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The modern manufacturing industry faces increasing demands to
customize products according to personal needs, thereby leading
to the proliferation of complex designs. To cope with design com-
plexity, manufacturing systems are increasingly equipped with
advanced sensing and imaging capabilities. However, traditional
statistical process control methods are not concerned with the
stream of in-process imaging data. Also, very little has been done
to investigate nonlinearity, irregularity, and inhomogeneity in the
image stream collected from manufacturing processes. This paper
presents the joint multifractal and lacunarity analysis to character-
ize irregular and inhomogeneous patterns of image profiles, as well
as detect the hidden dynamics in the manufacturing process. Exper-
imental studies show that the proposed method not only effectively
characterizes surface finishes for quality control of ultraprecision
machining but also provides an effective model to link process
parameters with fractal characteristics of in-process images
acquired from additive manufacturing. This, in turn, will allow a
swift response to processes changes and consequently reduce the
number of defective products. The proposed multifractal method
shows strong potentials to be applied for process monitoring and
control in a variety of domains such as ultraprecision machining
and additive manufacturing. [DOI: 10.1115/1.4042579]
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1 Introduction
Fierce competition in the global market pushes manufacturing

companies to offer highly personalized products with complex
designs to meet the customers’ needs. This trend calls for the devel-
opment of a next-generation manufacturing system that is highly
flexible and adaptive to complex and customized designs. However,
quality control of such complex products depends on advanced
sensing, process monitoring, and control. For example, ultrapreci-
sion machining (UPM) is a commonly used manufacturing process
to produce optical discs, photoreceptor components, and aircraft
engines [1]. Such applications require mirror surface finishes with
extremely high geometrical accuracies and smooth surfaces (i.e.,
surface roughness <50 nm). Also, additivemanufacturing (AM) pro-
vides a higher level of flexibility to print a 3D product with the
complex geometry layer by layer. The laser powder bed fusion
(LPBF)-AM process spreads the material powder over previous
layers, and then uses a laser or electron beam energy source to
melt the material powder to print a new layer of the product [2].
Qualifying complex builds is challenging. There is an urgent need
to develop advanced quality control methods for monitoring layer-
wise finishes as we move into more complex and high-precision
manufacturing [3].
Most of the complexity in the data arises from nonlinear and non-

stationary dynamics of the manufacturing processes. Prior work
showed the characterization of nonlinear dynamics in manufactur-
ing systems and the resulted variations in products and systems per-
formances [4]. Traditional statistical process control (SPC) methods
mainly focus on key characteristics of the product and the confor-
mance to specification, but are less concerned about high-
dimensional image data and nonlinear dynamics in manufacturing
processes. Manufacturing system dynamics, confined by the evolu-
tion of states of the underlying process, exhibit aperiodic, strange,
and irregular behaviors. Gültekin et al. [5] and Singer and
Ben-Gal [6] showed that engineering control implementations
often bring nonlinear dynamics of sensor observations in manufac-
turing processes.
There is a critical gap in the knowledge base that pertains to inte-

grating nonlinear dynamics methods and tools with manufactur-
ing quality control. Available nonlinear dynamics techniques are
either not concerned with quality control objectives or fail to effec-
tively analyze big data (e.g., high-dimension image data) to extract
useful information for process control. There is an urgent need to
harness and exploit nonlinear dynamics for creating new products
(or services) with exceptional features such as adaptation, custom-
ization, responsiveness, and quality in unprecedented scales. The
nonlinear dynamics theory focuses on the geometric properties
of the state space of dynamical systems. For example, the fractal
dimension is commonly used to describe the complex geometries
of fractal objects (e.g., time series, 2D, or 3D images) that are
self-similar and scale invariant. The fractal dimension can be a
non-integer value that exceeds the topological dimension of the
object.
However, a single fractal dimension focuses on the self-similarity

