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An Optimization Platform Based on Coupled Indoor Environment and
HVAC Simulation and Its Application in Optimal Thermostat Placement
Abstract: Model-based optimization can help improve the indoor thermal comfort and energy
efficiency of Heating, Ventilation and Air Conditioning (HVAC) systems. The models used in
previous optimization studies either omit the dynamic interaction between indoor airflow and
HVAC or are too slow for model-based optimization. To address this limitation, we propose an
optimization methodology using coupled simulation of the airflow and HVAC that captures the
dynamics of both systems. We implement an optimization platform using the coupled models of a
coarse grid Fast Fluid Dynamics model for indoor airflow and Modelica models for HVAC which
is linked to the GenOpt optimization engine. Then, we demonstrate the new optimization platform
by studying the optimal thermostat placement in a typical office room with a VAV terminal box in
the design phase. After validating the model, we perform an optimization study, in which the VAV
terminal box is dynamically controlled, and find that our optimization platform can determine the
optimal location of thermostat to achieve either best thermal comfort or least energy consumption,
or the combined. Finally, the time cost for performing such optimization study is about 6.2 hours,

which is acceptable in the design phase.
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1 Introduction
HVAC systems with non-uniform airflow and temperature distributions are widely adopted in

the building design to achieve good thermal comfort and energy efficiency. Typical examples
include displacement ventilation (Yuan et al. 1999), data centers with raised-floor plenum
architecture (VanGilder et al. 2018), and ventilation systems with atrium (Chen 2009). As

suggested by Tian, Han, et al. (2018), coupled simulation models between Building Energy



Simulation (BES) and Computational Fluid Dynamics (CFD) can be used to study the design and
operation of such systems. To find the optimal design and operation conditions, model-based
optimization can be performed using the coupled simulation models.

Plenty of researchers have presented the optimization of HVAC system operation using BES
or optimal indoor airflow distribution using CFD. Nguyen et al. (2014) reviewed the optimization
method using BES to study the building performance. Delgarm et al. (2016) performed multi-
objective optimization using EnergyPlus simulation and particle swarm optimization (PSO)
scheme that can improve the energy performance of the design. The simulation-based optimization
methodology and its variants (using difference simulator and/or optimizations schemes) has been
applied to the design of energy efficient buildings in different forms (general buildings, data
centers, etc.), and promising results in terms of whole-year-energy-consumption reductions were
presented. Similarly, the optimization methodology based on single simulator has been applied to
study the control performance of building energy systems in a dynamic fashion (Tian, Zhang, et
al. 2018; Chen et al. 2018; Fu et al. 2019; Afram et al. 2017; D'Agostino and Parker 2018; Han et
al. 2013). For example, Huang et al. (2016) and Huang et al. (2017) applied the optimization based
on the Modelica representation of the HVAC system to find the optimal set point of condensing
water temperature and chiller staging control. Wang et al. (2017) applied optimization based on
the Modelica representation of duct network to find the optimal opening of the valves. On the other
hand, Liu et al. (2015) gave an overview on utilizing the optimization based on CFD to carry out
inverse design. The adjoint method was used to optimize the air supply location, size and parameter
for enclosed spaces, such as aircraft cabin (Liu et al. 2017). Lee (2007) and Xue et al. (2013) used
genetic algorithm based on CFD simulations to optimize the flow control conditions for the indoor

climate. The abovementioned researches have shown that the simulation-based optimization can



reduce energy consumption of HVAC systems and achieve desired thermal environment
conditions. However, none of the above research considered the complex and dynamic interactions
between HVAC and indoor environment, which may lead to incorrect simulation results and a
potentially more serious consequence—failure of the system. In buildings, sub-domains can be
interconnected from the physical perspective. For example, in a feedback loop control of air
handler and thermal indoor environment, the temperature at a specific spot in the environment is
extracted and sent to the control module, which then modulates the air handler to adjust the
cooling; The states of the air handler, especially the temperature and velocity at the exhaust,
consequently determines the airflow and temperature distributions in the space. The interactive
entangling of the two domains—mainly thermal environment and cooling system should be
addressed in a proper way such that the important “coupling” will not be over-simplified (using
multizone model to model a non-uniform temperature distribution) or omitted (assume the
temperature at the specific spot same as the setpoint). Moreover, with increased attention on the
design of the control system, the essence of being dynamic of the control process should be
properly addressed. For example, Wetter (2009b) noted the inability to resolve the non-linear
dynamic behavior of building energy system and its control system can lead to equipment short-
cycling. Likewise, Nassif et al. (2008) noted the importance of dynamic models of HVAC systems
in designing energy management control system. One can refer to literatures for more information
on dynamic modeling of HVAC systems (Li et al. 2014).

