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ABSTRACT Additive manufacturing (AM) provides a greater level of flexibility to produce a 3-D part
with complex geometries directly from the design. However, the widespread application of AM is currently
hampered by technical challenges in process repeatability and quality control. To enhance the in-process
information visibility, advanced sensing is increasingly invested for real-time AM process monitoring. The
proliferation of in situ sensing data calls for the development of analytical methods for the extraction
of features sensitive to layer-wise defects, and the exploitation of pertinent knowledge about defects for
in-process quality control of AM builds. As a result, there are increasing interests and rapid development of
sensor-based models for the characterization and estimation of layer-wise defects in the past few years.
However, very little has been done to go from sensor-based modeling of defects to the suggestion of
in situ corrective actions for quality control of AM builds. In this paper, we propose a new sequential
decision-making framework for in situ control of AM processes through the constrained Markov decision
process (CMDP), which jointly considers the conflicting objectives of both total cost (i.e., energy or time)
and build quality. Experimental results show that the CMDP formulation provides an effective policy for
executing corrective actions to repair and counteract incipient defects in AM before completion of the build.

INDEX TERMS Additive manufacturing, constrained Markov decision process, optimal control policy,

quality control, defect mitigation.

I. INTRODUCTION

Additive manufacturing (AM) is a process to build complex
3D parts from computer-aided design (CAD) models through
layer-upon-layer deposition of materials. AM provides signif-
icant advantages over traditional subtractive (machining) and
formative (casting, molding) manufacturing processes, such
as reducing material waste, eliminating specialized tooling
cost, and enabling the creation of intricate and free-form
geometries. It has been estimated that the global market for
AM processes and services will reach around $50 billion by
the year of 2031 [1]. However, the widespread application
of AM is currently hampered by technical challenges such
as the lack of ability to realize real-time quality control.
For example, process variations and uncertain factors signifi-
cantly impact the microstructure and mechanical properties
of AM builds, which will further lead to internal defects
deteriorating the build hardness, strength, and residual stress.

Due to the high-level complexity of AM processes,
advanced sensing systems (e.g., thermal camera, high-speed
optical camera, photodetector, pyrometer, acoustic emis-
sion) are increasingly invested for real-time AM process
monitoring and quality control. Advanced sensing brings a
proliferation of complex-structured data with nonlinear and
nonstationary patterns. Realizing full potentials of in-situ
sensing data depends on the development of analytical meth-
ods for the extraction of features sensitive to layer-wise
defects, and the exploitation of pertinent knowledge about
defects for in-process quality control of AM builds. As a
result, there are increasing interests and rapid development of
sensor-based models for the characterization and estimation
of layer-wise defects in the past few years. However, very
little has been done to go from sensor-based modeling of
defects to the suggestion of in-situ corrective actions for
quality control of AM builds.
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Indeed, the ability to mitigate incipient defects is critical
to mandating stringent standards for both product esthetics
and functional integrity in AM industries. The hybrid AM
machines provide an opportunity to take corrective actions
and improve the quality of AM build [2]. For example, if an
AM layer is highly defective (i.e., with a high probability to
contain defects), the hybrid machine can take an action to
remove such layers (i.e., machining off the highly defective
layer, denoted as ayy). If a layer has defects due to lack of
fusion, the laser can be used to re-fuse and mitigate such
defects (i.e., denoted as ar). If an AM layer is with the low
defect level (i.e., with a small probability to contain defects),
the process will continue and no corrective action is taken
(i.e., wait and do nothing, denoted as aw). The choice of
corrective actions will affect the evolving dynamics of defect
states of the next layer and, through that, all subsequent
layers, as illustrated in Fig. 1. Sequential optimization of
AM processes is urgently needed to consider the uncertainty
in transitions from layer to layer and minimize the expected
cumulative cost through all layers.
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FIGURE 1. An illustration of state-action transition diagram. Note that sp,
sm., and s; denote the high, median, and low defect states of an AM layer.
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However, sequential optimization of AM builds is a chal-
lenging task because of conflicting criteria, i.e., minimizing
total energy (or time) cost consumed in the manufacturing
process and maximizing the quality of final builds. For exam-
ple, if corrective actions are taken too often, the total cost
will be high although the build quality reaches the satisfactory
level. If we decrease the frequency to take corrective actions,
less energy will be consumed and, equivalently, the time to
complete the build will be shortened, but there is a higher
probability to yield a defective build. Very little has been done
to develop an optimal sequential decision-making strategy for
AM control with the consideration of conflicting objectives in
both energy (or time) and quality. There is an urgent need to
develop new decision-making models that help sequentially

optimize the quality of AM builds while minimizing the cost
in energy (or time).

This paper presents a constrained Markov decision pro-
cess (CMDP) framework to sequentially optimize AM pro-
cesses by minimizing the total cost and, at the same time,
controlling the quality of AM builds. Specifically, we model
the variation of layer-wise defect index as a stochastic process
to capture the evolving dynamics of AM defects. The defect
state and corrective action in each layer will impact the defect
condition of the next layer and, through that, all subsequent
layers. Therefore, we propose a CMDP framework for the
sequential optimal control of AM processes. The CMDP
model is further utilized to derive an optimal control pol-
icy based on the series of defect-state index estimated from
layer-wise images in a metal AM application. Experimental
results show that layer-wise AM defects are effectively con-
trolled under the CMDP policy, i.e., being mitigated before
they reach the non-recoverable stage.

The rest of this paper is organized as follows: Section II
introduces the research background of sensor-based mon-
itoring and control of AM processes. Section III presents
the research methodology that integrates sensor-based defect
estimation with the CMDP framework for sequential AM
optimization. Section IV shows the numerical experiments.
Section V concludes this paper.

