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Abstract

Infrastructure in future smart and connected communities is envisioned as an aggregate of public ser-
vices, including energy, transportation, and communication systems, all intertwined with each other.
The intrinsic interdependency among these systems may exert underlying influence on both design and
operation of the heterogeneous infrastructures. However, few prior studies have tapped into the interde-
pendency among these systems in order to quantify their potential impacts during standard operation.
In response to this, this paper proposes an open source, flexible, integrated modeling framework suitable
for designing coupled energy, transportation, and communication systems and for assessing the impact
of their interdependencies. First, a novel multi-level, multi-layer, multi-agent approach is proposed to
enable flexible modeling of the interconnected systems. Then, for the framework’s proof-of-concept, pre-
liminary component and system-level models for different systems are designed and implemented using
Modelica, an equation-based object-oriented modeling language. Finally, three case studies of gradu-
ally increasing complexity are presented (energy, energy + transportation, energy + transportation +
communication) to evaluate the interdependencies among the three systems. Quantitative analyses show
that the deviation of the average velocity on the road can be 10.5% and the deviation of the power draw
from the grid can be 7% with or without considering the transportation and communication system at
the peak commute time, indicating the presence of notable interdependencies. The proposed modeling
framework also has the potential to be further extended for various modeling purposes and use cases,
such as dynamic modeling and optimization, resilience analysis, and integrated decision making in future
connected communities.

Keywords: Communities; Interconnected systems; Modelica; Modeling; Multi-infrastructure systems; Ob-
ject oriented methods; Open source software

1 Introduction

Urbanization has become a mega-trend in the world today [1]. The resulting large population in urban
communities will exert tremendous pressure on existing infrastructure. To mitigate this issue, the concept



of smart and connected communities has recently been proposed in which new and green technologies are
embraced collectively to deliver essential services, including power, mobility, and connection [2].
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Figure 1: A vision of different infrastructure systems in future connected communities.

Fig. 1 shows our vision of future smart and connected communities. These connected communities will
include three key infrastructure systems: energy, transportation, and communication infrastructure. The
energy system includes different heterogeneous components such as increasing renewable energy resources,
buildings as virtual batteries, as well as massive adoption of electric vehicles (EVs). The transportation
system is also expected to undergo an unprecedented evolution due to the shift toward full electrification
and autonomous vehicles [3-5]. The communication system will become an indispensable enabler to support
the aforementioned infrastructure systems, link various system components, and coordinate the operational
sequences [6,7].

Infrastructure interdependency involves a bidirectional relationship between systems in which the state
of each system is dependent on and intertwined with the other. For a simple example, communication
networks need power from the electric grid to function, while the electric grid needs the communication
networks to dispatch generation facilities according to the demands. With these codependent relationships,
disturbances and capacity stresses on one system can affect the other, potentially creating a cascading effect
that compromises the systems’ operations.

Today, these interdependencies are most often felt in critical infrastructure systems (CIS) — which include
energy, transportation, and communication systems, among many others. It is well proven that CIS are
indeed highly intertwined and codependent [8-10]. In the future, increased electrification and connectiv-
ity will further complicate these interconnections, as demonstrated in Fig. 1. To date, interdepenedency
modeling primarily focuses on averting potentially catastrophic failures and minimizing the risks of future
failures. This is justly so; while these interdependencies today often go unnoticed in their typical operation,
they effectively aggravate and compound system failures when subjected to various stresses (such as cyber
attacks, congestion, and natural disasters). In the near future, it is likely that infrastructure vulnerabilities
will become increasing present in day-to-day operations due to their deeply crosslinked nature.



Due to the inherent complexities in future SCC infrastructure, we reorganize the sophisticated and elusive
relationships in Fig. 1 into Fig. 2, which illustrates the interaction among the different systems considered.
The interdependencies exist both within and between systems and present themselves on several levels,
which are commonly classified under four types: (1) physical, meaning the state of one system depends on
the material output(s) of the other, and vice versa; (2) cyber, meaning there is information exchange between
the systems; (3) geographic, meaning the infrastructure components are in close spatial proximity with each
other; and (4) logical, meaning there is a different mechanism (e.g. policy, legal, or regulatory regime) that
logically ties the infrastructure systems. A physical interdependency example is in the electricity exchange
between transportation and energy systems, where EVs take electricity from the grid while charging, but
they are can provide ancillary services with their large storage capacities and quick discharging abilities [11].
Further, a logical interdepenency arises when the utility company increases the electricity price due to rising
charging demand, which in turn affects the drivers’ charging patterns and the traffic condition [12]. On
the cyber level, the quality of the supporting communication services affects the transportation and energy
systems (shown as the dashed lines). In the transportation system, communication services enable vehicle
routing, dispatching, coordinated charging, and the implementation of vehicle-to-grid interaction. These
interdependencies indicate a need to consider multiple infrastructure systems when operating future SCCs.
To this end, modeling and simulation is an effective method where these complex, multilevel interactions
among several infrastructure systems can be studied [13].

1.1 Prior Works

One cost-effective way to evaluate the integrated infrastructure systems in a connected community is through
computer-aided modeling. The existing community modeling approaches can be grouped into two types:
discipline-specific modeling and integrated modeling. The discipline-specific modeling of community infras-
tructures has been well-developed over the past decades and numerically dedicated to particular purposes
of urban building energy modeling [14-17], urban mobility modeling [18-22], and communication network
simulation [23-25]. Urban building energy models are targeted at predicting the energy use in a community,
which is a relatively nascent field [14]. For the urban mobility simulation, Multi-Agent Transport Simulation
(MATSim), Simulation of Urban Mobility (SUMO), and Transportation Analysis and Simulation System
are the three mainstream, open source simulators to conduct transportation analysis and dynamic traffic
assignment [26]. In the context of communication network modeling in the interconnected infrastructure
systems, ns2/ns3 [23] and OMNeT++ [24] are widely used due to their open source nature. Although
the discipline-specific modeling can provide accurate and efficient results for the phenomenon of interest,
its functionality deteriorates when it comes to the interdependent infrastructure systems due to significant
simplifications [27].

