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Abstract—Additive manufacturing (AM) provides a greater level of flexibility to build parts with complex structures than
the traditional subtractive manufacturing. However, the more complex the engineering design is, the greater challenge
is posed on the AM machine. To cope with such complexity, advanced imaging is increasingly invested to increase the
information visibility. There is an urgent need to leverage the available imaging data to investigate the interrelationships
between design complexity and quality characteristics of AM builds. This article presents a design of experiments on the
laser powder bed fusion machine to investigate how design parameters (i.e., recoating orientation, hatching pattern, width,
and height) influence edge roughness in thin-wall structures of the final builds. First, we perform the postbuild inspection of
final builds and collect large amounts of X-ray computed tomography (XCT) images. Second, we integrate the computer-
aided designs with XCT images for image registration and then characterize the edge roughness of each layer in a thin wall
of the AM build. Finally, we perform an analysis of variance with respect to design parameters and develop a regression
model to predict how build design impacts the edge roughness in each layer of the thin-wall structures. Experimental
results show that edge roughness is sensitive to recoating orientations, width, and hatching patterns. This article sheds

insights on the optimization of engineering design to improve the quality of AM builds.

Index Terms—Sensor data fusion, additive manufacturing (AM), data fusion model, design of experiments, sensor-based design.

I. INTRODUCTION

Additive manufacturing (AM) provides a greater level of flexibility
to build parts with complex structures than the traditional subtrac-
tive manufacturing [1]. This revolutionary technology also results in
the shorter lead time and the ability to produce parts directly from
computer-aided designs (CAD) without the need for expensive part-
specific tooling [2]. However, AM nowadays is still limited in the
ability to achieve the high level of quality and repeatability, thereby
hampering the widespread application of the technology in the man-
ufacturing industry. In the AM process, there are a number of factors
impacting the quality of final builds, such as powder materials, cham-
ber environment, machine and process settings, and design complexity.
Our prior studies focused on the effects of machine and process set-
tings (e.g., laser power, scanning velocity, and hatch spacing) on the
quality of final builds [3], [4]. In addition, we characterized the multi-
fractal patterns of in situ layerwise images for the estimation of defect
states in each layer [5], [6] and then developed a Markov decision
process model to sequentially optimize the quality of AM builds [7].
As a further step, we focus on the interrelationships between design
complexity and quality characteristics of AM builds.

It is well known that the design complexity poses significant chal-
lenges on traditional subtractive manufacturing. AM provides more
design freedom, and complex structures can now be fabricated layer-
by-layer with the new AM technology. However, a higher level of
design complexity can greatly degrade the quality of final AM builds.
Advanced imaging is increasingly utilized to increase the visibility of
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Fig. 1. Front and top views of CAD model and recoating orientations.

postbuild quality information in the face of increasing design com-
plexity. Realizing the full potential of readily available imaging data
calls upon the investigation of the interrelationships between design
complexity and quality characteristics of AM builds. Therefore, this
article presents our experimental studies on the laser powder bed
fusion (LPBF) machine to investigate how design parameters (i.e.,
recoating orientation, hatching pattern, width, and height) influence
edge roughness in thin-wall structures of the final builds.

As shown in Fig. 1, our experiments feature a thin-wall structure
with different recoating orientations, widths, heights, and hatching
patterns (see Section II-A). Thin-wall structures are widely used in
heat exchanger designs. A total of three thin-wall parts (also called
fin parts) were built, each differing in the manner of rotation upon the
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Fig. 2. Flow diagram of the proposed research methodology.

build plate, i.e., their planar inclination in the X-Y plane with respect
to the recoater blade travel within the machine. After fabrication, we
performed postbuild inspection with the X-ray computed tomography
(XCT). Next, the XCT images were registered layer-by-layer with the
original CAD files to extract the quality features of edge roughness
in each thin wall. Here, the edge roughness refers to the geometric
deviation of build in the registered XCT scan and CAD file. However,
the average of absolute values of the profile height deviations from the
mean line is generally used for edge characterization. These features
were tracked across layers to detect impending collapse of thin-wall
failures. Finally, we performed an analysis of variance with respect to
design parameters and further developed a regression model to predict
how design complexity impacts the edge roughness in each layer of
the thin-wall structures.

II. RESEARCH METHODOLOGY

As shown in Fig. 2, the present investigation focuses on metal
printing with the EOS M280 LPBF machine. The data utilized in this
study consist of the CAD design files (i.e., the expected quality) and
the XCT images of each layer in the thin wall (i.e., the delivered
quality).

A. Experimental Setup and Factors

In this experiment, raw materials are Spherical ASTM B348
Grade 23 Ti-6Al-4V powder, available from the LPW technology,
with a size distribution of 14-45pum. Each fin part comprises a
I5mm x 15mm x 55 mm platform upon which are built a total of
25 fin walls. The experimental factors, such as orientation, width,
height, and hatching pattern are detailed as follows.

1) Orientation: Fin parts were built vertically upward with layer
thickness of 60 um in three orientations with respect to the
recoater blade travel direction (i.e., 0°, 60°, and 90°). The arrow
(see Fig. 1) shows the recoating direction.