(scale invariant) behavior of the fractal object and is limited in the
ability to completely describe the multifractal patterns (i.e., non-
linearity, irregularity, and inhomogeneity) in real-world objects.
For example, image data from manufacturing processes often do
not show perfect self-similarity but are formed by subsets with
inhomogeneous scaling properties. The multifractal analysis is an
effective tool to characterize inhomogeneous and nonlinear patterns
of real-world images using an interwoven set of fractals with differ-
ent dimensions. Furthermore, lacunarity complements multifractal
analysis by characterizing the manner or distribution in which
the fractal objects fill the space. Lacunarity and multifractal
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analysis jointly describe the irregularity and nonhomogeneity of
fractal objects as well as how they fill the space that cannot be oth-
erwise achieved by traditional fractal dimension or statistical
features.
This paper presents the joint multifractal and lacunarity analysis

of image profiles in UPM and AM processes for manufacturing
quality control. The multifractal spectrum resolves local densities
and captures nonhomogeneous variations of image profiles. Lacu-
narity complements multifractal analysis by characterizing the
filling patterns in image profiles. Further, we derive the composite
quality index by computing Hotelling T2 statistics from multifractal
and lacunarity features for defect detection and characterization in
UPM and AM image profiles. Finally, we investigated the correla-
tion between the Hotelling T2 statistics and process parameters (i.e.,
hatch spacing, scan velocity, and laser power) in AM using regres-
sion analysis. Experimental results on real-world UPM and AM
applications show that the proposed approach not only effectively
detects and characterizes defects in image profiles but also provides
an effective prediction model to link process parameters with image
characteristics in AM processes.

2 Research Background
2.1 Manufacturing Processes and Advanced Imaging

Technology. As shown in Fig. 1, UPM and AM processes are
advanced manufacturing technologies that offer unique capa-
bilities such as high precision and flexible customization that
cannot be matched by traditional manufacturing techniques. UPM
is equipped with air-bearing spindles and diamond tools to
produce optical surface finishes (i.e., roughness≤ 50 nm). Also,
the LPBF-AM process employs a laser power source for melting
the material. The laser spot size is typically from 50 µm to
100 µm in diameter. The laser power is maintained in the range
of 200–400 W, and the scan speed is varied in the range from
200 mm/s to 2000 mm/s [7].
Advanced sensing brings the increasing availability of high-

dimensional images, which are critical to quality inspection and
process improvement. For example, Fig. 1(a) shows the UPM
surface extracted by high-resolution optical laser interference micro-
scope (MicroXAM®). Figure 1(b) shows the industrial X-ray com-
puted tomography (XCT) image for quality inspection of complex
builds from LPBF-AM processes. Although UPM and AM offer
exceptional capabilities, qualifying complex products are still

challenging. Very little has been done to study nonlinear and fractal
patterns in real-world images and further exploit the useful informa-
tion from high-resolution image data for the purpose of quality
inspection.

2.2 Fractal Theory. In the natural world, there exist many
irregular objects that show self-similarity to some degrees. For
example, the human heart is formed of a fractal network of myo-
cardium cells [8,9]. They are often referred to be the fractal geom-
etry. The fractal theory has found many applications in many
domains such as health informatics and manufacturing. Ruschin-
Rimini et al. [10] developed a fractal-SPC method that uses the
fractal dimension to measure the probability of the occurrence
of correlated data sequences for process monitoring and change
detection.
Further, manufactured surface finishes often exhibit fractal char-

acteristics [11,12]. For example, UPM surface finishes seem to have
smooth surfaces on visual inspection. However, fine-grained
surface textures in the microscope demonstrate fractal behaviors
over a range of scales. Fractal models provide insights into
various functional and operational behaviors of manufacturing pro-
cesses. In the literature, a single fractal dimension has been utilized
to investigate the scale effect in surface metrology and consequently
process monitoring [13,14]. Note that prior works showed that a
single fractal dimension is limited in the ability to fully characterize
heterogeneous and irregular patterns in the surface finishes from the
manufacturing process. The surface finishes of manufactured parts
often comprise of complex characteristics that are due to the exis-
tence of a spectrum of fractal dimensions that interact with each
other to generate highly nonlinear behaviors. Very little has been
done to integrate multifractal analysis with lacunarity patterns in
image profiles for the purpose of quality monitoring and control
of UPM and AM processes.