It is important to note that the optimization based on coupled simulation has been carried out
in a few studies, which are typically not in the domain of interacting HVAC with indoor thermal
environment. For example, with resilience and energy efficiency becoming a hot research topic,

there is emerging of researches on optimizing the integration of renewable/distributed energy



sources. For example, O'Shaughnessy et al. (2018) developed Solar Plus to increase the economic
befit by performing optimization based on coupled simulations of PV panels, batteries under
various electricity-rate structures. Ma and Xia (2017) presented a simulation-based optimization
to control the ground source heat pump system by considering the interaction between heat pump,
water pump, and ground heat exchanger. Yang et al. (2017) analyzed the performance and control
strategy of a combined cooling, heating and power system in a hotel, by modeling the interaction
of the system with solar thermal energy and compressed air energy storage. Han et al. (2017)
studied the energy performance of the timber-glass buildings by performing optimization based on
coupled simulation of daylighting using Radiance and building energy performance using
EnergyPlus. Similarly, in the domain of regional heating, Pan et al. (2017) developed a feasible
region method to improve the efficiency of integrated heat and electricity system by considering
the interaction of two models at the same time.

It is noteworthy that there is a paper attempting to perform optimization based on coupled
simulation of HVAC systems and indoor thermal environment. Du et al. (2015) performed an
optimization study to find the temperature sensor placement using coupled simulation between
TRNSYS and CFD. However, there are few limitations to this study. First, the CFD simulation
was performed in steady-state. Although it is believed to reduce the computational cost (as
transient CFD simulation is costly), the steady-state CFD results may adversely affect the control
simulation of the HVAC system. Consequently, a real dynamic interaction of HVAC systems and
indoor environment was not considered. Second, even with steady-state simulations, the
computational speed is still too slow to perform optimization over a large search domain. As a
result, only a handful of discrete locations were picked, among which the optimal placement was

determined.



In this paper, we first discuss the methodology and implementation of the proposed the
optimization using dynamically coupled simulation of indoor environment and HVAC systems.
We then identify an office room with displacement ventilation, in which we demonstrate how to
use the optimization platform to determine the thermostat location to achieve optimal thermal
comfort, energy efficiency, or both. The paper is structured as follows: section 2 discusses the
methodology and detailed implementation of the optimization platform; section 3 discusses the
evaluation of the coupled simulation model; section 4 introduces the optimization studies; and

section 5 gives the conclusion and future work.

2 Methodology and Implementation
2.1 Methodology of the coupled simulation platform

This paper proposes an optimization platform using the dynamically coupled simulation of
HVAC system and non-uniform indoor environment. The platform can be harnessed to improve
the control and energy performance of cooling system in various applications. As a prominent case,
data center, which consumes about 2% of the electricity in the U.S.(Shehabi et al. 2016), can
benefit from this platform to improve the energy efficiency and reduce the green gas emission. The
whitespace in the data center used to house the racks is typically characterized with non-uniform
temperature distribution. The temperatures at designated locations are sampled to control the
computer room air conditioner. The optimization scheme proposed in this paper can be used to
improve cooling energy efficiency while attaining the required thermal environment to run the IT
equipment safely. To accelerate the computational speed of the coupled simulation, our proposed
optimization platform employs a coupled simulation model with Modelica and Fast Fluid
Dynamics (FFD) (Zuo et al. 2016). Modelica is an equation-based and object-oriented language

for dynamic simulation. A Modelica Buildings library (Wetter et al. 2014) was developed to



facilitate building system modeling. FFD, which simulates airflow and temperature distribution in
transient state, is about 50 times faster than its counterpart CFD (Zuo and Chen 2009) and even
faster when adopting more advanced semi-Lagrangian algorithm (Mortezazadeh and Wang 2017).
Parallelization of FFD to run on multi-core device can further increase the speed up to 1000 times
(Tian, Sevilla, and Zuo 2017; Zuo and Chen 2010). In addition, to further accelerate the simulation,
we implemented a coarse grid solver in FFD, which was reported to be able to accelerate the FFD
simulation for 5-50 times (Jin et al. 2015). The integration of all these techniques makes the
coupled-simulation-based optimization possible by dramatically reducing the computational cost
of the coupled simulation, in which the airflow simulation is the bottleneck of the couple
simulation speed. It is noteworthy that reduced-order models (Tian, Sevilla, et al. 2018), though
computationally fast, are mostly for steady-state predictions, and therefore are not good for

dynamic simulations.
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Figure 1 Optimization Methodology Based on Coupled CFD-BES Simulation