Il. RESEARCH BACKGROUND

A. SENSOR-BASED MONITORING OF AM PROCESSES

In current practice, the quality of an AM build is com-
monly examined by post-build inspection techniques such
as X-ray computed tomography (XCT) and scanning opti-
cal microscopy [3]-[5]. Such post-build inspection is well
known to be expensive and time-consuming, and is not appli-
cable for online quality control. The lack of in-situ quality
assurance in AM parts hinders the widespread application
of AM processes. Therefore, modern industries are increas-
ingly investing in advanced sensing systems to cope with the
high-level complexity of AM processes.

As shown in Table 1, there are a number of sensing sys-
tems developed for AM process monitoring, including optical
camera, thermal camera, photodetector, pyrometer, acoustic
emission, and optical emission. Foster et al. [6] developed
an optical layer-wise imaging system to monitor the laser-
powder-bed-fusion (LPBF) AM process in the Center for

TABLE 1. Sensing systems and analytical methods for defect detection in LPBM AM.

Sensing Systems

Data Types

Analytical Methods

Optical camera [6], [17], [18]:
Thermal camera [8], [21], [22]:
Photodetector [12]:

Optical image
Thermal image
Time series

Line-to-continuum [19], [20]
Self-organizing maps [23]
Spectral graph theory [24]

Pyrometer [9]: 3D point cloud || Multifractal analysis [25], [26]
Acoustic emission [10]: CAD design Greedy Bayesian estimation [27]
Optical emission [11]: CT-scans Statistical predictive modeling [28]
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Innovative Metal Processing through Direct Digital Deposi-
tion (CIMP-3D) at the Pennsylvania State University. This
imaging system consists of a 36.3 megapixel DSLR camera
that is placed inside the chamber of EOS M280 machine.
It has been further implemented to identify and characterize
defects caused by lack-of-fusion in the LPBF process [7].
Krauss et al. [8] proposed a real-time thermographic system
using infrared cameras to monitor the selective laser melting
process. This thermal system is implemented for layer-wise
monitoring of the dynamic temperature distribution to iden-
tify hot spots in the early stage, which helps to avoid process
interrupts.

In addition to imaging systems, Furumoto et al. [9] devel-
oped an in-situ system to monitor the layer-wise surface
temperature using a two-color pyrometer in selective
laser sintering and selective laser melting processes.
Wang et al. [10] presented in-situ monitoring approach using
the acoustic emission technique to investigate the crack
generation and propagation during laser cladding process.
Liu et al. [11] proposed a real-time sensing system using
the optical emission spectrometer to monitor the temperature
of the molten pool in the laser hot-wire cladding process.
Lane et al. [12] combined an array of photodetector sensors
with a thermal camera to investigate process variations in
LPBF AM. For a comprehensive review of metal-based AM
sensing system, see, e.g., [13]-[16].

B. SENSOR-BASED CHARACTERIZATION AND
IDENTIFICATION OF AM DEFECTS

Advanced sensing brings a large amount of complex-
structured data with nonlinear and nonstationary patterns.
There is an urgent need to develop analytical methods for the
extraction of features sensitive to layer-wise defects in AM
builds. Recently, there are increasing interests in the develop-
ment of sensor-based models to extract effective and sensitive
features from the big sensing data to identify and characterize
layer-wise defects in AM builds. Montazeri et al. [24] pro-
posed a spectral-graph approach to study the photo-detector
sensor signature for the identification of defects caused by
material cross-contamination in LPBF AM process. Dunbar
and Nassar [19] proposed a line-to-continuum approach to
investigate the relation between process settings, sensor out-
puts, and build quality in PBF-AM using the optical emission
spectroscopy. This approach has also been implemented for
defect detection in the directed energy deposition (DED)
processes [20].

In addition, Khanzadeh et al. [23] studied the melt-pool
images and developed self-organizing maps to predict poros-
ity in DED processes. Yao et al. [25] and Imani et al. [29]
developed a multifractal analysis approach to identify and
characterize layer-wise defect states from the surface images
in LPBF-AM builds. Liu et al. [30] proposed an augmented
Gaussian Cox process model to study the CT-scan images
and quantify the layer-wise evolution of porosity in AM
parts. Gobert et al. [31] utilized the support vector machine
to extract multi-dimensional defect features from layer-wise
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images captured by a high-resolution DSLR camera.
Vandone et al. [32] proposed a multisensor approach to com-
bine melt pool images with the 3D geometry from offline
quality inspection for the DED process modeling.

Sensor-based models provide effective and sensitive fea-
tures to identify and characterize layer-wise defects in AM
builds, but are less concerned about in-situ corrective actions
for the closed-loop control of AM processes. The defect
condition and corrective action taken at each layer will signif-
icantly affect the next layer and all subsequent layers. Thus,
there is an urgent need to develop a sequential strategy to
account for the uncertainty in transitions from layer to layer
and optimize the AM build quality.

C. AM PROCESS CONTROL

Rapid advances in sensing systems facilitate the develop-
ment of new methods for AM process modeling and control,
including the ON/OFF controller [33], proportional-integral-
derivative (PID) controllers [34], and a fuzzy logic-based
controller [35], which focuses on improving the geometrical
characteristic of AM parts. Also, Song and Mazumder [36]
proposed a predictive control strategy to track and stabilize
the melt pool temperature to a reference temperature pro-
file in a laser cladding process. Craeghs et al. [37] built a
feed-back controller using optical sensors to continuously
monitoring the melt pool and optimize process parameters
in the layer-wise laser melting process. Most of existing
works focus on the modeling of defect conditions and pro-
cess parameters (i.e., laser power, deposition thickness, hatch
spacing), as well as the selection and stabilization of pro-
cess parameters for the AM build. Those methods are less
concerned about the uncertainty in the evolving dynamics of
defect states from layer to layer, and do not account for the
sequential decision making to mitigate incipient defects in
AM processes.

