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ABSTRACT

Modern healthcare systems are increasingly investing in advanced sensing and information tech-
nology, leading to data-rich environments in hospitals. For example, when patients are admitted
into an intensive care unit (ICU), it is a common practice to monitor a number of clinical variables,
such as blood pressure, heart rate, gas exchange, pulse oximetry and metabolic panel. However,
heterogeneous sensing and measurement methods often lead to data uncertainty and incom-
pleteness. Missing values exist pervasively for ICU clinical variables pertinent to a patient’s health
condition. This adversely affects time-critical decision making in patient care. Hence, there is an
urgent need to develop advanced analytical methods that address the challenges of ICU data
uncertainty, provide a robust estimate of health conditions and derive in-depth knowledge for
decision making from heterogeneous healthcare recordings. This article presents a novel nested
Gaussian process (NGP) model that is tailored to represent multi-dimensional covariance structure
of time, variable and patient for high-dimensional data imputation. We evaluate and validate the
proposed NGP method on both simulation and real tensor-form ICU data with high-level missing
information. Experimental results show that the proposed methodology effectively handles the
data uncertainty in ICU settings, which helps further improve the biomarker extraction, patient moni-
toring and decision making. The proposed NGP model can also be generally applicable to a variety of
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engineering and medical domains that entail high-dimension data imputation and analytics.

1. Introduction

The annual admission to intensive care units (ICUs) in the
US is more than 5.7 million with an economic cost of $81.7
billion (Pastores et al., 2012). Generally, the ICU provides
deliberated care services; e.g., advanced life support and
intensive monitoring, to seriously ill patients. ICU patients,
albeit a heterogeneous population, have the compelling
necessity for real-time monitoring and regular lab tests com-
pared to those admitted to non-ICU beds. In particular, as
the population ages, the prevalence of multi-morbidity and
the resulting complexity of treatments spur the implementa-
tion of multimodal sensing technologies to improve the
quality of ICU care.

Advanced sensing gives rise to the ubiquitous data-rich
environment in ICUs. It is not uncommon that a large
number of sensors are used for postoperative recovery mon-
itoring (Chen and Yang, 2016b; Zhu et al., 2019). Modern
ICUs require the monitoring of important clinical variables,
including laboratory tests (e.g., blood and urine), heart rate
and rhythm, blood pressure, respiratory rate and blood-oxy-
gen saturation. Traditionally, clinicians make inferences
about patient conditions only with the most recent monitor-
ing variables, while overlooking past results, patient

similarity and variable correlation. Realizing the full poten-
tial of rich ICU data for postoperative care depends on the
development of new analytical methods and tools to handle
data uncertainty, delineate hidden patterns and provide
effective clinical decision support (Yang et al., 2014).

However, heterogeneous sensing poses significant chal-
lenges for information extraction and decision making. As
shown in Fig. 1(b), ICU monitoring leads to a new tensor
form of datasets that provide rich information on the under-
lying dynamics of postoperative recovery processes. ICU
tensor data also present distinct characteristics, such as
patient heterogeneity, time asynchronization and variable
heterogeneity, as opposed to the traditional table form of
predictor and response variables (see Fig. 1(a)) commonly
seen in predictive modeling (Chen and Yang, 2014).

o Patient heterogeneity: The patients admitted to the ICU
may undergo different treatment procedures, suffer from
different kinds of diseases, or belong to various age
groups. New analytical methods and tools are therefore
needed to handle the heterogeneity in the patient popula-
tion, and shed insights on the data-driven estimation and
modeling of patient conditions for better care and
resource allocation.
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Figure 1. (a) Traditional table-form data for predictive modeling; (b) new tensor-form data generated in ICU settings.

e Time asynchronization: In current clinical practice, ICU
data collection protocol is not standardized. It is com-
mon that the frequency of measurements may be sub-
jected to the discretion of clinicians. As such, the time
stamp for clinical variables is often not uniform. Some
variables may be observed at a low sampling rate (e.g.,
Lactate, Creatinine and Glucose), whereas others may be
at a high sampling rate (e.g., temperature, heart rate and
a fraction of inspired oxygen (FiO,)).

o Variable heterogeneity: As mentioned earlier, ICU sens-
ing involves more than 44 clinical variables and they pro-
vide rich and diverse information on patient conditions
from different perspectives (Chen and Yang, 2016a; Liu
and Yang, 2018). For instance, FiO,, platelets, bilirubin
and hypertension as ICU variables reveal health condi-
tion for respiratory, coagulation, liver and cardiovascular
systems, respectively.