Figure 1 shows the framework of the optimization platform using the dynamic coupling model



between BES for HVAC and CFD for non-uniform indoor environment. The whole optimization
process is divided into multiple optimization steps, in which optimization is performed to find the
optimal solution. The optimal together with the old states from the last optimization step are used
to initialize the next optimization step. The number of the optimization steps are determined by
the users based on their interpretation of physics to be optimized. It is noteworthy that a tradeoff
between optimization accuracy and speed is associated with the optimization time step.

At the heart of this optimization platform is the coupled simulation between BES and CFD.
The coupled simulation employs a quasi-dynamic coupling scheme, and was implemented based
on a customized interface, in which the Modelica model exchanges data with FFD dynamic link
library through external “C” functions. Note that there are various data synchronization schemes
and software implementation architectures available to couple the BES with CFD. For example,
quasi-dynamic scheme requires data exchange once at a data synchronization time point while
fully-dynamic scheme requires several iterations of data exchanges until both BES and CFD reach
converged solution. Consequently, quasi-dynamic scheme is relatively computationally faster and
more stable while fully-dynamic scheme is tending to be able to generate more accurate results.
Other than customized interface to enable data exchange and control of the coupled simulation,
middleware interface and standard interface can also be utilized. Unlike the master-slave mode
used in this implementation, middleware, such as building control virtual test bed (Wetter 2011),
can play the role of controlling the coupled simulation and provide better maintainability and
extendibility when compared to the customized interface. The standard interface, which enables
two programs being connected directly, is straightforward and easy-to-deploy. Take functional
mockup interface as an example, tools that are compatible with the functional mockup interface

standard can export models as functional mockup units, which can be then coupled (it can be as



easy as plug-and-play) and simulated in co-simulation environment such as pyFMI (Blochwitz et
al. 2011). One can refer to the literature review paper (Tian, Han, et al. 2018) for detailed

explanation. Assume we have the following general equations to describe the behaviours of BES

and CFD for the optimization step (to, to + Atopt):
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where the subscript in the names of function and variable names indicate the program (“1” for
BES; “2” for CFD). X;and X, are vectors of state variables. ¥,and %, are derivatives of ¥;and ¥,
with respect to time. y; and y, are vectors of outputs. 1, and 1, are the inputs of BES and CFD,
respectively. w; and w, are exchanged data between BES and CFD. The initial states of X;and X,
the states (X;(t,), X, (t,)) from last optimization step. The input vectors may be a function of the
initial inputs (given prior to the optimization, i.e. i, (ty), @i, (t,)) and optimized values (f). We
note that optimized values (g ) are the intermediate (stepwise) values of the input variables being
optimized in the optimization process. When the optimization completes, the optimized value will

be the optimal solution.

Even though above equations can be solved simultaneously (aggregated simulation or internal



coupling), this methodology prefers the approach of external coupling (co-simulation). Within a
data synchronization time step Atsy,, w; and w, are held constant when used as inputs.
Theoretically, the synchronization time step Atg,, should adapt to address the events in both
simulations, so that the coupled simulation results are accurate. Here we note that events in the
context of numerical simulation are referred to behaviours that can cause discontinuity of system
response. Examples are turning on/off air conditioners, staging on/off chillers, etc. Without using
proper smoothing techniques, these events can introduce step-change in the results and
consequently bring challenges to the co-simulations in terms of controlling the co-simulation time
step size. A typical trial-and-error approach, such as in functional mockup interface standard, is
used to iteratively locate the event and then further adapt the co-simulation time step. This is
particularly important when the numerical model is not properly smoothed (the response of the
system is not always continuous), as using a constant co-simulation in such occasion could bring
erroneous exchange data and instability to the co-simulation.

