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ABSTRACT

Dementia is a general neurodegenerative disorder beyond normal aging, which is not only over-
whelming for the patients, but also negatively affects their caregivers and families. In the state of
the art, paper-based survey methods such as the Mini-Mental State Examination (MMSE) and
Montreal Cognitive Assessment (MoCA) are widely used for the assessment of dementia condi-
tions. However, these methods require lab visits or administration from nurses, physicians and
examiners, and are limited in the ability to track temporal degradation (or daily variations) of
dementia conditions. With rapid advances in sensing technology, there is growing interest in the
development of new, sensor-based methods that provide more flexibility in dementia monitoring
and require minimal interventions from practitioners. In this article, we propose a new, sensor-
based method that estimates dementia conditions with daily locomotion data. The proposed
methodology is evaluated and validated with both simulation and real-world case studies.
Experimental results show the compelling predictive accuracy, with both true positive and true
negative rates above 85%. This article shows that sensor-based methods have great potential for
real-time monitoring of temporal variations of dementia conditions from daily gait locomo-
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tion dynamics.

1. Introduction

Dementia is a general term of brain dysfunction that
embodies deterioration in cognitive function beyond the
normal phenomena of aging (Montero-Odasso et al., 2012).
This progressive neurodegenerative disorder is overwhelm-
ing not only for the patients, but also negatively affects their
caregivers, families and society. Globally, there are currently
47.5 million people suffering from dementia. The incidence
is steadily escalating, and 7.7 million new cases are reported
annually (World Health Organization, 2012). Dementia care
is critical to improving the quality of life for patients and
supporting their family members. The optimal delivery of
dementia healthcare hinges on the detection of dementia
conditions and monitoring of temporal degradation before
the devastating symptoms unfold.

In the clinical practice, physicians need to go through the
subjects’ medical history, physical examination, laboratory
tests, and brain imaging for the diagnosis of dementia. This
process is time-consuming. Also, such expensive tests and
sophisticated equipment are not always readily available to
track the variations of dementia conditions in a finer time
scale (e.g., daily). Thus, paper-based survey methods such as
the Mini-Mental State Examination (MMSE) (Ismail et al.,
2010) and the recently developed Montreal Cognitive
Assessment (MoCA) (Hollis et al., 2015) are designed and

developed for the assessment of dementia conditions.
Nonetheless, both MMSE and MoCA methods also require
lab visits or administration from nurses, physicians and
examiners, and are limited in the ability to track temporal
degradation (or daily variations) of dementia conditions.
Advanced sensing technologies such as wireless and wear-
able sensors provide an unprecedented opportunity to
develop a new generation of sensor-based methods that pro-
vide more flexibility in dementia monitoring and require
minimal intervention from practitioners. Note that there is a
shortage of skilled neuropsychologists and behavioral neu-
rologists for dementia care in rural areas. Also, human
experts generally require medical appointments to see a
patient, and are not available for daily tracking of the varia-
tions of dementia patients. Sensor-based automatic data col-
lection and analysis is conducive to optimal health
management and treatment of dementia subjects. Real-time
monitoring is critical for the screening and detection of
dementia in a timely fashion. As such, sensor-based methods
are urgently needed to improve the quality of care for
dementia-afflicted patients—a population that is anticipated
to swell as Baby Boomers age and life expectancy edges up.
Non-invasive sensing in a home environment or assisted
living facilities has shown promising potential for continuous
monitoring of dementia conditions and cognitive changes. A
smart home system was tailored to provide real-time
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monitoring of dementia subjects (Amiribesheli and
Bouchachia, 2017), aimed at improving the home care and life
quality for human subjects with cognitive ailments. A com-
puter game system was also designed by Campo et al. (2016)
to evaluate cognitive performance on tasks involving signifi-
cant brain resources. Carr et al. (2008) utilized eye tracking
and pupil dilation for real-time monitoring and diagnosis for
dementia illness, and further helped measure the effectiveness
of behavioral interventions. In contrast to existing works, we
investigated a novel, sensor-based approach that leverages
daily locomotion data for continuous monitoring and predic-
tion of dementia conditions. Note that the proposed approach
of sensor-based locomotion analysis does not require signifi-
cant investment, as in smart home systems, or higher-level
expert interventions, as in computer gaming and eye-track
systems, but can perform real-time monitoring of daily loco-
motion dynamics with cheaper accelerometer sensors.

