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Markov Decision Process for Image-Guided
Additive Manufacturing

Bing Yao ", Farhad Imani

Abstract—Additive manufacturing (AM) is a process to produce
three-dimensional parts with complex and free-form geometries
layer by layer from computer-aided-design models. However, real-
time quality control is the main challenge that hampers the wide
adoption of AM. Advancements in sensing systems facilitate AM
monitoring and control. Realizing full potentials of sensing data for
AM quality control depends to a great extent on effective analytical
methods and tools that will handle complicated imaging data, and
extract pertinent information about defect conditions and process
dynamics. This letter considers the optimal control problem for
AM parts whose layerwise defect states can be monitored using
advanced sensing systems. Specifically, we formulate the in situ
AM control problem as a Markov decision process and utilize the
layerwise imaging data to find an optimal control policy. We take
into account the stochastic uncertainty in the variations of layer-
wise defects and aim at mitigating the defects before they reach the
nonrecoverable stage. Finally, the model is used to derive an op-
timal control policy by utilizing the defect-state signals estimated
from layerwise images in a metal AM application.

Index Terms—Additive manufacturing, optimal control policy,
Markov decision process, optical imaging, defect mitigation.

I. INTRODUCTION

ODERN manufacturing industry faces increasing de-
mands to provide highly personalized products and ser-
vices to gain competitive advantages in the global market. This
trend calls for the next-generation manufacturing system that is
highly flexible and adaptive to complex and customized designs.
For example, additive manufacturing (AM) is a process to pro-
duce a 3D partlayer by layer from computer-aided design (CAD)
models. It enables the creation of complex, freeform geometries
that are difficult, if not impossible, to realize using conventional
subtractive and formative manufacturing techniques. AM thus
overcomes longstanding design and manufacturing constraints.
The global market for AM processes and services is expected to
rise to about $50 billion between 2029 and 2031 [1].
However, AM is currently limited in its ability to perform
real-time quality control, which poses great challenges for
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widespread applications. For example, microstructure and me-
chanical properties of AM builds are significantly influenced by
process variations and uncertain factors (e.g., thermal effects,
hatching pattern, scanning velocity, and extraneous noises).
This, in turn, causes internal defects that deteriorate the builds
strength, residual stress and hardness. As a result, the rejection
rate of AM parts is high. At CIMP-3D of Penn State, seven parts
are built simultaneously with the same CAD model in a commer-
cial metal AM machine, only two out of which are defect free.
There are still technical challenges to realizing high-confidence
AM:

1) Quality Assurance: The lack of repeatability in key quality
attributes, e.g., dimensional accuracy, and functional integrity
(e.g., strength, fatigue resistance, hardness, and abrasion resis-
tance) is a major impediment for wider adoption of additive
manufacturing.

2) Process Monitoring: Currently, quality assurance in AM
is largely dependent on post-build inspection. Long inspection
procedure (~20% of the manufacturing time) results in a low
yield and a high cost process. Rapid advancements in sensing
technology provide an opportunity to detect the onset of AM
defects prior to the completion of AM builds. However, the
dearth of in-situ sensing strategies limits the ability to perform
online process monitoring and closed-loop control in AM.

3) Optimal Control: AM industries are investing in advanced
sensing systems to increase information visibility. However,
advanced sensing brings big data. Realizing full potentials of
sensing data for AM quality control depends to a great ex-
tent on the information-processing capabilities. Indeed, optimal
control in AM is challenging due to high varieties in the part de-
sign, low-volume production (even one-of-a-kind), and the diffi-
culty to estimate incipient defects and take corrective actions on
the fly.