3 Research Methodology
3.1 Multifractal Analysis. Fractal objects are irregular and

cannot be fully characterized by the topological dimensions. There-
fore, the fractal dimension is introduced to describe scale-invariance
properties of the fractal object by measuring the changes of cover-
ing relative to the scaling factor and characterizing the filling-space
capacity. The box-counting method is widely utilized to estimate
the fractal dimension of an irregular object. For example, if we

(a) (b)

Fig. 1 Flow diagram of the research methodology: (a) UPM and (b) LPBF-AM processes
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cover the fractal object by N measure elements (e.g., boxes) with
size l as follows:

N(l) = l−D (1)

where D is the box-counting fractal dimension, then Eq. (1) pro-
vides the scaling law to demonstrate the distribution size of
objects. This method covers a fractal set with measure elements
(e.g., boxes) at different sizes and observes how the number of
boxes varies with respect to the size [15]. This procedure is repeated
using a different size of l. Once l becomes sufficiently small, the
number of boxes N(l ) is increased to cover a fractal object. Then
the box-counting dimension D0 becomes

D0 = lim
l�0

lnN(l)

ln 1/l
( ) (2)

To illustrate the self-similarity and irregularity in surface fin-
ishes, we used the Voronoi tessellation to iteratively divide a
plane with points into convex polygons such that each polygon
holds just one generating point and each point in a specified
polygon is closer to its generating point than to any other (see
Figs. 2(a)–2(c)). The dual of the Voronoi tessellation has been
denoted as Delaunay triangulation (see Figs. 2(d )–2( f )).
As shown in Fig. 2, the images of Voronoi tessellation and Delau-

nay triangulation undergo significant changes when the number of
cells is increased from 100 to 1000. The box-counting method com-
putes the fractal dimension to be D0= 2.089 for both Voronoi and
Delaunay images in Fig. 2. This indicates that a single fractal dimen-
sion is not sufficient enough to describe nonlinear and irregular
behaviors. The box-counting method assumes that the number of
boxes has a linear relationship with the box size when both are log-
arithmically transformed. To overcome this limitation, the multi-
fractal analysis provides a more complete description of the
irregular object with an interwoven set of fractal dimensions. The
multifractal spectrum is computed as follows:

(a) Estimating the local density function
In practice, one way to quantify local densities is by esti-

mating the mass probability in the ith box as follows:

Pi(l) =
Ni(l)
NT

(3)

(b) Calculating the singularity strength exponent
For the inhomogeneous set, we can define the singularity

strength exponent αi as follows:

Pi(l) ∼ lαi (4)

where αi reflects the local behavior of Pi(l ) in the ith box with
size l and it can be estimated as follows:

αi = lim
l�0

lnPi(l)
ln l

(5)

(c) Estimating the multifractal spectrum
The multifractal spectrum f(α) characterizes the variations

and provides a statistical distribution of singularity expo-
nents αi. The number of boxes N(α) where the probability
Pi(l ) has exponent values between α and α+ dα also
follows the scaling law with the size l and multifractal spec-
trum f (α). It can be shown as follows:

N(α) ∼ l−f (α) (6)

The multifractal spectrum is a concave downward function
due to two extreme properties of the measure (i.e., sparser
or denser measure) and can be estimated from Eq. (6) as
follows:

f (α) = lim
L�0

lnN(α)
ln (1/l)

(7)

The scaling of the qth moments of Pi(l ) distributions can
be expressed as follows:

∑N(l)
i=1

Pq
i (l) = l τ(q) (8)

where τ(q) is called the mass exponent of the qth order
moment. Thus, the fractal dimensions Dq are written as
follows:

Dq =
τ(q)
q − 1

(9)

When q= 0, Eq. (8) becomes N(l) = l−D0 , which is similar to the
box-counting dimension D0 in Eq. (1). Further, the Legendre trans-
formation is used to estimate the multifractal spectrum:

f (α(q)) = qα(q) − τ(q) (10)

α(q) =
dτ(q)
dq

(11)

However, computing f (α(q)) via Legendre transformation needs
to smooth the Dq curve that causes errors to the estimated f (α).
Equation (12) introduces a family of normalized measures μi(q, l )
as qth moments of mass probability Pi(l ). A constant range of l is
utilized to estimate multifractal properties over a small interval of
scales.

