma Panhandles." *Tertiary and Quaternary*
905 *Stratigraphy and Vertebrate Paleontology of Parts of Northwestern Texas and Eastern New Mexico*. Ed. T. C
906 Gustavson. Austin, Texas: Bureau of Economic Geology, 1990. 83–94.

907 Schultz, Gerald E. "Pleistocene (Irvingtonian, Cudahyan) Vertebrates from the Texas Panhandle, and Their
908 Geographic and Paleoecologic Significance." *Quaternary International* 217.1–2 (2010): 195–224. Faunal
909 Dynamics and Extinction in the Quaternary: Studies in Honor of Ernest L. Lundelius, Jr.

910 Singleton, Scott W. "Petrified Wood in the Miocene Fleming Formation, Jasper County, Texas." *58* (2008): 797–
911 813.

912 Strömberg, Caroline A. E. "Using Phytolith Assemblages to Reconstruct the Origin and Spread of Grass-Dominated
913 Habitats in the Great Plains of North America during the Late Eocene to Early Miocene." *Palaeogeography,
914 Palaeoclimatology, Palaeoecology* 207.3–4 (2004): 239–275.

915 Terasmae, J. "Palynological Study of Pleistocene Deposits on Banks Island, Northwest Territories, Canada." *Science
916* 123.3201 (1956): 801–802.

917 Thomasson, Joseph R. "Berriochloa Gabeli and Berriochloa Huletti (Gramineae: Stipeae), Two New Grass Species
918 from the Late Miocene Ash Hollow Formation of Nebraska and Kansas." *Journal of Paleontology* 79.1 (2005):
919 185–199.

920 Thomasson, Joseph R., and David B. Wester. "Eleofimbris Svensonii (Cy Peraceae) from the Late Miocene Ogallala
921 Group of Western Kansas." *The Southwestern Naturalist* 48.3 (2003): 442–444.

922 Thompson, Robert S. "Pliocene Environments and Climates in the Western United States." *Quaternary Science
923 Reviews* 10.2–3 (1991): 115–132.

924 Trayler, Robin B. et al. "Inland California during the Pleistocene—Megafaunal Stable Isotope Records Reveal New
925 Paleoenvironmental Insights." *Palaeogeography, Palaeoclimatology, Palaeoecology* 437
926 (2015): 132–140.

927 Voorhies, Michael R., and Joseph R. Thomasson. "Fossil Grass Anthoecia Within Miocene Rhinoceros Skeletons:
928 Diet in an Extinct Species." *Science* 206.4416 (1979): 331–333.

929 Walker, Rachael Jane. "An Analysis of the Herpetofauna and Paleoenvironment of the Wasatch and Bridger
930 Formations (Middle Eocene), at South Pass, Wyoming." Ph.D. Michigan State University, 1999.

931 ---. "An Analysis of the Herpetofauna and Paleoenvironment of the Wasatch and Bridger Formations (Middle
932 Eocene), at South Pass, Wyoming." Ph.D. Michigan State University, 1999.

933 Wang, Yang et al. "Stable Isotopes of Paleosols and Fossil Teeth as Paleoenvironment and Paleoclimate Indicators: An
934 Example from the St. David Formation, Arizona." *Climate Change in Continental Isotopic Records*. Vol. 78.
935 American Geophysical Union, Geophysical Monograph. 1993. 241–248.

936 Ward, Phillip A., and Brian J. Carter. "Paleopedologic Interpretations of Soils Buried by Tertiary and Pleistocene-
937 Age Volcanic Ashes: Southcentral Kansas, Western Oklahoma, and Northwestern Texas, U.S.A." *Quaternary
938 International*, Revisitation of Concepts in Paleopedology, 51–52 (January 1, 1998): 213–21.

939 Watts, W.A. "A Late Quaternary Record of Vegetation from Lake Annie, South-Central Florida." *Geology* 3.6
940 (1975): 344–346.

941 Webb, S. David et al. "Terrestrial Mammals of the Palmetto Fauna (Early Pliocene, Latest Hemphillian) from the
942 Central Florida Phosphate District." *Geology and Vertebrate Paleontology of Western and Southern North
943 America*. Ed. Xiaoming Wang and Lawrence G. Barnes. Natural History Museum of Los Angeles County,
944 Science Series 41. 2008. 293–312.

945 Whittaker, R. H. "Vegetation History of the Pacific Coast States and the 'Central' Significance of the Klamath
946 Region." *Madroño* 16.1 (1961): 5–23.

947 Willard, Debra A. "Palynological Record from the North Atlantic Region at 3 Ma: Vegetational Distribution during
948 a Period of Global Warmth." *Review of Palaeobotany and Palynology* 83.4 (1994): 275–297.

949 Wolfe, Jack A. "Neogene Floristic and Vegetational History of the Pacific Northwest." *Madroño* 20.3 (1969): 83–
950 110.

951 Woolf, T. Skwara. "Biostratigraphy and Paleoecology of Pleistocene Deposits (Riddell Member, Floral Formation,
952 Late Rancholabrean), Saskatoon, Canada." *Canadian Journal of Earth Sciences* 18.2 (1981): 311–322.