In contrast, integrated modeling approaches are more suited for the interdependent infrastructure systems.
Several modeling techniques have been adopted, including agent-based modeling, input-output models, net-
work based approaches, and system dynamics. Some recent works [28,29] considered mathematical modeling
of interdependent infrastructure; however, these simplified numerical simulations have limited capabilities
in modeling real-world SCCs. To achieve a higher fidelity, specialized software packages that use validated
model libraries and tailor-made solvers are coupled by a certain orchestration mechanism. Table 1 shows
a non-exhaustive list of the references that model energy, transportation, and communication systems and
their interdependencies. Details in terms of the platforms, simulators, use cases, and open source statuses
are also included.

For SCC applications, most of the related works have focused on the integration of two systems and utilized
proprietary integrated modeling tools. Coupling the energy and transportation systems, Farid [37] proposed
a modeling framework using graph theory and petri-net models to assess the effects of transportation-
electrification. Su et al. [38] coupled the OpenDSS and DYNASMART to evaluate the potential impacts of
electric vehicle charging at the feeder level. However, these studies do not simulate the detailed communi-
cation processes and control management, in which the energy, transportation, and communication systems
are coupled. For the energy and communication systems, profound efforts have been made to couple con-
tinuous power system simulators with discrete communication network simulators. The typical simulation
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Figure 2: A schematic of the interdependent infrastructure systems in connected communities.

platforms include the electric power and communication synchronizing simulator (EPOCHS) [39] and the
integrated co-simulation of power and information and communications technology (ICT) systems for real-
time evaluation (INSPIRE) [40]. A recent coupled platform built by Chatzivasileiadis et al. [41] implemented
the Ptolemy II framework to integrate the building models, power system software, and the communication
network software. The platform can be used to investigate demand-response strategies and voltage control
strategies. For the transportation and communication systems, a traffic simulator is used to understand
traffic patterns and to reduce real-life traffic congestion. Conversely, network simulators concentrate on
network states and events such as routers, mobile nodes, and transmission rates. The combined modeling of
transportation and communication systems can be utilized in the analysis of inter-vehicular communication
performance [42,43], traffic management scenario [36,44], and dynamic traffic flow [45].

While most existing research focuses on integrating two systems, Bedogni et al. [46] integrated three systems
(a mobility simulator, a dynamic power distribution network simulator, and a UMTS communication network
simulator). However, the scalability of their coupled model is limited, and their proposed model is dedicated
to the power control of EV charging stations. The rigid coupling approach adopted in their study blocks the
model itself from adapting other scenarios that are common in the context of SCCs infrastructure systems.

Beyond SCC applications, the state-of-the-art approaches in CIS modeling are well summarized in the exist-
ing literature [10,30]. Many successful projects have modeled the interdependencies among CIS. For example,
several groups [31-34] proposed different cascading failure models for interdependent power and communi-



Table 1: State-of-the-art of integrated models for energy, transportation, and communication infrastructure.

Energy & Transportation

Model name

Simulation tools

Use cases

Open Source

Energy \ Transportation
NA [36 In-house codes Power flow and travel cost optimization Unknown
NA [37 In-house codes Transportation-energy nexus assessment Unknown
NA [38] OpenDSS DYNASMART | Impact of EVs at the distribution feeder level Unknown
NA [51] MATPower Clea?n Mobility Power system safety; transportation Full
Simulator performance assessment

NA [52] DIgSILENT PowerFactory | MATSim, EVSim Charging strategy assessment; V2G Partial
NA [53] EMTP-rv SUMO Charging strategy assessment; Complex Partial

network planning

Energy & Communication

Simulation tools

Model name — Use cases Open Source
Energy Communication
EPOCHS [39] PSCAD, PSLF ns-2 Multi-agent protection and control systems Partial
Wide-area monitoring, protection, and .
INSPIRE [40] PowerFactory OPNET control (WAMPAC) in high voltage grid Partial
. Energyplus, Dymola, ) .
VirGIL [41] DigSILENT PowerFactory OMNeT++ Demand response; Vol/var control Partial
Gridspice [54] | GridLab-D, MATPOWER Simplified Tran&gusswn and distribution system; Partial
Demand side management/Demand response
NA [55] PSCAD/EMTDC OPNET WAMPAC in high voltage grid Partial
NA [56] Simulink, JADE OMNeT++ WAMPAC in middle voltage grid Partial
Transportation & Communication
Simulation tools
Model name Transportation Communication Use cases Open Source
Veins [42] SUMO OMNeT++ Inter-vehicular communl.catlons Full
performance evaluation
VNS [43] DIVERT 2.0 ns-3 Inter-vehicular communl'catlons Full
performance evaluation
HINT [44] SUMO ns-3 Traffic management scenario analysis Full
VSimRTT [45] SUMO/VISSIM OMNeT++, ns-3 Dynamic traffic flow simulation Partial
iTETRIS [57] SUMO OMNeT++ Largescale vehicular network simulation Full
NA [58,59] In-house codes Vehicle routing algorithm analysis Unknown

NA.: Not applicable; Partial: Partial simulators are open source; Full: All the
simulators are open source; Unknown: The open source status is unknown.




cation networks. Similarly, Heracleous et al. [35] developed hybrid automata models for the interdependent
power, water, and communication infrastructures. While related, interdependency modeling for CIS may
not be extensible to study SCCs during typical operation. Interdependent CIS models are often built to
understand how these complex, interdependent systems will respond to disruptions and changing conditions.
As such, their simulation goal is not to produce an “exact” outcome, but to illustrate possible outcomes to
inform urban planning and design. By contrast, the underlying dynamics and model fidelity are crucial in
the SCC modeling case, where the intention is to study use cases for typical operation.