μi(q, l) =
Pq
i (l)∑N(l)

i=1 P
q
i (l)

(12)

As a result, the multifractal spectrum f (α(q)) and average singu-
larity strength exponent α(q) are obtained as follows:

f (α(q)) = lim
l�0

∑N(l)
i=1 μi(q, l)ln[μi(q, l)]

ln l
(13)

α(q) = lim
l�0

∑N(l)
i=1 μi(q, l)ln[P

q
i (l)]

ln l
(14)

where f (α(q)) and α(q) are the function of the moments q. These two
curves are tangent to each other at q= 1. Figure 3 shows the multi-
fractal spectrum and its major characteristics. The values in the
right and left of D0 represent negative and positive q values.
Moments q> 0 signify the contribution of boxes with higher-value

Fig. 2 Voronoi tessellation with different number of cells:
(a) 100 cells, (b) 1000 cells, and (c) 10,000 cells; Delaunay triangu-
lation with different number of cells: (d ) 100 cells, (e) 1000 cells,
and (f ) 10,000 cells
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pixels in the estimates of f (α(q)) and α(q). On the other hand,
moments q< 0 signify the contribution of boxes with lower-value
pixels in the estimation. Note that the right tail of f (α(q)) is longer
than the left side, which is mainly due to the fact that the variation
of f (α(q)) and α(q) with respect to q is more sensitive when q< 0.

3.2 Lacunarity. Further, lacunarity characterizes the filling-
space capacity of fractals and textures that have the same fractal
dimension and a very different visual appearance [16]. Lacunarity
complements the multifractal analysis by determining how the
fractal objects fill the space, thereby differentiating spatial patterns
in different scales. We implement the computationally tractable
“gliding box” method to compare the lacunarity [17]. A box of
size l is placed in the image to count the number of set points s
(black pixels). Then, this box is moved to another spot in the
image, and the box mass is again counted. This process is repeated
over the entire image, creating a frequency distribution of the box
massesN(s, l ). This distribution is converted into a probability distri-
butionQ(s, l) by dividing by the total number of boxesN(l ) of size l.

Q(s, l) =
N(s, l)
N(l)

(15)

The first and second moments of this distribution, as well as the
lacunarity measure can be written respectively as follows:

Z(1)(l) =
∑
s

sQ(s, l) (16)

Z(2)(l) =
∑
s

s2Q(s, l) (17)

Λ(l) =
Z(2)(l)

(Z(1)(l))2
(18)

whereΛ(l ) represents the lacunarity for the box size l. This procedure
is repeated for different box sizes. If we have an image with G
columns and G rows, the box size varies in the range of 21,… , 2b

where b< log2G. Then we obtain the log-scale plot of the lacunarity
versus the box sizes.
Figure 4(a) shows the estimated multifractal spectra for Voronoi

tessellation and Delaunay triangulation with 10,000 cells (see
Fig. 2). Note that the single fractal dimension (i.e., the maximum
values of f(α(q))) is the same for both the images. However, their
multifractal spectra are significantly different. The right tail of the
Delaunay triangulation is longer than the dual Voronoi tessellation.
This is due to the fact that the Delaunay triangulation has more
pixels with lower values (intensity value toward 0 or black pixels)
in comparison with the Voronoi tessellation. Figure 4(b) illustrates
lacunarity spectra of the Voronoi tessellation with a different
number of cells in Fig. 2. Note that the Voronoi tessellation with
100 cells has higher lacunarity values than the other two. This is
mainly because lacunarity is related to the size distribution of the
holes and deviation of an image from translational invariance. In
other words, an object is very lacunar if its holes tend to be large
and large gaps exist in an image. If there is a homogeneous
image that has the same pixels per box, then the standard deviation,
for a box count at the length scale l, will be close to the zero, and
therefore lacunarity has a value close to zero.

