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Abstract—Many real-word systems exhibit nonlinear and nonstationary dynamics, which defy understanding based on
the traditional reductionist’s approach. However, traditional analytical methods designed to effectively handle nonlinear
dynamics are not well integrated with multisensor data fusion for process monitoring and control objectives. Realizing full
potentials of multiple sensor signals calls upon the development of new methods for anomaly detection and transition
analysis of nonlinear dynamics in complex systems. This article presents a novel pattern-frequency tree (PFT) approach
for multisensor signal fusion and dynamic transition analysis. We leverage both pattern and frequency information in the
PFT model to develop efficient algorithms for modeling and analysis of abnormal transitions in the nonlinear state space.
Experimental results demonstrate that the proposed PFT method achieves a superior performance for multisensor data

fusion and anomaly detection in nonlinear dynamical systems.

Index Terms—Anomaly detection, nonlinear dynamics, pattern-frequency tree (PFT), state space, transition analysis.

[. INTRODUCTION

Real-world complex systems often exhibit nonlinear and dynamic
behaviors, which pose significant challenges on process monitoring
and anomaly detection. Nonlinear dynamic behaviors manifest in a va-
riety of domains such as manufacturing (e.g., machining signals), as
well as health care (e.g., cardiac signals and patient monitoring). The
rise of complexity due to nonlinear dynamics is caused by interactions
between system elements such as cooperation, collaboration, compe-
tition, and interference. To tackle this complexity, advanced sensing
systems are increasingly employed to improve information visibility. It
is not uncommon that multiple sensors are used to capture multifaceted
dynamic behaviors, which leads to large amounts of data that are high
dimensional, nonlinear, and nonstationary. Realizing the full potential
of massive sensing data for process monitoring and dynamic transition
analysis depends to a great extent on the development of new analytical
methods to handle the nonlinear and nonstationary dynamics.

However, nonlinear dynamical systems defy understanding based
on the traditional reductionist’s approach, in which one attempts to un-
derstand a system’s nonlinear behaviors by combining all constituent
parts that have been analyzed separately. As such, traditional methods
such as frequency decomposition and principal component analysis
encounter significant difficulties in capturing nonlinear, nonstation-
ary, and high-order variations. Poincaré’s geometric thinking of non-
linear systems provides a new way for a dynamic transition analysis.
One of the earliest efforts to capture higher order dynamics in quality
control is reported by Kamarthi et al. [1]. Also, Bukkaptnam et al. de-
veloped local Markov models to predict system dynamics and future
evolutions in the state space; they also proposed an adaptive wavelet
method to represent nonlinear dynamic signals for feature extraction
[2]-[4]. Yang et al. developed a multiscale method to characterize and
quantify nonlinear recurrence dynamics in multiple wavelet scales [5].
Furthermore, Yang et al. [6], [7] developed a new heterogeneous recur-
rence approach for monitoring the nonlinear stochastic process. Chen
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et al. [8] proposed a recurrence network approach for the extraction of
nonlinear patterns in spatial data. Nonetheless, the theory of nonlin-
ear dynamics is primarily studied by physics and mathematics, and is
not well integrated with multisensory data fusion for monitoring and
control objectives. There is an urgent need to develop new nonlinear
dynamic methods to realize the full potentials of multisensor signals
for statistical process control.

In this article, we present a novel pattern-frequency tree (PFT) ap-
proach for dynamic transition analysis in nonlinear and nonstationary
systems. This PFT method represents the signals from multiple sensors
with a state space approach, which facilitates the geometric analysis of
dynamic transition patterns. Using this representation, we develop the
hyperoctree aggregate segmentation (HAS) approach to discretize the
state space into subregions, each of which is assigned with an aggre-
gated state index. When system dynamics go from one subregion to
another, we characterize such transition patterns and then build a PFT
model. Finally, we leverage both pattern and frequency information
in the PFT model to develop efficient algorithms for dynamic transi-
tion analysis. Experimental results show that the proposed PFT model
achieves better results regarding the detection accuracy and computa-
tional performance than conventional methods for statistical process
control of nonlinear dynamical systems in multisensor settings.