The above literature review demonstrates that discipline-specific modeling for SCCs usually specializes in
an isolated system and simplifies or even neglects the interdependencies among other systems. Meanwhile,
integrated modeling does consider the interdependencies; however, the existing models are often limited by
their proprietary nature and two-system focus. Furthermore, interdependency modeling in CIS applications
is well developed but may not be fully extendable to studying SCC operational cases. Therefore, it is
important to have an open source modeling framework that can cover different operational scenarios of the
entire infrastructure. This is particularity important because the reactions to events in a single system may
spread across multiple systems due to the interdependencies present [47].

1.2 Contributions

In response to the aforementioned limitations of current modeling of infrastructure systems, the main contri-
bution of this paper is to develop an open source, flexible, and extensible modeling framework for studying
interdependent energy, transportation, and communication infrastructures during typical SCC operation.
The open source model can be found at https://www.colorado.edu/lab/sbs/scc-library. We propose a novel
multi-level, multi-layer, multi-agent approach to enable flexible modeling of the three interconnected systems
of energy, transportation, and communication. The proposed framework is then implemented on Modelica-
based modeling platforms [48-50], which provides important features like objected-oriented, acausal modeling
and equation-based schemes. In addition, we develop various component and system-level models for energy,
transportation, and communication systems. The objective of these models is to demonstrate the application
of the proposed framework; therefore, the interdependency and system models are selected to adequately
test the framework while minimizing complexities at the current stage. To the best of our knowledge, this
is one of the first attempts to couple all the three energy, transportation, and communication systems in a

flexible and scalable way to evaluate and quantify the underlying interdependencies of their infrastructures
for SCCs.

The rest of the paper is organized as follows. Section 2 presents the proposed smart community modeling
framework based on the multi-level, multi-layer, multi-agent (3M) approach for coupling multiple infrastruc-
ture systems. Section 3 introduces the Modelica implementation of the proposed modeling framework as well
as various component and system models in Modelica. Section 4 presents three case studies to demonstrate
the application scenarios of the modeling framework and the measurable interrelations among the three
systems. Finally, concluding remarks are presented in Section 5.

2 Multi-layer, Multi-block, Multi-agent Approach

This study proposes a 3M approach for the flexible and extensible modeling of the coupled systems in a
community level. This generalized modeling approach can be adapted to different scenarios and use cases
in the design and operation of SCCs. The modular nature of the 3M approach allows various system combi-
nations to be studied (two-system models, three-system model, and so forth). Furthermore, the generalized,
adaptable framework can readily accept a variety of other component models along with their dependency
interconnections to evaluate many dynamic systems. In this section, we use the three-coupled system to
illustrate the modeling approach.

Fig. 3 illustrates the principle of the proposed 3M approach. The multi-layer represents a hierarchical



structure, which consists of a community layer, a block layer, and a system agent layer from the top level to
the bottom. At the community layer, the entire community will be divided into several functional blocks,
such as residential blocks, commercial blocks, industrial blocks, or mixed-functional blocks. It could also be
divided according to domain-specific entities, such as distinct power distribution networks. The block layer
has three system agents for the energy, transportation, and communication systems. Different infrastructure
systems should be mapped accordingly in one block. Within each system agent (system agent level), there
will be individual subagents for infrastructure nodes. For instance, an energy system agent could have
subagents for renewable generation, batteries, and utility customers. Likewise, the transportation system
agent could have subagents for connected roads, charging stations, and vehicles. The communication system
agent could consist of different communication devices (control centers, backbone routers) according to the
different types of communication networks (e.g. cellular/LTE, WiFi, or PLC).

We next illustrate the interdependencies and data exchange between these agents and blocks in a bottom-up
fashion. At the system agent layer, multiple agents could exchange data through certain interfaces. As
shown in Fig. 3, the interdependencies can be physical, cyber, or logical, and both internal and external
dependencies are present. In the energy domain, the different components will communicate with each other
to achieve stable and economic operations of the power grid. For example, in a demand response application,
the electricity demand of each customer can be properly rescheduled via the communication network to reduce
the peak demand between the power grid and its customers. While in the transportation domain, different
components will also interact with each other to achieve a good traffic condition. For example, the queuing
and power availability information in the charging stations and the routing information could be broadcast
to the vehicles for optimal routing and charging arrangements. The aforementioned connections are the inner
data exchanges in each domain. To ensure a collective optimal operation of the energy and transportation
domains, the agents from the energy system will calculate the electricity price under different load profiles
and trigger the necessary power controls of the charging stations. In response to this, the transportation
agents will calculate the traffic condition, decide the routing and charging behavior of electric vehicles, and
determine the charging load of each charging station node. In this system agent layer, we could select the
needed component model according to the use cases.