Real-time sensing and process monitoring are critical to qual-
ity assurance in AM systems. Due to the high-level complex-
ity of AM process, advanced sensing systems are increasingly
developed and implemented to monitor and control the varia-
tions in the process of AM build [2], [3]. Advanced sensing
provides an unprecedented opportunity to cope with the pro-
cess complexity and enable on-the-fly quality control of AM
processes. Recent advances in communication and electronics
have improved the design and development of low-cost and
miniaturized sensors for use in AM settings that are previously
not possible. In the state of the art, a variety of in-situ sen-
sors (e.g., temperature, vibration, infrared sensors, and video
imaging) have been used to capture multi-facet information for
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AM process monitoring and control. Notably, the CIMP-3D at
the Penn State developed an optical layer-wise imaging tech-
nique to monitor the laser powder-bed-fusion AM process. A
36.3-megapixel digital single-lens reflex camera (DSLR) along
with multiple flash-lamps are customized and placed inside the
chamber of an AM machine to capture the layer-by-layer pow-
der bed images. We have collected large amounts of layerwise
imaging data in the fabrication process of AM builds, which are
critical to quality inspection and process improvement. How-
ever, very little has been done to develop enabling tools that will
handle large amount of imaging data, extract pertinent infor-
mation about defect conditions and process dynamics, and fur-
ther exploit the acquired knowledge for process monitoring and
control.

This letter presents a novel continuous-state mathematical
model that leverages the layerwise image data to estimate the
state of defect conditions in each layer of AM build, predict the
future evolution of defect conditions from one layer to the next,
and then model stochastic dynamics of layer-to-layer defect con-
ditions as a Markov process for the derivation of optimal control
policy. This investigation aims to develop smart AM through
in-situ monitoring of incipient defects and online closed-loop
control of part quality and functional integrity. Specifically, cor-
rective actions are executed to counteract and repair incipient
defects in AM prior to completion of the build. The evolution of
process defects will be detected and mitigated long before they
reach the non-recoverable stage.

First, we present the multifractal analysis of layerwise im-
ages for characterization and detection of defects in each layer
of the AM build [4], [5]. Multifractal analysis captures irregular
and nonhomogeneous patterns in multiple scales of AM images.
The multifractal spectrum (i.e., a vector of features) is extracted
to estimate the defect conditions for each layer. Then, we com-
pute a composite index - Hotelling 72 statistic - to represent
the defect state of each layer in the AM build, which simul-
taneously consider multi-dimensional variations among these
features of multifractal spectrum. As a result, the layer-wise
structure of AM build leads to a series of defect states in the
form of stochastic signals. Second, we model the defect signals
as a real-time, continuous-state stochastic process, which helps
to capture the useful information about AM process dynamics
that cannot be deciphered otherwise. We leverage the readily-
available image profiles for each layer to update the predictive
distribution of defect signals. In AM process, each layer may
affect the next layer and, through that, all subsequent layers.
As such, we formulate the AM optimal control as a sequential
decision-making problem through the Markov decision process
(MDP) framework. Finally, the model is used to derive an opti-
mal control policy by utilizing the defect-state signals estimated
from layerwise images in a metal AM application.

This letter addresses the complex structure in the stream of
layerwise images for in-situ monitoring and control of nonlin-
ear and nonstationary process in AM, which enables real-time
defect mitigation. In-situ quality control of AM processes is
conducive to the minimization of layer delamination during
manufacturing and warping of the final product; as well as the
maximization of final part strength and fatigue resistance.
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The remainder of this letter is organized as follows:
Section II introduces research background of quality inspection
in AM processes. Section III presents the research methodology
that integrates in-situ image monitoring with online closed-loop
control for smart AM. Case study and experimental results are
provided in Section IV. Section V discusses and concludes the
present research.

II. RESEARCH BACKGROUND

Despite enormous progress in recent years, quality assurance
in AM remains an enduring challenge [6]. Currently, quality
assurance in AM is largely limited to offline data-driven tech-
niques and traditional optimization approaches (e.g., design of
experiments). For example, Huang et al. [7] developed prescrip-
tive modeling approaches to predict the deformation of 2D and
3D shapes [8], [9]. Further, optimal compensation is imple-
mented in the CAD model to increase the geometric accuracy
in the final AM build. Also, existing geometric dimensioning
and tolerancing (GD&T), and surface metrology techniques,
which are primarily offline and intended for regular Euclidean
features, are not amenable for assessment of AM parts with com-
plex free-form geometries [10]. In the absence of quantitative
approaches for assessing surface morphology and dimensional
fidelity, benchmarking of AM builds remains relegated to qual-
itative attributes [11].