II. RESEARCH METHODOLOGY

A. State Space Representation

As shown in Fig. 1, we first represent multidimensional sensor
signals in the nonlinear state space that will facilitate the geometric
analysis. If each sensor provides a univariate time series X; = {x;(#)},
where i denotes the sensor i. Multiple sensors will lead to multivari-
ate time series, X = {x(t) € R} = {[x,(¢), ..., x4(t)]'}. In the state
space representation, if each X; is defined as one state variable, then,
a state vector at ¢ becomes x(t) = [x,(¢), ..., x4(t)]'. Note that con-
tinuous nonlinear processes are represented as ”;f =G(X,n,¢€) and
x(0) = x(, where 1 is a process parameter vector varying over time
and ¢ is system noises, and G(-) € RY — R? captures the nonlinear
dynamic relationship. A dynamic process at time ¢ is, then, a point of
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Fig. 1. lllustration of (a) multisensor signals and (b) nonlinear state 0 'ﬁom% 906

space with dynamic transitions (i.e., finite-time detours in the trajactory).
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Fig. 2. lllustration of HAS tree-based scheme in (a) 1-D and
(b) 3-D state space. Each time HAS seperates an over-capacity sub-
region into (a) 2!, (b) 2% equal sized subregions, and labels with hier-
archical indexes. E.g., in (a) region 1 is over-capacity; therefore, it is
seperated into 11 and 12 subregions; in (b), region 4 is seperated into
41,42, ... ,48 subregions.

a geometric trajectory in the state space evolving from the initial state
2(0). The evolution function 1 and the initial state x(0) delineate the
dynamics of a nonlinear system. Therefore, complex system behaviors
are represented as a nonlinear trajectory in the state space.

Based on the Poincaré’s theorem, the detour of nonlinear trajectory
in the state space indicates nonstationary transitions in the complex
systems. The blue trajectory in Fig. 1 shows one type of system behav-
iors, which contains a specific pattern of recurrences. If a system does
not contain any recurring pattern, the corresponding trajectory grows
a random path without forming any particular route. Furthermore, the
detour trajectories (red) in the state space, such as deviating from
the original track (blue), imply that the anomalies occur in systems.
Therefore, geometric properties of the nonlinear trajectory in the state
space provide a new means to study and analyze dynamic transition
behaviors of complex systems.

B. Hyperoctree Aggregate Segmentation (HAS)

To delineate local transition patterns, it is critical to segment the
state space. A state space segmentation facilitates the analysis of states
in collective sets and reduces the computational burden due to the
large number of states. Note that it is desirable to partition the state
space efficiently and make each subspace contain similar patterns or
stationary characteristics.

We propose an HAS scheme, inspired by the quadtree [9], to effi-
ciently divide the state space into local and heteroegenous subregions.
The HAS scheme tackles distribution dependent issues of traditional
methods such as equal boxing (Eqbox) and symbolic aggregation
approXimation (SAX) [10], [11]. Note that the Eqbox assumes the
observations are uniformly distributed; the SAX assumes that the ob-
servations follow a normal distribution. Although they are efficient
methods, most state distributions in complex systems are neither uni-
form nor normal. The HAS is a tree-based space segmentation method
that overcomes the distribution dependent issue. It takes each subre-
gion as a tree branch and then checks and partitions every branch
layer-by-layer until every subregion is within the given capacity. Note
that the HAS partitions each over capacity region into 2¢ equal-sized
subregions in the d-dimensional state space. After partitioning the state
space, each subregion is indexed with a unique label. This method is
generally applicable for different types of state distributions. Fig. 2(a)
and (b) illustrates the HAS in 1-D and 3-D cases, the HAS recur-
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Fig. 3. lllustration of PAA for (a) 1-D signals and (b) 3-D state space.
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Fig. 4. PTF in the tree form.

sively partitions each subregion into 2' and 2° subregions until all
subregions are lower than a given capacity. Denoting the state distri-
bution as X and the capacity as 1, the final subregion set B = {b;}
of HAS is a function of X and wu represented as HAS(X, u) = {b;},
where U; b; = RY, b, Nizjb; =@, and [bj| <uVj.

C. Piecewise Aggregate Approximation (PAA)

To further improve the computational efficiency, we propose
an augmented PAA extending from [10], for each subregion in
the state space. Let S; be a subset of X in the w-length slid-
ing window, where the index i represents the window that starts
from the time i, S; = {X¥(i), X(i +1),...,X({ +w — 1)}, where i €
{1,2,....,T —w+1}. To derive the PAA approximation of S,
we first segment the S; into K equal-length multivariate subse-
quence (K < w) and then use the aggregated approximation, such
as the average, to represent each subsequence and finally form
an PAA approximation as S; = {§,-(1), R 3’,-(1(')}, where S‘i(k) =

ghk=1+i

g(zt:%(k71)+i x(t)),andk € {1,2,..., K}.

As such, we can represent S; in the ith sliding window as a “word,”
P;, which is a symbolic string representing the PAA approximation
S;. Here, P, = {pi}. ..., Pix ) 1s a K length symbolic string. Let o;
denote the jth element of an alphabet. Then, the PAA maps S to a word
Ppas pi, =« iff ?,- (k) € b;. The HAS partitions the state space into
subregions and then assign a unique label to all states in a subregion. As
such, the PAA approximation S; is transformed into a symbolic string,
which retains geometric features of system behaviors. Fig. 3 shows the
PAA approximation and labeling for electrocardiogram (ECG) signals
in one and three dimensions, respectively. In short, PAA converts S;,
a subset of X in the w-length sliding window, into an approximated
subsequence S; and then map to a word P;, P, = PAA( S;, B), with
the label set B generated through HAS.