Increasing clinical evidence (Verghese et al, 2002;
Karakostas et al, 2012; Beauchet et al, 2008) has shown
that degradation of cognitive functions is often accompanied
by gait and balance disorders. Consequently, a variety of
gait- sensing technologies have been used to systematically
characterize walking behaviors, as wireless sensors and wear-
able devices are increasingly available to monitor health con-
ditions (Le et al., 2013; Cheng et al., 2016). Erratic walking
patterns (e.g., repetitive, back-and-forth, and aimless walk-
ing) are shown to have strong correlations with declines in
executive cognitive function (Borson et al.,, 2013). Gait dis-
orders help identify problems beyond normal aging.
Compared to existing survey methods and other screening
tools for dementia, including positron emission tomography
(Harper et al., 2014) and structural neuroimaging (Golrokh
et al, 2016), a gait sensing approach is much easier to
implement at a lower cost, and is sensitive to cognitive
decline (Karakostas et al., 2012; Verghese et al., 2007).

Therefore, we propose a new, sensor-based method for
the estimation of dementia conditions with daily locomotion
data in this article. Our contributions are as follows:

1.  Wireless sensing enables automatic data collection and
makes non-intrusive monitoring of dementia subjects
much easier. We deploy a wireless sensing system to track
locomotion dynamics of subjects in an assisted living facil-
ity (ALF) while they were performing daily routine tasks.

2. We develop a new, multi-scale graph method to charac-
terize the gait patterns across different spatial scales
extracted from an in-door locomotion tracking system,
and further extract biomarkers (transition entropy,
Laplacian eigen-energy, and eigen-entropy) sensitive to
differentiate the normal and dementia-altered locomo-
tion trajectories.

In the proposed approach, minimal interventions or lab
visits are required (i.e., important for long-term study).
Although this study is the first step to develop new, sensor-
based methods and validate them with data from dementia
patients, it is indispensable to achieving the final goal of
sensor-based monitoring of temporal degradation of

dementia conditions. The proposed methodology is eval-
uated and validated with both simulation and real-world
case studies.

2. Research background

Gait is a complex motor behavior with a multitude of fea-
tures, including gait speed, stride length and variability
(Montero-Odasso et al, 2012; Ghoussayni et al, 2004).
These features are often derived from video or wearable sen-
sors, encompassing accelerometers, gyrosensors, and force/
strain gauges, among others, attached to the subjects’ body
(e.g., foot and wrist). A number of researchers have endea-
vored to exploit such features for dementia detection. In
those studies, video camera systems were first adopted for
gait analysis in rehabilitation and medical treatment (Jahn
et al., 2010). In such settings, a multi-view motion capturing
system in conjunction with a force measurement platform
(e.g., ground-reaction) were adopted to characterize gait.
However, this system often entails specialized locomotion
labs, expensive and sophisticated video equipment, and
lengthy setup process. This has defied the widespread appli-
cation of video-based gait study. Alternatively, gait analysis
using wearable sensors/devices has become a promis-
ing option.

Ambulatory subjects are often required to traverse a pre-
scribed path with constraints imposed, such as walking
speed, stride length, path complexity and dual tasking. In
the dual tasking paradigm, the subjects are required to per-
form a secondary attention-demanding task while walking in
a designated fashion (Hausdorff, 2005). As two simultan-
eously performed tasks compete for cortical brain resources,
slower gait, elevated gait variability and instability are shown
to be indicative of cognitive disorders (Beauchet et al.,
2008). Sheridan et al. (2003) showed that high gait variabil-
ity is a sensitive marker of dysfunction in the frontal cortical
control of walking for subjects with dementia, while low
variability ~reflects efficient and fluent gait patterns.
Hausdorff (2005) suggested that normal variability in stride
time is usually below 3% among healthy adults, and con-
firmed the interplay between gait variability and cognitive
dysfunction. Specifically, the degree of stride time variability
is negatively correlated to the efficiency of executive func-
tion. Although statistical features can represent the gait var-
iations, they often fail to disclose subtle and insidious
alterations. To this end, fractal dynamics, or self-similarity
structure of gait (Goldberger et al., 2002), has received con-
siderable attention of late. For example, it is shown that the
time fluctuation from stride to stride is not simply random
noise. The long-range correlation of stride times has been
utilized to identify abnormal gait (Hausdorft et al, 1996,
2001; Kearns et al., 2010).

