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Abstract—Current ECG imaging (ECGi) systems deploy a large number of ECG sensors to provide the high-resolution
body surface potential mapping (BSPM). The availability of BSPM was shown to substantially improve the early detection
of life-threatening heart disease. However, most existing ECGi systems employ an approximately uniform distribution of
hundreds of ECG sensors on the body surface. Very little has been done to investigate the optimal sensor placement
for BSPM. In this article, we propose a new optimal sensing strategy to search the optimal number and locations of the
sensors. First, we develop a greedy algorithm to sequentially place ECG sensor on the body surface, which will maximize
the information gain at each step. Second, we leverage the available BSPM data to develop a spatiotemporal model of
cardiac electrical activity. Third, we study the algorithmic convergence and stopping criteria by evaluating diminishing
return of the placement of two sequential ECG sensors. Experimental results show that the optimal sensing strategy with
30 sensors yields large R? statistics (>97%) for BSPM during the P, QRS, and T waves, as well as an average R’ statistics
of 97.71% for 12-lead ECG, and 99.44% for 3-lead VCG. The proposed methodology has strong potentials to help further
improve the design of ECGi systems.

Index Terms—Body sensor network (BSN), electrocardiogram (ECG) imaging, greedy heuristics, location optimization, optimal sensor

placement.

[. INTRODUCTION

Body sensor networks (BSNs) have emerged as a key technology
to improve the quality of life by wearable sensing and health moni-
toring. Technological advances in nanomaterials and miniaturization
of electronic devices make it possible to deploy a large number of
sensors in BSN systems [1]. Indeed, new electrocardiogram imaging
(ECGi) systems distribute a network of ECG sensors over the entire
torso, thereby providing high-resolution body surface potential map-
ping (BSPM) signals [2]. Note that traditional ECG systems measure
cardiac electrical activity with a limited number of leads and pro-
vide only time-domain views of ECG signals [3], [4]. ECGi systems
shown in Fig. 1, however, enable the provision of a complete picture
of spatiotemporal cardiac dynamics on the body surface.

Availability of spatiotemporal BSPM signals has been shown to
facilitate mathematical reconstruction of the underlying cardiac elec-
trical dynamics from spatiotemporal distribution of BSPMs over the
entire torso. This, in turn, substantially improves the early detection of
life-threatening cardiac disorders. ECGi offers an unprecedented op-
portunity to observe subjects with high risks of heart diseases beyond
the confines of, often, high-end healthcare settings. Current ECGi sys-
tems involve a network of hundreds of sensors that are approximately
uniformly distributed on the body surface (see Fig. 1), providing a
high-resolution BSPM. A significant challenge lies in the use of a
large number of sensors, which impact the user experience of ECGi
systems to some extent. For acquisition of BSPM, the questions are
whether the number of sensors can be reduced and how to better

Corresponding author: Hui Yang (e-mail: huy25@psu.edu).
Associate Editor: Chun-An Chou.
Digital Object Identifier 10.1109/LSENS.2018.2884205

BT+
.

O
Y
.

* e bt

LI N T
""

(b)

Fig. 1. Body area sensor network that uses 120 electrodes (i.e., black
dots) [5] with an approximately uniform distribution on the body surface
for BSPM. (a) Front view. (b) Back view.

allocate these sensors on the body surface? The answers to these ques-
tions remain sketchy. Very little has been done to investigate sensor-
placement problems that is, however, critical to improve the design of
ECGi systems.

In this article, we develop a new optimal sensor-placement strategy
for the design of ECGi systems to capture a complete picture of
spatiotemporal dynamics in cardiac electrical activity. The present
investigation provides a viable solution that uses a sparse set of ECG
sensors to realize high-resolution ECGi systems. In summary, our
contributions in this paper are as follows.

1) Optimal placement of ECG sensors is introduced to improve
the design of ECGi systems, rather than the approximately uniform
placement used in current practice.

2) This investigation develops a spatiotemporal model of cardiac
electrical activity on the body surface, as opposed to the traditional
time-domain analysis of ECG signals.

