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 ABSTRACT:  The oxidative activation of alkyl C–H bonds vs arene C–H 
bonds with Pd(OAc)2 has been found to be generalizable to a number of 
nucleophilic substrates allowing the formation of a range of hindered 
quaternary centers. The substrates share a common mechanistic path 
wherein Pd(II) initiates an oxidative dimerization. The resultant dimer 
modifies the palladium catalyst to favor activation of alkyl C–H bonds in 
contrast to the trends typically observed via a concerted metalation 
deprotonation mechanism.  Notably, insertion occurs at the terminus of the 
alkyl arene for hindered substrates. Two different oxidant systems were 
discovered that turn over the process. Parameters have been identified that 
predict, which substrates are productive in this reaction.  
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Introduction  

The use of aromatic hydrocarbons as precursors to the 
construction of more complex structures has many intrinsic 
advantages. Aromatic hydrocarbons are inexpensive building blocks 
readily available from petroleum. Their direct functionalization to 
desired targets avoids the introduction of functional groups such as 
halides that require the use of hazardous materials or generate 
undesired byproducts. The aromatic hydrocarbons are also more 
stable than the corresponding functionalized equivalents such as 
benzylic halides. For example, naphthylic halide analogs are not 
stable and are not readily amenable to SN2 displacement. 

For these reasons, much research has focused on the effective use 
of aromatic hydrocarbons as substrates and metal catalyzed C–H 
activation chemistry has played a key role.1 The use of palladium, in 
particular, has proven highly effective especially in the activation of 
sp2 C–H bonds of arenes (e.g. Scheme 1, eq 1),2 even allowing C–H 
activation of two reaction partners where the only byproduct is 
dihydrogen. 3  On the other hand, the activation of the sp3 C–H 
bonds of aromatic hydrocarbons by palladium occurs much less 
readily to the point where toluene derivatives can undergo selective 
sp2 C–H functionalization in the presence of one or more benzylic 
centers. 4   Strategies to achieve benzylic activation have relied on 
directing groups (Scheme 1, eq 2),5 generation of benzylic radicals 
(Scheme 1, eq 3)6, or the lower acidity of benzylic sites (Scheme 1, 
eq 4).7  

Recently, we have reported an alternative strategy to activation of 
aromatic hydrocarbons wherein dehydrogenative coupling forms a 
hindered bond (Scheme 1, eq 5).8 One unique feature of this process 
is the catalytic activation of benzylic C–H bonds under oxidizing 
conditions with palladium that typically result in sp2 C–H activation. 
Another unusual feature is that coupling occurs at the terminus of 
the alkyl arene, presumably via a migration of the palladium center. 
In this article, we disclose our discovery of a range of acyclic and 
cyclic substrates that can participate in this process to generate 
hindered bonds selectively (eq 6). From the studies undertaken, 
guidelines are now available to predict which carbon nucleophiles 

will be effective. 

Results and Discussion  

Our analysis of the reaction from eq 5 revealed the intermediacy 
of a dimer from the azlactone, which readily forms under a range of 
oxidative conditions.9 Notably, others have found reactions that also 
proceed through dimers similar to those that we reported. 10 
Reasoning that other substrates which form similar dimeric 
intermediates might be subject to a similar reaction  
 

Scheme 1. Pd-Catalyzed Activation of Arenes and Toluenes 
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profile (eq 7), the literature was surveyed for compounds that 
readily undergo oxidative dimerization. A surprisingly large number 
of compounds with similar behavior was identified including 
malonates, 11  malononitrile, 12  cyanoacetate, 13  oxindoles, 14 

isooxindoles,15 benzofurans,16 fluorenes,17 and hydroxycoumarins.18 

Acyclic Substrates: Malononitriles.  A primary concern was 
whether the reaction was restricted to cyclic nucleophiles. Thus, the 
initial priority was to explore acyclic substrates capable of oxidative 
dimerization. Malononitriles are also well-known to undergo 
oxidative dimerization.12 To probe the fundamental reactivity, trials 
were first conducted with stoichiometric Pd(OAc)2 using dinitrile 
1a along with toluene (Scheme 2). 

 

Scheme 2.  Variable Yields in Dinitrile Toluene Coupling 

 
Good reactivity was observed, but the outcome was strongly 

affected by the batch of palladium used. Older batches of palladium 
were highly effective in the stoichiometric conversion of dinitrile 1a 
to 3aa with toluene (Scheme 2), while new batches were not. 
Different sources of Pd(OAc)2 are known to give much different 
results due to different composition arising from the preparation, 

such as the red-brown [Pd3(OAc)5NO2]. [Pd3(OAc)6] is a dark 
purple solid whereas [Pd(OAc)2]n polymer is a light grey-purple 
powder.19  

 

Scheme 3.  Catalytic Palladium Oxidative Coupling of 
Malononitriles with Methylarenes (eq 8) 