Furthermore, missing data are prevalent in modern ICUs
due to heterogeneous types of sensing and measurement
methods, attrition in longitudinal assessments, poor record
keeping or human errors, to name a few (Cismondi et al,
2013). Missing data pose significant challenges for the esti-
mate of a patient’s condition. For example, the presence of
missing data could negatively influence predictive modeling.
The cumulative impact of missing data causes considerable
loss of precision and power in clinical decision making
(Little et al., 2012; Vesin et al., 2013). In particular, ICU
data are in the tensor form and missing values are
embedded in this structure, as shown in Fig. 1(b). New ana-
lytical methods are urgently needed to capture high-dimen-
sional covariance structure for missing data imputation in
ICU settings. Yet, traditional imputation methods are
designed to work with the table-form data and are not tail-
ored to handle the high-dimensional correlation structure in
the tensor data.

This article presents a novel nested Gaussian process
(NGP) approach to model and impute high-dimensional
tensor data that is conducive to improving the quality of
care in ICU settings. As a nonparametric approach, NGP is
flexible enough to represent multi-dimensional covariance
structure across time, patient and variable, and provides a
predictive distribution (i.e., posterior mean and variance for
Gaussian distribution) for missing data imputation rather

than a point estimate from an explicit function. In short, NGP
accounts for the correlation in time domain, similarity among
patients, and inter-relationships of variables, thereby improving
the performance of missing data imputation through the pro-
posed hierarchical structure of covariance functions.

The remainder of this article is organized as follows:
Section 2 introduces a research background on missing data
handling. Section 3 presents the research methodology of
NGP. Section 4 considers experimental design and materials
for both simulation and real case studies. Sections 5 and 6
present experimental results and conclude the article,
respectively.

2. Research background

As human discretion directs the collection of clinical data in
the ICU environment, missing data have become a common
problem facing postoperative monitoring and intervention.
Generally, there are three different types of missing data mech-
anisms (Little and Rubin, 2014). The first type is called missing
completely at random (MCAR), in which missingness does not
depend on values in a dataset. Let X = (x;) denote a data
matrix where x;; is the value of the variable j for sample i.
M = (m;;) symbolizes the missing-data indicator matrix, where
m; = 1 if x; is missing and m; = 0 if x;; is observed. In the
MCAR mechanism, the missing-data indicator matrix M is
statistically independent of the data X as:

p(M|X) = p(M) (1)

In other words, the mechanism of missing is not because
of anything other than the randomness. The second mech-
anism is missing at random (MAR), in which, if we divide
X to two groups, i.e., observed data X,,; and missing data
Xnis, then the probability of missing is independent of X,;
but dependent on part or all of the observed data X, :

p(M | X) = p(M|Xobs) (2)

The third mechanism is missing not at random (MNAR),
which dictates that missingness depends on both observed
data and the missing values. Here, the probability of missing
hinges on both X,,; and X,;s:

P(M | X) = p(M | XobSaXmis) (3)

In the literature, missing data are often handled in two
ways: complete case analysis and data imputation. Complete
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Figure 2. Heat maps of time, patient and variable covariance over the 48-hour period for Patient ID 1802 and the variable mean arterial pressure (MAP) in the

MIMIC-II clinical database.

case analysis excludes the cases with missing data and only
relies on the complete data (Haukoos and Newgard, 2007;
Newgard and Haukoos, 2007). Listwise and pairwise deletion
are the two commonly used methods. However, this
approach throws away a sizable portion of data and dimin-
ishes the power of statistical analysis. It is worth mentioning
that the pivotal assumption of complete case analysis is the
MCAR with limited missing values, which is often violated
due to the heterogeneous sensing methods in ICU settings
(Garcia-Laencina et al., 2015; Little et al., 2012).

In contrast, missing data imputation fills in predicted val-
ues at the locations of incomplete observations (Little and
Schenker, 1995; Schafer and Graham, 2002). Single imput-
ation replaces missing data with a single statistic derived
from observations (e.g., mean or median) in the scenario of
MAR. Single imputation retains a great portion of informa-
tion which could otherwise be relinquished by the deletion
methods. Similarly, the hot deck method was developed to
replace missing values with the most frequent observations
(Fuller and Kim, 2005). A major drawback of these imput-
ation methods is the lack of uncertainty quantification asso-
ciated with the prediction.