2) Width: The width of fin walls varies from 0.06 to 0.3 mm with
the step size of 0.01 mm and the distance between two fins is
0.3 mm.

3) Height: The designed height of fin walls differs from 0.6 to
3.0mm with the step size of 0.1 mm. Note that the height is
proportional to the width in each thin wall with an aspect ratio
of 0.1 (see Fig. 1).
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Fig. 3. Hatching patterns of the fin walls.
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Fig. 4. (a) Image registration and edge extraction of fin walls. (b) Nor-
mality assumption and verification through layer of fin 2 (unit: xm).

4) Hatching: The four hatching patterns of fin walls, which employ
the standard EOS processing path, are significantly different as
the width increases (see the design in Fig. 3).

B. Image Registration and Edge Characterization

This experiment uses postbuild X-ray CT images to quantify the
geometric variations of each fin. Although metrology methods, such
as 3-D scanning or coordinate measuring machines, are widely used
to measure the geometric dimensionality, they are limited in the res-
olution to comprehensively measure the 3-D geometry of fin builds.
High-end X-Ray CT, albeit expensive, offers an advantage to exam-
ine the internal structure of the builds, as well as quantify the 3-D
geometric variations of the build.

For each fin part, we have a CAD file and the corresponding post-
build XCT data. Note that we slice the 3-D CAD model and XCT
volumetric scans into 300 layers (i.e., with a thickness of 10 wm per
layer). To transform the two sources of data into a single coordinate
system, we perform a shape-to-image intensity-based registration and
extract the region of interests. Intensity-based methods consider cor-
relation metrics to compare the intensity patterns in the target image
(i.e., XCT) and the source image (i.e., CAD). The registration process
aims to transform (i.e., affine transformation) the target image into
the source image. After registration, we remove noise (i.e., connected
objects that are less than 20 pixels) and extract fin walls for each layer.

As illustrated in Fig. 4(a), by defining the edge from the CAD
file as the referencing horizontal axis, we first measure the distance
between the edge of the registered XCT scan and the CAD file and
then concatenate the upper and lower edge signals to generate the
edge roughness signal [see top right of Fig. 4(b)]. Fig. 4(b) shows that
the signal is approximately represented by a normal distribution for
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Fig. 5. Experimental data structure for the ANOVA analysis: F and O
represent two factors, namely fin number and orientation.

the fin 2 of layer 11. It is worth mentioning that the characteristics of
edge roughness of fin wall 2 are different under the changing recoating
directions (see bottom right of Fig. 4). After approximating the edge
signals with a normal distribution, we obtained the standard deviation
(STD) of each edge in each layer of a thin wall for further analysis.

C. Analysis of Variance

Here, we perform the two way analysis of variance (ANOVA) to
study the effects of experimental factors, i.e., orientations and fin wall
characteristics, on the part quality. Note that the parameters of height,
width, and hatching pattern are affiliated with the fin wall number in
our design of experiments. Therefore, we rearrange four parameters
into two factors (i.e., orientation and fin wall characteristics).

As shown in Fig. 5, there are three levels of orientation with respect
to the recoater blade travel direction and 21 levels of thin wall. It is
worth mentioning that the last four fin walls were collapsed in the
fabrication process, likely due to interference with the recoater blade
during recoat operations, and therefore, they are not available for
ANOVA. Here, fin 1 to fin 21 are taken into account for this ANOVA
analysis. The model is expressed as follows:

O‘,J=ﬂ0—|—ﬂ1X0i+ﬂ2XFj+ﬂ3X0i><Fj+8ij (1)

where O and F represent the orientation and the fin number, respec-
tively. Also, ¢;; in (1) denotes the error term in ANOVA model.

D. Predictive Modeling

In addition, we develop a regression model to quantify the relation-
ship between edge roughness and the orientation, width, height, and
hatching pattern of each fin wall

o=PB+B X0+ xWH+B3x H+Pyx Ha+Psx O x W
+ P x Ox H+B7 x O x Ha+Ps x W x H+Pyx W x Ha
+ Biox Hx Ha+¢ 2)

where Ha denotes the hatching pattern and is a categorical variable
with four levels, O stands for the orientation, which is also a categorical
variable with three levels, and H and W represents the height and
width of the corresponding fin wall, respectively. The R-square (R?)
is utilized to statistically measure the performance of the model, and
isdefinedas R> = 1 — S;T{;ng:i';:‘:‘““‘ =1- );((';' ‘% . Where (0;) is
the edge roughness, (6;) is the predlcted value of the variance, and (o)
is the overall average of the data.