3) We propose sequential design and diminishing return to opti-
mally strike a balance between the number of ECG sensors and the
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Fig. 2. Flowchart of the proposed optimal sensing strategy.

quality of BSPM data acquisition, as opposed to a large number of
sensors (e.g., >100 electrodes) approximately uniformly distributed
in existing ECGi systems.

[I. RESEARCH METHODOLOGY

This article is aimed at improving the design of ECGi systems
with optimal sensor placement. We are concerned about the quality
of data acquisition (i.e., BSPM, ECG, and VCG) provided by ECGi
systems if the number of sensors is reduced. As shown in Fig. 2,
we propose to sequentially place ECG sensor on the body surface to
maximize information gain in the spatiotemporal model of BSPM. If
the model performance meets the satisfactory precision, the algorithm
ends. If not, we continue to add more sensors to the ECGi system. The
spatiotemporal model is then updated with the newly generated data
and next iteration starts.

A. Spatiotemporal Modeling

The BSPM signals on the body surface are highly dynamic and
varying with respect to time. Before the spatiotemporal modeling, we
first introduce the kernel-weighted regression [6] to model the spatial
distribution of BSPM at a specific time point as follows:

1
o(8) = Y wi(s) - 1(8) - w; +2(s) M

i=1

where 2 represents the location on the body surface, ®(2) is the
BSPM value at location s, I denotes the total number of sensors,
fi(8) is the set of basis functions ( f;1(8), fi2(8), ..., ﬁp(s)}T, where
p is the number of basis functions, w; = (w;1, @;, ..., @ )T is the
model parameter with dimensionality I x p, and t(s) is the noise. We
choose the basis functions as f;(s) = (1, x, )’ in this investigation,
where x and y are the coordinates of location s, but this choice does
not preclude others to use a different form to model more complex
structured spatial data. The kernel function «;(2) is defined as follows:

— ) 2 (s — ﬂ‘i)}

2
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where p; is the center, and X; is the covariance function of the ith
kernel. In general, the selection of kernel function depends on the
application [7]. As the Gaussian function is flexible to represent ECG,
it is therefore chosen for BSPM data representation.

Let us denote the BSPM data at N locations on the body surface
& = (D(81), ..., P(sn))". the vector of kernel weights k; = (ki(81),
..., ki(sy))T, and the ith basis functions 1; = (f;(8), fi(8),
...,fip(s))T. If we define ¢ = [diag(x)n,, ..., diag(k;)7,] and
w = (Wi, ...,w;)", then (1) can be rewritten in a simplified matrix
form as follows:

& =Cw+T. 3)

Based on the availability of BSPM data, the model parameter w can
be directly estimated by solving (3). However, this kernel regression
model in (3) only captures the spatial pattern at a given time point.
In order to model the time-varying BSPM signals, there is an urgent

The temporal evolution is modeled by making parameter w, change
overtimef = 1,2, ..., T. At each sensor location, we obtain the ob-
servational data of BSPM and, at the same time, place a kernel function
K;. As such, the spatiotemporal model is formulated to represent the
dynamically evolving BSPM data as follows:

I
®(s.0)=Y ki(s.0)- fT(8)-wilt) + 7 @

i=l

where w;(f) is the time-varying model parameter, and 8; = (i;, X;)
gives the sensor location p; and covariance function X; of the kernel
function. Given an unobserved location s* and a certain time point £*,
the BSPM value is estimated as ®(s*, t*) = ;w,. Now, the objective
function is to identify a parsimonious set of sensors that achieve a
satisfactory modeling performance of BSPM data as follows:

I
argf}gf‘_l |:||'1>(3, 1) — Z K;(8,0;) - f?{,g) ~wi®. 91_:| )

i=l

B. Lazy Greedy Algorithm

As the search space of potential sensor locations is large, clas-
sic greedy algorithms were found to be computationally demanding.
Therefore, we propose a lazy greedy algorithm to optimize the location
of each sensor placement. Every time when a sensor # from the search
space is selected to join the set A, we compute its marginal benefit as
8(0) = E(A)— E(AUB), where E(A) = ||® — ZL ki (0) FTwill.
‘We then construct a priority heap structure that keeps track of marginal
benefit of each sensor in the search space ©. For each iteration, we
only update marginal benefit for the top sensor 8* in the heap as
8(68*) = E(A) — E(A U 8%). If the updated marginal benefit of * re-
mains to be the largest, * will be included in the selected set A as the
next sensor. Otherwise, the priority queue of sensors is sorted again
according to their marginal benefits, and the benefit of next top sen-
sor in the heap is reevaluated. This avoids the evaluation of marginal
benefits for all the remaining sensors in the heap to determine next
optimal location. As such, the algorithm for optimal sensor placement
is computationally efficient.

C. Diminishing Return

‘We evaluate the algorithmic convergence and stopping criteria in the
optimal placement of ECG sensors with the use of diminishing returns.
Adding a new sensor #;4 increases the coverage of ECGi BSN and
decreases the error, i.e., E(A U{8;,}) = E(A). Interestingly, there
exists a turning point of diminishing returns if we keep increasing
the number of sensors. In other words, adding a new sensor 6, to a
small set A yields more returns than a large set A, ie., 4; 2 A
E(A;) — E(A; U{8in1}) = E(A) — E(A; U {Bin]).

Therefore, we investigate a parsimonious set of sensors
by sequentially maximizing marginal benefits, argmaxy .\ 4, |
E(A;_)— E(A;_, U{8;}). Once the marginal benefit is smaller than
a stopping criteria &, the algorithm converges at the turning point of
diminishing returns and we will then stop adding the sensors. The
proposed methodology is evaluated and validated with experimental
studies, which are detailed in Section III.

lIl. EXPERIMENTAL DESIGN AND RESULTS

In this article, we evaluate and validate the proposed methodology
using real-world BSPM data from PhysioBank [8]. This ECGi system
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Fig. 4. Average MAE with standard deviation of model performances.

is the most commonly used setting with an approximately uniform
distribution of 120 sensors. We hereby refer it as the golden standard
for benchmark experiments. Note that ECGi systems allows for the
collection of BSPM signals, which include both 12-lead ECG and
3-lead VCG. Therefore, as shown in Fig. 3, we design a three-way
layout experiment to evaluate the performance of optimal sensor place-
ment by comparing the ECGi outputs (i.e., BSPM, 12-lead ECG, and
3-lead VCG) with 1) uniform placement of the same number of sen-
sors; and 2) the golden standard system. The first factor group is
optimal versus uniform placement. The second factor is to vary the
number of sensors from 5 to 35 in both uniform and optimal sensor-
placement strategies, and then compare the third factor group of ECGi
outputs from both strategies with the golden standard system.

A. Variation of Model Performance With Respect to the
Number of Placed Sensors

‘We benchmark the performances of optimal and uniform place-
ments of ECG sensors by evaluating average mean absolute error
(MAE) and standard deviation of both ECGi systems, as follows:

1 N T .
MAE = —— ; E |®(si, 1) — (s, 1)| ©

where &(s;, 1) represents the model performance, and i denotes the
index of mapping sites on the body surface,i = 1,2, ..., N. In other
words, if we increase the number of ECG sensors from 5 to 35 in op-
timal and uniform placements, the differences in BSPM data quality
are benchmarked with the golden standard system. The experiments
are replicated on four different human subjects and, therefore, yield
the standard deviation. Fig. 4 shows the variations of average MAE
and standard deviation of optimal and uniform placements of ECG
sensors. On the one hand, as the number of sensors increases from
5 to 35, the average MAE of optimal ECGi decreases monotonically
from 0.0602 to 0.0254, and the standard deviation becomes signifi-

Fig. 5. (a) Golden standard. (b) Uniform ECGi BSN (30 sensors).
(c) Optimal ECGi BSN (30 sensors).

cantly smaller. On the other hand, the average MAE of uniform ECGi
descends from 0.0874 to 0.0318, and the standard deviation does not
get smaller. Optimal placement of ECG sensors consistently yields a
better performance than that by uniform placement with the increment
in the number of sensors. The advantage of the proposed optimal sen-
sor placement is mainly due to spatiotemporal modeling of real-world
BSPM that help account for spatiotemporal patterns of electrical po-
tentials rather than uniformly distributing sensors on the body surface.