At the block layer, we encapsulate all the component models from the system agent layer and merge the differ-
ent communication centers into one communication system agent, which would calculate the communication
latency among the different components. The generalized data exchange between different system agents
are propagated from the data exchange in the system agent layer. The energy system agent will transfer
power from the grid to charge the EVs (physical) and send the packets for the power system control through
the communication system agent (cyber). The communication simulators within the communication system
agent will then return the control events (cyber) to the energy system agent. Likewise, the transportation
system agent will send the packets for navigation purpose to the communication system agent (cyber), and
it will receive the routing events from the communication system agent (cyber). Lastly, the energy system
and transportation system agents will exchange the control/price signal and the charging demand via the
communication agent (logical). Note that the aforementioned generalized dependencies could be specialized
by different use cases, which should be aligned with the system agent layer.

In the community layer, the different blocks are linked with each other through the corresponding ports. The
power port links the energy system agents in different blocks to a power grid network, and the traffic port
links the transportation system agents in different blocks to a road network. The communication system
agents will communicate in a larger network, and the information will be collected and scattered in a large
scale communication center or in distributed hubs. In future SCCs, the roads and the power lines could also
be a communicative component in this layer.

The proposed 3M approach allows the flexible and extensible modeling of multiple infrastructures. The
modeler could save efforts by using this standardized and generalized approach since the interfaces and the
data exchange ports from the upper layer are fixed. As such, only the component models in the lower layer
require designing and refinement. The proposed modeling framework facilitates the model reuse and can
be used to investigate different use cases in the design and operation of SCCs. In the next section, we will
introduce our efforts to designing and modeling preliminary multi-infrastructure systems in order to test and
validate the 3M approach.
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Figure 3: A schematic of the 3M approach for modeling coupled systems.

3 Model Description and Implementation

Using the proposed 3M approach, we implement the coupled models in Modelica, an object-oriented modeling
language. Section 3.1 illustrates the implementation of system agent models of the energy, transportation,
and communication systems. Sections 3.2 and 3.3 discuss the implementation of block layer and community

layer models, respectively.



3.1 System Agent Model
3.1.1 Energy System

The energy system is composed of renewable generation equipment (e.g. photovoltaic (PV) panels and wind
turbines), energy storage devices, power draw from the grid, and distribution systems. The feeders of the
distribution system connect various types of loads, such as the load from buildings, EVs, communication
towers, and general loads in the power grid. Fig. 4 shows the Modelica implementation of the energy
system. The following subsections describe the detailed description and implementation of different energy
component models.

Weather data Renewable energy

neaBes generation
w
Y/,

1777
ans

From grid power

term_p
lin

Energy storage
batBan

H Distribution :‘!QE

System
numeEv disSys

Load Input ;ﬂ//

PBuf]

numSenPac[]

Diagram

Figure 4: Implementation of the energy system models in Modelica.

Renewable Energy Generation

In this paper, we assume renewable energy generation consists of energy supplied from PV and wind turbines.
The PV system is modeled with the PV SimpleOriented model in the Modelica Buildings Library. The total
aggregated electrical power Ppy generated by the PV systems is represented by:

Npv

Ppy = Z (Ak : fact,k "Nk - Gk : nDCAC’k) (1)
k=1

where Npy is the total number of PV arrays, A is the area of each PV array, f.; is the fraction of the
aperture area, n is the PV efficiency, G is the total solar irradiation, and npcac is the efficiency of the
conversion between direct current (DC) and alternating current (AC). In this model, G is the sum of direct
irradiation Gp;. and diffuse irradiation Gpjs:

G = Gpir + Gpir (2)
Gpir = max(0, cos(0) - HpirNor) (3)
Gpif = Gskypif + Garobir (4)

where 6 is the solar incidence angle on the surface, and Hpinor is the direct normal radiation. Ggsikypit
and Ggropir are the hemispherical diffuse solar irradiation on a tilted surface from the sky and the ground,
respectively.

The WindTurbine model in the Buildings library is adopted for wind turbines. For a single turbine, the
model computes generated power P; as a function of the wind speed. The aggregated active electrical power



generated by all the wind turbines Py, is calculated as:
Nwin
Pyin = Z (P - scalek - NDCAC_win k) (5)
k=1
where scale is used to scale the wind power generation based on the P;; Nyi, is the total number of wind
turbines; and Npcac_win i the rate of conversion from DC to AC.

Energy Storage

A new energy storage model is built based on the Flectrical. AC.OnePhase.Sources. Battery model in the
Buildings library, since the base model does not enforce that the state of charge is between zero and one.
The new model provides a control sequence such that only a reasonable amount of power is exchanged. The
new model and corresponding control sequence are shown in Fig. 5. The control logic here is that the power
generated by the renewable system covers the demand load in the first place. When there is excessive power,
the battery starts to charge. When the power demand exceeds a certain threshold, the battery starts to
discharge. In other cases, the battery remains stand-by.
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Figure 5: Diagram of Modelica models for energy storage and its control logic.

Power Distribution Network

Different configurations of power distribution networks are built in the energy system agent model. These
networks can be used to investigate the performance of power distribution systems. Fig. 6 shows the IEEE
16-node test feeder configuration [60] and its implementation in Modelica.

Different types of loads (buildings, EVs, general, and communication components) are connected to the
feeders. The loads from buildings can be calculated using grey-box models such as RC models [61] or
imported by data-driven models [62]. The aggregated EV charging power Pgy is calculated as follows:

Nchar

Pgy = Z Penar i (6)
k=1

where Ncpay is the total number of the charging EVs in (12), and Pepar,x is the charging power of each EV.
As a demonstration case, the current paper assumes P, is constant for all EVs [63]. The total load from
all of the communication towers P.op, is given by [64]:

Neom

Pcom = Z (2Qc,k : Eelec,k + Qc,k: * €elec,k * d%) (7)
k=1

where N¢opm is the number of communication towers, Eeje. is the equipment power for sending and receiving
packets, Q. is the packet throughput, d is the distance of the transmission, and « and €. are transmission
coeflicients.
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tion.