On the other hand, multiple imputation estimates the
posterior distribution of the missing data given the observa-
tions (Kenward and Carpenter, 2007; Sinharay et al., 2001).
Maximum likelihood estimates the parameters that optimize
the likelihood to predict the observed data with numerical
optimization algorithms such as Newton-Raphson or the
expectation-maximization algorithm (Dempster et al., 1977).
However, most of the maximum likelihood methods use
only linear models, and are therefore sensitive to the choice
of initial values and suffer from the issue of “curse of
dimensionality” in the presence of high-dimensional data
such as those in the ICU settings (Johnson et al., 2016).

More recently, analytical methods such as support vector
machines (SVM) and K nearest neighbor (KNN) are increas-
ingly used for missing data imputation (Pan et al, 2015;
Pelckmans et al., 2005). However, most of those methods
focus on the imputation of the table-form data (see
Fig. 1(a)) rather than high-dimensional tensor data (see
Fig. 1(b)). Notably, table-form data, including predictor and
target variables, are not time-varying. In other words, the
temporal dimension is not a concern in many previous stud-
ies. Therefore, existing approaches are limited in the ability
to handle high-dimensional missing data imputation in
ICU settings.

As a nonparametric approach, Gaussian process (GP) is
more flexible than traditional imputation methods to repre-
sent multi-dimensional data and provides the quantification
of posterior uncertainty rather than point estimate (Cheng,
2018). Note that the Kriging and GP models have attracted
considerable attention in the domain of geo-spatial analysis
and computer experiments (Joseph, 2006; Joseph and Kang,
2011). Both models provide the best linear unbiased predic-
tion of missing values in a spatial region or a design space.
However, a major limitation is the assumption of stationar-
ity (i.e., constancy of mean, variance, etc.) for the underlying
stochastic process, thereby making it incongruous to deal
with the tensor form of clinical variables that exhibit sub-
stantial nonstationarity (Cheng et al., 2015). Furthermore,
spatio-temporal structure of tensor data significantly chal-
lenges the conventional formulation of Kriging and GP
models (Liu and Yang, 2013; Yang et al, 2012, 2013).
Hence, there is an urgent need to develop a new GP frame-
work to delineate the inherent multi-dimensional and hier-
archical covariance structure (i.e., time, patient and variable
correlations), instead of one-dimensional correlation, and
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tackle the challenges of incomplete and uncertain data in
ICU settings.

3. Research methodology

In this article, a novel NGP approach is proposed to impute
missing values in high-dimensional tensor data generated
from heterogeneous sensing in an ICU. NGP is nonparamet-
ric with a new multi-dimensional covariance structure
among time, patient and variable, and offers a greater level
of flexibility to impute missing data in the tensor form. To
portray the inherent hierarchical structure, we consider the
time covariance in the first level, patient covariance in the
second level and variable covariance in the third level:

e Time covariance has the highest influence on ICU miss-
ing data imputation, as the historical data tend to have a
higher correlation along the time dimension for the same
variable (see Fig. 2).

e DPatient similarity is set forth in the second level, as simi-
lar patients may possess a comparable evolution trajec-
tory in the same variable. Notably, the exogenous factors
such as environmental, physical and psychological condi-
tions could blur the imputation of missing value for a
patient just through the similarity with other patients.
Indeed, the estimate based on patient similarity provides
a priori expectation of the missing value at a specific
time stamp, which will be fed to the first level.

e Variable covariance is depicted in the third level because it
does not provide as high correlations as in the other two lev-
els. Intuitively, patient similarity in the second level hinges on
the similarity of their variables. That said, the more the varia-
bles of one patient bear a resemblance to those of the other,
the higher the similarity of the two patients.

To further illustrate these three correlations, we examine
the covariance configuration using real data from the multi-
parameter intelligent monitoring in intensive care (MIMIC-
II) clinical database (Goldberger et al, 2000; Saeed et al.,
2011). The covariance function across each factor is esti-
mated by fixing two other factors. As shown in Fig. 2, the
heat map of time covariance exhibits the strongest similarity
for the variable of mean arterial pressure (MAP) and Patient
ID 1802. This is in stark contrast with the scatter bright
spots in the heat map for patient similarity, and the highly
sparse bright spots for variable similarity.