The optimization problem at the optimization step (to, to + Atopt) can be formulated to find

g such that:

?2;2?% S, V1, ¥2)@;, where Y10 @, = 1 )

where s, is a vector of functions to map the outputs of the coupled simulation to optimization
objective functions, and w is the weight that converts a multi-objective into a single-objective
optimization. m is the number of objectives. X is the searching domain for independent variables.

The optimization process consists of following steps:
e Reconstruct the initial values: At time t,, the initial conditions and inputs should be given
before solving the set of equations from (1) to (8). Both BES and CFD should be able to

read the states and inputs from the external sources.
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Perform coupled simulations: Solving the set of equations from (1) to (8) using a co-
simulation approach for ¢, to ty + Aty to yield the outputs y; and y,. These outputs can
be transient or time-averaged.

Calculate objective functions: Analytically evaluating the formula (9) can be difficult, if
not impossible. To solve the optimization through a numerical approach, this step evaluates
Y. s, (¥1, Y2)w; before calling optimization algorithms to find the optimal.

Call optimization engine: Based on the value of current and possibly historical values of
the objective functions (either local search or global search), the optimization engine
updates the optimal g within the search domain X. The updated S? will be used to further
update the input vectors.

Repeat above process until the optimization converges to optimal values of inputs for
current optimization period from t, to ty + At,p,.

Repeat above process for next optimization period from ty + At,p; to to + 2 * Aty

2.2 Implementation of Optimization Platform

While the optimization platform can be implemented in various ways, this paper chooses

Modelica and Fast Fluid Dynamics (FFD) to carry out the coupled simulation and PSO algorithm
in GenOpt (Wetter 2009a) as the optimization engine. Modelica, an equation-based and object-
oriented language, is designed for dynamic simulation of the components and systems in various
physical domains, i.e., component models or system models of HVAC. FFD is picked for airflow
and thermal environment simulation thanks to its fast computational-speed. Previous research has
demonstrated that the coupled simulation model between Modelica and FFD can provide a realistic
environment to study the dynamic interaction of the stratified air distribution and HVAC system

(Zuo et al. 2016).
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Figure 2 Implementation of the Optimization Methodology

Figure 2 shows the detailed implementation of the optimization platform based on the coupled
simulation model of Modelica and FFD. The coupled simulation implementation between
Modelica and FFD is largely based on the previous work (Zuo et al. 2016). Customized interfaces
for Modelica and FFD are implemented to enable accessing data in the shared memory, which is
recognizable to both programs. The data in the shared memory consists of exchanged data (w,and
w,) and control signal that is sent from co-simulation master Modelica to control co-simulation
slave FFD. In this research, we implemented a coarse grid solver in the FFD dynamic linker in
Modelica Buildings library (Wetter et al. 2014) to accelerate the computation speed, which
employs a plume model to correct under-predictions of the thermal plume and thermal
stratification caused by the coarse grid (Jin et al. 2015). The integration of these coarse grid
techniques is critical for the coupled simulation to be applied for model-based optimization, as

otherwise the computational cost for FFD is too demanding when hundreds of simulations are
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needed. Before running the coupled simulation, it is required to predefine the data synchronization

time step, as opposed to using adaptive time step. This is to achieve a compromise between

computational cost and accuracy.

The whole implementation can be divided into:

Reconstruct the initial values: Prior to starting the optimization, the Python module reads
the text files containing states from last optimization step and initial guess of optimized
variable 5 , and generates text files that are to be read by Modelica and FFD to initialize
their states and set up the parameters.

Perform coupled simulations: Afterward, the Python module serving as the optimization
controller fires off GenOpt, which then executes the Modelica model. To save time from
compiling the Modelica source codes, one can manually compile them into an executable
and request GenOpt to call it during the optimization.

Calculate objective functions: At the end of each iteration in the optimization, Modelica
and FFD exports the outputs into text files, which are then read by GenOpt to evaluate the
objective functions and perform optimization to seek the optimal g .

Call optimization engine: GenOpt can control the optimization process until the optimal is
determined. Finally, the Python module, once found that the optimization for current step

is done, can move the optimization for the next step.

To further demonstrate the optimization platform, we perform a case study of seeking the

optimal thermostat placement for an office room with displacement ventilation in the design phase.

The objective is to achieve highest thermal comfort, or best energy efficiency, or both. In the rest

of the paper, detailed validation of the coupled simulation model and optimization results will be

discussed. Note that this case study is not going to conclude a general principle of thermostat
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placement since the results are case-dependent to a great extent. Instead, this case study is to
demonstrate how our optimization platform facilitates model-based design for ventilation systems

that involve with distinct stratified airflow and temperature distribution.