B. Algorithmic Convergence and Diminishing Return

The optimal placement of ECG sensors aims to achieve a satisfac-
tory measurement performance with a parsimonious set of sensors. In
the experiment, we sequentially add sensors to ECGi BSN and place
sensors at optimal locations determined by the lazy greedy algorithm.
‘We use the “diminishing return” as the stopping criteria to compute
when the marginal benefit §(8*) = E(A) — E(A U 8*) < g, where ¢
is set as 5 x 107*. In other words, if the MAE discrepancy between
two subsequent iterations is less than £ = 5 x 107, the sequential
addition of sensors will be stopped. Note that the stopping criterion
is met when there are 30 sensors in the optimal ECGi system. In
other words, optimal placement of 30 sensors is sufficient to achieve
a satisfactory level of BSPM data quality as in the golden standard
ECGi system. Fig. 5 shows the locations of ECG sensors on the body
surface in the golden standard ECGi system, uniform placement of
30 sensors, and optimal placement of 30 sensors. It may be noted that
most sensors in optimal ECGi tend to cluster around the location of
heart on the front body. As shown in Fig. 5 (a) and (c), the number of
ECG sensors is significantly reduced from 120 to 30 using the opti-
mal sensing strategy, but still maintaining the quality of outputs (i.e.,
BSPM, ECG, and VCG). The benchmark of output data quality will
now be detailed in Section C.

C. Comparison of ECGi Outputs From ECGi BSNs—
Optimal, Uniform, and Golden Standard ECGi Systems

We use R? statistic to quantify the proportion of BSPM (or ECG,
VCG) variations in the golden standard that can be explained by the
optimal or uniform sensor placements. The R? statistic is defined as
follows:

)

T 304112
- ( T ZLile0- &) ) o0
N Yem-d0P

where &(t) are the outputs (i.e., BSPM, ECG, and VCG) from the
golden standard ECGi system, T is the total number of time points,
and N is the number of mapping sites. In this study, T is 1000, and N
is set to 352 as in the golden standard ECGi system.

Fig. 6 (a) shows BSPMs at P wave measured with optimal and
golden standard ECGi systems, respectively. Optimal ECGi yields
an R? statistic of 98.35%. Note that if the R? statistic is 100%, then
two systems do not have any differences in terms of measurement
performance. Fig. 6 (b) demonstrates BSPM at QRS wave measured



IEEE
7101104 VOL. 3, NO. 1, JANUARY 2019 [T Letters|
P wave ‘I QRS wave [—Uniform ECGI BSN

, Twave
i

otential
¥

E,

200
208
=
[}

o

Optimal ECGI

Patential

o Bo¥

-

=
)
E")

o
~"m

-
Ny
The goliden standard

(a) (b) (c)

The golden standard

The golden standard

Fig. 6. BSPM measured by optimal ECGi BSN (top figure) and the
golden standard (bottom figure) at (a) P wave (R? = 98.35%), (b) QRS
wave (R? = 99.29%), and (c) T wave (R? = 97.18).

Table 1. R? Statistics of the Derived 12-Lead ECG from BSPM.

Leads | Optimal Sensor Placement | Uniform Sensor Placement
20 25 30 35 40 45

| 87.34 98.76 99.87 88.99 9761 99.23
I 6842 B521 9953 98.42 09862 99.29
mn 69.49 9232 99.78 9424 09964 99.69
aVvR 88.55 ©91.49 99.59 93.07 96.16 98.71
avL 76.17 9596 99.86 91.56 99.09 99.59
avF 65.87 B8.57 99.67 96.71 99.63 99.64
Vi1 87.52 0346 93.78 76.98 77.18 89.85
V2 80.73 9243 96.39 94.30 98.19 98.40
V3 8951 9385 98.12 29.70 7193 90.25
v4 11.35 53.03 8942 18.00 39.78 75.08
V5 70.24 8859 98.10 86.72 89.78 9594
Ve 95.00 95.88 98.35 93.43 9521 99.46
Total 890.19 1069.55 1172.47 962.11 1062.82 1138.12
Mean 7418 8913 97.71 80.18 8857 9484
Max 95.00 98.76 99.87 98.42 9964 99.69
Min 11.35 53.03 8942 18.00 39.78 75.08