3.1. Gaussian process

In this section, we first introduce one-level GP with the
time covariance, and then illustrate the proposed NGP and
its posterior prediction to impute missing tensor data in
ICU. Let x = (x1, ..., X,) be time-varying realization of a cer-
tain ICU variable recorded at time ¢ = (f1,...,t,), imput-
ation at the first level seeks to find the following map:

x~f(t)+e 4)

where ¢ SN (0,02,) is the error term and f(t) is a GP deter-
mined by the mean function y, and covariance function Kj; ie.,

f(t) ~GP(, Kr) (5)

where the GP defines the distribution of functions, y; is the
mean function, and K, is the covariance matrix. Note that
different types of mean and covariance functions can be
considered in GP modeling, such as the linear mean (ie.,
u, = ot + f, where o and f are the slope and intercept of
the linear mean function) and squared exponential covari-
ance functions (i.e, K, = o7 exp[—(t—t')* /2], where o2 is
the signal variance and [ is length-scale of the exponential
covariance function). For posterior distribution in GP, the
joint prior distribution is constrained to contain functions
that comply with observations from data. Therefore, predict-
ive distribution for the missing x* at t* is represented by the
posterior distribution, conditional on the observations (¢, x)
(Williams and Rasmussen, 1996). Concretely, we have a
joint prior distribution as follows:

x| u Ky + oI Ktz*])
(e ) e

where u* is the prior mean for x*, and Ky is the covariance
between x* and x. The posterior distribution of x* is given
as

P(x" | x,t,t°) ~ N (%7, cov(x*)) (7)

Here, the posterior mean x* and covariance cov(x*) are
obtained as

J— % —1
X =" + Kpy [Ky + 00 I] (x—p) (8)

cov(x*) = Kpp —Kpt [Ktt =+ O'fltl] 71Ktt* )

The predictive performance depends on hyper-parameters
0 ={0,,,0.}, which can to be learned from the training
data. Here, 0, and 0, represent the set of hyper-parameters
for mean and covariance function, respectively. In the case
of the linear mean and squared exponential covariance func-
tion, hyper-parameters sets are: 0, = {a,f} and 0. =
{l,0+,0,}, which can be learned from the observed values
using maximum marginal likelihood. Explicitly, marginal
log-likelihood function and partial derivative regarding to
0,, and 0. can be expressed as:

1 _
logp(x|t,0) =— 5 (xf,u)T [Ktt + Gfltl] 1(xf,u)

0 ; (10)
—~log | Ky + 02,I| —=log (2)
2 2
9] T -1 Ou
@logp(x £,0) = —(x—p)" (K + o3, 1) 20, (1)

2
i10gp(-’¢| t,0) = *%T” (Ktt + O'itl)ﬂM

00, 00,
1 ~10(Ky + 07,1 -
+5 (x=m)" [Ka + 031 1% (K + 0 1] ™ (x—1)

(12)

Once we have this marginal likelihood function and its
derivatives, gradient-based methods (e.g., conjugate gradient
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Xt(kapj) ~ GP(pe, Ky)

Level |
1 |
te ~ GP(up, Kp) cov(X:m,Xcﬂ)l%pf Level Il
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-u"IJ EP T,
f=1']

Figure 3. The framework of the multi-level NGP approach.

descent or resilient back propagation (Rprop)) can be taken
into account to solve the problem (Riedmiller and Braun,
1993). We implement the fast Rprop algorithm, which only
relies on the sign of the gradient:

) A@

where 01@ shows the ith component in hyper-parameters set
0 and g expresses the replication number. If the sign func-
tion in Eq. (13) remains the same, the update value A; is
increased by a factor ¢">1 so that the convergence of the
algorithm is accelerated, and the step size is decreased by a
factor £ >1 if the direction reverses as:

(a-1) C)
£ A0 ,.f<alogp<xt7o) )X(alogpgc()u,m >>O

00;
(@ _ _
AT = f’A(qfl) if Ologp(x|t, 0)(q ) " dlogp(x|t,0)? <0
! 00;
(14)

@
quﬂ) = Hl(q)—sign <—8logp(x £,0) (13)

00;

00;

qufl) otherwise

3.2. Nested Gaussian process

Figure 3 shows the framework of the proposed NGP
approach that jointly considers multi-dimensional covari-
ance structures among time, patients and variables in a hier-
archical way. Suppose there are V variables of P patients for
the time duration of T in order-3 tensor data (see Fig. 1(b)).
Let X;(vk,pj) denote the value of tensor data at time ¢ for
the variable v, of patient p;. First, we construct a level I GP
model as:

Xt(Vkan) ~ gP(Mt, Kt)

where p, is the mean function and K; is the covariance
function (see Fig. 3). As the observations at two different
time points tend to have a stronger correlation when they
are closer to each other, we use the covariance function
K; as:

(15)

cov(Xy,,, X,)