 
 

Proceeding with older batches of Pd(OAc)2, the para-
methoxyphenyl and para-methylphenyl malononitriles were found 
to be effective partners in the coupling of different toluenes (Scheme 
3).  Further, the same stoichiometric oxidant discovered for the 
azlactones, dimethylbenzoquinone (DMBQ), was found to be 
effective in turning over the process with catalytic amounts of 
Pd(OAc)2.  In most cases, similar yields were obtained for the 
catalytic vs stoichiometric palladium conditions. Amongst the 
xylene isomers, para-xylene (27-36%) was less effective than meta-
xylene (59-65%) or ortho-xylene (32-50%).  In all cases, reactions 
were conducted until all starting material was consumed and the 
mass balance is decomposition with no specific byproducts being 
isolable. Notably, higher yields were obtained under catalytic 
conditions for para-methoxytoluene. We speculate that 
stochiometric Pd(OAc)2 can cause direct oxidation of the para-
methoxytoluene, which was mitigated with lower amounts of 
Pd(OAc)2 in the presence of the mild oxidant DMBQ.   

For ethylbenzene, a divergence in behavior was seen relative to 
our prior report with azlactone (eq 5)8  where exclusive 
functionalization of the terminal CH3 position occurred. With the 
malononitrile, a mixture of the terminal (methyl) vs internal 
(benzylic) products was observed (eq 9).  The terminal product is 

proposed to arise from initial benzylic insertion followed by b-
hydride elimination and migratory insertion.20  We hypothesize that 
the driving force for rearrangement to the terminal position is largely 
controlled by formation of the less hindered alkyl palladium species. 
However, these results indicate that the nucleophile also plays a role, 

where sterically small nucleophiles can react at either the a- or b -
positions. Under stochiometric conditions, there is a preference for 
the latter 3ag’, whereas the former 3ag predominates under catalytic 
conditions.  Under catalytic conditions, the higher effective 
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Cyclic Substrates: Oxindoles. Moving away from acyclic 
substrates, oxindoles are another class of compounds that readily 
dimerize.14 In addition, oxindoles bearing two substituents at the 3-
position are found in natural products and pharmaceutical targets 
(Scheme 7).21  Notably, 3-aryl-3-benzyl motif that maps onto this 
method has been utilized by Hoffmann-LaRoche.21c 

Functionalization of oxindoles has been the focus of much work, 
including oxidative methods.22 

 

Scheme 7.  Bioactive Oxindole Structures 

 
 

Very good initial results were obtained in the coupling of 3-
phenyloxindole (6a) with toluene (eq 13, Scheme 8) with 
stoichiometric Pd(OAc)2 (see SI). A survey of oxidants revealed 
K2S2O8 as highly effective while minimizing byproduct formation 
(see SI). In this case, using dioxane as a solvent was not as effective 
(see SI), so reactions were conducted in 0.1 M alkylarene. Further 
optimization (Table 1) revealed that the palladium catalyst loading 
could be lower when a pivalic acid additive and activated charcoal 
were employed (entry 6). 

 

Table 1. Optimization of 3-Phenyloxindole Toluene Coupling 
(eq 12) 

 

entry X Y additive (equiv) yield (%)b 

1 0.3 2  98 (97)c 

2 0.3 1  76 

3 0.2 2  64 

4 0.2 2 PivOH (1) 72 

5 0.3 2 AcOH (1) 80 

6 0.2 2 PivOH (1) 96d 

7 0.3 2 AcOH (1) 77d 

8 0.2 2 K2CO3 (1) 51 

9 0.2 2 NaOAc (1) 44 
aReaction conditions: 6a (0.15 mmol), 2a (0.1 M), Pd(OAc)2 (X 

mol %), K2S2O8 (Y equiv) at 120 oC for 24 h under argon. bIsolated 
yield. c Run twice dActivated charcoal (10x weight of Pd) was added. 

 

Additional 3-substituted oxindoles were synthesized following 
literature protocols 23  and were examined in the coupling with 
toluene (eq 13, Scheme 8). Different 3-aryl groups with both  
 

Scheme 8.  Palladium Oxidative Coupling of Oxindoles with 
Toluene (eq 13) 
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electron-donating and electron-withdrawing substituents were well 
tolerated leading to high yields under both stoichiometric and 
catalytic conditions (7aa-7ma).  In comparison, generation of the 
oxindole cation initiates a Friedel-Crafts reaction with arenes; such 
a pathway cannot incorporate toluene at the benzylic carbon. 
Notably, this approach to 7ba, 7fa and similar structures is 
orthogonal to the oxidative coupling method reported by Li and 
workers24  wherein selective coupling of the oxindole occurs via a 
Friedel-Crafts reaction resulting in functionalization of the arene C–
H of toluene rather than the benzylic C–H. The 2-naphthyl substrate 

formed product (7ma) in high yield whereas the hindered 1-
naphthyl substrate reacted poorly.   