Nonetheless, the subjects are required to perform walking
tasks according to preset rules in most existing studies. This
typically requires a lab visit or a significant amount of inter-
vention from the investigators in the dual tasking paradigm.
For some time, multiple visits to research labs have been
required due to poor data acquisition. Recently, walkways



with embedded sensors have been adopted by several
research groups to simplify the data collection process. For
instance, Verghese and co-workers (2002, 2007) studied gait
patterns collected from sensor-equipped walking mats and
investigated neurologic abnormality of gait (e.g., unsteady,
frontal and hemiparetic gait) to predict the likelihood for
the subjects to develop non-Alzheimer’s dementia. Similarly,
Karakostas et al. (2012) deployed an instrumented walkway
in the subjects’ residences to maintain familiarity with the
surroundings. Although no lab visit is needed, the guided
gait study still requires necessary intervention from the
investigators.

In contrast, recent advances in movement tracking tech-
nologies have offered a great opportunity to characterize
unconstrained movements, both indoors and outdoors
(Terrier and Schutz, 2003; Kearns et al., 2016). Those gait
sensors are usually inexpensive and applicable in non-
laboratory scenarios. However, very little has been done to
develop new, sensor-based methods that estimate dementia
conditions with daily locomotion data and help track tem-
poral degradation (or daily variations) of dementia condi-
tions. In this article, we propose a sensor-based assessment
system to record the subjects’ locomotion in unconstrained
voluntary movements to detect abnormal gait patterns.
Compared to previous studies, the proposed approach has
the advantage of obtaining data while the subjects are per-
forming their daily routine tasks, and no lab visit or on-site
intervention is required.

3. Research methodology

This article leverages wireless sensors to collect locomotion
dynamics of dementia patients during their daily life in
assisted living facilities (ALF). Then, we develop a multi-
scale graph model of daily locomotion data at different spa-
tial resolutions. Three biomarkers are extracted to represent
the pattern variations in locomotion dynamics, which are
then used to differentiate normal and dementia-altered loco-
motion trajectories.

3.1. Wireless sensing

This study utilizes a Ubisense ultra wideband radio system
for locomotion tracking, which consists of waist-worn trans-
ponders and four wall-mounted receivers installed at each
corner of the living space. Figure 1 shows the floor plan of
an approximately rectangular area, with the dimension of
25.6 m x 9.3 m. The monitored area depicted here repre-
sents the common space for dining and daily activities in
the ALF. When the subject is in motion, the transponders
transmit the location (x,y,z) relative to the origin at the
lower left receiver every 0.43seconds to four Ubisense
receivers (i.e., large blue/dark dots in Fig. 1). The footstep
trajectory of a subject on a certain day is also shown in
Fig. 1.
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Figure 1. Floor plan of the common place in the ALF and a typical subject’s
footstep trajectory on a certain day. The black-line trajectory represents the
locomotion path of a subject. The large blue dots are four Ubisense receivers.
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Figure 2. Schematic diagram of the locomotion trajectory for (a) normal and
(b) dementia-afflicted subjects from one-day data collection: the blocks repre-
sent the spatial neighborhood. s is the block size.

3.2. Graph modeling

As shown in Fig. 2, we propose to divide the common space
into an array of blocks of equal size s for studying how the
subject moves in the space. In this way, the footstep trajec-
tories can be modeled as a random walk on a graph, where
each vertex characterizes a small neighborhood of the phys-
ical location; i.e., the block shown. The graph modeling
approach helps investigate the stochastic transitions from
one block to other blocks, and further characterizes the var-
iations in gait locomotion dynamics. Figures 2 (a) and (b)
show the daily locomotion data of a normal subject and one
identified with dementia, respectively.