(16)
ZZ%(VMPJ)
where af is the signal variance in the dimension of time,
and [;(vk, pj) the length scale. Note that X; and X;, should
be similar if t,, and ¢, are sufficiently close in the temporal
dimension. Therefore, the length scale I;(vk,p;) defines the

closeness in the time domain. Second, we model u, using a
level II GP model as:

Uy~ gP(,“pa KP)

where K, represents the covariance between patients (e.g.,
pm and p,). The proposed hierarchical design is aimed at
incorporating nonstationarity in the underlying stochastic
process through GP modeling of mean functions. If two
patients share closer values in clinical variables, they tend to
have a stronger correlation. Therefore, the covariance func-
tion K, is defined as:

_ 2
vy = o exp [_ u}

(17)

(X =X5,)°

cov(Xpm , Xpn) 21}%

t, v = 0’% exp (18)

Third, the mean function of p, is modeled as a level III
GP

1y~ GP(11,. Ky) (19)

where the covariance function K, captures the similarity
between clinical variables (e.g., v,,, and v,), and it is akin to
the definition of K,. Here, p, is the average of tensor data
across the time and patients, for a specific clinical variable:

P Tj

=1 Ziil Xv(tiapj)

== (20)

v 4
=1 T

In this equation, T; is the time duration for patient p;. An
attractive feature of the NGP model is the capability and
flexibility to predict missing values in high-dimensional ten-
sor data. We investigate the missing data imputation at time

*

t* of the variable v* for a patient p*. Based on the observed
values X;(v*,p*) at time stamp ¢, the posterior mean of level
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I GP is given as:

(v, p)]
(21)

Xt* (V*,p*) = Xt(V*,p*) + Kt*t [Ktt + 0'12”1] - [X[(V*,p*)—

where Ky is the temporal covariance, 62, is the noise vari-
ance in temporal domain and X;(v*, p*) can be calculated as
follows:
- X
Xz(V*,P*) Zt t( ’p )
Typ

(22)

T, is the time duration of the variable v* for patient p*.
The mean function in Eq. (21) can be derived from level II
GP as:

—1
(v, p) = Xp (£,9) + Kprp [Kpp + aipl} [Xe(t,v)—p, (8, v%)]

(23)
where K-, is the covariance between patients, aflp is the
noise variance in patient domain and X,(t,v*) is mean for
v* across all patients in the dataset. Consequently, we have

14,(t,v*) in the level IIT GP model as follows:

! [Xv(tvp)_:uv]

(24)

where K., is the covariance between variables, 62, is the
noise variance in variable domain and X,(¢,p) is the prior
of variable v for all patients in the datasets. In NGP, we
have a set of hyper-parameters for each level. In the first
level (i.e., time domain), hyper-parameters are signal stand-
ard deviation o, noise standard deviation ¢,, and length
scale (v, p;), which belong to the squared exponential
covariance function. In the second and third levels (i.e.,
patient and variable domains), we have a similar set of
hyper-parameters. Note that the NGP hyper-parameters are
updated from the third level to the first level sequentially.
The updating procedure for NGP hyper-parameters can be
obtained via Eq. (10) to Eq. (14).

1, (8,v) = Xpr (£,0%) + Kooy [Kyy + 07,1

4, Experimental design and materials

In this article, tensor data from both simulation and real-
world ICU are utilized to evaluate and validate the proposed
NGP approach.

4.1. Simulation study

As shown in Table 1, we simulate an order-3 tensor data
with dimensions of time (T), patients (P) and variables (V).
The tensor data are initialized as 100 time points, 50
patients, and 20 variables. We also choose the type of mean,
covariance functions and inference method from a design of
experiments. For each patient, hyper-parameter values are
sampled standard normal distribution contaminated by
exogenous noises (i.e., additive white Gaussian noise) repre-
senting the heterogeneous population characteristics. Then,
the covariance function for a specific patient and the related
varjable is evaluated. Next, singular value decomposition
(SVD) is utilized to decompose the positive-definite

Table 1. The algorithm for tensor data generation in the simulated study.