D. Pattern-Frequency Tree (PFT)

After the state space trajectory from multisensor signals is converted
to a symbolic string, we propose a tree structure to represent transition
patterns in each sliding window and their occurrence frequencies.
Because we represent .S; in each window as a word P;, each word
pattern is used as a tree branch. As shown in Fig. 4, we can, then,
obtain a PFT that keeps records of not only the transition patterns
but their occurrence time points and frequencies as well. Table 1
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Table 1. PFT in the Table Form.
Time Index Window Pattern  Frequency
S BRSPS
t, ABC 4
t [ ABC | 4
bn-ni1 t CAB [ 21

illustrates the PFT in the table form, which provides the time indices
and frequencies of word patterns in each sliding window.

Now, the dissimilarity level of S; and S'; in two different windows
can be represented as the distance between these two subsequences
Dist(S;, S;) = Z[":Ol ISG + 1) — 5(j + t)|l2, where || - ||, denotes the
L2 norm. The word patterns and frequencies in the tree provide the
first level of information to efficiently identify the transition patterns
that occur frequently or rarely happen. In the next step, we propose a
minimum deviation score (MDS) to provide the level of irregularity
for S; in each window i, which is the minimum distance of all nonself-
match in the state space trajectory, i.e.,

MSD(S;) = min

JeT\li—jl<w

{DlSt(S, . Sj)}

The nonself-match is critical to avoid the MDS bias, because the
self-match will give a zero distance and thus makes all minimum
distances zero. As a result, given the state space X, the discord is
S; with the biggest MDS score is max{MDS(S;)}. Thus, the mth
largest discord is the subsequence S; having the mth largest MDS.

E. PFT-MDS Algorithm

One way to find the m largest MDS is the exhaustive search that
compares all windows one-by-one through a double loop. Although
an exhaustive algorithm can find the MDS for all windows, it is com-
putationally inefficient and expensive. Instead, we propose to leverage
the pattern and frequency information in PFT to improve the algo-
rithmic efficiency. As shown in Algorithm 1, the PFT data structure
helps speed up the processes without the need to go through the ex-
haustive search. The idea is to leverage the time locations frequency
information of each transition pattern to reduce the number of MDS
computations. For example, transition patterns that frequently occur
in the trajectory has a smaller probability to be an anomaly, but those
happen rarely will have a higher probability. As such, we modify two
loops to speed up the PFT-MDS algorithm as follows.

1) The Order of the Outer Loop: Because the PFT records the
occurrence time and frequency of each transition pattern, we
compute the MDS with a sorted list of frequency of transition
patterns. Note that if the frequency of a transition pattern is
small, it will have a higher probability to yield a bigger MDS.
If a transition pattern occurs very frequently, then it is unlikely
to be an anomaly. Therefore, we set the order of outer loop with
an ascending order of frequencies of transition patterns. The
PFT provides an effective and efficient means to quickly obtain
the m largest MDS.

2) The Order of the Inner Loop: Because the algorithm only keeps
S,'s with the m largest MDS’s, we use the minimum of these
m largest MDSs as a criterion to eliminate unnecessary cal-
culations. If the computed MDS(S ) is less than the smallest
value of the m largest MDS so far, then S, will not be among
m candidates of anomalous transitions. Hence, the top m can-
didates for anomaly transitions remain the same. Note that time
locations for the same word (or transition patterns) are recorded
in the PFT structure. Therefore, the MDS computation can
go through these locations for the transition pattern S, and
identify whether MDS(S ) is bigger than the smallest value of
m largest MDS's. If not, the algorithm breaks and goes to the
next loop. This will greatly help to increase the speed of search
of m largest MDS values.

Algorithm 1: The Pseudocode Of The Pft-MDS Algorithm.

Procedure PFT-MDS COMPARISON ALGORITHM
Input:
{S: a series of states, w: length of a subsequence,
m: number of best m results }
Variable:
mMDS := a m length vector to store the m largest
MDS ()
Ly := aseries of ordered states for outer loop
Lo (i): the ith component of Ly
L; := aseries of ordered states for Inner loop
L;(j): the jth component of £,
S := the inspection window starting at time stamp ¢
Initialization:
Set min{mMDS} =
Lo < GetOuterLoopOrder(S, w)
Fori=1to0 [Lo|{
L; < GetInnerLoop(S, w, L (i))
Forj=1to L] {
If |Lo(i) — L;(j)| = w then {
calculate dissimilarity level:
Dist(Scow)»Sc; ()
If Dist (SLO(,'), SL[(j)) < l’IllIl{mMDS}
then {
Break
1333
keep the m largest M'DS(-) as the final return
End Procedure.
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Fig. 5. Cause-and-effect diagram of experimental design.