Power Draw from the Grid

We use the FElectrical. AC.OnePhase.Sources. Grid model in the Buildings library to create the physics-based
model for the utility supplied power [65]. The input for this model is a fixed voltage signal while the output
is the power supplied by the utility to the power distribution system. The convention is that the power is
positive if real power is consumed from the grid and negative if power flows back into the grid.

3.1.2 Transportation System

Traffic flow is intrinsically non-reproducible; it is therefore impossible to predict precise vehicle trajectories via
models. However, it is recognized that the prediction of large-scale field quantities can be possible [66]. The
traffic simulation models can be micro-, meso- and macroscopic with different granularities [67]. For example,
macroscopic models describe the traffic as flows, velocities, and densities of vehicles, while microscopic models
simulate individual vehicles down to basic physical and kinematic properties such as speed, locations, and
fuel. In this research, we simulate transportation infrastructure from a macroscopic perspective. The road
and charging station models are detailed in this section.

Road Model
The road model described here is able to model traffic outflow given the traffic inflow profile of a road, which
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utilizes the empirical flow-velocity correlation from literature [68,69], as shown in (8):

Uwe = ok
1+( %)’ , (8)
B =tz (a2

where U,y is the average road velocity; V,ye is the average vehicle flow; C; is the road capacity; oy, as, as,
and [ are regression parameters and Uy is the speed designed for the road. The traffic of the road can be
measured by the traffic load “”“ . Fig. 7 demonstrates the relationship between U,y and (}Vf' of different
U limits under a certain road type We can then find that the velocity descends faster when traffic flow
exceeds the road capacity ( e > 1),

92 0.4 0.6 08 1.0 1.2 1.4
Traffic load V,,e/Ct

Figure 7: Empirical model of traffic flow-velocity correlation for a certain road [68].

Equation (9) represents the relationship between the velocity, density, and traffic flow:

Uave' out = {in dt
Vave = f(th a ) (9)

where gout and ¢;, are respectively the traffic outflow and traffic inflow rates, and L is the length of the road.

Equation (10) represents the travel time on the road:

L
tw/oCom = Ui (10)

where ty /ocom is the travel time of the road without considering the communication system. Combining
(8)-(10), the traffic condition on the road can be jointly obtained. In our Modelica implementation, the road
model consists of the traTim model and the varDel model (see Fig. 8). The pseudo-code of the traTim
model using the aforementioned principle is shown in Fig. 9. Based on the aforementioned principles, the
traT'im model is built to calculate the travel time of the road section. The varDel model is a delay block to
mimic the travel delay time due to traffic conditions. Different road properties could be selected from the
road type record datasets.

Charging EV Number Model
The number of EVs in the community is calculated using a traffic flow balance:

N = iqin,k - i Gout,k (11)
k=1

where N represents the change of the number of EVs parked in the block; m;, and mgy,s denote the number of
inlets and outlets of the station, respectively; and ¢;, and gout represent the traffic inflow and outflow rates,
respectively. While we recognize the number of vehicles is an integer in reality, we assume N is continuous
in this preliminary implementation. The pseudo-code of the model using the aforementioned principle is
shown in Fig. 10.

12



Road type record

’ roaTyp
T ==

Travel time
calculation | Variable delay
varbel

4

Icon aln

>

Traffic inflow profile Traffic outflow profile

qOut

Diagram
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equation
num=qln; //Traffic inflow
qAve=num/l*u; //Average traffic flow on the road
b=roaTyp.a2 + roaTyp.a3*(qAve/(roaTyp.q_nominal/3600))"3;//Beta
u=roaTyp.al*roaTyp.uf/(1+ (qAve/(roaTyp.q_nominal/3600))"b);//Average velocity
t= if noEvent(u>0.1) then l/u else 1/0.1;
delTim=t; //Travel time

Figure 9: Pseudo-code of traT'im model in Modelica.

equation
qOut[:]=qOutSet[:]; //Prescribe traffic flow at the outlet
der(numEV)= (sum(qIn[:])-sum(qOut[:]))/3600;
/Charging EV number balance

Figure 10: Modelica pseudo-code for the number of charging EVs.

There are many ways we can estimate the EV charging in the block level. In this case study, we use a
simplified probabilistic model. For one single EV, its probability of charging at the block at a given hour
is p;, which can be obtained by survey data. We assume the number of the charging EVs at certain time
represents a Poisson distribution. Therefore, we expect:

Nchar :E(M> :p'LN (12)

where Nepa, is the total number of the charging vehicles, as discussed in (6), and N is number of parked
vehicles in the block per (11). For later applications, this simplified model can be replaced with more accurate
and realistic models, such as Monte Carlo models [70].

3.1.3 Communication System

In this preliminary case study, a simplified packet loss model is used to describe the transmission process in
a wireless communication network [71]. The empirical relationship between the packet loss rate v and the

normalized throughput @, is:
Yy=kK-vQc— C: (13)

where k is a proportional coefficient and C, is the threshold of the transmission. We assume that v is
directly proportional to (). under certain bandwidth in the communication system. In this simplified model,
we assume the transmission delay Del equals 0 that there are negligible impacts from the re-transmission
mechanism if a message is lost.
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3.1.4 Component Validation

We validated the models using comparative testing and analytical verification. For example, comparative
testing is used to validate the road model, which compares the Modelica simulation results with the data
mentioned in literature [72]; this includes the flow rate data from the inlet to the outlet marked at 15 minute
intervals for 6 hours. The detailed comparison can be seen in Fig. 11. From this, we can conclude that the
model fits well with the literature data and could represent the traffic condition for the integrated model.