The hybrid AM machines provide a set of corrective
actions (e.g., machining-off, laser re-fusion) for the miti-
gation of AM defects in real-time before the completion
of the build. Such corrective actions are different from the
adjustment of process parameters. Rather, they provide an
opportunity to repair a layer before proceeding to the next
layer under the condition that process parameters are already
set to be optimal. Note that Yao et al. [38] proposed a Markov
decision process (MDP) framework to sequentially optimize
the PBF AM process. However, the existing MDP models
focus on a single objective and do not specifically consider
the conflicting criteria in AM, i.e., minimizing total energy
(or time) cost consumed in the manufacturing process and
maximizing the quality of final builds. Little has been done
to develop an optimal sequential strategy by considering the
conflicting objectives in both energy and quality.

lll. RESEARCH METHODOLOGY

This section presents a sequential framework of constrained
Markov decision process (CMDP) to control the quality of
AM builds. As shown in Fig. 2, we first extract defect
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FIGURE 2. Flow diagram of the research methodology.

features from the layer-wise AM images captured by the
optical imaging system developed in the CIMP-3D at Penn
State [6]. Second, we model the evolving dynamics in the
defect condition of AM layers using as a Gaussian process.
Finally, we derive the optimal AM control policy through a
CMDP framework by considering both energy (or time) cost
and build quality. The effective AM process monitoring and
build quality control are vertical steps to mitigate incipient
defects, reduce rework rates, and further guarantee the eco-
nomic viability of AM.

A. SENSOR-BASED MODELING OF AM DEFECTS

As shown in Table 1, a variety of analytical methods have
been developed to analyze in-situ sensor data from AM pro-
cesses and extract features that are sensitive to the layer-wise
defects. Let 6; = [6;1,0s2,...,0;] denote the vector of
defect features, where t € {1,2,..., T} is the layer index,
and p is the dimensionality of feature vector. Generally, it is
assumed that @, approximately follows the multivariate nor-
mal distribution, i.e., 8, ~ ./\/;,([L, %), if the process is in
control. Here, we propose to compute the composite index to
represent the layer-wise defect condition as:

sc=(0,—0Y="10, —0) (1

where @ is the sample mean and ¥ is the sample vari-
ance. The defect index s; simultaneously accounts for
multi-dimensional variations among the defect conditions of
layer t. The layer-wise structure of AM build then leads to
a sequence of defect states in the form of stochastic signals
as illustrated in Fig. 3. Given a large sample size, s; approx-
imately follows a X,% distribution if the dimensionality of
features p > 10.

Further, we define the defect state by equiprobable divi-
sion of the distribution of defect index s; into [ bands,
as shown in Fig. 3. The breakpoints for / equiprobable
bands are defined as a sorted list of boundary values B =
{B1, B2, ..., Bi—1} such that the area under the density curve
between B; and By is 1/I. For the distribution of Xp2=20’
the breakpoints for three equiprobable bands (i. e I =3
are B = X/ oo = 16.7884 and B, = X2/3 o0 =
22.1331. Table 2 lists the breakpoints 8’s for dlfferent number
of equiprobable bands /. This results in the defect state space,
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FIGURE 3. Stochastic dynamics in the series of layer-wise defect index.

into different

TABLE 2. A lookup table of breakpoints that divides x2 p=20

number (from 3 to 5) of equiprobable regions.

Breakpoints || [ =3 =4 l=5
B=1 16.7884 154518 14.5784
8=2 22.1331 19.3374 17.8088
5 =3 23.8277 20.9514
8 =4 25.0375
D = {di, ..., d;}, and the defect state at layer ¢ is d; if the

defect index s; falls into the band [B;—1, B;). Note that d;
represents the lowest defect level, and d; denotes the highest
defect level.

In addition, we model the evolving dynamics underlying
the layer-wise defect states as Gaussian process. The pre-
dictive model is constructed by taking into account previous
observations of the defect state. Specifically, the model input
is defined as w; = [S;—¢, St—r41,...,5:—1], and s; is the
model output, i.e.,

s =f(w)+e, t=1,2,3,... 2)
where f(-): R — R is an unknown scalar function with a
multi-dimensional input vector w; € R", and € ~ N (0, ?)
denotes the Gaussian noise with zero mean and variance o 2.
The task is to infer the unknown function f(-) given the input
and noise observations.

For a collection of inputs: = [w], @], ... o],
there is a corresponding functional random variables:
f =1[fi.f.....f,]7, whose joint probability distribution is
assumed to be Gaussian distribution, i.e..,

f1® ~N({,K) 3)

where f is the mean function, and K is the covariance matri-
ces, and is generally assumed to be in the form of squared
exponential to guarantee that cases with nearby inputs will
have highly correlated outputs. The hyper-parameters in
Eq.(3) are given by the maximum likelihood estimation.
Given the observation history of defect index s_ =
{s1, $2, ..., s;—1} and the corresponding input £2_, prediction
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of the distribution of s; is expressed as

s- ] f_ K(R_,Q_)+ 02
IR f

The predictive distribution of s; is given by

K(Q_, w,)D
K(w;, w;)

si ~ N(us,, 02 )
where

s, = fi + K@, QOK(Q—, @)+ 0,11 (5= —f )
oy = Ko, @) — K(w;, )[K(R_, )
+ 02117 'K(R_, w)

The transition probability in the defect state space from
layer t — 1 to layer ¢ is then defined as:

P(d; =dj|d;— Zdi)z(b('gj_zudfldf)_(p(ﬁj—l_ﬂdﬂd:‘)

2
Od;\d; Od;\d;

where s; € [Bj—1, Bj)) ~ dj, and ¢ is the cumulative density
function of the standard normal distribution. The prediction
model is utilized to recursively update the distribution of
defect index s, and to further develop the CMDP framework
for sequential AM control.