Although sensor-based monitoring of AM has been intro-
duced [2], [12], these data-driven approaches mainly focus on
defect identification and do not suggest online corrective actions.
Sensor-based monitoring of AM processes is among the highest
priorities for realizing the high-confidence AM technologies.
Infrared camera has been proposed to capture the thermal distri-
bution of AM parts, and provide information on residual stress
and microstructures of 3D products. Krauss ef al. [13] detected
material discontinuities and process deviations by monitoring
the temperature distribution of AM layers using an infrared
camera in the selective laser melting (SLM) process. Rodriguez
et al. [14] developed the in-situ thermography to identify ab-
solute thermal non-uniformity in layer surfaces of AM parts
for quality control. High-resolution cameras with visible wave-
length also play an important role in monitoring and detection of
defects in AM layers so as to detect process errors and material
discontinuities. Grasso ef al. [15] localized defects using a high-
speed camera (i.e., an Olympus I-speed 3 camera) for in-situ
monitoring of SLM processes. The CIMP-3D at the Penn State
developed an in-chamber imaging system with high-definition
36.3 megapixel DSLR 164 AQ4 camera (Nikon D800E) with
multiple flash modules [16]. We collected in-situ images of lay-
erwise finishes of AM builds both after laser exposure and after
recoating.

However, in-situ imaging systems bring large amounts of
complex structured image data that call upon the development
of new image-based statistical process control (SPC) methods.
Existing SPC methods mainly focus on key product characteris-
tics, linear and nonlinear profiles, as opposed to image profiles
that are nonlinear and nonstationary. In the past few years, in-situ
image data have attracted increasing interests. For example, Du
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Fig. 1. Flow diagram of the research methodology.

et al. analyzed hyperspectral images of poultry carcasses [17].
A spectral band selection approach was developed to extract
features for the detection of skin tumors. Kan ef al. developed a
novel dynamic network methodology for monitoring and con-
trol of high-dimensional imaging streams [18], which is used
for monitoring of living cells during the biomanfacturing syn-
thesis process of bio-products [19]. Park ef al. investigated mi-
croscopic images of nanoparticle dynamics [20]. Morphology
of nanoparticles was characterized by a multistage procedure
and then semi-automatically classify them into homogeneous
groups. Yan et al. proposed to integrate low-rank tensor de-
composition with multivariate control charts for image-based
process monitoring [21]. In addition, Zhang et al. measured
the variations of wafer thickness from image profiles using an
adaptive Gaussian process model [22]. Nonetheless, very little
has been done to investigate closed-loop control using data-
driven models and sequential decision-making strategies. The
ability to mitigate incipient defects is critical for AM industries
mandating stringent product aesthetics and functional integrity
standards.

III. RESEARCH METHODOLOGY

In this section, we propose a framework of Markov decision
process (MDP) to sequentially control the AM processes. As
shown in Fig. 1, the proposed methodology invokes a novel
framework for quality assurance in AM by interlinking the fol-
lowing aspects: in-situ imaging measurements — real-time es-
timation of defect states in layerwise AM images — layer-by-
layer optimal control actions — high-confidence quality and
functional integrity of AM products. Image-based process mon-
itoring and control is the next vertical step to mitigate scrap and
reduce rework rates, and further ensure the economic viability
of AM.

A. Sensor-Based Modeling of AM Defects

Rapid advances in sensing technology, especially in imag-
ing sensing, facilitate the realization of real-time quality con-
trol and defect mitigation in AM processes. For example, the
high-speed infrared thermography [23] is used to obtain thermal
images for microstructure prediction by determining the grain
size resulting from melt pool characteristics. The Center for In-
novative Material Processing through Direct Digital Deposition
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extract the composite defect index.

(CIMP-3D) at the Pennsylvania State University has developed
an optical layer-wise imaging system to monitor the powder-
bed-fusion AM process using a consumer-grade 36.3 megapixel
DSLR camera [16], [24] as shown in the camera system in
Fig. 1. Imaging sensing systems capture the layer-wise defect
dynamics of AM process in the form of 2D image profiles. The
AM layers are rough, irregular and show fractal pattern under
high-resolution cameras. Our previous studies leveraged multi-
fractal theory to investigate nonlinear patterns in image profiles
for layerwise defect estimation [4], [5].