with optimal ECGi BSN and the real-world measurement of BSPM at
QRS wave with the golden standard ECGi system. Note that 99.29%
of variations in BSPM measured by the golden standard system can be
described by the optimal ECGi system. BSPMs at T wave measured by
optimal and the golden standard ECGi systems are shown in Fig. 6(c).
Optimal ECGi yields an R? statistic of 97.18% that means a good fit
into the BSPM data measured by the golden standard. The large R>
values (>97% for P, QRS, and T waves) statistically show that optimal
ECGi is effective and efficient in capturing variations contained in
BSPM with a parsimonious set of 30 sensors.

In this investigation, we derive the 12-lead ECG signals from op-
timal ECGi, uniform ECGi, as well as the golden standard ECGi
systems. Table 1 shows the quantitative benchmark results between
optimal ECGi, uniform ECGi, and the golden standard ECGi systems.
The optimal ECGi yields mean R? statistics of 74.18% with 20 sen-
sors, 89.13% with 25 sensors, and 97.71% with 30 sensors. It may also
be noted that R? statistics increase for all 12 leads as more sensors
are added, but the percentage of improvement is different because the
lead locations are not the same. A mean R? statistics of 97.71% shows
that the optimal ECGi with 30 sensors gives the 12-lead ECG as good
as the golden standard ECGi system. Table 1 also shows the uniform
ECGi yield’s mean R? statistics of 80.18% with 35 sensors, 88.57%
with 40 sensors, and 94.84% with 45 sensors. Note that we increase the
number of sensors in uniform ECGi to reach comparable performance
as the optimal ECGi. The mean R? is 80.18% for the uniform ECGi
with 35 sensors, which is around 9% lower than that for the optimal
ECGi with 25 sensors. When the number of sensors increases to 45,

|— Godden Standard
- -Optimal ECGi BSN

Signal (mV)
E & B E

500

500 1000
Time (ms)

Fig. 7. Three-lead VCG signals from uniform and optimal ECGi (30
sensors), and the golden standard ECGi system. (a) X. (b) Y. (c) Z.

the mean R? reaches 94.84% for uniform ECGi, while the mean R?
of optimal ECGi is 97.71%. Table 1 shows that the optimal placement
of ECG sensors with a smaller set of sensors yields better results in
12-lead ECG signals than those of the uniform ECGi.

In addition, we benchmark the performance of three ECGi systems
using the 3-lead VCG derived from BSPM signals. Fig. 7 shows the
3-lead VCG signals from uniform and optimal ECGi (30 sensors), and
the golden standard ECGi system. Note that optimal ECGi produces
nearly the same waveform as the golden standard. This is evident
by comparing the goodness-of-fit of VCG signals in Fig. 7. As 12-
lead ECG and 3-lead VCG are widely used by physicians for clinical
decision making, optimal ECGi is effective due to the smaller set of
sensors to produce BSPM signals, and the provision of commonly
used ECG signals accurately.

IV. CONCLUSION

In this article, we propose an optimal sensing strategy for the place-
ment of ECG sensors on the body surface to capture spatiotemporal
cardiac electrical dynamics. Specifically, we integrate the sequential
optimization of sensor placement with spatiotemporal modeling to
improve the design of ECGi systems. The algorithmic convergence
and stopping criteria are investigated by evaluating diminishing return
of the placement of two sequential ECG sensors. Experimental results
show that the optimal placement strategy with 30 sensors yields large
R? statistics (>97%) for BSPM during the P, QRS, and T waves, as
well as an average R? statistics of 97.71% for 12-lead ECG, 99.44%
for 3-lead VCG.
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