B. CONSTRAINED MDP MODELING OF AM PROCESSES
Markov decision process (MDP) helps to derive the optimal
policy by minimizing the expected cumulative cost or max-
imizing expected rewards for a sequential decision-making
problem in the stochastic environment. The MDP has been
used previously to sequentially optimize the maintenance of
engineering systems [39], [40]. Note that the MDP frame-
work commonly focuses on a single objective, and is less
concerned about conflicting objectives as in the AM pro-
cesses (i.e., minimizing total cost - energy or time, as well as
maximizing the build quality). Hence, there is an urgent need
to develop multi-objective optimization models for handling
the sequential decision-making problem in AM control.

Constrained-MDP (CMDP) is an efficient approach for
sequential optimization with the considering of conflicting
objectives [41]. It has been previously implemented for risk
analysis in finance [42] and path planning in vehicle swarm
coordination problem [43] , but very little has been done for
the quality control of AM processes. In this paper, we propose
anew CMDP framework to determine the optimal policy that
minimizes the total energy (or time) cost and guarantees the
quality of AM builds. The CMDP formulations are described
as follows:

1) STATE SPACE

The state space is defined as S = (T, D), where T =
{1,2,...,T} is the set of layer index, and D is the set
of defect states, i.e., dj, ..., d;, which is structured in the
increasing order of defect levels (i.e., d; is the lowest defect
level, and d; denotes the highest defect level).
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2) ACTION SPACE

The action space is defined as o/ = {ay, ar,, aw}, where ay,
denotes the action of machining off a layer with the cost of
cu, ar, 1s the action of laser re-fusion with the cost of ¢;,, and
aw represents the action of waiting (i.e., doing nothing) with
the cost of cyy.

3) DECISION POLICY

The decision rule at layer ¢ is denoted by Q;(d;, a), which is
defined as the probability of selecting action a € <7 given the
defect state d; at layer index ¢.

4) STATE TRANSITION

Let P{(d;+1|d;) be the transition probability from state d; of
layer ¢ to state dy+1 of layer # 4+ 1 under the action a € <7.
Given the decision policy Q,(d;, a), the state transition is then
defined as

MG, j) =Y Quldi, )P{(dry1 = djldy =d;) ~ (5)
acel

Let the vector x; = [x:1,...,x4]7 (1Tx, = 1, where 1
is a vector of 1’s) represent the probability distribution of
defect states d; € {di, ..., d;} at layer ¢, which means the
probability of defect index s; staying in the defect state d; is
x;;. Then, x; evolves according to:

X1 =Mx, (6)
The CMDP model is formulated as follows:
T—1
Qlf.l.l’iélTil vr = Ey, [; ci(xs, Or) +c7]
s.t.x; < h, ].Txt =1
X1 =Mx;, O1=1,0,>0
fort=1,2,..., T —1 7)

where Q; is the decision matrix for layer ¢, vr is the expected
total cost in energy or time, ¢;(x;, Q;) = Zaed cqaQi(d;, a)
is the immediate cost at layer 7, and ¢7 is the terminal cost at
the final layer 7. The first set of constraints guarantees that
the probability of each defect state is bounded by a predefined
upper bound £ and 0 < h < 1. The last two sets of constraints
guarantee each row of Q; to be a valid probability distribution.

C. DYNAMIC PROGRAMMING TO SOLVE CMDP
If the upper-bound constraint (i.e., x, < h) is deleted in the
CMDP model of Eq. (7), then the rows of Q; are independent
and not correlated. As such, the CMDP model can be solved
by dynamic programming with simple backward induction.
However, due to the upper-bound constraint on the distribu-
tion of defect density, the rows of Q; are correlated in the
formulation through state transition in Eq. (6). As a result,
simple backward induction is not applicable here to solve the
CMDP model.

In this subsection, we provide a feasible control policy by
solving the CMDP model using dynamic programming for
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the worst-case scenario of initial distribution of defect states.
Specifically, the algorithm is summarized as follows:
o Step I: Set the cost vector of defect states at layer T as
Ur=cr
o Step2:Fort =T —1,...,1, given Uy41, compute the
control policy for layer ¢ by solving

0, = arg mén mfxxr(; cqaQ(dy, a)

+M(Q U 11)
st., 0<x<h
M(Qx <h
1'x=1, 01=1,0>=0 (8

The cost vector of defect states at layer ¢ is

U= caQds, a)+M(Q) Upyy

« Output: control policy 7* = {Ql, Qg, R QT_I} and

the expected total cost v} < xlTU 1.

Theorem 1: The control policy derived from the above
algorithm guarantees that the expected total energy or time
cost is smaller than an upper bound, i.e., v? < x]T Ui.