Note that multifractal analysis extracts a spectrum of singu-
larity exponents to describe the complex scaling behavior of
AM images. The local densities of the fractal set are quantified
by estimating the mass probability in the i*" box of the image
as P;(a) = N;(a)/N, where N;(a) denotes the number of pix-
els in box ¢ of size a, and N is number of the total pixels of
the image. Let 1;(g, a) denote the ¢ moments of mass prob-
ability P;(a), ic., p;(g,a) = P{(a)/i_ P!(a). Then, the
multifractal spectrum f(c(q)) is computed as:

> pi(g, a) In(ui(g, a))

f(alq)) = lim — (1)
where
Y X 1i(g,a) In(P!(a))
a(q) = lim S — )

Here, f(a(g)) versus a(g) provides the multifractal spectrum
of image profiles. See more details of multifractal analysis of
AM imaging profiles in [5]. Fig. 2 (top) shows the multifractal
spectra of the AM images shown in Fig. 1.

We further derive the composite index to represent the de-
fect state of each layer by extracting the Hotelling 72 statistic
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from the multifractal spectrum. The Hotelling T statistic are
shown to effectively characterize various types of defects in
each AM layer [5]. Specifically, let Fr . = [f1, f2,---, fr]s
where f, = [f(a1), f(¢2),. ., f(;)]' denoting the spectrum
values from multifractal analysis of layer ¢. Then, the Hotelling
T? for a layer indexed with t is

B =L} O (L) 3)

where f denotes the sample mean of the multifractal spectra,
and X is the sample covariance. Thus, the defect composite
index for layer ¢ is defined as s, = T}, as illustrated in Fig. 2
(bottom). s; will be further used to develop an MDP framework
for the sequential optimal control of AM processes.

B. MDP Modeling of AM Processes

Each layer of AM builds is captured by the sensors (i.e., high-
resolution cameras) as imaging profile. Hybrid AM machines
provide an opportunity to take corrective actions on the fly.
Example actions include cutting off a layer, re-fusion, or process
adjustments. The corrective action may affect the next layer
and, through that, all subsequent layers. The MDP has been
widely used in optimal maintenance of engineering systems
[25] and cancer screening [26]. However, very little has been
done to develop sequential decision-making models for smart
AM control through an MDP framework.

Our MDP framework aims to determine whether to instan-
taneously perform a corrective action (which is denoted as a.)
at the cost ¢,, or wait (which is denoted as a,,) and continue
observing till the next layer with the risk to fail the whole part,
i.e., the defect index exceeding the failure threshold. The failure
cost is denoted as cy, which is set to be bigger than the cost of
corrective action ¢, . Note that the observation cost (i.e., the cost
of action a,,) is generally very small if the sensing system is
already in place.

The state space of our MDP model is represented by S =
(T, R*), where T = {1,2,...,T} denotes the set of layer in-
dex, and R is the set of positive real number denoting the set
of defect index s; (i.e., the T statistic). Let P/ (s;,1|s;) be the
transition probability from state s; of layer ¢ to state s;;; of
layer ¢ + 1 under the action A, where A € {a., a, }. Let value
function V;(s;) denote the optimal expected total future cost
starting in state (¢, s;) € S. Then, the optimality equation for
the value function is expressed as

cy if 5t > C
mjnAE{ac‘aw }{CA+
J\EerPtA (se+1lse)Vir1(se41)} ifse < ¢

where ( is a predefined failure threshold and A is the discount
factor. The definition of the value function V; (s;) follows from
the logic that if the defect index s; is beyond the failure threshold
¢, a high failure cost ¢; is incurred; otherwise, we can either
choose to do corrective action a, or wait a,, till the next layer,
which is determined based on the expected cost of each action.
We will detail how to obtain the optimal policy from our MDP
framework in the next subsections.

Vi(st) =
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C. Structural Property of the Optimal Policy

In this subsection, we will prove that a control limit policy
exists for the AM process and show the structural property of
the proposed MDP framework. In other words, the AM process
is optimal to keep operating (i.e., take action a,, ) if the defect
index s; is below a certain control limit s}, i.e., s; < s;, whereas
it is optimal to take corrective action a, if the defect index s; is
beyond s}, i.e., s; = sj.