3.3 Hotelling T2 Control Chart of Multifractal and
Lacunarity Features. The multifractal spectrum and lacunarity
analysis provide a set of quality features relevant to the characteris-
tics of surface finishes. For simultaneous monitoring of multi-
dimensional features, hypothesis testing is used to determine
whether there is a significant mean shift in the feature vector.

x(i) = {[α(qj), f (α(qj))] j=1...k , Λ(lw)w=1...b}
(i), i = 1, . . . , m (19)

where qj∈ [− 1, 1], k is the size of the multifractal spectrum, b is the
number of boxes in lacunarity, and m is the total number of images.
The total number of features p is 2k+ b, and the feature matrix is
Xm×p= [x (1), x (2),…, x (m)]T with both multifractal and lacunarity
quantifiers. To consider small changes in each direction of the
multidimensional feature vector, we compute the Hotelling T2 sta-
tistics for the ith image as follows:

T2(i) = (x(i) − �x)S−1(x(i) − �x) (20)

where the sample mean vector �x and sample covariance matrix S are
estimated from in-control or nominal data. The upper control limit
of the Hoteling T2 control chart is

UCL =
p(m + 1)(m − 1)

m(m − p)
Fα,p,m−p (21)

where p is the dimensionality of x (i), m is the number of images,
Fα,p,m−p is the upper 100α% point of F distribution with p and

Fig. 3 Characteristic points in the multifractal spectrum

(a) (b)

Fig. 4 (a) Multifractal spectra of the Voronoi tessellation and Delaunay triangulation in Fig. 2 and
(b) lacunarity spectra of the Voronoi tessellation with different cells number in Fig. 2
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m − p degrees of freedom. The Hotelling T2 statistics is utilized to
characterize the differences in surface finishes of UPM and
LPBF-AM image profiles.

4 Experimental Design and Results
We evaluate and validate the proposed multifractal methodology

in two real-world case studies for UPM and LPBF-AM image char-
acterization and quality control. The first case study is aimed at
evaluating the performance of multifractal and lacunarity for
quality inspection of image profiles from the UPM process. In the
second case study, we focus on modeling the relationship
between process parameters with multifractal and lacunarity charac-
teristics of XCT image profiles in the LPBF-AM process.

4.1 UPM Application. In the UPM process, Ra is the arith-
metic average of the absolute intensity distance from each pixel
to the mean [18]. As shown in Fig. 5, Ra provides the aggregated
information and tends to be limited in the ability to fully character-
ize the surface. Figures 5(a) and 5(b) show two smooth surfaces
with Ra= 43.81 nm and 43.83 nm, respectively. Also, Figs. 5(c)
and 5(d ) show two rough surfaces with Ra= 297.58 nm and
296.92 nm, respectively. Although Ra values are very close for
two surfaces (either smooth or rough), their spatial patterns are
different.
Figures 6 and 7 show the multifractal and lacunarity spectra for

4 UPM image profiles in Fig. 5, respectively. Note that multifractal

and lacunarity spectra of smooth surfaces (i.e., Ra≈ 43 nm) are
away from those of rough surfaces (i.e., Ra≈ 297 nm). For the sur-
faces with the same Ra values, multifractal and lacunarity spectra
are close to each other but show differences because of the varia-
tions in spatial patterns.
Based on the threshold value of Ra= 100 nm, which is commonly

considered for detecting the defects in the UPM process, 100 image
profiles are split into the two groups of 50 in-control and 50
out-of-control. As shown in Fig. 8, image profiles from the
in-control group show distinct multifractal spectra in comparison
with those from the out-of-control group. Note that multifractal
spectra of the in-control group are concave and they have higher
values for α(q) in comparison with the out-of-control group. This
is mainly due to the fact that there are more variation and heteroge-
neity in the inner layer of out-of-control images, which can be
uniquely represented by the novel method of multifractal analysis.
Also, we extracted lacunarity measures to characterize the filling-