As the subject moves in the common space, a weighted
and directed graph G = (V, E, W) is constructed (see
Fig. 3), where V = {vi, v, ..., vn} is the set of vertices,
the cardinality V =m, E=V x V is the edge set of ordered
pairs of nodes, and (v;, v;) indicates the directed motion
from vertex i to j. The weight Wj; is defined as the number
of traverses from vertex i to j. As shown in Fig. 3, con-
structed from Fig. 2, the magenta/light dot represents the
vertex, and the arrow indicates the direction of the motion.
As only a subset of the blocks will be visited by one subject
(see Fig. 2), those never-occupied blocks become isolated
(inactive) vertices in the graph. Therefore, only those active
vertices are represented in Fig. 3. Further, we utilize a self-
organizing network approach (Liu and Yang, 2017; Yang
and Liu, 2013) to optimize the layout of the vertices. The
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Figure 3. Self-organized graph representation of locomotion trajectory for the (a) normal and (b) dementia-afflicted subjects from one-day data collection (i.e., cor-
responding to the subjects in Fig. 2 (a) and (b)): the magenta/light dot represents the graph vertex, and the traverse direction is indicated by the blue/dark arrow.

block size is defined in such a way that the problems of
spurious vertex visit and long-time trap in a vertex are miti-
gated. The multi-scale effects (i.e., different block sizes) are
further investigated in details in Section 5.

As shown in Figs. 3 (a) and (b), graph representations of
one-day gait for normal and dementia-afflicted subjects
show distinct patterns. The dementia subject tends to revisit
some vertices more frequently. As a result, the paths (tra-
verse along the vertices) are more intertwined. This is con-
sistent with wandering behaviors, the most pronounced
syndrome of dementia that typically encompasses repetitive
and disoriented locomotion patterns, such as revisiting cer-
tain locations more frequently and back-and-forth move-
ment between several physical locations (Hausdorff et al.,
2001). In contrast, the normal subject tends to have more
independent (e.g., paths are not heavily intertwined) and
aimed paths. Such variations of path patterns are helpful for
the estimation of dementia conditions.

3.3. Feature extraction

We extracted three biomarkers from each locomotive graph
to quantify the underlying patterns.

Transition entropy Hrp characterizes the spread out of a
graph along the edges. According to the formulation of
Shannon entropy, the transition entropy is defined as

Hp = — Z;leogpj- (1)

s the relative frequency of traverses to

where p; = D

jev i
vertex j, m = V is the total number of active vertices, and
W; = Z(i jieWij represents the total frequency of directed

edges to vertex j in graph G. Thus, Hy delineates how the
movement is concentrated or clustered on a few vertices.
That said, small Hy indicates repetitive movements visiting
several spatial locations more frequently. In contrast, normal
subjects tend to have an aimed locomotion path, resulting in
approximately equal probability in spatial transitions and
large Hy. Note that it is important to avoid sparse transi-
tions with large number of vertices (i.e., blocks with small s)
and the issues of artificially suppressed transitions with scant
vertices (i.e., blocks with large s). In this investigation, we
conducted a series of experiments on different block sizes
s € [0.5, 2] to choose the optimal spatial resolution for Hr.

On the other hand, disordered and disoriented locomotion
patterns (back-and-forth movement) are more concerned
with small block size. Therefore, we studied the weighted and
directed graph G = (V, E, W) in a much finer spatial scale
s € [0.2, 0.5], and the degree matrix is given as

D:dlag (Wl, Wz, W3,..., Wm) (2)

Similar to the undirected graph, we define the Laplacian
matrix for G as L =D — W. The graph Laplacian eigen-
energy is then defined as

Ep=Y"" Jl/m 3)

where /;’s are the eigenvalues of the Laplacian matrix L. We
further = denote  the  normalized  eigenvalues  as
p; =77/ 22, so that the Laplacian eigen-entropy is
depicted as

He=—) " pjlogp (4)

Intuitively, the back-and-forth movement renders certain
blocks more frequently revisited, resulting in a few vertices
in graph G with high importance or centrality, correspond-
ing to large Laplacian eigenvalues (Qi et al, 2012).
Furthermore, the uneven distribution of those eigenvalues
tends to suppress the Laplacian eigen-entropy Hg. Notably,
the transition entropy Hr has a larger variance at a small
block size, because there are too many vertices and only a
sparse set of edges connecting them for the estimation of
transition probability. That is also the reason why we
studied those features at different scales, and hence the
multi-scale graph model.