Theorem 1: For each decision epoch, i.e., layerindext € T',
there exists an optimal control limit s} < ¢, which means that
corrective action (i.e., a.) needs to be conducted if the defect
level s; > s}, 1i.e,

As) = { . @
a, if sy < sf
Proof: If a control limit s is obtained for a state (¢, s;),
taking corrective action a, is less expensive than continuing to
observe. Hence, the following inequality holds according to the
definition of value function V;(s;) in (4):

ca +AE " (Vig1(5t41)) < AE™ (Viyr1(s41)) (5

where E“(-) denote the expectation function under the action
A. After taking corrective action a.., it is expected that the defect
level of the next layer (i.e., s;41) will not be higher than that of
the action threshold sj, i.e.,

(s =s ez (aa=sscd|sg) (6
Thus, the left-hand-side (LHS) of (5) satisfies:
L S R e {.Vi-‘--i—l (31‘-+1 )) <ecg + AV (3:) (7

In other words, the LHS of (5) is bounded by the right-hand-side
(RHS) of (7), which is independent of the random variable of
defect index s;.

Furthermore, the value function V;(s;) is generally convex
and nondecreasing in s; for all £. This is due to the fact that
if the defect index s; is higher, the cost V;(s;) of such state
is expected to be bigger. In addition, V;(s;) represents the ex-
pected cumulative future cost starting in state of (¢, s; ). In other
words, V;(s;) is nondecreasing in s; for all ¢. Thus, we have the
following result

E* (Vir1(se+1)) = Ver1 (B (st41)) = Visa(se)  (8)

The second inequality in (8) is due to the fact that when no
corrective action is taken (i.e., under the action of a,, ) for layer
t, the distribution of transition probability from state s; to state
s;4+1 is generally left skewed, which means:

/ P2 (5141 = slst)sds > s ©
0

which indicates that layer £ 4 1 tends to have higher defect
level than current layer ¢ if no corrective action is performed,
i.e., I D (St+1) > 8.

Equation (8) suggests that the RHS of (5) is nondecreasing
in s;. Thus, (5) holds for any state (¢, s¢) € S such that s; > s}.
In other words, the optimal policy for state (t,s;) is to take
corrective action as long as s; > s}. In the next section, we will
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describe the algorithm to solve our MDP control model based
on the structural property. |

D. Value Iteration to Solve the Optimal Policy

Given the structural property introduced in Section III-C, we
develop an efficient value iteration algorithm to solve for the
optimal control policy. We first discretize the set of possible
defect index into different defect levels as

D:{h’:Qh:"':C_h:C} (10)

where h = ¢/m and m is the cardinality of the discretized space
of defect levels D. We denote the defect level at layer index
t as d;. The discretized state space is then denoted as 2 =
(T, D) and (t,d;) € 2. The transition probability matrix for
the discretized state space under the action a is computed as
follows:
dy 11
Poldild) = [ P(sldoyds a1
dey1—h

Hence, the transition probability under the control policy I at
layer index ¢ is computed as

Pl (dyq|d ifd; > 1
Bl 3 it e (12)
P (dey1|dy) ifdy <1
The corresponding immediate cost function is defined as:
_ Cg if d; Z l 13
“TYo ifd <l (13

Our goal is to determine the optimal control policy using the
value iteration algorithm:

™ ={l,5,...,Ir}

Let n denote the iteration count, and V;" (d;) denote the value
function of state (¢, d;) at iteration n. The value iteration algo-
rithm consists of the following steps:
® Step 1:Seti,n=0and V;"(d;) =0,Y(¢t,d;) € @
e Step 2: For each state in the discretized state space S,
update the value function using:

mﬂ+ 1 (d't) e
cr ifd; > ¢
minep {c+
A4, Pi(dea|d)Vi (desr)} ifde <
® Step 3:Setn+—mn+1
e Step 4: Repeat Step 2 and 3 until |V**1(d;) — V" (d;)| <
€, where parameter € is a predefined threshold for conver-

gence and set V;*(d;) = V" (d;), V(t,d;) € 2.
e Return the optimal policy 7* by solving

(14)

m; = argmin CI-HLdZ P/ (des11de) Vi1 (dri)
t+1

(15)
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Fig. 4. An illustration of the optimal control policy.