space capacity of a multifractal object from the perspective of trans-
lational invariance. Figure 9 illustrates the lacunarity spectra of
in-control and out-of-control UPM image profiles with respect to
the number of boxes of different sizes. As shown in Fig. 9, the
out-of-control images have higher lacunarity values for different
box sizes in comparison with in-control image profiles. This
shows that there are more gaps and heterogeneity in out-of-control
image profiles.
Next, we characterize the differences in the multifractal spectrum

f(α(q)) and α(q) and lacunarity values of UPM image profiles by
Hotelling T2 statistics. Figure 10 demonstrates the logarithmic
values of Hotelling T2 for in-control and out-of-control image pro-
files. As shown in Fig. 10, Hotelling T2 statistics of feature vectors
show significant differences between in-control and out-of-control
image profiles. Note that the negative values of log Hotelling T2 sta-
tistics are related to Hotelling T2 statistics that have values close to
zero. The results show that multifractal and lacunarity analysis cap-
tures nonlinear variations inherent to an image profile by extracting

(a) (b)

(c) (d)

Fig. 5 UPM images with smooth surfaces (in-control): (a) Ra=
43.81 nm, (b) Ra=43.83 nm and rough surfaces (out of control),
(c) Ra=297.58 nm, and (d ) Ra=296.92 nm

Fig. 6 Multifractal spectra of four UPM images: (a) Ra=
43.81 nm, (b) Ra=43.83 nm, (c) Ra=297.58 nm, and (d) Ra=
296.92 nm in Fig. 5

Fig. 7 Lacunarity spectra of 4 UPM images: (a) Ra=43.81 nm,
(b) Ra=43.83 nm, (c) Ra=297.58 nm, and (d) Ra=296.92 nm in
Fig. 5

Fig. 8 Multifractal spectra of 100 UPM image profiles
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useful information from local densities and heterogeneous patterns
in multiple scales.

4.2 LPBF-AM Application. This case study is to quantify the
effects of process conditions on part porosity in laser LPBF-AM and
then detect the onset of process conditions that lead to defects from
in situ images. To this end, we developed a multivariate predictive
model to investigate the effects of three LPBF-AM process param-
eters, namely, laser power (P), hatch spacing (H ), and velocity (V )
on the Hotelling T2 values from image profiles. LPBF-AM experi-
ments for this study were conducted using the EOS M280 machine
along with spherical ASTM B348 Grade 23 Ti-6Al-4V powder
whose particle size ranges from 14μm to 45 μm.
The cylinder parts were printed with the design of experiments to

vary the process parameters (see Fig. 11). Hatch spacing and laser
scanning velocity are increased by 25% and 50% (i.e., 0.12 mm,
0.15 mm, and 0.18 mm for hatch spacing and 1250 mm/s,
1562.5 mm/s, and 1875 mm/s for scanning velocity). Laser power
is decreased by 25% and 50% (i.e., 340 W, 250 W, and 170 W).
We collected the 3D XCT scan data of cylinder parts built in the
Applied Research Laboratory at The Pennsylvania State University.
As the part is built layer by layer, we extract the 2D sliced images of
each layer in the 3D printed cylinders. Our objective is to investi-
gate how the change in process parameters impacts the porosity
levels represented by Hotelling T2 statistics for the layerwise
image profile.
Figures 12(a) and 12(b) show the corresponding 3D XCT scan

images and top view of the cylinder part which has a size of
25 mm in length and 10 mm in diameter. Figure 13 shows the multi-
fractal spectra of 144 images under different printing conditions.
The variations of process conditions lead to distinct multifractal
spectra distributed in a wider range. Each set of process parameters
leads to a group of multifractal spectra that are different from each
other. The multifractal spectrum located the farthest from other
groups in the top right corner of Fig. 13 is corresponding to the
50% decrease in power (i.e., P50-), which implies that higher