2000

1800

—+— Data from literature
--+-- Data from model prediction

1600 1/

1400

1200

1000

qaut(veh/h)

800

600

400

200

3
Time (h)

Figure 11: Comparison of traffic outflow from model prediction and literature.

3.2 Block Layer Model

The block layer model reflects the interaction of the different system agents in a block, as mathematically
illustrated in (14)-(18). The interdependent variables, shown in bold, exemplify how the outputs of one
system agent are inputs of the others. They are calculated using the system agent models as shown in
Section 3.1.

Se, (LM P, Sigh Vi, T',...) =

LM P, Sig; (14)
F1(Piy Pl Pl Povy. Pl )

Sy (Phys Pio) = o Nipars Qe ) (15)
1 (NE) = 91(a @) (16)

1y (i Gt U b o ) = 1

92(C{, Ui, LM P*, Sigt,, Sigk, Del, ...)

So(Qe, Del, ..) =

h(Sng, Sng? in,> Dout> C., )

Operator S indicates the state variables in the energy, transportation, and communication systems, which
are denoted by subscripts E, T, and C, respectively. Index i designates the node. In the energy system, the
state output variables include node voltage V and line current I, as well as the locational marginal price
LMP and the energy-related control signals Sigg. These control signals include the buildings, EVs, storage,

and renewable energy generations. As seen in (14), the functional inputs to SEI include interrelated energy
factors Py and Pqpn, as well as other load and renewable generation quantities — such as the building power
consumption Ppyi, Ppy from (1), and Py, from (5). Further, as shown in (15), the EV charging active
power and communication tower power are determined by the number of charging EVs Ny, in (6) and the
communication throughput Q. in (7), as mentioned in Section 3.1.1.c.

As seen in (16), Nehay correlates to traffic inflow g;, and traffic outflow gout, as exemplified previously in (11).
In the transportation system shown in (17), traffic inflow ¢;, and traffic outflow goy¢, along with average
velocity Uaye, road velocity U, travel time ¢y, com, are determined by the transportation parameters such as
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road capacity C;, design road velocity Us; energy factors such as the locational marginal price LM P and
electrical control signals Sigg; as well as communication factors such as throughput Q. and time delay Del,
as exemplified previously in (8)-(12). For reference, the empirical traffic flow model included in this paper
approximates U as the average road velocity Uaye, as shown in (8). Further, when the communication system
is considered, the transportation-related control signals Sigr affect the travel time t /com, which will be
elaborated further in Section 3.3. In the communication system shown in (18), the throughput Q. and time
delay Del affect both the energy and transportation systems, while the transmission threshold C. affects
the communication state as prescribed in (13). The Modelica implementation of the block layer model is
depicted in Fig. 12. As aligned with the block layer in the proposed 3M approach, the transportation agent
sends the charging demand signal to the energy system agent via the communication agent. Likewise, the
energy agent sends back the price/control signal via the communication agent.

Weather data

wwwwww

oo l————

From grid power
Energy

PBuil)

Building load  Charging demandI
- Price sional o numSenPacl]
oTT numRecPac(]| rice signa Transmission
: ﬂ demand
V! A Packet transmission I
Communication Packet

transmission

Charging demand| port

qOutSet]]

I Jl’ricc signal
con -
Traffic outflow

ProEV

Transportation
Charging probability

Traffic inflow port Traffic outflow port

Diagram

Figure 12: Diagram of Modelica model for one block.

Since the energy system supplies power to the communication system, the communication agent sends the
throughput demand signal to the energy system agent so that the corresponding energy demand for the
communication agent can be calculated. In this case study, the communication system in the block is also
responsible for transmitting the packets for traffic routing with the interconnected roads through the packet
transmission port.

3.3 Community Layer Model

The community layer model connects different numbers of blocks. Aligned with the 3M approach, different
blocks are connected with the power lines and the communicative roads. The exemplified model shown in
Fig. 13 consists of two blocks. The interdependencies on this layer are reflected by these connections of
different blocks. For example, in terms of the energy connection, the voltage between the terminals at Block
A and Block B is co-related by linking the terminal connectors with the power lines, which implicitly contains
the following mathematical formulation:

Vi Block A — VéBlock B = Ztot * 1§, (19)

where V', I, and Zi.t denote the voltage, current, and total impedance, respectively, between the terminals
of Block A and Block B at phase ¢. These correlate to (14). At the terminals, p and n represent the positive
and negative connectors, respectively.

The communicative roads will exchange routing data with the communication centers in the block. Therefore,
the performance of the packet exchanges will have an impact on the traffic conditions on the linked roads.
Generically, we represent this interrelation as Sigr in (17) and (18) above. While there are many different
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Figure 13: Diagram of Modelica model for a community with two connected blocks.

models to represent this correlating signal, here we adapt the packet loss rate v to represent this signal. In
the current implementation, we assume that the traffic delay time will be proportional to v as follows:

tw/Com = (1 + ’Y)tw/oCom (20)

where ty/com and ty/ocom are the travel times with and without consideration of communication, respec-
tively.