Proof: We define gr(x7) = ng r (i.e., the expected
cost when t = T), and the expected cost at ¢ is defined
as g/(x;) = ming, {x! c/(x;, Or) + gi+1(M;x,)}. Therefore,
the expected total cost for the whole process is v = g1(x1)
through the backward accumulation. Next, we will prove
g:(x;) < xI'U, by mathematic induction. Because the upper
bound g7 (x7) < x%UT is true for t+ = T, if it is also true for
t+1,ie., grr1(xi41) < xtTJrl U;+1, then we have

gi(x) = rrgn{xfc,<x,, Q1) + g 1(Mx;)}
< ngn{x?ct<xt, 0) +xIM U1}
= rr&n{x{(cf(xf, Q)+ M Uri1))
= min{x{ () caQ(ds, &) + Mi(Q)' Ur1)}
Z

= rréin{xtTU,} <x'vu,
1

According to mathematic induction, we have v”T‘ =gi1x) <
xlTU 1, which completes the proof.

D. DERIVATION OF Q; BY LINEAR PROGRAMMING

DUAL THEORY

The computation of Q; in Eq. (8) pose a significant challenge
on implementing the proposed backward dynamic program-
ming to solve the CMDP model. Note that the formulation
of min-max linear programming (LP), due to the interaction
term of M;(Q)x, cannot be simply solved by the conventional
min-max LP algorithms. In this subsection, we will detail how
to solve Q; using the LP dual theory.
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Theorem 2: If the min-max LP problem in Eq. (8) is
transformed into the equivalent LP formulation below:

min hTy +z
0.y.zw.F
S't'a y +Z]~ Z UZ(Q)
MQ)—wll +TOh+w <h
— w1l 4T +MQ) >0
o1=1
y, ', Q > 0, z unconstrained )
Then, the control policy Q; is obtained.
Proof- If we defineb = U;, A = (I,1,-1), kT =
(h", 1, —1), the max LP in Eq. (8) can be represented as:
max b’ x
st, ATx <k x>0 (10)
The corresponding dual problem becomes
min 'y + z
sk, y+2z1 > Ul(Q)

y >0, zunconstrained (11

Considering arg min in Eq. (8), the allowable domain of O
can be represented by linear inequalities so as to formulate
a minimization LP problem. Note that the probability upper
bound of each defect state holds if and only if the following
condition holds:

max M (Qx; <h (12)

x <h,1Tx=1

which ensures that the probability distribution of defect states
satisfies the upper-bound constraint at current layer ¢ as well
as at next layer # + 1 after state transition.
The dual of the i LP in Eq. (12) is formulated as
min A7 +w
st 7+ 1w > M (Qe;
7 >0, w unconstrained (13)

where e; is a unit vector whose i element is 1. Adding the
surplus variables y and p, the LP in Eq. (13) becomes

min 77 +w
st 7 +1w—y =M (Qe;

7—p=0
p >0, y > 0wunconstrained (14)
=

min BT (MT(Q)e; — 1w+ y) +w
s.t., MT(Q)ei—1w+y >0

y >0, w unconstrained (15)

According to the strong dual property, the optimal objec-
tive value of Eq. (15) equals to that of Eq. (12). Note that the
optimal objective value of Eq. (12) satisfies the upper-bound
constraint, which means the optimal value of Eq. (15) needs to
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satisfy the same constraint, i.e, hT(MT(Q)e,- —1lw4y)+w <
h;. Thus, the LP problem in Eq (12) can be equivalently
formulated as

MQ)—wll + Dh+w <h
M@Q) —wlT +T >0

01=1, TI,0>0 (16)

Combining Eq. (16) with Eq. (11) completes the proof.

IV. NUMERICAL EXPERIMENTS

We implement the proposed CMDP framework to derive the
optimal control policy for AM processes. The layer-wise
imaging data are acquired from the LPBF process of an AM
build as illustrated in Fig. 4(a). Each AM image is character-
ized by 7360x4912 pixels with a pixel size of 12.22um. The
availability of in-situ data enables the extraction of defective
features that are sensitive to the variations in quality charac-
teristics of each layer in the build.

(a) (b)

FIGURE 4. (a) The AM build by the LPBF-AM process; (b) The 2D image of
an AM layer.

As aforementioned, sensor-based methods were developed
to analyze in-situ AM data, characterize build defects, and
extract the layer-wise defect index (i.e., ;). The resulted con-
tinuous defect index s, is then discretized into ten states using
the equiprobable method as introduced in Section II.A. This
leads to the defect state space, i.e., D = {di, da, ..., dio}-
Note that we use 1, 2, ..., 10 to denote the defect state dj,
dy, ...,and djo in Fig. 7.

Three actions are considered in this case study, i.e., ay -
machining off, a; - laser re-fusion, and aw - wait and do
nothing, with the corresponding cost of ¢y = 10, c; = 4, and
cw = 1. We define the terminal cost at the final layer ascr =
[1,1,1,1,50, 50,50, 100, 100, 1000] for the increase levels
of defect states di ~ djo. In other words, we assign a rela-
tively high terminal cost to the final layer that is with a higher
probability of failure. If the defect state is no higher than dy,
the cost is as small as 1. During the printing process, it is
desirable to control the layer-wise build quality, i.e., reduc-
ing the probability of AM layers to enter high-defect states.
As such, we define the probability upper bound as h =
[1,1,1,1,0.1,0.1,0.1,0.001, 0.001, 0.00001] for the defect
states from d; to djo. This definition guarantees that the
probability of AM layers staying in state ds, dg, or d7 should
not exceed 0.1, and that in state dg (or dg) and d( should not
be greater than 0.001 and 0.00001.
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FIGURE 5. The optimal CMDP policy for AM quality control.