3.4. Support vector machine

Finally, a support vector machine (SVM) model with radial
basis function kernel is developed to predict the dementia con-
ditions usinjg these extracted graph features. Let x =
(Hr,Er,Hg)" denote the features and y is the dementia status,
respectively. The decision function is f(x) =) 1,
BiyiK (xi, x) + o, where K(x;, x) = exp(—yx;—x?) is the radial
basis kernel function and makes SVM flexible to model com-
plex decision boundaries, f;; > 0, i =1, ..., n are the weights,
and f, is the bias term. The f3;'s are obtained through an opti-
mization process to maximize the margin between the two
classes, subject to the constraints
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Figure 4. Locomotion trajectory and graph representation for a large © = 0.9 ((a) and (b)) and a small T = 0.5 ((c) and (d)).
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Figure 5. The variations of Hr, £, and Hg extracted from graph representation of locomotion trajectories for different transition probability <.
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The parameters (y, C) are obtained via five-fold cross-
validation. Specifically, the dataset is randomly divided into
five parts of equal size and SVM is trained on any four of
them; then, the classification accuracy is evaluated on the
rest one-fold based on the trained SVM to select the opti-
mum (y, C) from a grid search. SVM provides a good gen-
eralization performance, as it simultaneously minimizes the
empirical risks 1%72511 L(y;,f(x;)) on the training dataset and
diminishes the complexity of the fitting function via the
constraints in Eq. (5).

4, Simulation study

We design a simulation study to evaluate and validate the pro-
posed graph methodology and graph theoretical features.
Here, we use the random walk to simulate the locomotion tra-
jectory. At any time and any block, the subject transits to one
of eight neighboring blocks according to the following rules:
to a new block with probability z—— and to an already-visited
block with probability 1—;;, where Njy is the number of
already-visited neighboring blocks. In the extreme case when
Nav =0 or 8, one of eight neighboring blocks will be
selected with equal probability. Note that a large = will lead to
more aimed behaviors and pathways (see Figs. 4 (a) and (b)).
This corresponds to the real-world situation that normal

subjects may have well-planned activities but occasionally
exhibit random locomotion. In contrast, a small 7 tends to
generate more randomness in daily locomotion trajectory,
leading to back-and-forth movement among frequently visited
blocks, as shown in Figs. 4 (c) and (d).

Next, we extracted data-driven biomarker Hy, E; and Hg
from the graph representation for multiple realizations as
we vary 7. Figure 5 shows that Hr and Hg increase steadily
when t gets bigger, as the blocks are more equally likely to
be visited. In addition, the pathways are more concentrated
at several dense blocks for small 7, giving rise to highly
unevenly distributed eigenvalues, with several extremely
large ones, hence the elevated eigen-energy Ej.

The simulation study demonstrates the effectiveness of
graph representation and data-driven biomarkers for the
characterization of stochastic transitions in the space.
However, locomotion data from the real-world case study
tend to be contaminated with noises, artifacts, and missing
recordings. Therefore, we will further evaluate the perform-
ance of sensor-based graph modeling at different spatial
scales of locomotion data from human subjects in a real-
world case study, as detailed in the following section.

5. Real-world case study

In this real-world case study, we performed long-term moni-
toring for 14 human subjects with approved IRB protocols.
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Each subject was monitored for 30 days in an ALF in
Tampa, FL. Locomotion data were collected from 30-day
monitoring of each subject. The network model was then
constructed using the daily data. The total sample size is
14 x 30 = 420; ie., 180 from dementia subjects and 240
from normal subjects. The dementia conditions for each
subject were determined based upon lab tests and neuroi-
maging, and were confirmed by human experts in aging
studies. Note that the sample of 420 daily locomotion trajec-
tories is from the subjects with a variety of dementia condi-
tions, from normal to severe dementia. In addition, the
MMSE test was conducted separately by independent exam-
iners, blind to the dementia statuses of the subjects.

As shown in Fig. 1, we utilized the Ubisense ultra wideband
radio system with small-size tags (ie., 38mm Xx39mm
x16.5mm) and four wall-mounted sensors for automatic col-
lection of locomotion data from each subject in a duration of
8 to 10 hours per day for 30 days. Although normal subjects
may occasionally exhibit random behaviors (e.g., searching
for keys), it is very unlikely that they will show a high level of
abrupt behaviors during an interval of 8-10 hours. Although
the cognitive status of a subject does not change dramatically
within this 30-day period, locomotion data show significant
daily variations for each subject. Therefore, we focus on the
estimation of dementia conditions with daily locomotion data,
which corresponds to 420 daily locomotion trajectories to be
classified as normal and dementia conditions.