3 Evaluation of Coupled Simulation Model

The office room with displacement ventilation used in this study is derived from the literature
(Yuan et al. 1999). The room size is 5.16 m by 3.65m by 2.43m. The inflow at the displacement
diffuser is 17.0 °C with a flow rate if 183.1 m*/h. Two heated dummies and two boxes are put in
the room to generate the thermal plume. We hypothetically add a VAV terminal box model to the
room. A pressure-dependent control logic is used in the controller. Based on the thermal load of
the room, the nominal mass flow rate of the supply air at a constant temperature of 18 °C is 0.5
kg/s (1470 m*/h). The thermostat is placed at the middle of the ceiling and the temperature is

extracted to control VAV terminal box.
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Figure 4 Temperature comparison between FFD and experimental measurements

We first validate the coupled simulation (assuming a constant supply airflow rate and
temperature) against the experimental measurements. This case is directly derived from the paper
by Jin et al. (2015). A coarse grid of 5 cells by 5 cells and by 8 cells is used to achieve optimal
computational speed while attaining adequate accuracy. The simulation runs for 400 seconds with
a time step size of 0.1 second. Figure 4 shows that the coupled simulation generally captures the
variation of temperature profiles at various points in the room. We note that there are various reason
why simulated results are not perfectly matching the experimental data. First, although the
experiment was performed in a climate chamber where boundary conditions are well controlled,
the boundary conditions can inevitably change over the course of experimental measurements.
Second, the level of modeling detail is never good enough to capture all the physics regarding the
flow, such as the detailed geometry of occupants and openings, the detailed heat dissipation pattern
from the room items, the turbulence modeling. That is why in the paper by Jin et al. (2015), it is
not surprising that even CFD with a two-equation k-epsilon model cannot generate identical results
as experimental data. Nevertheless, the profiles clearly show that the temperature distribution is
fairly non-uniform and stratified in vertical direction. This validation supports that the current grid

together with the coarse-grid techniques in FFD can achieve a compromise between computational
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speed and accuracy. For information regarding settings in FFD, refer to Jin et al. (2015), and for
information regarding setting up the coupled simulation using Modelica and FFD, refer to (Zuo et
al. 2016).

We then study the transient characteristics of the VAV terminal box responding to the dynamic
change of the setpoint of the thermostat. The VAV terminal box consists of a damper in air loop,
reheating coil, a valve in hot water loop and a controller using a pressure-dependent control logic
(Liu et al. 2012). When room temperature at sensor location is lower than setpoint (assuming a
cooling season), the controller will first attempt to reduce the damper opening to decrease the
supply air flowrate until a lower limit (30% of nominal supply air flowrate) is reached. If the lower
limit is reached and the room temperature is still lower than setpoint, the controller will turn on
the valve in hot water loop to reheat the supply air. For the detailed model of VAV terminal box,
refer to the paper by Tian, Sevilla, Zuo, et al. (2017). Here we dynamically adjust the setpoint of
the thermostat in the range of 24 to 26 °C every 10 minutes. The case is simulated for 3600 seconds
(1 hour). Figure 5 shows the transient variation of the temperature at the thermostat, inflow
temperature and flow rate, and PMV of the room. The variation of these variables is tightly related
to the control logic used in this case study. Take the first spike of supply air temperature as an
example. When actual temperature is lower than setpoint, the control module will first decrease
the air flowrate until reaching the 30% threshold. However, the actual temperature is still lower
when compared to the setpoint, then reheat using hot water will be turned on to further help
increase the room temperature. When reheat is on, the supply airflow rate will be kept constant at
30% of the nominal value. After actual temperature exceeds setpoint for a certain amount of time,
we can see the reheat is being shut down, and supply airflow rate climbs while the supply air

temperature remains at 16 °C. We note that the temperature at the thermostat location is linearly
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interpolated using the temperatures at the neighbouring cells in FFD. This is justifiable since it has
been demonstrated that the coarse grid techniques would not cause significant degradation in terms

of accuracy compared to a conventional fine grid for this case (Jin et al. 2014).
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Figure 5 Dynamics of VAV terminal box and indoor environment
Due to the transient essence of the flow, the actual temperature constantly wiggles around the
setpoint. Consequently, the controller module in the VAV terminal box adjusts the valves in the air
loop and reheat coil to bring the actual temperature close to the setpoint. The control performance

of the VAV terminal box is satisfactory as the actual temperature actively adapts to the change of
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the setpoint with a margin of 1 °C. As expected, the PMV of the occupant zone, defined as the
lower-half of the room, changes in a similar pattern as the actual temperature at the thermostat
location. The simulation results presented in this figure also emphasise the importance of
considering the dynamic control of the HVAC system using the dynamic simulation, as opposed
to the steady-state simulation in previous study. The inability of the steady-state simulation to
capture those dynamics may further lead to incorrect predictions of the control-performance and

energy-performance of the system.