Ill. EXPERIMENTAL DESIGN AND RESULTS

As shown in Fig. 5, we evaluate and validate the proposed method-
ology with a three-factor experimental design, including the dimen-
sionality factor (i.e., the number of sensors), spatial segmentation
methods, and benchmark algorithms (i.e., exhaustive searching versus
PFT-MDS algorithms).

In the present experiments, we use the 3-lead ECG signals from a
human subject. The sampling frequency is 1 kHz, and the signal length
is 6 s, i.e., 6000 data points. The dynamic transition is simulated by
adding the finite time detour of 300 data points in the state space
trajectory. Notice that we set the length of one sliding window is
400 data points, i.e., the cardinality of |.S;| = 400. The performance
metric of detection accuracy is the absolute difference between the
time location of actual anomaly and predicted anomaly. The smaller
the absolute difference is, the better the detection accuracy will be.

A. Dimensionality Effect

Because there are often multiple sensors involved in the system
monitoring, we first evaluate the variations of detection accuracy for
each scenario by varying the dimensionality of the state space. At
each experimental scenario, we randomly add an anomaly to multidi-
mensional signals, where the anomaly is a mean shift to the original
signals. Each dimension has the same relative level of mean shift. This
experiment is designed to test the hypothesis whether the dimensional-
ity of state space impacts the detection performance at different levels
of anomaly conditions.
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Fig. 6. Comparison of the mean (a) and the standard deviation (b) of
detection accuracy concerning the dimensionality of state space.
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Fig. 7. Detection accuracy under using different spatial index methods
(a) mean of deviation level and (b) standard deviation (S.D.) of deviation
level.

We run each experimental scenario with 50 replications to obtain
the mean and standard deviation of performance metrics. As shown in
Fig. 6(a), the average of detection errors converges to zero when the
mean shift level increases, but if the dimensionality of state space is
higher, then the detection error is getting smaller at the same mean shift
level. Fig. 6(b) shows that the standard deviations of detection errors
also converge to zero when the mean shift level increases. However,
the standard deviation is smaller if the dimensionality of state space
is higher. In other words, the algorithm is more stable if we involve
more sensors and use the multidimensional state space. In summary,
Fig. 6 shows that the detection accuracy is impacted by the number of
sensors used and the dimensionality of state space.

B. State Space Segmentation and Indexing

Also, there are different ways to segment the state space, including
the EqBox and HAS methods. This experiment is designed to test the
hypothesis whether the HAS method is better than the conventional
EqBox method at different levels of anomaly conditions. Note that
the HAS method equalizes the capacity of each subregion, while the
EqBox method balances the size of each box, which refers to a sub-
region. In this study, we set the HAS capacity to be the same as the
average capacity of all boxes in an EqBox approach. Again, we run
each experimental scenario with 50 replications to obtain the mean
and standard deviation of performance metrics. As shown in Fig. 7,
HAS is better than EqBox for all examined scenarios regarding both
the average and standard deviation of detection errors. The HAS for
state space segmentation makes the algorithm yield better detection
power with a smooth and robust converging trend.

C. Computational Efficiency

The PFT provides an effective data structure for both transition
patterns and frequency information, which greatly helps to improve the
efficiency of detection algorithms. For the benchmarking purpose, we
compare the computational time between the fast PFT-MDS algorithm
and the conventional exhaustive method at each experimental scenario.
As shown in Fig. 8, the PFT-MDS algorithm yields at least a 6-
fold decrease in the computational time. Also, as the dimensionality
increases, more time is needed for the computation. Nonetheless, it

Fig. 8. Comparison of computational time between the PFT-MDS al-
gorithm and the exhaustive comparison method.

is evident that the PFT-MDS algorithm is more efficient than the
conventional exhaustive method.

IV. CONCLUSION

This letter presents a novel PFT method for a dynamic transition
analysis in nonlinear and nonstationary systems. As opposed to the
traditional reductionist approaches such as frequency analysis or prin-
cipal component analysis, we propose a state space representation of
signals from multiple sensors that leverages the geometric analysis of
nonlinear dynamics and then use the HAS approach to discretize the
state space into subregions, each of which is assigned with an aggre-
gated state index. Whenever system dynamics transit from one subre-
gion to another, we build a PFT model to characterize both transition
patterns and frequency information for dynamic transition analysis.
Experimental results show that the proposed PFT method achieves
better results regarding the detection accuracy and computational ef-
ficiency than conventional methods for multisensor data fusion and
anomaly detection in nonlinear dynamical systems.
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