Input:

T — the length of time period
V «— total number of variables
P < total number of patients

1: For j=1:P // loop for patients

2: // initialize hyper-parameters for each patient

3 0={0mn,0} Vm=1:Mandc=1:C

4 Op < rand(M) // generate M normally distributed random numbers
5 O < rand(C) // generate C normally distributed random numbers
6: For k=1:V// loop for variables

7: /I generate variation for the hyper-parameters for each variable

8 Om — Op + noise()

9 0c — 0. + noise() // noise > 0

10: // evaluate covariance matrix and mean value

11: Hy <y and Op,

12: Ki — K; and 0,

13: n < Generate pseudo-random numbers

14: [U,S,Q"] = svd(K;) // singular value decomposition
15: z(k,:,j) = U x sqre(S) x n+ u;

16:  End

17: End

Output: z

covariance matrix of GP (i.e., K;) for an efficient and robust
numerical solution. The SVD of a matrix K, is the factoriza-
tion of it into the product of three matrices K; = USQT
where the columns of U and Q! are orthonormal and the
matrix S is diagonal with positive real entries. Finally, col-
umn-specific data in the tensor (i.e., a specific patient, spe-
cific variable over time) are obtained by multiplying
generated data with the SVD results and adding evaluated
mean result.

Next, we randomly select a patient, a variable and remove
25%, 50% and 75% of temporal observations (i.e., three
scenarios), and then impute missing values with the pro-
posed NGP. Figure 4 illustrates the NGP imputation of
order-3 tensor data for a randomly chosen patient and vari-
able, where blocks with the red color are missing data to
be imputed.

We performed the experiments for three different missing
percentages, each for 100 replications for robust estimation.
The root-mean-square error (RMSE) is utilized as the per-
formance metric in the experiments. We also evaluated the
performance of missing data imputation with different prior
mean, inference, and covariance functions with GP and
NGP models. Figure 5 shows the cause-and-effect diagram
of the experimental design.

As shown in Fig. 5, we examine two types of prior mean
function, zero and linear, two types of covariance function,
Squared Exponential (SEard) and Isotropic Squared
Exponential (SEiso), as well as two types of inference func-
tion, Exact (see section 3) and Laplace. Note that, for NGP,
zero and linear prior mean function are only considered in
the third level (i.e., y,) as the prior mean in the first and
second levels (i.e., y; and p,) are estimated from GP results
in the second and third levels, respectively.

4.2. Real-world case study

Furthermore, we wuse the MIMIC-II Clinical Database
(Goldberger et al., 2000; Saeed et al., 2011) that consists of
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Figure 5. The design of a simulation experiment to evaluate and validate the proposed NGP approach.

clinical data collected from patients admitted to ICUs in the
Beth Israel Deaconess Medical Center in Boston. The miss-
ing data imputation for MIMIC II database includes the fol-
lowing steps:

1.

Categorization: 26 ICU variables are categorized into
three groups (namely general descriptor, one-hour sam-
pling, four-hour sampling) according to the fraction of
missing data and sampling frequency per variable.
General descriptors are a group of variables including
general attributes of a patient that are recorded during
the patient’s first visit to the ICU; e.g., Record ID,
Height, Mechanical Ventilation (Mech Vent), Age, ICU
Type and Gender. One-hour sampling is a group of var-
iables with an approximate sampling rate of 12 per
24hours or less. The group of four-hour sampling
includes those variables with the sampling rate less than
6 per 24 hours. Figure 6 shows the fraction of missing
data for clinical variables in the MIMIC-II database.
Note that general descriptors (i.e., six variables) are
removed due to the fact that they are documented only
at the start of ICU stay. It is worth mentioning that
none of the variables are completely observed for all
patients. Here, amongst variables that have missing val-
ues, Lactate has the highest missing percentage at
45.42%, and HR is the lowest with 1.57%.

Preprocessing: We preprocess the data based on clinical
inputs and expert knowledge from physicians. The
details of preprocessing steps are shown in Table 2.
First, invalid height and weight values were excluded,
and missing height/weight values were substituted via a

regression model and with consideration of standard
values of height/weight by the sex and age group. Then,
TroponinT was multiplied by a constant (i.e.,, 100) and
then pooled with another type of regulatory protein
(Troponinl) as a new clinical variable called Troponin.
In the third step, Creatinine is substituted by creatinine
clearance, which is achieved by solving the Cockcroft
Gault equation:

CreatinineClearance

_ (140—Age) x Weight x (0.85 4 0.15 x Gender)
(72 x Creatinine)

(25)

Fourth, we used a variable, Urine.Sum, the aggregate
sum of the Urine measurements, to replace the old vari-
able Urine, which is more informative for use the physi-
cians. Finally, three pairs of variables (i.e., NIMAP,
SysABP and NISysABP, DiasABP and NIDiasABP,
MAP) were pooled respectively as three new variables.