4 Case Studies

In this section, three cases are presented in which complexity is gradually added to evaluate the interde-
pendency of different systems and the necessity of integrated modeling. Section 4.1 introduces the basic
information of the cases and the performance indicators used to evaluate the multidisciplinary infrastructure
models. Section 4.2 presents the case that only considers the energy system, while the transportation and
communication parameters are fixed. The case study in Section 4.3 considers both the energy and trans-
portation system, which intends to investigate the logical interdependencies between the variable charging
demand on the energy system and the traffic conditions. Lastly, the case study in Section 4.4 takes the
three systems into account, considering the cyber interdependencies linking the two physical systems. These
examples are intended to evaluate the intertwined operational performance of energy, transportation, and
communication infrastructure in connected communities where large-scale renewable energy generation and
full-electrified transportation are adopted. It is noted that these preliminary models do not fully encapsulate
the interdependencies present among the infrastructure systems. In the current case, the charging price is
considered to be constant and the charging station control is not taken into account. As mentioned before,
the objective through these case studies it to evaluate the proposed modeling framework for simulating
interconnected infrastructure systems for SCC operation.
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Table 2: Detailed model settings in the three cases.

Residential Block 1 \ Residential Block 2 \ Commercial Block

Weather profile San Francisco, CA, USA
PV area (m?) 20,000 \ 30,000 \ 50,000
Nominal wind turbine power (MW) 1
Battery capacity (kWh) 4,000 \ 5,000 \ 6,000
Distribution system type IEEE 16 test feeder
Initial EV number 800 800 200
Building type 600 Residential 700 Residential 5 Large offices, 5 strip
houses houses malls; 5 restaurants
Roads 2: (350, 30, 1, 1.88, 4.85)
Road Capacity (C,Us, a1, ag, as) Roads 4: (1100, 60, 1, 1.88, 7)

Roads g: (800,56, 1.4, 1.88, 6.97)

Roads 2: (0.03,80)
Communication system coefficients (v, C.) Roads 4: (0.02,300)
Roads ¢: (0.035,350)

4.1 Case Description and Performance Measures

Fig. 14 shows the schematics of the three cases. The modeled community is composed of two residential
blocks and a commercial block. As the names imply, the residential blocks mainly consist of residential
buildings, while the commercial block is composed of commercial buildings, such as offices, restaurants, and
schools. Each block has its own renewable generation farm, energy storage (battery), EV charging stations,
and communication towers. Six one-way roads of the same road type link different blocks. The design
capacity and design velocity vary between roads. The communication system in these cases is dedicated to
the traffic routing of the vehicles on the road. The communication tower in each block exchanges traffic
information with the vehicles on the road. Thus, the performance of the communication system has a direct
effect on the transportation system. Detailed model settings are shown in Table 2 for the three cases.

— VAVAVAVA
Residential Residential Residential Residential Residential — Residential
__Block A Block B__ __Block A Block B __ __Block A b Block B
Road
Road —_—
Power Line == ,g VAVAVAVA
g =
Commercial Commercial 2 C(;;?mle(r(c:lal
Block C Block C 8 o¢
= c T
E (%))
=1 B 1 =1
« 7
oy} oy __1 — i
— Lt L * J
s
i ‘ i i \—‘ i Power Line i oy i Power Line
I

(a) (b) (c)

Figure 14: Schematics for the three cases: (a) Energy system, (b) Energy + Transportation systems, and
(¢) Energy + Transportation + Communication systems.

Several indicators are selected from prior works [37,51,73] to assess the infrastructure performance in con-
nected communities. The performance of energy infrastructure includes power load cover factor (LCF),
peak-valley load ratio (PVLR), power system line safety, and power system voltage security. Power LC'F
evaluates the percentage of demand that can be supplied by the renewable energy generation. Power PV LR
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is one of the load balancing performance indicators in the power infrastructure, represented by:

Pmax - Pmin
PVLR = === (21)

where Ppax and Py, are the peak and valley power from the grid, respectively.

Power voltage security indicator, SIp, denotes a bus voltage limit placed by the IEEE Standard 519 [73]:

| MK
Slp = Nszi:g:gi(K)’ where

Vdev.i(K) — 1.05  if vgeys(5) > 1.05 (22)
9(i) =  0.95 — Vgey,i(K)  if Vgev,i(k) < 0.95
0 otherwise

where vgev,i(k) is the voltage deviation rate of a given line ¢ and a given event k over all events K given a
set of N, buses.

Power line safety indicator, SIp, represents a physical rating on the amount of transferred active power:

| MoK
SIp, = NE Zz,{:fl(ﬁ'), where

~]o otherwise

(23)

where P;* is the power limit of a given line ¢ and a given event x over all events K given a set of N; lines.

The performance of transportation and communication systems can be quantified by road congestion and
transmission congestion, respectively. Road congestion can be gauged by the travel time and traffic flow
on the road, while transmission congestion can be reflected by the packet loss or arrival rate. The detailed
calculation can be seen in Sections 3.1.2 and 3.1.3.

4.2 Case 1: Energy System

The implementation of Case 1 in Modelica is shown in Fig. 15. The building loads are hourly load profiles
computed using the DOE Commercial Reference Building Models [74] and Building America House Simu-
lation Protocols [75]. The inputs for the transportation and communication systems are fixed for this case.
The EV charging profile in one block is prescribed according to the travel demand analysis, and the travel
time between the blocks is neglected in the simulation.

The energy-system simulation results for January 1st in San Francisco are shown in Fig. 16. From the supply
side, the power generated from the PV peaks at noon. However, the wind power contributes little during
the considered time period. From the demand side, the load from the EV charging has a higher demand in
the night than during the daytime due to the charging pattern of the residential blocks. The load from the
building blocks is quite stable compared to the EV charging load pattern. It is noted that the load from the
communication towers is negligible compared to the load from EV charging and the buildings.