Fig. 5 shows the control policy derived from the proposed
CMDP framework. Note that if the defect index s; locates in
the region below the green and red step curves, the optimal
action is to wait and let the AM process continue operating
(i.e., aw). If s; exceeds the green step curve and is in the green
area, the action ay, is chosen to fuse the defective region again
using the laser. Otherwise, if s; is high and goes beyond the
red step curve into the red region, the policy will choose the
expensive but more effective action ayy, i.e., machining off
the entire layer that is highly defective.

Fig. 6 shows the performance comparison between MDP
and CMDP policies. Note that the average probability in
the low-defect states (including dj, d», d3, and d4) over
time under the CMDP policy is 0.92174+0.0441, which
are significantly higher than that under the MDP policy
0.4948+0.0315. Moreover, the average probability in the
median-defect state (including ds, de, and d7) and high-defect
state (including dg and dy) over the printing process under
the MDP policy is 0.445240.1068 and 0.0486+0.0346,
respectively, both of which are much bigger than that
under the proposed CMDP policy of 0.0781+0.0161 and
1.6 x 1074 £ 6.8 x 1075.

It may also be noted that the average probability to enter
the highest defect state (i.e., djo) is 2.3 x 10704+ 1.5 x 1076
during the building process under CMDP policy, which is
much lower than 0.0114£0.0073 under the MDP policy. If we
assume the AM build fails whenever any of its layers goes
beyond djg, the failure probability under CMDP policy is
1 —(1—23x 107919 = 0.023% for a 100-layer build,
butis 1 — (1 — 0.0114)'%° = 68% under the MDP policy.
Thus, the quality of AM builds is controlled more effectively
and has a lower probability of failure under the CMDP policy
than that under the MDP policy.

Fig. 7 shows the variations of CMDP policies with respect
to the ratio of ¢y, (i.e., cost of ar) over ¢y (i.e, cost of ayy).
Fig. 7(a) shows that the control limit of a; increases as ¢y /cy
increases, while that of ay; decreases as shown in Fig. 7(b).
This is due to the fact that after the action ay (i.e., machining
off the entire layer), there will be a higher chance to enter the
low-defect states than by fusing the layer again with laser.
If the ratio ¢z /cpy increases (i.e., the cost of laser re-fusion
becomes comparable to the cost of machining off), the
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optimal policy is to take the more-effective action ay, rather
than taking the less-effective action @y with a comparable
cost.

V. CONCLUSIONS

In this paper, we formulate the in-situ AM quality control
as a sequential decision-making problem through the CMDP
framework. As sensor-based analytical methods have been
developed to provide effective and sensitive defect features
for each layer in the AM build, we propose to compute the
composite index of defect characteristics in each layer that
simultaneously considers multidimensional variations among
these features. Further, we model and predict the stochastic
evolving dynamics of defect states from one layer to the next
as a Markov process. Then, we derive the sequential control
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policy to optimize the build quality through the CMDP frame-
work, which jointly considers the conflicting objectives of
total cost (i.e., either energy or time) and build quality. Exper-
imental results show that the CMDP formulation provides an
effective policy for executing corrective actions to repair and
counteract incipient defects in AM before completion of the
build. The probability to contain embedded defects in the AM
build is much smaller (i.e., 0.023% for a 100-layer build)
than the traditional MDP policy (i.e., 68%). The proposed
sequential optimization framework has great potentials for
real-time defect mitigation and quality control of AM builds.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the valuable contribu-
tions of Dr. Edward Reutzel and Dr. Abdalla Nassar from the
CIMP-3D at Penn State for providing the data utilized in this
research.

REFERENCES

[1] D. Thomas, “Costs, benefits, and adoption of additive manufacturing:
A supply chain perspective,” Int. J. Adv. Manuf. Technol., vol. 85, nos. 5-8,
pp. 1857-1876, 2016.

[2] M.P. Sealy, G. Madireddy, R. E. Williams, P. Rao, and M. Toursangsaraki,
“Hybrid processes in additive manufacturing,” J. Manuf. Sci. Eng.,
vol. 140, no. 6, p. 060801, 2018.

[3] F H. Kim, S. P. Moylan, E. J. Garboczi, and J. A. Slotwinski, “Investi-
gation of pore structure in cobalt chrome additively manufactured parts
using X-ray computed tomography and three-dimensional image analy-
sis,” Additive Manuf., vol. 17, pp. 23-38, Oct. 2017.

[4] 1. Maskery et al., “Quantification and characterisation of porosity in
selectively laser melted Al-Sil0-Mg using X-ray computed tomography,”
Mater. Characterization, vol. 111, pp. 193-204, Jan. 2016.

[5] P. Wang et al., “Scanning optical microscopy for porosity quantifica-
tion of additively manufactured components,” Additive Manuf., vol. 21,
pp- 350-358, May 2018.

[6] B. Foster, E. Reutzel, A. Nassar, B. Hall, S. Brown, and C. Dickman,
“Optical, layerwise monitoring of powder bed fusion,” in Proc. Solid
Freeform Fabr. Symp., 2015, pp. 295-307.

[71 M. Abdelrahman, E. W. Reutzel, A. R. Nassar, and T. L. Starr, “Flaw
detection in powder bed fusion using optical imaging,” Additive Manuf.,
vol. 15, pp. 1-11, May 2017.

[8] H. Krauss, C. Eschey, and M. Zaeh, “Thermography for monitoring the
selective laser melting process,” in Proc. Solid Freeform Fabr. Symp., 2012,
pp. 999-1014.

[9] T. Furumoto, T. Ueda, M. R. Alkahari, and A. Hosokawa, “Investigation
of laser consolidation process for metal powder by two-color pyrometer
and high-speed video camera,” CIRP Ann.-Manuf. Technol., vol. 62, no. 1,
pp. 223-226, 2013.