Heterocyclic groups could also be employed at the 3-position 
including a case with a nitrogen substituent (7na-7pa). The 
oxindole could also be employed directly without protection of the 
nitrogen (7qa) or with other protecting groups (7ra, 7sa); however, 
the Boc group was somewhat unstable at the high reaction 
temperatures. 

Similar trends were observed again with different arylalkanes with 
improved outcomes for ethylbenzene (eq 14, Scheme 9). Varying 
toluene, poor reactivity was again observed for substrates with 
electron-withdrawing groups such as para-methylbenzonitrile and 
para-chlorotoluene.  The reaction was also unsuccessful for 2-

methylfuran.  To probe the b-hydride elimination and 
rearrangement, isobutylbenzene was examined. As expected, the 
addition of steric hindrance abrogated reactivity. 

 

Scheme 9.  Palladium Oxidative Coupling of Parent Oxindole 
with Alkylarenes (eq 14) 

 
 

Cyclic Substrates: Benzofuranones. Benzofuranones are 
isoelectronic with oxindoles and also exhibit oxidative dimerization 
behavior.16 They are found in a number of natural products and 
pharmaceutical targets (Scheme 10).25 

Scheme 10.  Bioactive Benzofuranone Structures 
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substituents (top Scheme 11) or the 3-aryl group (middle Scheme 
11) were generated26 and were found to couple with toluene very 
well. Electron-donating (9fa, 9ja-9la) and electron-withdrawing 
groups (9ga, 9ha) could be employed. Notably, chloro groups could 
be employed providing an opportunity for further derivatization 
(9ha).  Lower catalyst loadings could also be employed, but required 
longer reaction or resulted in lower yields (for 9ba with 5 mol % 
Pd(OAc)2, 59% and 75% product were obtained at reaction times of 
24 h and 48 h, respectively). 

A similar scope was seen with different alkylarenes as had been 
observed in the cases above (bottom, Scheme 11). 

Scheme 11.  Palladium Oxdiative Coupling of Benzofuranones 
with Alkylarenes (eq 15)a 

 
aFor 9ba, using conditions B with 5 mol % Pd(OAc)2, 59% and 75% product 
were obtained at reaction times of 24 h and 48 h, respectively. 

Substrate Properties Correlated with Reactivity.  In our prior 
report, the dimer of the azlactone (eq 5) was found to form under 
reaction conditions.  When isolated and resubjected to the reaction 
conditions, this dimer also converted to product. The corresponding 
dimers were observed in the conversion of substrates 1, 4, 6, and 8 

although very little of the dimer built up during the conversion of 

oxindoles 6 or benzofuranones 8. The dimer (10) of a-cyanoacetate 
4a was readily formed with oxidants and was independently 
synthesized (Scheme 12) with Cu(TMEDA)ClOH. Resubjection 
of dimer 10 to the reaction conditions with Pd(OAc)2 and toluene 
again afforded the product 5aa (Scheme 12). 

Scheme 12.  Dimer Intermediate from Cyanoacetate Substrate 
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Scheme 13.  3-Benzyloxindole Dimer with Pd(OAc)2 
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13) indicates that the oxidizing power of the dimer is not the most 
important factor.  Furthermore, the relative reactivity of the 
substrates in entries 3-11 followed the order of the dimer BDE values 
as judged by TLC monitoring. 

Competition experiments between substrates were performed to 
probe the role of BDE values (Scheme 14). Reaction from the 
monomer and dimer gave different outcomes, consistent with two 
separate steps contributing to the overall rate: dimerization by 
palladium and reaction of the dimer with a palladium alkyl. For all 
pairs, the substrates with the stronger BDE values were less reactive.  

 

Scheme 14.  Competition Experiments 

 
aYields from 1H NMR using 4,4‘-di-t-Bubiphenyl as an internal 
standard. 
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All told, it appears that the dimer must be able to fragment readily, 
hence the poor results with compounds with higher dimer BDE 
(Table 2, entries 12-17).  The poor results with dimers that cleave 
very readily (entries 1-2) are consistent with two scenarios. The 
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Conclusions 
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bonds with Pd(OAc)2 has been described.  This process uses 
inexpensive alkylarene precursors derived from petroleum and 
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palladium catalyst to favor activation of alkyl C-H bonds in contrast 
to the trends typically observed via a concerted metalation 
deprotonation mechanism.  Notably, insertion occurs at the 

terminus of the alkyl arene for hindered substrates via b-hydride 
elimination/migratory insertion, a pathway that is not typically seen 
in oxidative palladium chemistry. The bond dissociation energies of 
the dimeric intermediates have been identified that predict which 
substrates are productive in this reaction.  These guidelines allow 
rationale selection of substrates to employ in this method and 
further mechanistic studies are underway to understand the discrete 
steps of this unusual and complex mechanism. 
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