Missing data imputation: We performed missing data
imputation on the MIMIC-II clinical database with
4000 patient records and over 48hours of ICU stays
and for 26 variables. Here, we randomly chose a patient
and a variable from the MIMIC-II dataset and ran-
domly removed 25%, 50% and 75% of data (see Fig. 4,
the red blocks in tensor). In each case, we impute the
missing values via NGP, GP, Geo-kriging and KNN
methods and repeat this procedure for 100 different sets
of patient and variable. It may be noted that if a
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Figure 6. The percentage of missing data for ICU variables in the real-world case study.

Table 2. ICU data categorization, characteristics, and preprocessing (Chen et al., 2016).

# Observations (median

Data Category Variables Normal Range Missing Percentage (%) +) std Data Processing
General Descriptor Record ID All Available Observed only at the
starting point of the
ICU stay
Height
Gender
Age
ICU Type
Mech Vent 35.87 7+7.56 1: patient required mech-
anical ventilation;
0 otherwise
Four-hour Sampling BUN 6-20 1.6 3+1.68
Lactate 3.7-5.2 45.42 1£3.15
Creatinine F: 0.6-1.1 M: 0.7-1.3 1.6 317 Change to
Creatinine Clearance®
HCO3 23-29 1.9 3+1.7
Glucose 70-100 2.82 3+£1.8
Mg 1.7-2.2 2.57 3+1.77
K 0.5-2.2 24 3+£1.92
WBC 4.5-10 1.82 3+1.57
PaC0O2 35-45 24.42 5+5.72
Na 135-145 1.87 3+1.86
HCT F: 35-48 1.6 4+258
M: 40-53
Platelets 150-450 1.7 3£191
pH 7.38-7.42 24 5+591
Pa02 75-100 24.42 5+£571
One-hour Sampling GCS 0-3 1.6 13+7.88
Fi02 0.21-0.5 32.07 8+7.34
Urine 1500 2.92 37+12.49 Change to Urine.Sum¢
Temp 36-40 1.6 14+£17.45
HR 60-100 1.57 55+16.05
Weight All Available 37+26.43 a
MAP 70-100 30.2 21+20.48 2
NIMAP 70-100 12.97 21+20.7
NISysABP 100-140 12.67 21+20.7 2
SysABP 100-140 30.02 43+29.59
NIDiasABP 60-90 12.92 21+20.7 2
DiasABP 60-90 30.02 43 +29.57

“Invalid values were omitted, and missing values were substituted by regression model and according to the standard values by sex.

PPool Troponinl and constant (i.e,, 100)* TroponinT as a new variable called Troponin.
“Creatinine Clearance is ased on 13.

9Urine.Sum is the aggregate sum of urine measurements.

€Merge two variables together.

randomly chosen patient and his/her associated variable another case because it is difficult to set up the ground
has a high level of missing data (i.e., more than 75%), truth for the experimental scenario with 75% missing

we exclude this case from analysis and randomly select data already in the database.
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Table 3. The performance comparison of GP and NGP tensor-data imputations in the simulation study under different

mean, inference and covariance functions.

RSME
Mean function Inference function Covariance function GP NGP Improvement (%)
Zero Exact SEard 26.23 (£21.99) 12.40 (£9.74) 49.41%
SEiso 33.28 (£17.23) 13.56 (+8.01) 56.70%
Laplace SEard 38.64 (+13.76) 13.68 (+5.08) 63.06%
SEiso 34.03 (+20.13) 13.91 (+10.20) 59.12%
Linear Exact SEard 21.78 (£14.13) 11.15 (+7.84) 51.68%
SEiso 41.55 (+17.69) 13.23 (+8.10) 67.02%
Laplace SEard 30.16 (+7.16) 9.78 (+4.54) 67.02%
SEiso 21.90 (£16.74) 7.60 (+8.09) 60.30%
Ll ] ] 1
g (o]
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Figure 7. Performance comparison of missing data imputation with NGP, GP, Geo-kriging and KNN models in the simulation study. The imputation results are
obtained from 100 replicates in each experimental scenarios for 25%, 50% and 75% missing percentage.

5. Experimental results
5.1. Simulation study

Table 3 shows the performance comparison between GP and
NGP models with different mean, inference and covariance
functions in the simulation experiments (see Fig. 5). The
RMSE values in Table 3 are the average results of 100 repli-
cations for the experimental scenario of 25% missing per-
centage in the tensor data. Note that NGP leads to smaller
errors in comparison with GP, regardless of the types of
mean, inference and covariance functions. The best
improvement of NGP occurs when the prior mean function
for variables (i.e., u,) is considered as a linear function,
which provides more flexibility than zero function. This
experiment compares the performance of different mean,
covariance and inference functions for the GP and NGP.