4 Application in Optimal Thermostat Placement

The design of the optimal thermostat placement case, which is to find the best location to
place the thermostat in the design phase, is to evaluate the feasibility and performance of this
platform. We will look at for an office room of typical size if this platform can predict the optimal
location within a reasonably short time frame. Since a dynamic optimization process as shown in
Figure 1 is essentially consisted of a series of interconnected static optimization, in which the
optimization time step is equivalent to the simulation time, we configure this case study as a static
optimization problem. If the static optimization can be successfully carried out in this platform,
the capability of using this platform to perform dynamic optimization should be plausible. With
this in mind, we first mathematically describe the optimization problem, and then we show the

optimization results.

4.1 Definition of Optimization Problem
The objectives of the optimization study are to find the thermostat location to achieve optimal

thermal comfort, or, energy efficiency, or, both, over the course of the whole simulation time. The
energy consumption is estimated in terms of source energy considering both cooling and reheat.

The objectives of the optimization in this case study can be formulated as:
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] = ?22(3715), where y; = (pmv,P) and Y%, @; = 1 (10)
where y,; represent the output from the Modelica; w represents the weight for each component in
y1; pmv is the predicted mean vote to quantify the thermal comfort; P is the energy consumption;
m is the number of sub-objectives; w; is the weight for the sub-objective i. The searching domain
X is defined as the ceiling of the room. In this case study, the searching domain X covers the ceiling
of the room. We note that when pmuv and P exist in y;, we normalized the results to numbers with
a range of 0-1 to make them comparable in magnitude before performing the linearization.

Since the system boundary in this case study only includes the VAV terminal box (not the

chilled water system), we simplify the calculation of energy consumption P as:

_ to+Atopt . .
P= fto [nlmair (Tair_ret - Tair_sup) + N2Myater (Twat:er_ret -

(11)
Twater_sup)] dt,

where 1; and 1, are conversion coefficients for chilled water and hot water, which can be found
in Energy Star Portfolio Manager (EPA 2018). Ty, ot and Tgir sup are return and supply air
temperature, respectively. m,;, and m,, .., are mass flow rates of the air and hot water (for
reheating). Tyater rer aNd Tiygter sup are the return and supply water temperature. We utilize a
time-average PMV to evaluate the overall thermal comfort of the occupant zone over the

simulation time. It is defined as:

1 to+At,
pmv = o [ T PMV de, (12)

where PMV; is the PMV at time t, which is calculated by the standard thermal comfort module
“Buildings. Utilities. Comfort.Fanger” in Modelica Buildings library (Wetter et al. 2014). We
employed average temperature and velocity at the occupant zone predicted by CFD simulations to

calculate the PMV with assuming a fixed radiative heat gain and clothing insulation. The coupled
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simulation platform makes it possible to dynamically predict the average thermal comfort at the
occupant zone for a ventilation system with stratified airflow and temperature distribution. A
standalone BES usually employs a well-mixed room model, which makes it difficult to estimate
the thermal comfort at a certain zone or location. A standalone CFD tool should be assigned with
a prescribed boundary condition, which make it impossible to simulate the dynamic interaction

between indoor environment and the HVAC system.