[10] F. Wang, H. Mao, D. Zhang, X. Zhao, and Y. Shen, ““Online study of cracks
during laser cladding process based on acoustic emission technique and
finite element analysis,” Appl. Surf. Sci., vol. 255, no. 5, pp. 3267-3275,
2008.

[11] S.Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, ‘‘Real-time monitor-
ing of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol., vol. 62,
pp. 124-134, Oct. 2014.

[12] B. Lane, E. Whitenton, and S. Moylan, “Multiple sensor detection of
process phenomena in laser powder bed fusion,” Proc. SPIE, vol. 9861,
p. 986104, May 2016.

[13] G. Tapia and A. Elwany, “A review on process monitoring and control in
metal-based additive manufacturing,” J. Manuf. Sci. Eng., vol. 136, no. 6,
p- 060801, 2014.

[14] B. K. Foster, E. W. Reutzel, A. R. Nassar, C. J. Dickman, and B. T. Hall,
“A brief survey of sensing for metal-based powder bed fusion additive
manufacturing,” Proc. SPIE, vol. 9489, p. 94890B, May 2015.

[15] S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare,
“Review of in-situ process monitoring and in-situ metrology for metal
additive manufacturing,” Mater. Des., vol. 95, pp. 431-445, Apr. 2016.

54793



IEEE Access

B. Yao, H. Yang: CMDP Modeling for Sequential Optimization of Additive Manufacturing Build Quality

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Grasso and B. M. Colosimo, ““Process defects and in sifu monitoring
methods in metal powder bed fusion: A review,” Meas. Sci. Technol.,
vol. 28, no. 4, p. 044005, 2017.

J. Jacobsmiihlen, S. Kleszczynski, G. Witt, and D. Merhof, “Robustness
analysis of imaging system for inspection of laser beam melting systems,”
in Proc. Emerg. Technol. Factory Autom. (ETFA), Sep. 2014, pp. 1-4.

Y. Xiong, W. H. Hofmeister, Z. Cheng, J. E. Smugeresky, E. J. Lavernia,
and J. M. Schoenung, “In situ thermal imaging and three-dimensional
finite element modeling of tungsten carbide—cobalt during laser deposi-
tion,” Acta Mater., vol. 57, no. 18, pp. 5419-5429, 2009.

A.J. Dunbar and A. R. Nassar, “Assessment of optical emission analysis
for in-process monitoring of powder bed fusion additive manufacturing,”
Virtual Phys. Prototyping, vol. 13, no. 1, pp. 14-19, 2018.

C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, ‘“Multi-sensor investiga-
tions of optical emissions and their relations to directed energy deposition
processes and quality,” Additive Manuf., vol. 21, pp. 333-339, May 2018.
B. Lane, S. Moylan, E. P. Whitenton, and L. Ma, “Thermographic mea-
surements of the commercial laser powder bed fusion process at NIST,”
Rapid Prototyping J., vol. 22, no. 5, pp. 778787, 2016.

Y. Zhang, G. S. Hong, D. Ye, K. Zhu, and J. Y. H. Fuh, “Extraction
and evaluation of melt pool, plume and spatter information for powder-
bed fusion AM process monitoring,” Mater. Des., vol. 156, pp. 458-469,
Oct. 2018.

M. Khanzadeh, S. Chowdhury, M. A. Tschopp, H. R. Doude,
M. Marufuzzaman, and L. Bian, “In-sifu monitoring of melt pool
images for porosity prediction in directed energy deposition processes,”
IISE Trans., to be published.

M. Montazeri, R. Yavari, P. Rao, and P. Boulware, “In-process monitor-
ing of material cross-contamination defects in laser powder bed fusion,”
J. Manuf. Sci. Eng., vol. 140, no. 11, p. 111001, 2018.

B. Yao, F. Imani, A. S. Sakpal, E. W. Reutzel, and H. Yang, ““Multifractal
analysis of image profiles for the characterization and detection of defects
in additive manufacturing,” ASME J. Manuf. Sci. Eng., vol. 140, no. 3,
p. 031014, 2018.

F. Imani, B. Yao, R. Chen, P. K. Rao, and H. Yang, ‘“Fractal pattern
recognition of image profiles for manufacturing process monitoring and
control,” in Proc. 13th Int. Manuf. Sci. Eng. Conf., 2018, p. 1.

K. Bastani, P. K. Rao, and Z. Kong, “An online sparse estimation-based
classification approach for real-time monitoring in advanced manufactur-
ing processes from heterogeneous sensor data,” /IE Trans., vol. 48, no. 7,
pp. 579-598, 2016.

Q. Huang, H. Nouri, K. Xu, Y. Chen, S. Sosina, and T. Dasgupta, ““Sta-
tistical predictive modeling and compensation of geometric deviations of
three-dimensional printed products,” J. Manuf. Sci. Eng., vol. 136, no. 6,
p. 061008, 2014.

F. Imani, A. Gaikwad, M. Montazeri, P. Rao, H. Yang, and E. Reutzel,
“Process mapping and in-process monitoring of porosity in laser powder
bed fusion using layerwise optical imaging,” J. Manuf. Sci. Eng., vol. 140,
no. 10, p. 101009, 2018.

J.Liu, C. Liu, Y. Bai, P. Rao, C. Williams, and Z. Kong, ‘“‘Layer-wise spatial
modeling of porosity in additive manufacturing,” IISE Trans., pp. 1-40,
Jun. 2018.

C. Gobert, E. W. Reutzel, J. Petrich, A. R. Nassar, and S. Phoha, “Appli-
cation of supervised machine learning for defect detection during metallic
powder bed fusion additive manufacturing using high resolution imaging,”
Additive Manuf., vol. 21, pp. 517-528, May 2018.