Furthermore, we have conducted experiments to bench-
mark the performance of NGP models with other popular
imputation methods, such as Geo-kriging and KNN imput-
ation. It is worth mentioning that GP utilizes only the tem-
poral information for performing imputation, while Geo-
kriging is commonly used for spatial inference and estimates
the missing values from spatial covariance among the sam-
ple values. Also, KNN is an instance-based learning algo-
rithm and predicts missing value according to the closest
training instance in the predefined neighborhood.

As shown in Fig. 7, the proposed NGP model with hier-
archical covariance functions yields the lowest RMSE values
compared to other imputation methods. Specifically, NGP
registered a reduction of RMSE of 51.9%, 54.01% and
67.81% when compared to GP, Geo-kriging and KNN,

respectively. The NGP leverages the multi-dimensional time,
patient and variable correlations for tensor missing data
imputation, as opposed to the conventional onedimensional
correlation, and thereby achieves better results in the
experiments.

5.2. Real-world case study

In addition to simulation experiments, we have also per-
formed a real-world case study on the MIMIC-II database.
As shown in Fig. 8, the average RMSE of the NGP model is
significantly lower than GP, Geo-kriging and KNN imput-
ation methods for 12 one-hour sampling variables (i.e., high
sampling rate) as well as 14 four-hour sampling variables
(i.e., medium sampling rate) for all three levels of missing
percentages. Notably, the RMSE for high sampling variables
is relatively large owing to the huge inherent fluctuations in
their values compared to the medium sampling variables.
The results show that NGP imputation decreases the error
rate on average by 44.76% in comparison with GP. Also, it
reduces the error rate by 30.04% and 83.68% in comparison
with Geo-kriging and KNN, respectively. Experimental
results demonstrate that the proposed NGP is more effective
in the imputation performance of missing data in the high-
dimensional tensor form.

Figure 9 shows an illustration of tensor data imputation
for NGP, GP, Geo-kriging and KNN models based on a
real-world case study. Here, the performance comparison is
between the imputed values (and confidence interval when
applicable) and the ground truth for Patient ID 102, variable
urine and missing percentage of 50% by NGP, GP, Geo-
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Figure 9. An illustration of tensor data imputation with (a) NGP, (b) GP, (c) Geo-kriging and (d) KNN in a real-world case study for the patient with ID 102, variable

urine and the missing percentage of 50%.

kriging and KNN. As shown in Fig. 9(a), NGP effectively
captures the trend of data through multi-dimensional
covariance structure of time, patient and variable and
imputes missing values close to the ground truth. When
there is only sparse temporal information (i.e., a consider-
able number of consecutive missing values), the prediction
error of other imputation methods increases drastically,
while remaining low for the NGP model. Note that GP,
Geo-kriging and KNN yield pronounced RMSE values at
4.986, 3.765 and 45.018, respectively, compared to 1.819
achieved by NGP.

6. Conclusions

Recent progress in advanced sensing and information tech-
nology provides a variety of measurement and monitoring
systems to improve the quality of ICU care, leading to the

data-rich environment in the hospital. ICU data present
unique characteristics, such as patient heterogeneity, time
asynchronization, and variable heterogeneity in the new ten-
sor form. The prevalent issue of missing data undermines
the data-driven decision making in the ICU setting, because
conventional approaches focus more on the table-form data
and are less concerned about high-dimensional tensor data.
These limitations make it difficult for conventional imput-
ation approaches to handle tensor-form ICU datasets. To
this end, we propose a novel nested Gaussian process (NGP)
method to manipulate the uncertainty and incompleteness
in the high-dimensional tensor-form data. Specifically, we
model the multi-dimensional correlation structure of a time-
patient-variable interrelationship for statistical inference and
prediction of missing values. The proposed approach is eval-
uated and validated with both simulation studies and real-
world ICU datasets from the MIMIC-II database.



Experimental results show that, on average, the NGP model
diminishes prediction error by 48.3% compared to GP,
42.0% for Geo-kriging, and 75.7% for KNN with the differ-
ent percentage of missing ICU data. Remarkably, the NGP
method registers strikingly better performance for the high
level of missing data scenario than traditional imputation
methods attributed to the innovative hierarchical structure
of time-patient-variable covariance in ICU settings. The pro-
posed NGP model can also be generally applicable in a var-
iety of engineering and medical domains that entail high-
dimensional data imputation and analytics.
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