heterogeneity exists in the layers of AM parts under this process
setting. Also, the increase in hatch spacing and velocity leads to
the multifractal spectra that are different from the nominal condition
(i.e., (H0; V0; P0)). Such experimental results show that multifractal
characteristics effectively reveal hidden features in LPBF-AM
images that are strongly correlated with the variations of process
parameters.
Figure 14 shows the lacunarity spectra of 144 XCT scan images

of the LPBF-AM process. When the spectra of lacunarity values are
small, the images show more heterogeneity. In other words, the
increase in laser power has the most significant impact on causing
more pores or defects on that layer. The second important factor
pertinent to defects in the LPBF-AM process is the increase in
hatch spacing. The joint lacunarity and multifractal results show
that the proposed methodology is effective to identify the defects
caused by variations in process parameters and has strong potentials
to help control the system or take the correction action before the
defects are extended to the next layers in the LPBF-AM process.
Further, we develop a regression model to investigate the rela-

tionship between process parameters with the Hotelling T2 statistics,
which is calculated based on the combined multifractal and lacunar-
ity features of XCT image profiles. Here, the response variable y

Fig. 10 The Hotelling T2 chart of UPM image profiles

Fig. 9 Lacunarity spectra of UPM image profiles

Fig. 11 Process parameter setting of the LPBF-AM cylinders

(a) (b)

Fig. 12 (a) 3D visualization of the XCT scan and (b) the top view
of the XCT scan of a cylinder part

Fig. 13 Multifractal spectra of XCT scan images of the LPBF-AM
process
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(i.e., the Hotelling T2 statistics) is transformed to improve variance
stabilization and reduce the heteroscedasticity as follows:

z = f (y) =
yλ − 1
λ

, λ > 0

log y, λ = 0

⎧⎨
⎩ (22)

Theoptimal value λ* is selected tobe−0.022 that provides themost
parsimonious model with no unusual patterns in the residual plots.
Based on the transformed data z, the resulted model is as follows:

Z = 11.802 − 68.77H − 0.0052P − 0.00698V

+ 208.82H*H + 0.000015P*P

+ 0.000002V*V

(23)

As shown in Table 1, the regression model yields the adjusted
R-squared statistic of 94.76%, showing that the variations of
process conditions are highly correlated with multifractal character-
istics in the imaging profiles of AM builds. Note that H, P, V and
H2, V2 and P2 have a p-value of zero. All the parameters are signifi-
cant in the 95% confidence level. When we decrease the laser
power, increase the scan velocity, and increase the hatch spacing
from the nominal setting, Hotelling T2 statistics will be increased.
In other words, the heterogeneity of LPBF-AM images is increased,
which indicates an increasing level of defects. As shown in Fig. 15,
we use the normal probability plot for residual analysis and model
diagnosis. The straight line shows that the residuals are approxi-
mately normal, which validates the regression model.

5 Conclusions
Advanced imaging technology is increasingly invested to increase

information visibility and cope with system complexity in manufac-
turing processes.Massive image data provide rich information on the
hidden dynamics of manufacturing processes and are conducive to
improve the data-driven process monitoring and control. However,
very little has been done to investigate themultifractal characteristics
of image data for the purpose of process monitoring and quality
control. This paper presents a joint multifractal and lacunarity anal-
ysis to characterize and quantify image profiles from manufacturing
processes (i.e., UPM and LPBF-AM). Experimental results show
that the joint multifractal and lacunarity analysis not only effectively
characterizes the surface finishes for quality control of UPM but also
provides an effective predictive model to link process parameters
with multifractal characteristics of in-process images acquired
from the AM process. The proposed methodology has strong poten-
tials to be applied for process monitoring and control of large
amounts of image profiles in a variety of domains such as ultrapreci-
sion machining and additive manufacturing.
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Table 1 R-squared values for the regression model
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Fig. 15 Normal probability plot for model diagnosis
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