Regarding the power draw from the grid, the peak-valley ratio amounts to 48.79%. This relatively high value
is caused by the high EV charging demand at night, which peaks at 22:20, and renewable energy generation
during the daytime, which peaks at 12:10. However, the duck curve is flattened by the adoption of the
battery and the modest power load cover factor (6.92%). The overall results of the energy system indicators
are listed in Table 3.

The S1p resBlo1 and ST resBlo1 are indices for the power infrastructure performance in terms of the bus safety
security and power line safety, respectively. Fig. 17 shows the line voltage deviation rate of three feeders at
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Figure 15: Implementation of Case 1: The (a) block icon and (b) community layer diagram for the energy
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Table 3: Results of the energy system indicators.

Energy system indicators

PV LR(%)

LCF (%)

SIB,resBlol

SIL,resBlol

48.79

6.95

0.00766

0.0097
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Figure 17: Line voltage deviation rate of three feeders at the distribution system described in Fig. 6.

the distribution system described in Fig. 6. These results all demonstrate that the power infrastructure has
the risk of being overloaded at certain discrete time steps. These results suggest that advanced control of
coordinating EV charging and building demand response should be taken to avoid the risk.

4.3 Case 2: Energy + Transportation (E4+T) System

The implementation of Case 2 in Modelica is shown in Fig. 18. The parameter inputs for the energy system
and the communication system settings are the same as Case 1. However, instead of specifying the EV
charging profile, the traffic dynamic is considered in this case based on the traffic outflow profile of the
block. The traffic outflow profile is determined from the data in the National Cooperative Highway Research
Program (NCHRP187) [76]. The quantitative results for the transportation system are illustrated in Fig.
19, which shows the average traffic flow profile and the average velocity on different roads. The results
demonstrate traffic peaks on Road 3 and Road 6 that link the residential blocks and commercial blocks.

Meanwhile, the average traffic flow on Road 1, which links the two residential blocks, fluctuates less. At
peak commute times (around 8:00 and 18:00), the average traffic flow has a peak value while the average
velocity on the road has a minimum value, as can be expected. The comparison of the energy results in Case
1 and Case 2 will be analyzed in Section 4.3.

4.4 Case 3: Energy + Transportation + Communication (E4T+C) System

The implementation of Case 3 in Modelica is shown in Fig. 20. In this case, the model inputs for the energy
system and transportation system are the same as Case 2. Instead of specifying the packet transmission
profiles, the packet exchange processes between the road and the corresponding communication tower are
modeled as described in Section 3.1.2. As depicted in Fig. 20, the transmission happens between the road
and the block. The assumption is made that the traffic travel time would increase due to the data loss and
incomplete transmission of the traffic information.

Fig. 21 shows the interdependencies between the transportation and communication systems. Because the
communication throughput far exceeds the capacity threshold during commute times, the communication
packet loss (shown in Fig. 21a) surges when the average traffic flow peaks at the highest commuting times
(shown in Fig. 21b). The packet loss peaks in the morning at Road 3, which is from residential block to
commercial block, and in the evening at Road 6, which is from commercial block to residential block.

Comparing the simulations from all three cases produces some interesting results. Fig. 22 illustrates the
impact of the communication system on the transportation system by comparing the results in Case 2
(E+T) and Case 3 (E4+T+C). In low traffic hours, the results of both cases almost overlap due to the free
flow condition; as such, the communication system has little impact on the traffic condition. However, at
high traffic hours (around 8:00 and 18:00), the communication system deteriorates the traffic condition due
to poor packet arrival rates, as shown in Case 3. Compared to Case 2, the average velocities in Case 3 are
approximately 10.5% slower for the morning commute on Road 5 and 3.9% slower for the evening commute
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Figure 21: Simulated impact of transportation system on the communication system: (a) packet loss rate
for the communication condition and (b) average traffic flow rate for different roads.

on Road 6.

Beyond the impact of the communication system on transportation, we can analyze the impact of the other
two systems on the energy system by comparing the three considered cases. Fig. 23 shows the comparison
of the calculated power draw from the grid. Clearly, we can see that there is a slight difference on the
power demand from the grid during most hours; the average difference is 0.33% between Case 1 and Case
3. The deviation of power draw prediction increases during the peak commuting times (circled). This is
mainly caused by the collective impacts of the transportation and communication systems. The largest
deviation ratio of 7% occurs around 8:00. This will have a direct impact on the real-time unit commitment
and economic dispatching of the spinning reserves, which help ensure a stable operation of the power grid.
The power system would result in new location marginal prices. This could in turn change the EV charging
pattern and the traffic flow.
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Figure 22: Average traffic velocities on different roads with and without modeling of the communication
system.
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5 Conclusions

This paper proposes a new flexible and scalable multi-layer, multi-block, multi-agent (3M) approach for
modeling several interconnected domains. The 3M approach is used to model the interaction of energy,
transportation, and communication systems. New open source Modelica models are developed accordingly.
The models are applied in three case studies to study the underlying interdependencies of the three systems
for evaluating typical SCC operation. Simulation results show that the interaction among these three systems
should not be neglected. In this study, the deviation of the average velocity on the road can be 10.5% with
or without considering the communication system at the peak commute time. The deviation of the power
draw from the grid can be 7% with or without considering the transportation and communication systems.

While these results demonstrate a successful implementation of the proposed 3M modeling framework to
study interdependent infrastructure systems, further work is yet needed. The case studies included here are
the first steps towards modeling of the SCC; as such, they do not fully encapsulate the interedependencies
present among these three systems. Our current focus was to provide the framework which can be later
extended. In the future, we plan to implement the proposed modeling framework to study applications in
SCC operation, including dynamic modeling and optimization, resilience analysis, and integrated decision
making.
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