A. Vandone, S. Baraldo, and A. Valente, ‘“Multisensor data fusion for
additive manufacturing process control,” IEEE Robot. Autom. Lett., vol. 3,
no. 4, pp. 3279-3284, Oct. 2018.

J. Mazumder, D. Dutta, N. Kikuchi, and A. Ghosh, “Closed loop direct
metal deposition: Art to part,” Opt. Lasers Eng., vol. 34, nos. 4-6,
pp. 397414, 2000.

E. Toyserkani and A. Khajepour, “A mechatronics approach to laser pow-
der deposition process,” Mechatronics, vol. 16, no. 10, pp. 631-641, 2006.
Y. Hua and J. Choi, “Adaptive direct metal/material deposition process
using a fuzzy logic-based controller,” J. Laser Appl., vol. 17, no. 4,
pp. 200-210, 2005.

L. Song and J. Mazumder, “Feedback control of melt pool temperature
during laser cladding process,” IEEE Trans. Control Syst. Technol., vol. 19,
no. 6, pp. 1349-1356, Nov. 2011.

T. Craeghs, F. Bechmann, S. Berumen, and J.-P. Kruth, “Feedback control
of layerwise laser melting using optical sensors,” Phys. Procedia, vol. 5,
no. 2, pp. 505-514, 2010.

54794

[38] B. Yao, F. Imani, and H. Yang, “Markov decision process for image-
guided additive manufacturing,” IEEE Robot. Autom. Lett., vol. 3, no. 4,
pp. 2792-2798, Oct. 2018.

[39] A.H.Elwany, N.Z. Gebraeel, and L. M. Maillart, *“Structured replacement
policies for components with complex degradation processes and dedicated
sensors,” Oper. Res., vol. 59, no. 3, pp. 684-695, 2011.

[40] M. Kurt and J. P. Kharoufeh, ‘““Monotone optimal replacement policies for
a Markovian deteriorating system in a controllable environment,” Oper.
Res. Lett., vol. 38, no. 4, pp. 273-279, 2010.

[41] M.L.Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 2014.

[42] V. Borkar and R. Jain, “Risk-constrained Markov decision processes,”
IEEE Trans. Autom. Control, vol. 59, no. 9, pp. 2574-2579, Sep. 2014.

[43] M. El Chamie, Y. Yu, and B. Acikmese, “Convex synthesis of randomized
policies for controlled Markov chains with density safety upper bound
constraints,” in Proc. Amer. Control Conf., Jul. 2016, pp. 6290-6295.

BING YAO received the B.S. degree in physics
from the University of Science and Technology of
China, Hefei, China, in 2012, and the M.S. degree
in physics from The Pennsylvania State University,
University Park Campus, State College, PA, USA,
in 2015, where she is currently pursuing the Ph.D.
degree with the Harold and Inge Marcus Depart-
ment of Industrial and Manufacturing Engineer-
ing. Her research focuses on physical-statistical
modeling and optimization of complex healthcare
and manufacturing systems.

HUI YANG is currently a Harold and Inge Mar-
cus Career Associate Professor with the Harold
and Inge Marcus Department of Industrial and
Manufacturing Engineering, The Pennsylvania
State University, University Park Campus, State
College, PA, USA. His research program is
supported by the National Science Foundation
(including the prestigious NSF CAREER Award),
Lockheed Martin, NSF Center for e-Design, NSF
Center for Healthcare Organization Transforma-
tion, and equipment grants from NSF and State of Florida for labora-
tory computing infrastructure improvement. His research interests focus on
sensor-based modeling and analysis of complex systems for process mon-
itoring, process control, system diagnostics, condition prognostics, quality
improvement, and performance optimization.

Dr. Yang has co-authored the book Healthcare Analytics: From Data to
Knowledge to Healthcare Improvement (John Wiley & Sons, 2016). He is
a Professional Member of IEEE, IEEE EMBS, INFORMS, IIE, ASEE,
and American Heart Association. He served as the President of INFORMS
Quality, Statistics and Reliability Society from 2015 to 2016 and the Pro-
gram Chair of the 2016 Industrial and Systems Engineering Research Con-
ference. Also, he served as the President of the IISE Data Analytics and
Information Systems Society (2017 ~2018). He is an Associate Editor of the
IISE Transactions, the IEEE Journal of Biomedical and Health Informatics,
IEEE Robotics and Automation Letters, Quality Technology and Quality
Management, Proceedings of 2018 IEEE Conference on Biomedical and
Health Informatics, Proceedings of 2018 IEEE International Conference
on Automation Science and Engineering, and Proceedings of 2017 IEEE
International Conference on Automation Science and Engineering.

VOLUME 6, 2018



	INTRODUCTION
	RESEARCH BACKGROUND
	SENSOR-BASED MONITORING OF AM PROCESSES
	SENSOR-BASED CHARACTERIZATION AND IDENTIFICATION OF AM DEFECTS
	AM PROCESS CONTROL

	RESEARCH METHODOLOGY
	SENSOR-BASED MODELING OF AM DEFECTS
	CONSTRAINED MDP MODELING OF AM PROCESSES
	STATE SPACE
	ACTION SPACE
	DECISION POLICY
	STATE TRANSITION

	DYNAMIC PROGRAMMING TO SOLVE CMDP
	DERIVATION OF Qt BY LINEAR PROGRAMMING DUAL THEORY

	NUMERICAL EXPERIMENTS
	CONCLUSIONS
	REFERENCES
	Biographies
	BING YAO
	HUI YANG