4.2 Optimization Results

A typical outside condition was selected and the coupled simulation in this case study was
performed for 3600 seconds (1 hour). The optimization time step was identical to the simulation
time. A global optimization scheme called PSO was selected in GenOpt (Wetter 2009a). We
performed optimizations with the settings of 10 generations and 10 particles (candidate solutions)
in each generation, which are determined by some initial tests. We employed “best” neighborhood
topology with a neighborhood size of 2 (Wetter 2009a). The cognitive acceleration and social
acceleration are set as 2.8 and 1.3, respectively. The variables are the coordinates of the location
that the thermostat may be placed at, and the searching ranges cover the whole ceiling. Three
scenarios were considered to find the optimal thermostat locations to: a) achieve best PMV (least
absolute value of PMV) of the occupant zone; b) achieve least energy consumption; c¢) achieve an
overall optimal of combined PMV and energy consumption linearized with a 50%-to-50% weight
coefficient. Scenarios a and b are single-objective optimizations and the scenario ¢ is a multi-
objective optimization. Table 1 summarizes optimized results of three optimizations, in which
sensor 1, sensor 2, and sensor 3 are the optimal locations corresponding to the scenario a, b and c.
When thermostat is put at sensor I location, the thermal comfort is the highest among the three,

while energy consumption is also the largest. When thermostat is put at sensor 2 location, 44%
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less energy was used compared to scenario a, while the thermal comfort is the worst. When the
thermostat is placed at sensor 3 location, an overall optimal is achieved (energy consumption is

lower compare to scenario a and thermal comfort is better than scenario b).

Table 1 Summary of the optimization Results

Optimization . Number of Time cost
Objective | Optimal ¢ PMV E(M]) iterations (hour)
Fex(Pmv) Sensor 1 0.14 33.42 97 5.8

(2.85,1.60,2.43)
] =P Sensor 2 0.39 19.03 86 5.1

(2.55,1.79,2.43)

] = E(pmv, P)&s

T Fex
Sensor 3 0.15 29.40 84 5.2
@ = (50%, 50%) (2.81,1.60,2.43)
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Figure 6 Search trajectory of finding optimal thermostat location leading to best PMV

The total time cost for the three optimizations is approximately 6 hours, in which up to 97
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iterations of coupled-simulation-run were performed. Figure 6 shows the searching trajectory of
the optimal thermostat location on the ceiling for scenario a. Each dot in the plotting represent an
iteration in the optimization process. The converging speed is plausible as: first, after
approximately 5 iterations, the PMV in the optimization is close to the optimal value; after
approximately 10 iterations the searching rapidly approaches the optimal location. Looking at the
cluster of dots covering 10" to 65% iterations, we find that the PSO as a global search scheme
avoids the local optimal, and eventually determines the optimal after 97 iterations. We note that
the searching trajectory may depend on the initial guess. In this optimization, the initial guess of
the thermostat location leads to a PMV of 0.45, which may help accelerate the convergence speed
of the optimization.

To further study the dynamics of the airflow and VAV terminal box, we present the FFD and
Modelica results for the three optimization scenarios in Figure 7 and Figure 8. Over the simulation
time of 1 hour, regardless of the thermostat placement, the actual temperature varies effectively
with the change of the set point and the difference between them are mostly within 1 °C. Neither
of the three thermostat locations is significantly better or worse than others in terms of control
stability and accuracy. We note that if a model based on mix-air consumption is used, the
fluctuation of the actual temperature around the setpoint in the dynamic control process would be
overlooked, and thus the calculation of the PMV or energy consumption might be incorrect. As
expected, three different thermostat locations lead to different PMVs and energy consumption of
the terminal box, due to the resulted behaviors of the terminal box in terms of cooling airflow

rate/temperature, turning on/off the reheat coil.
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Figure 7 Time-varying temperature at the optimal thermostat locations

In Figure 8, the PMV is constantly changing with the variation of the actual temperature at
the thermostat location. When thermostat is placed at Sensor 1, the time-varying PMV is closer to
0 (indicating highest thermal comfort) than the other two scenarios. This is achieved mainly by
providing more cooling, as the airflow rate of the cooling air in the first scenario is the highest.
Consequently, the total energy consumption, in which cooling energy accounts for the highest
portion, is the largest among all. When thermostat is placed at Sensor 2, the time-varying PMV is
the highest (least comfort) among all the three scenarios. This is mainly because least cooling is
provided in this scenario and consequently least energy consumption is achieved, though in this
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scenario, it has the largest reheating energy consumption, which accounts very little in the total
energy consumption. Lastly, when thermostat is placed at Sensor 3, an overall optimal PMV-and-
energy-consumption is achieved, in which the third scenario has neither best PMV nor largest
energy consumption. Its time-varying PMV is higher than the first scenario and lower than the
second scenario, while its total energy-consumption is lower than the first scenario and higher than
the second scenario. The reason is that the cooling provide by VAV terminal box in this scenario