6. Experimental results

In this section, we present the experimental results and
investigate the effects of spatial resolution on the perform-
ance of multi-scale graph models; i.e., at large-scale s; and
small-scale s,. The dataset is randomly divided into training
(80%) and testing sets (20%) for the assessment and valid-
ation of model performance.

6.1. Large-scale block size

First, we varied the large-scale block size s = s; in the range
51 € [0.5, 2], and then derived the graph representation and
computed the transition entropy Hy among the vertices for
the training dataset. We performed the statistical ¢ test to
compare the distribution of Hy between normal and demen-
tia subjects. Table 1 shows the variations of p value for dif-
ferent block sizes. The smaller the p-value is, the more
significant the differences between the two groups.

Note that the block size of 1 m yields the lowest p value
of 1 x 1077, Figure 6 shows the comparison of Hy distribu-
tions with s; = 0.5m (panel (a)) and s; = 1m (panel (b)).
Clearly, the contrast between the groups of “N” (normal)
and “Y” (dementia) is much better at s; = 1m. Further, if
we slightly increase the block size from 1m, the p value
only marginally increases. In order to get a reliable estima-
tion of transition entropy (Hy), we use the block size s; =
1 m rather than s; = 1.25m in the graph model. Note that,
at this stage, the two classes still have considerable overlap.

Table 1. The variation of p values with a different block size s,.

51 (m) p value
0.5 7x1077
0.75 2x 1077
1 1% 1077
1.25 1.1 x 1077
1.5 1.2 %1077
1.75 1.4 x 1077
2 4 %1077
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Figure 6. Box plots of transition entropy Hr for dementia (“Y”) and normal sub-
jects (“N”) based on the graph representation with the block size (a)
sy =05m and (b) sy = 1m.

Table 2. Performance comparison of the predictive modeling for different
block sizes s, in terms of accuracy (ACC), true positive rate (TPR) and true
negative rate (TNR).

s3 (m) ACC TPR TNR

0.2 0.75/0.12 0.73/0.05 0.79/0.10
0.3 0.74/0.13 0.76/0.09 0.69/0.05
0.4 0.80/0.06 0.79/0.05 0.81/0.06
0.5 0.86/0.06 0.85/0.07 0.87/0.05
0.6 0.76/0.09 0.82/0.04 0.74/0.13
0.8 0.73/0.07 0.70/0.12 0.79/0.06
1.0 0.72/0.12 0.64/0.16 0.76/0.09

6.2. Small-scale block size

Furthermore, we varied the small-scale block size s = s, in
the range of s, € [0.2, 0.5] m and then derived the graph
representation to compute Laplacian eigen-energy E; and
eigen-entropy Hg for the characterization of locomotion pat-
terns. Table 2 summarizes the comparison of model per-
formance metrics of prediction accuracy (ACC), true
positive rate (TPR) and true negative rate (TNR), along with
the standard deviations using SVM with the feature vector
[Hr, Ep, HE]T extracted from both scales. The standard
deviation here is derived from 10-fold cross-validation.

As shown in Table 2, the block size s, = 0.5m yields the
best performance for the testing dataset (i.e., ACC 86%, TPR
85%, and TNR 87%). As 0.5m is on the boundary of interval
of interest, we further extend the original interval to
s, €10.2, 1.0] m. It is not uncommon that the locomotion
data collected in real-world settings are corrupted by noises
and artifacts. However, the sensor noises and errors are typic-
ally in the range of <0.10 m, which are negligible considering
modeling scales i.e., the smallest block scale is 0.50 m.

Note that a comprehensive statistical analysis on the
usable data from 48 studies—42 from the community setting
and 6 from the primary care setting—showed that the
MMSE performance is dependent on the cut point (or deci-
sion boundary) (Creavin et al, 2016). If the cut point is
selected to be 25 for MMSE, then the sensitivity will be 0.87
and the specificity will be 0.82. If the cut point is selected to
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Figure 7. The scatter plot of Laplacian eigen-entropy Hr and eigen-energy E
for dementia (“Y”) and normal subjects (“N”) based on the graph representation
with the block size s, = 0.5 m.

be 24, then the sensitivity will be 0.85 and the specificity
will be 0.90. In particular, the specificity drops dramatically
to 0.70 when the level of education is taken into consider-
ation. Also, Cruz-Orduna et al. (2012) achieved sensitivity of
0.80, but the confidence interval was as wide as [0.52, 0.96].
More recently, Breder et al. (2017) showed the low sensitiv-
ity of MMSE for specific subject groups. Our experimental
results show that sensor-based graph models yield a compel-
ling predictive performance, with both true positive and true
negative rates above 85%, and can be used as an effective
tool for dementia assessment (i.e., they provide more flexi-
bility in dementia monitoring and require minimal interven-
tions from practitioners).