Table 1. ANOVA analysis of variance in two-way layout experiment.
Source Sum Sq. d.f. Mean Sq. F Prob>F
fin 200.472 20 10.024 20.412 0
orientation 631.408 2 315.704 642.890 0
fin * orientation 307.300 40 7.683 15.644 0
Error 6156.050 12536 0.491
Total 7371.040 12598
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Fig. 6. (a) Mean and STD of edge roughness under three orienta-
tions. (b) Mean and STD of edge roughness when fin width increases.
(c) Mean and STD of edge roughness for hatching patterns.

lll. EXPERIMENTAL RESULTS
A. Statistical Analysis

1) Analysis of Variance to Test the Hypothesis Whether Orientations
and Fin Wall Characteristics Impact the Edge Roughness: In Table 1,
the p-values for orientation, fin wall, and interaction are approximately
0, which shows all the three factors have significant impacts on the
edge roughness. In this ANOVA table, the Sum Sq., d.f., mean Sq., F,
and Prob>F denote sum of squared errors, degrees of freedom, mean
of squared errors, the F statistics, and the p-value, respectively.

2) Impact of Orientation on Edge Characteristics: As shown in
Fig. 6(a), the average variation of fin wall edges is not constant for
different recoating directions. Note that building the fin part at 0°
orientation with respect to recoating direction leads to the smallest
edge roughness, whereas the biggest edge roughness occurs at 60°.

3) Impact of Fin Width on Edge Characteristics: As illustrated in
Fig. 6(b), the mean of edge roughness first increases and then decreases
as the fin wall gets wider. The variations of edge roughness is bigger
when the fin width is smaller. Fig. 6(b) shows that as the width of
fin walls increases, the AM machine can print the thin-wall structure
with smaller variations of edge roughness. When the width is as small
as 0.10-0.19 mm, there are more outliers indicating that significant
variations in surface roughness can occur when building thin-wall
structures.

4) Impact of Hatching Pattern on Edge Characteristics: As shown
in Fig. 6(c), hatching patterns 1 and 2 have similar impacts on the edge
quality, but hatching patterns 3 and 4 yield smaller mean in the edge
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width * orientation 60 -0.188  0.968 -0.195  0.847 b
width * orientation 90 2.249 0.979 2.298 0.027 @ (b)
hatching 2 * orientation 60 0.466 0.139 3.359 0.002
hatching 3 * orientation 60 0.132 0.101 1.310 0.198 Fig. 7. (a) Residual versus fitted value of the regression model. (b)
hatching 4 * orientation 60 NA NA NA NA Normal Q-Q plot of the regression model.
hatching 2 * orientation 90 -0.160 0.108  -1.490 0.145
hatching 3 * orientation 90 -0.206 0.182  -1.137 0.263
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roughness. It is also worth noting that the spread of the edge roughness
decreases with hatching patterns 3 and 4.

B. Predictive Modeling

Next, we develop a regression model to quantify the relationship
between the edge roughness and design parameters. As shown in
Table 2, hatching patterns, width, and two-way interactions of width
X orientation, hatching x orientation, and hatching x width are
significant at the confidence level of 95%. It can be seen that the
p-value of hatching pattern 4 is the lowest compared with the p-values
of the other hatching patterns. Hatching pattern 4 is the simplest one
and has the most accentuated impact on the edge roughness. Switching
from the other patterns may not change the edge roughness as much
as pattern 4. Note that the pattern is determined by software based on
the designed width. For further investigation, hatching patterns can be
adjusted to generate fins with reduced edge roughness, even for thin
fins. Besides, the p-value of width is 0.039, which shows that it is an
important factor in edge roughness. Also, two-way interaction terms of
hatching x orientation and width x orientation are significant, which
shows that the combination of different design parameters impacts the
quality in AM as well. Here, we set the hatching pattern 1 and the 0°
orientation as the baseline, and the NA indicates that the variable is
correlated with one of the other variables.

The coefficient of determination is utilized to illustrate the percent-
age of variation in response variable that is explained by the model.
The regression model yields the R-squared statistic of 94.79% and
adjusted R-squared statistic of 92.54%, showing that variations in re-
sponse variable are highly dependent on design parameters. Further,
we utilize the plot of residual versus fitted value and normal Q—Q plot
as descriptive graphical tools for the model diagnosis and checking
the normality assumption of residuals. Fig. 7(a) shows that the plot
of residual versus fitted value does not show a systematic pattern, and
Fig. 7(b) shows the normal Q—Q plot approximately follows a straight
line.

IV. CONCLUSION

AM provides the design freedom with complex geometrical struc-
tures, which cannot be realized otherwise using conventional manu-

environment are recently taken into account. There is a dire need to
take advantage of this data to decipher the relationship between de-
sign parameters and quality of AM builds. In this study, a design of
experiments is performed to characterize the impact of design param-
eters on edge roughness of thin-wall structures. First, XCT images
of builds are registered to CAD models to characterize and quantify
the edge roughness in thin-wall structures. Then, we performed the
experimental design to study the impact of design parameters on the
edge quality of fins. Next, a predictive model is developed to quantify
the behavior of edge roughness as a function of these parameters. The
regression result shows that the hatching, width, and orientation have
significant impacts on the edge roughness at the confidence level of
95%. Furthermore, the adjusted R-squared demonstrates that 92.54%
of the edge roughness can be explained by the regression model. This
study sheds insights to optimize the engineering design for quality
improvement in AM.
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