1s in between those in scenario 1 and 2.
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Figure 8 Responses of cooling system for optimization of PMV or energy or both

Finally, it is important to note the necessity of using a dynamic model in this kind of
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application, which involves dynamic system control. One may argue that a coupled model based
on a steady-state building-energy-performance model and steady-state CFD is also viable to carry
out such optimization. While this might be true, however, the omitted dynamics by the steady-state
models can results into inaccurate or even incorrect results. For example, during 0 to 600 seconds
in which the set point is anchored at 25 °C, a steady-state model will provide a flat/linear PMV and
energy-consumption profile, as opposed to the time-varying profiles. Without comparison to the

experimental measurements, we cannot conclude which one outperforms the other.

S Discussion
The optimization platform has been demonstrated to seek the optimal placement of the

thermostat in an office room with the displacement ventilation in the design phase. Dynamics of
the VAV terminal box have been shown to be critical to determine the thermal comfort and energy
efficiency. It nevertheless indicates that the proposed optimization platform can only be applied to
thermostat placement or model-based design, and we have identified a few more potential
applications:

1. Design optimization of HVAC system. This includes the optimization of airflow or energy
system, or both. During the optimization, the interaction between the airflow and energy
system will be considered, which would be critical in assessing the thermal comfort and
energy efficiency. Except for the applications listed in the introduction, a good example is
the design of data center cooling with raised-floor architecture, in which the open-area-
ratio and location of perforated tiles can be optimized to reduce cooling energy
consumption.

2. Pre-commissioning (design verification) of HVAC system. Pre-commissioning or design

verification is to ensure that the real system can deliver the performance as desired. Given
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3.

the fact that the real system will dynamically change in the real operation, only verifying
the design in a nominal (design) condition is not enough. Thus, the optimization platform
can be utilized to optimize the settings of the cooling systems and their controls. For
example, in data center cooling application, one can seek the optimal settings of a DX
system to avoid short-cycling and improve control reliability.

Fault Detect and Diagnostics (FDD). The sensors in the thermal environment and cooling
system may send back signal to indicate possible failures. It is critical, particularly in
mission-critical facility, to identify whether the signal is due to the failure of the sensor or
cooling system or normal fluctuation of the airflow. The optimization platform can be used
to traverse all the possible failures and find the most likely one to help operators fix the
fault. The highlight of this optimization platform compared to other FDD techniques lays
in the fact that this optimization platform considers the interaction between the thermal
environment and the cooling system.

Operation optimization of HVAC system. Model-based control of the cooling system in
the operation would be a good application of the optimization platform. Time stepwise
optimization can be performance dynamically to seek optimal settings to achieve least
energy consumption or best control response. For example, in data center cooling, one can
dynamically adjust the server load distribution to increase the supply air temperature or
lower the supply airflow rate to save cooling energy. When the server load is projected to
dramatically increase in near future, one can use the optimization platform to determine
the best supply air temperature reset to precatively handle the load increase while still

sustaining the energy efficiency.
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6 Conclusion and Future Work
In this paper, we propose an optimization framework based coupled CFD-BES simulation

model. We then implement an optimization platform using a Modelica-FFD coupled simulation
and GenOpt as optimization engine. The optimization platform is demonstrated to seek optimal
thermostat placement in an office room with displacement ventilation and a VAV terminal box.
Two single-object optimization studies show that the platform is capable to find the optimal
thermostat locations to achieve best thermal comfort or energy efficiency. Due to that these two
objectives are interrelated, we perform a multi-objective study by linearly combining them and
find that the platform is capable to find a compromise between multiple objectives. The total time
cost of the optimizations in the demonstration is about 6 hours, which are acceptable in the design
phase.

We note that there are a few future studies that can be done to accelerate the speed of the
coupled simulation and the optimization platform. First, parallel computing can be utilized to speed
up the CFD simulations, which has been studied extensively in previous research. However, more
research will be needed to couple the parallel-computing CFD simulations to BES simulations to
ensure stable and efficient data transfer. Second, the technique of adaptive-synchronization-time
step can be used to couple BES and CFD reduce the overhead of data transfer. Using this technique,
a small-time step size is used only when it is required, i.e., to resolve step change or high-frequency
dynamics. Finally, a reduced order model of indoor environment can be used to replace CFD, such
that the computing speed can be drastically increased to a point, where a dynamic optimization

using this platform can be carried out to assist the HVAC operations.
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