IV. CASE STUDY

In this section, we implement the proposed MDP framework
to solve for the optimal control policy for AM processes. The
imaging data in this case study are acquired from a powder-
bed-fusion AM build as shown in Fig. 3(a). This AM build
is fabricated in a direct metal laser sintering (DMLS) process,
which is carried out in the EOS M280 system. The layerwise 2D
image profiles of the build are collected as shown in Fig. 3(b).
Each AM image contains 7360 x 4912 pixels with a pixel size
of 12.22 pm.

The multifractal analysis is first implemented to analyze the
AM images, and compute the composite index, i.e., Hotelling
T-square statistic, to represent the defect level of AM layers. The
multifractal analysis produces a series of defect states in the form
of stochastic signals. We then discretized the continuous defect-
state signals into ten states, with D = d;,ds, ..., d1o. We use
1,2,...,and 10 to denote the defect level dy, ds, ..., and dyp in
the Figs. 4 and 5. Note that the defect level d;( denotes the failure
threshold. We then solve for the optimal control policy using
the value iteration algorithm described in Section III-D. Fig. 4
shows an illustration of the obtained optimal policy and how it
relates to the defect levels. Note that the purple stepped curve
represents the optimal control policy for different layers. If the
defect level d; exceeds the control threshold, corrective action
needs to be conducted to repair the defective layer. Otherwise,
the AM process continues operating and the optimal policy is
to continue observing.
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Fig. 6. Comparison of expected total cost among different control policies.

Fig. 5(a) shows the variation of optimal control policy with
respect to ratio of the failure cost ¢y over the cost of corrective
action ¢,. Fig. 5(b) shows the surface of the optimal control
policy with respect to layer index and the cost ratio. If the cost
ratio ¢5 /¢, is small (i.e., the failure cost ¢; is close to the cost
of corrective action), the resulted control policy is closer to
the failure threshold as shown by the blue curve in Fig. 5(a),
which means the optimal policy is more tolerant of the sudden
failure of the AM build. On the other hand, if the cost ratio
¢y /c, is large (i.e., significant loss will be incurred if the AM
build fails suddenly during the process), the corresponding con-
trol policy becomes lower as shown by the green curve, which
means the optimal policy is much more conservative in this
situation.

To further evaluate the performance of our proposed frame-
work, we compare the expected total cost of the optimal policy
derived from our algorithm with three constant policies (CP),
i.e., CP-d2, CP-d4, and CP-d6, as shown in Fig. 6. Note that
CP-d2 denotes a control policy that whenever the defect signal
is higher than the defect level ds, corrective action a,. needs
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to be conducted. According Fig. 6, the optimal policy derived
from the proposed MDP framework yields the smallest expected
total cost under different cost ratios. It is also worth noting that
when the cost ratio ¢f/c, becomes large (i.e., significant loss
will be incurred if the AM part fails during the 3D printing
process), the expected total cost of the constant policy with a
high threshold (e.g., CP-d6) becomes very high. This is due
to the fact that if corrective action is conducted only when
the defect signal is beyond some high value, the AM part has
much greater chance to break down before the completion of
the whole process, which leads to a much higher expected total
cost.

V. CONCLUSIONS

Although current AM machines have been greatly improved
from early versions, many of the defect problems identified
by early researchers in the 1980s (porosity, balling, cracking,
thermal management issues, and material issues) persist.
High-confidence AM calls upon the development of in-process
monitoring and closed-loop control algorithms for optimal
management of AM machine operations. Fortunately, rapid
advancements in sensing technology, especially in imaging
sensing systems, bring large amount of image data and facilitate
the realization of in-situ quality control of AM builds.

In this letter, we formulate the optimal control of AM as a
sequential decision-making problem through the MDP frame-
work. We first characterize the defect level of layer-wise AM
images by capturing the irregular and nonhomogeneous patterns
using the multifractal analysis. Second, we compute a composite
index to represent the defect level of each layer by extracting the
Hotelling 72 statistic from the multifractal spectrum. Third, we
model stochastic dynamics of layer-to-layer defect conditions
as a Markov process to determine an optimal control policy.
The MDP model is further utilized to solve for the optimal
control policy using the defect-state signals estimated from the
AM images. Experimental results show that the proposed in-
situ monitoring and control framework has great potentials for
on-the-fly assessment of AM build quality and real-time defect
mitigation.
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