Figure 7 shows the distribution of eigen-energy E and
eigen-entropy Hp for dementia (“Y”) and normal subjects
(“N”). Locomotion for normal subjects tends to generate
graphs with lower eigen-energy E; and higher eigen-entropy
Hg. In other words, eigenvalues A; for erratic gait locomo-
tion are concentrated on a few larger numbers, while those
for normal locomotion are rather evenly distributed. The
normalized Laplacian eigen-energy E| is related to the cen-
trality (importance) of vertices. Indeed, the Laplacian energy
drops when the centrality of vertices is smaller in the graph.
Intuitively, abnormal locomotion dynamics with back-and-
forth movements will render certain vertices more important
than others in the graph. Further, the random nature of
walk dynamics leads to uneven centrality of the vertices.
Normal locomotion with well-directed walk patterns results
in almost uniformly distributed Laplacian eigenvalues, and
hence a large Laplacian eigen-entropy Ejy.

The selection of s; and s, reflects locomotion patterns at
the large scale (~1 m) or the small scale (~0.5 m). It does not
really depend on the floor plan, but rather the resolution in
which we are interested at the locomotion dynamics. The
entire home space or floor plan tends to be much bigger than
movement steps of human subjects and thus only affects the
locomotion in the extra-large scale; e.g., the long-range direc-
tion due to the limit of the floor plan. Movement directions in
the extra-large scale tend to be not significant in the modeling
and analysis of dementia subjects. Hence, this investigation
focuses on multi-scale graph modeling of stochastic transi-
tions in spatial scales from 0.5m to 2 m, which is also robust
to sensor noises. As shown in Tables 1 and 2, we have exten-
sively studied the influences of different block sizes of s; and
s, and investigated the optimal spatial resolution for the
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FPR

Figure 8. Ensemble of the ROC curve (true positive rate vs. false positive rate):
the black/dark dashed line represents the ROC curve for MMSE screening, and
the light solid lines are for the multi-scale graph model.

analysis of locomotion dynamics for the detection of dementia
conditions. Figure 8 shows the receiver operating characteris-
tic (ROC) curves from multiple runs of the predictive model
on randomly generated testing datasets, as well as that for the
MMSE. The average area under the ROC curves of 0.85 is
obtained for the multi-scale graph model, which shows the
effectiveness of the proposed sensor-based method.

7. Conclusions

Smart health is poised to reduce the cost and improve care
efficiency with smart sensors, wearable devices, and informa-
tion technology, ushering in a paradigm shift from reactive
to preventive and proactive care for chronic diseases. The
complexity of dementia poses significant challenges in terms
of detection and screening. As such, the Alzheimer’s
Foundation of America and the Alzheimer’s Drug Discovery
Foundation have called for regular screening of dementia
(Borson et al., 2013). In the current practice, paper-based
survey methods such as MMSE and MoCA are widely used
for the assessment of dementia conditions. However, these
methods require lab visits or administration from nurses,
physicians and examiners, and are limited in their ability to
track temporal degradation (or daily variations) of dementia
conditions. There is an urgent need to develop sensor-based
automatic data collection and analysis for optimal health
management and treatment of dementia subjects.

This article presents a wireless sensing system for auto-
matic locomotion data collection and a new, multi-scale
graph model for gait locomotion analysis, which are indis-
pensable to the next step for real-time monitoring of tem-
poral degradation of dementia conditions. The proposed
approach automates the locomotion data collection process
and only requires minimal intervention from investigators.
As a result, locomotion data can be collected while the sub-
jects are performing their daily routine tasks. Experimental
results show that biomarkers extracted from the multi-scale
graph representation of locomotion data achieve the per-
formance of both TPR and TNR above 0.85. The proposed
sensor-based approach has great potential for real-time
monitoring of temporal variations of dementia conditions
from daily gait locomotion dynamics. In future work, we
will extend this study to collect more locomotion data and
conduct a longitudinal study to characterize and model how
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the locomotion patterns change over time with the degrad-
ation of dementia conditions.
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